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1 Introduction and summary

The best understood example of the AdS/CFT correspondence [1–3] equates IIB string

theory on AdS5×S5 to N=4, SU(N) super Yang-Mills theory. Gauge invariant operators

in N = 4 SYM are related to string states in IIB, correlation functions of gauge invariant

operators are related to AdS amplitudes and the free dimensionless parameters on both

sides are related as g2YM = gS , (g
2
YMN)−1/4 = lS/L where gYM is the Yang-Mills coupling

constant, and lS/L is the ratio of the string length to the AdS radius.

The simplest states to consider on the string theory side are those belonging to the

AdS5 graviton supermultiplet and its Kaluza-Klein partners. These states correspond

to operators in half-BPS multiplets in the gauge theory. We denote the superconformal

primaries of the half-BPS multiplets by Op, the gauge invariant product of p copies of one

of the scalars together operators in the same representation of the internal symmetry group

SU(4). The case p = 2 corresponds to the graviton multiplet itself.

The two-point and three-point amplitudes of half-BPS states are independent of the

coupling [4], and thus the same at weak coupling and strong coupling, one of the early

tests of AdS/CFT [5]. Thus the first non-trivial supergravity amplitudes of the half-BPS

states appear at four points. The simplest ones are those involving states from the graviton

supermultiplet itself and they are related to the four-point correlators of operators in the

stress-tensor supermultiplet. We denote the correlator of the superconformal primaries by

〈2222〉 = 〈O2O2O2O2〉. This four-point function has immense interest, not least as one
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can extract from it information about non-protected operators, and it has been the object

of a huge amount of research throughout the intervening time, both perturbatively [6–16]

and in the supergravity approximation [17–21].

At large N , keeping the ‘tHooft coupling λ = g2YMN fixed, the four-point correlator

〈2222〉 has an expansion of the form

〈2222〉 = 〈2222〉(0) + a〈2222〉(1)[λ] + a2〈2222〉(2)[λ] + . . .

where a = 1/(N2−1). This corresponds to a loop expansion on the string theory side so that

〈2222〉(0) is dual to the free (disconnected) string amplitude and is independent of lS . The

next term, 〈2222〉(1)[λ], is dual to the tree-level amplitude, and 〈2222〉(2)[λ] is dual to the

one-loop string amplitude, both of which depend on lS or equivalently λ. In a perturbative

expansion for small λ the tree-level amplitude 〈2222〉(1)[λ] is now known to ten loops in

terms of conformal integrals [16] and to three loops in terms of explicit polylogarithms [14].

Here however we are interested in the expansion at large λ corresponding to small lS/L. The

leading term in this large λ limit then corresponds to a tree-level supergravity amplitude.

This computation was performed on the supergravity side in AdS/CFT [18, 20]. More

recently the first few lS/L corrections to this result were computed explicitly in Mellin

space [22]. They first correction is of order λ−3/2, corresponding to order l6s or order α′3.

Until now however there has been no study of string loop corrections 〈2222〉(2) (al-

though see [23] where a study of loop corrections in more general AdS context was initi-

ated). In this paper we take this step. We give a precise prediction for the leading term

in 1/λ to 〈2222〉(2)[λ] dual to the first loop correction to the four-graviton superamplitude.

We will denote the leading terms in the large λ expansion simply by 〈2222〉(n) from now on.

We perform our analysis by analysing the OPE decomposition of the tree-level super-

gravity result 〈2222〉(1) together with the recently found supergravity results for arbitrary

charge correlators of the form 〈ppqq〉(1) [24] (see also previous work by [21, 25–29]). With

the information on the spectrum and three-point functions thus obtained we are able to

employ an analytic bootstrap of the type recently employed in weak coupling studies of

both correlators and scattering amplitudes in N = 4 SYM [14, 30–33].

Consider the expansion of the four-point function in superconformal blocks and its

relation to the OPE [34]. In the limit x212 → 0, 〈2222〉(2) has a leading divergence log2 x212
whose coefficient function depends only on data of lower order in the 1/N expansion.

Specifically, it is completely determined by the following data

1

2

t−1
∑

i=1

(Ctli
22 )

2(η
(1)
tli )

2

for t ≥ 2, l ≥ 0. Here Ctli
22 are zeroth order three-point functions of two stress-tensor mul-

tiplets and a double trace SU(4) singlet operator of twist 2t, spin l, and η
(1)
tli is (half) the

operator’s O(1/N2) anomalous dimension. There are precisely t−1 double trace operators,

Ktli, for each t, l, with i = 1, 2, . . . , t−1 labelling the different operators. They are lin-

ear combinations of superconformal primary operators of the schematic form Op∂
l
�

t−pOp

for p= 2, 3, . . . t. We have assumed here that all unprotected single trace operators have
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disappeared from the spectrum in this limit (they correspond to string states with very

large masses) and in addition that triple trace operators are suppressed by a further

order of 1/N2.

So the log2 x212 coefficient is determined in terms of this lower order data, but unfortu-

nately this data can not be extracted directly from the lower order charge two correlators

alone due to mixing: there are t − 1 operators with the same quantum numbers. How-

ever it turns out that we can extract this data from the correlators 〈ppqq〉 at leading and

subleading order in 1/N2 for arbitrary p, q. The t(t − 1)/2 correlators with p, q = 2 . . . t

contain data involving Ktli, specifically

t−1
∑

i=1

Ci
ppC

i
qqη

(1)
i ,

t−1
∑

i=1

Ci
ppC

i
qq, p, q = 2, . . . , t

where we have suppressed the dependence on twist and spin. This gives t(t− 1) equations,

precisely equal to the number of unknowns: the (t − 1)2 3-point functions Ci
pp, and the

t− 1 anomalous dimensions. We can thus solve these equations to obtain the 3-point func-

tions and anomalous dimensions. The full analytic formulae for the O(1/N2) anomalous

dimensions, for all t, l, i we obtain via this procedure is given by the compact formula

ηt,l,i = −
2(t− 1)4(l + t)4
(l + 2i− 1)6

, (1.1)

and the corresponding formulae for Ctli
22 is displayed below in (4.19).

With these results we can then completely determine the full log2 x212 coefficient of the

string loop amplitude 〈2222〉(2) (see (5.2)). Then having obtained the full log2 x212 coeffi-

cient we complete it to a full crossing-symmetric function. The completion is unique up

to crossing symmetric functions with no log2 x212 singularity which our technique can never

capture. One such correction is of the form αD̄4444 for an unfixed α. Other possible cor-

rection terms can be written as D̄ functions with higher values of the parameters (see [35]).

Our general prediction for 〈2222〉(2) is given in (6.8) and the following equations.

Finally, having obtained the full correlator we can now in turn extract new data from

it. In particular, we can extract the gravity loop corrected anomalous dimensions of twist 4

operators (for higher twist operators we expect mixing with triple trace operators to spoil

this). For l ≥ 2, we find

η
(2)
2,l =

1344(l − 7)(l + 14)

(l − 1)(l + 1)2(l + 6)2(l + 8)
−

2304(2l + 7)

(l + 1)3(l + 6)3
.

The paper proceeds as follows. In section 2 we introduce the correlators in more detail,

both the free theory and the general structure arising from superconformal symmetry.

In section 3 we introduce the OPE and super conformal partial waves. In section 4 we

discuss the supergravity limit and the operators we expect to remain in the spectrum: we

display our results for the 3-point functions and anomalous dimensions extracted from the

supergravity data. Section 5 contains details o the resummation of this data to obtain the

log2 x212 coefficient. In section 6 we complete this to the full correlator, then in section 7 we

extract the anomalous dimensions at O(1/N4) from this and in the conclusions we discuss

our results. The details of the superconformal block expansion we give in a short appendix.
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2 Four-point functions of half-BPS multiplets

We would like to investigate the structure of four-point functions of half-BPS multiplets

in N = 4 super Yang-Mills theory. The superconformal primary operators we consider are

single-trace operators constructed from scalars fields,

Op(x, y) = yR1 . . . yRp tr
(

φR1(x) . . . φRp
(x)
)

, (2.1)

where yR denote a set of auxiliary variables transforming in the vector representation of

SO(6) and obeying yRyR = 0. All other operators in the supermultiplet can be obtained

from (2.1) by applying supersymmetry transformations.

Since the operators Op are protected by supersymmetry, their two-point functions and

three-point functions are fully described by their free field expressions. In other words their

scaling dimensions and OPE coefficients are unrenormalised and therefore independent of

the Yang-Mills coupling. The four-point functions of such protected operators are gener-

ically coupling dependent however, since unprotected operators can be exchanged in the

operator product expansion.

Many results are available in the literature on four-point correlation functions of the

operators Op. In perturbation theory explicit results in terms of polylogarithmic functions

are available at one and two loops [21, 25, 36–40], and (in the planar limit) at three

loops [40–42] for all possible choices of external charges pi. In terms of conformal integrals,

results are available for higher loop orders for the simplest 〈2222〉 case [16, 43, 44].

The correlators have also been investigated in the supergravity limit, where they have

a dual interpretation as the scattering amplitudes of AdS supergravity fields [18–20]. In

particular the supermultiplet with primary O2 contains the energy-momentum tensor and

is therefore dual to the graviton multiplet in AdS. The higher charge operators correspond

to Kaluza-Klein copies coming from the reduction down from ten dimensions on S5. Re-

cently, a beautifully simple formula was proposed which consistently gives the Mellin space

representation for the correlation functions with arbitrary charges [24] in the regime of

classical supergravity. Here we will discuss how to exploit the operator product expansion

to bootstrap the supergravity loop corrections.

The fact that the operators Op are half-BPS means that the four-point functions of

any operators in the supermultiplets are uniquely determined in terms of the four-point

functions of the superconformal primaries,

〈p1p2p3p4〉 = 〈Op1(x1, y1)Op2(x2, y2)Op3(x3, y3)Op4(x4, y4)〉 . (2.2)

The correlation function (2.2) is a homogeneous polynomial of degree pi in the yi variables.

Our primary focus here is the case of four energy-momentum multiplets 〈2222〉. In order

to discuss the supergravity loop corrections to this correlator we will also need some results

from more general correlators of the form 〈ppqq〉.

In free field theory the correlation functions can be written as polynomials in the

superpropagators

gij =
y2ij
x2ij

, (2.3)
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where y2ij = yi · yj . It is also useful to introduce conformal and su(4) invariant cross-ratios

u = xx̄ =
x212x

2
34

x213x
2
24

, v = (1− x)(1− x̄) =
x214x

2
23

x213x
2
24

,

yȳ =
y212y

2
34

y213y
2
24

, (1− y)(1− ȳ) =
y214y

2
23

y213y
2
24

. (2.4)

and in particular we will interchange freely between x, x̄ and u, v often including both

variables in the same formula. Notice the useful relations betwen these cross ratios and

the superpropagators

g12g34
g13g24

=
yȳ

xx̄
,

g14g23
g13g24

=
(1− y)(1− ȳ)

(1− x)(1− x̄)
. (2.5)

The dependence of the four-point functions on the gauge coupling is heavily constrained

by superconformal symmetry. To express the constraints imposed by superconformal sym-

metry it is useful to separate the correlator into a free-field piece and an interacting piece.

In the case of the 〈2222〉 correlator we have

〈2222〉 = 〈2222〉free + 〈2222〉int , (2.6)

where the interacting piece is governed by a single function of the two conformal cross-

ratios,

〈2222〉int = g213g
2
24s(x, x̄; y, ȳ)F (u, v) . (2.7)

Here we have

s(x, x̄; y, ȳ) = (x− y)(x− ȳ)(x̄− y)(x̄− ȳ) , (2.8)

which describes the full y-dependence of the interacting term. It is the presence of the

factor s(x, x̄; y, ȳ) in the interacting piece which follows from superconformal symmetry

and this feature is sometimes referred to as ‘partial non-renormalisation’ [45]. Crossing

symmetry implies

F (u, v) = F (v, u) =
1

u4
F

(

1

u
,
v

u

)

. (2.9)

For later convenience we choose to normalise our correlation function so that the free-

field correlator has the form1

〈2222〉free = 〈2222〉
(0)
free + a〈2222〉

(1)
free (2.10)

with

〈2222〉
(0)
free =

(

g212g
2
34 + g213g

2
24 + g214g

2
23

)

,

〈2222〉
(1)
free = 4

(

g12g34g13g24 + g12g34g14g23 + g13g24g14g23

)

(2.11)

1In other words we have divided by a factor of A = 4(N2 − 1)2 compared to more usual conventions as

in e.g. [48]. This amounts to dividing the operator O(2) by a factor of
√

2(N2 − 1).
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and

a =
1

N2 − 1
. (2.12)

The different N dependence of the two pieces comes from the fact that the first term

in (2.10) corresponds to the disconnected part of the correlator while the second term is

the connected part.

3 The operator product expansion

We will consider the operator product expansion obtained in the limit x212 → 0, x234 →

0. This expansion of the four-point correlators has been extensively discussed in many

papers [26, 34, 46, 47]. In cross-ratio variables it corresponds to the limit u → 0 with v

fixed. The expansion of the correlator is then dictated by exchanged operators of a given

twist (i.e. dimension minus spin), with the dominant terms given by the operators of lowest

twist. The OPE is convergent and therefore if we keep all terms in the expansion (as we

do in the following discussion) it is valid for all values of u and v inside the radius of

convergence. In the following we often use the label t to mean half the twist,

t = 1
2(∆− l) . (3.1)

We will employ the superconformal blocks of [48] which allow us to explicitly de-

compose the correlators into contributions from protected superconformal multiplets and

unprotected ones. The correlation function 〈2222〉 then has the following OPE expansion

〈2222〉 = (g12g34)
2 + (g12g34g13g24)A2,0F

half
1,0 + (g13g24)

2A4,0F
half
2,0

+ (g13g24)
2

[

∑

l≥2

A4,lF
sh.
2,l +

∑

l≥0

A′
4,lF

′ sh.
2,l

]

+ (g13g24)
2
∑

t,l≥0

Ct,lF
long
t,l . (3.2)

In the above decomposition the terms in the first line correspond respectively to the contri-

butions of the identity operator, the half-BPS energy-momentum multiplet and a twist four

half-BPS contribution. The terms in the second line with l ≥ 2 comprise the contributions

of the semi-short multiplets with primaries of twist four and spin l in the su(4) represen-

tation [0, 2, 0] (for F sh.
2,l ) or the [1, 0, 1] representation (for F ′ sh.

2,l ). The block F ′ sh.
2,0 gives the

contribution of quarter-BPS multiplet whose primary has spin zero, twist four and su(4)

labels [2, 0, 2]. Finally the third line comprises the contributions of all long superconformal

multiplets with twist 2t and spin l. In all terms the sum over l is only over even spins, due

to the symmetry of the correlator under the exchange of the first two operators.

The dependence on the Yang-Mills coupling enters only through the contributions

of the long multiplets. The dimensions (and therefore the twists) of such multiplets are

coupling dependent and hence generically not integer valued. Likewise the OPE coefficients

Ct,l are also explicitly dependent on the coupling.
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We give the explicit forms of the superconformal blocks and OPE coefficients for the

protected multiplets in appendix A. Our focus here is the contribution of the long multi-

plets. These are given by

F long
t,l = (x− y)(x− ȳ)(x̄− y)(x̄− ȳ)Gt,l(x, x̄) , (3.3)

where

Gt,l(x, x̄) =
ft+l(x)ft−1(x̄)− ft+l(x̄)ft−1(x)

x− x̄
(3.4)

and

fρ(x) = xρ−1
2F1(ρ+ 2, ρ+ 2, 2ρ+ 4;x) . (3.5)

The presence of the explicit factor of (x − y)(x − ȳ)(x̄ − y)(x̄ − ȳ) in the blocks for long

multiplets agrees with the expectation that all quantum corrections appear with such a

prefactor in (2.7) in accordance with partial non-renormalisation.

In free field theory (where t is an integer) the coefficients Ct,l take the following form

for t ≥ 2,

Ct,l =
2(t+ l + 1)!2t!2

(

(l + 1)(2t+ l + 2) + 4a(−1)t
)

(2t)!(2t+ 2l + 2)!
, (3.6)

while for twist two (t = 1) we have

C1,l =
8a(l + 2)!2

(2l + 4)!
. (3.7)

Recall that l is to be taken even in these formulae.

4 The supergravity limit and double-trace spectrum

Here our primary focus is on the supergravity limit of N = 4 super Yang-Mills theory.

This is a limit where we fix gYM and take large N and perform an expansion in 1/N2. In

such a limit the ’t Hooft coupling λ = g2YMN becomes large and operators dual to excited

string states decouple as they become infinitely massive.

The protected single-trace half-BPS operators however are present in the spectrum.

The energy-momentum multiplet corresponds to the graviton multiplet and the higher-

charge half-BPS operators correspond to higher Kaluza-Klein modes from the reduc-

tion on S5.

Similarly operators built from products of single-trace half-BPS operators are also

predicted to remain in the spectrum. Such operators can themselves be protected or they

can be unprotected. The unprotected operators of this type are still present in the spectrum

because in the strictly infinite N limit they keep their classical scaling dimensions due to

operator factorisation, and hence the corresponding states do not acquire infinite mass.

In the supergravity spectrum such operators are ‘nearly’ protected and receive anomalous

dimensions at order 1/N2 and higher.

However, all other operators, not built from products of singe-trace half-BPS opera-

tors, correspond to the afore-mentioned string states. Such operators are therefore absent
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from the spectrum in the supergravity limit. All of the twist-two long operators in the

expansion (3.2) are of this type.

The simplest long operators which remain in the supergravity spectrum are double-

trace operators and we will examine their spectrum by analysing the four-point functions

of the single-trace half-BPS operators. The double-trace operators Kt,l
p,q = Op�

n∂lOq are

special for two reasons. Firstly we expect the three-point functions 〈Op′Oq′K
t,l
p,q〉 to be non-

zero already at the leading order in the 1/N2 expansion, whereas we expect the three-point

functions involving triple-trace operators and higher to be suppressed. Secondly, there is

a unique operator of the form Kt,l
p,q of spin l for fixed p, q, t and fixed su(4) labels. The

triple-trace and higher multi-trace operators do not obey this property; their number grows

with the spin.

For the correlation function of particular interest here, 〈2222〉 it is convenient to change

the expansion parameter from 1/N2 to

a =
1

N2 − 1
(4.1)

so that we have

〈2222〉 =
∞
∑

n=0

an〈2222〉(n) . (4.2)

This has the benefit that the free theory correlator then contributes to just the first two

terms. The interacting part of the correlator and hence the function F (u, v) appearing

there have an expansions of the form

〈2222〉int =
∞
∑

n=1

an〈2222〉
(n)
int , F (u, v) =

∞
∑

n=1

anF (n)(u, v) , (4.3)

so that they contribute to all terms except the leading one. In other words we have

〈2222〉(0) = 〈2222〉
(0)
free ,

〈2222〉(1) = 〈2222〉
(1)
free + 〈2222〉

(1)
int , (4.4)

while for n ≥ 2 we have

〈2222〉(n) = 〈2222〉
(n)
int = g213g

2
24s(x, x̄; y, ȳ)F

(n)(u, v) . (4.5)

Here 〈2222〉(0) corresponds to the contribution of disconnected supergravity diagrams. The

connected tree-level Witten diagrams contribute to 〈2222〉(1), while 〈2222〉(2) corresponds

to one-loop supergravity corrections. From tree-level supergravity we have [19, 20]

F (1)(u, v) = −4∂u∂v(1 + u∂u + v∂v)Φ
(1)(u, v) = −4D̄2422(u, v) , (4.6)

where Φ(1)(u, v) is the one-loop scalar box integral and we also give the expression in terms

of the D̄-functions introduced in [34].

Our task now is to compare the known result with the general form of the operator

product expansion given in eq. (3.2). We are interested in the contribution of the long
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multiplets. At the leading order in the a expansion the only contributions are long operators

of twist four and higher, corresponding to the the term proportional to A in the free-field

expression (3.6). This encompasses the contributions of all the long double-trace operators

to the disconnected part of the correlator. For the 〈2222〉 correlation function, there is only

one su(4) channel; all the superconformal primaries are in the singlet. We must remember

that at leading order all these operators will have their classical scaling dimensions (and

hence twists). This means that many operators can be degenerate and the twist is not a

good label for the spectrum. Thus we introduce a new label i to run over different operators

which share the same quantum numbers at leading order in a. In fact we may count the

number of such operators simply: at twist 2t there are (t − 1) such degenerate operators

for each spin l,

{(O2�
t−2∂lO2), (O3�

t−3∂lO3), . . . , (Ot�
0∂lOt)} . (4.7)

We denote such double-trace operators by Kt,l,i for i = 1, . . . , t−1. Thus we have a relation

for the three-point functions at leading order

t−1
∑

i=1

〈O2O2Kt,l,i〉
2 = C

(0)
t,l . (4.8)

where the C
(0)
t,l are given by the coefficients in (3.6) with a set to zero.

C
(0)
t,l =

2(t+ l + 1)!2t!2(l + 1)(2t+ l + 2)

(2t)!(2t+ 2l + 2)!
(4.9)

The relation (4.8) holds under the assumptions outlined earlier that only the operators

listed in (4.7) contribute at leading order in the a expansion.

When we proceed to the next order in a there are many issues to take into account.

Firstly, all the twist-two long multiplets which are present in free field theory must be

absent in the supergravity spectrum. It is therefore necessary that the contribution of such

multiplets to 〈2222〉
(1)
int cancels the contribution from the connected part of the free theory

correlation function 〈2222〉
(1)
free which corresponds to the coefficients given in eq. (3.7). This

is indeed the case [34]. The only twist-two contribution in supergravity is therefore the

protected energy-momentum multiplet, which is the dual of the graviton multiplet.

Next, at the first subleading order we must take into account the fact that the long

double-trace operators develop anomalous dimensions. The true twist of the operator Kt,l,i

is therefore no longer 2t (which we still take to be integer) but rather it is

2(t+ aη
(1)
t,l,i + a2η

(2)
t.l,i + . . .) . (4.10)

Here we use the notation that ηt,l,i =
∑∞

n=1 a
nη

(n)
t,l,i is half the anomalous dimension of the

operator Kt,l,i. Examining the expression for the blocks given in (3.3) and performing the

perturbative expansion in a we find that the functions F (n)(u, v) will be expressible as a

series of logarithms with coefficients which are analytic functions of u,

F (n)(u, v) =
n
∑

r=0

(log u)rF (n)
r (u, v) . (4.11)
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At order a we find a contribution to the OPE proportional to log u,

F
(1)
1 (u, v) =

∞
∑

t=2

∞
∑

l=0

t−1
∑

i=1

〈O2O2Kt,l,i〉
2η

(1)
l,i Gt,l(x, x̄) . (4.12)

The contribution of such terms in the OPE must match the part of the explicit result for

F (1) with a logarithmic branch cut around u = 0 (i.e. the discontinuity around u = 0).

Decomposing F (1)(u, v) into a series of logarithms with analytic coefficients as in (4.11)

we find

F
(1)
1 (u, v) =

8

v(x− x̄)6

(

f(u, v) + vg(u, v)
Li1(x)− Li1(x̄)

x− x̄

)

, (4.13)

where

f(u, v) = − 1 + 3u− 3u2 + u3 − 8v − 9uv + 16u2v + u3v

+ 18v2 − 9uv2 − 3u2v2 − 8v3 + 3uv3 − v4

g(u, v) = 6(1− u− u2 + u3 − v + 4uv − u2v − v2 − uv2 + v3) . (4.14)

Identifying the expressions (4.12) and (4.13) one finds [34]

t−1
∑

i=1

〈O2O2Kt,l,i〉
2η

(1)
t,l,i = −C

(0)
t,l

(t− 1)t(t+ 1)(t+ 2)

2(l + 1)(2t+ l + 2)
. (4.15)

Due to the sum over i in (4.8) and (4.15) one cannot generically deduce the anomalous

dimensions η
(1)
l,i and leading order three-point functions 〈O2O2Kt,l,i〉. This phenomenon is

known as operator mixing. The exception is the case of twist four (t = 2) where there is

only a single double-trace operator K2,l for each spin l and hence no mixing. In this case

one finds simply that [34]

η
(1)
2,l = −

48

(l + 1)(l + 6)
, 〈O2O2K2,l〉

2 =
(l + 3)!2(l + 1)(l + 6)

3(2l + 6)!
. (4.16)

To proceed further we make use of the fact that all correlators of the form 〈p1p2p3p4〉

are known due to the work of Rastelli and Zhou [24]. The formula found in [24] is consistent

with many previously known cases found by other methods [20, 26, 28, 29]. We develop

a very similar OPE analysis for all correlators, both for the large N free field expressions

and for the log u terms found from the results of [24]. In particular analysing the singlet

channel of the correlators of the form 〈ppqq〉 provides us with enough information to deduce

all the three-point functions 〈OpOpKt,l,i〉. Indeed one may go further and deduce similar

information for the non-singlet channels as well. We will provide much more information

on this analysis in a forthcoming paper [49]. Here we simply quote the results of relevance

to the study of the 〈2222〉 correlation function. We find for the anomalous dimensions,

ηt,l,i = −
2(t− 1)4(l + t)4
(l + 2i− 1)6

, (4.17)

where (x)n = (x + n − 1)!/(x − 1)! denotes the Pochhammer symbol. For the three-point

functions we find

〈O2O2Kt,l,i〉
2 = C

(0)
t,l Rt,l,iat,i (4.18)
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with

Rt,l,i =
21−t(2l + 3 + 4i)(l + i+ 1)t−i−1(t+ l + 4)i−1

(

5
2 + l + i

)

t−1

,

at,i =
2(1−t)(2 + 2i)!(t− 2)!(2t− 2i+ 2)!

3(i− 1)!(i+ 1)!(t+ 2)!(t− i− 1)!(t− i+ 1)!
. (4.19)

The fact that the results for the both the anomalous dimensions and the three-point func-

tions are so simple and in a closed form is already something of a miracle. Note, for

example, that the spin dependence always factorises completely into linear factors in l in

both quantities. As far as we are aware these are the first results on double-trace anomalous

dimensions and three-point functions for arbitrary twist and spin. We will now use these

results to make predictions for the one-loop supergravity corrections to the correlation

function, i.e. the function F (2)(u, v).

5 Resummation of the one-loop double discontinuity

With the results for the three-point functions and anomalous dimensions to hand we can

now make a prediction for the leading log2 u term in F (2)(u, v), in other words, the coef-

ficient F
(2)
2 (u, v) in the expansion (4.11). From expanding the blocks to order a2 we find

a contribution to the OPE with a double logarithm of u and the square of the anomalous

dimensions. Thus at order a2 we predict a double discontinuity contribution to F (2)(u, v)

of the form

F
(2)
2 (u, v) =

1

2

∞
∑

t=2

∞
∑

l=0

t−1
∑

i=1

〈O(2)O(2)Kt,l,i〉
2(η

(1)
t,l,i)

2Gt,l(x, x̄) . (5.1)

We perform the sum by obtaining many orders in x and x̄ variables. Comparing the series

to a plausible ansatz in terms of polylogarithmic functions we find the following form for

the double discontinuity,

F
(2)
2 (u, v) =

1

uv

[

p(u, v)
Li1(x)

2 − Li1(x̄)
2

x− x̄
+ 2

[

p(u, v) + p

(

1

v
,
u

v

)]

Li2(x)− Li2(x̄)

x− x̄

+ q(u, v)(Li1(x) + Li1(x̄)) + r(u, v)
Li1(x)− Li1(x̄)

x− x̄
+ s(u, v)

]

. (5.2)

where p, q, r, s are rational functions of u and v. We may then check the obtained result to

very high orders in both variables, finding perfect agreement.

The coefficient function p is symmetric p(u, v) = p(v, u) as required by crossing since

the double discontinuity in both u and v comes only from the first term in (5.2) which

contributes p(u, v) log2 u log2 v and hence must be symmetric in u and v. As we will see,

the fact that the coefficient of the Li2 term is related simply to the same function p is a

hint at an additional simplicity in the final amplitude.

It is possible to write the coefficient p(u, v) in quite a simple form,

p(u, v) = 24uv∂2
x∂

2
x̄

[

u2v2(1− u− v)[(1− u− v)4 + 20uv(1− u− v)2 + 30u2v2]

(x− x̄)10

]

. (5.3)
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The other coefficients are more complicated and we will not give their explicit expressions.

Instead we will proceed to construct a fully crossing symmetric function F (2)(u, v) with

the correct double discontinuity. The remaining coefficients in (5.2) can then be obtained

from F (2)(u, v) by taking the double discontinuity.

6 Completion to a crossing symmetric amplitude

Having obtained the double discontinuity from resumming the OPE, we make an ansatz

for the form of the full crossing invariant contribution to supergravity at one loop. In order

to construct a suitable ansatz we note that the tree-level supergravity function F (1)(u, v)

is expressible in terms of a D̄-function which is a particular combination of derivatives

acting on the one-loop box function Φ(1)(u, v). This means that it is expressible as a

combination of single-valued polylogarithms of weights 2,1 and 0 with rational functions of

x and x̄ as coefficients. The particular class of single-valued polylogarithms of interest here

are linear combinations of polylogarithms constructed on the singularities (or ‘letters’)

{x, 1 − x, x̄, 1 − x̄} such that they are single-valued when x̄ is taken to be the complex

conjugate of x. They are constructed in general in [50] and appear in many contexts to

discuss the perturbative contributions to the correlation functions 〈p1p2p3p4〉 [40, 42] as

well as in multi-Regge kinematics of scattering amplitudes [51, 52] and Feynman integral

calculations [53, 54].

Since our result for the double discontinuity F
(2)
2 (u, v) given in eq. (5.2) is expressible in

terms of logarithms and dilogarithms it seems a natural choice is to construct an ansatz for

the full function F (2)(u, v) from the same class of single-valued polylogarithms, but this time

of weights 4,3,2,1, and 0 with rational functions for coefficients. We then impose crossing

symmetry and the fact that the double discontinuity must match our result for F
(2)
2 (u, v).

The constraints described in the previous paragraph fix completely the weight 4 and

weight 3 parts of the result with rational coefficients which are determined by the coeffi-

cients appearing in F
(2)
2 (u, v). The weight 2, 1 and 0 parts are not fixed completely by

matching to the double discontinuity. Since the double discontinuity F
(2)
2 (u, v) has 15 pow-

ers of (x− x̄) in the denominator so do the rational coefficients in the weight 4 and weight 3

parts. This leaves the possibility that the resulting function has unphysical poles at x = x̄.

In order to make sure that poles at x = x̄ are in fact absent, we have to arrange the

weight 2,1 and 0 parts so that they cancel those of the weight 4 and weight 3 pieces. We

then allow a maximum of 15 powers of (x− x̄) in the denominators of the coefficients of the

weight 2,1 and 0 parts of the ansatz to match the denominators in the weight 4 and weight

3 parts and demand that all poles at x = x̄ cancel. We also demand that the twist-two

sector is completely absent2 from F (2)(u, v). These constraints completely fix the answer

within our ansatz up to a single free coefficient.

We find we can express the final crossing symmetric result in terms of ladder inte-

grals [55, 56]. These are a particular subset of the single-valued polylogarithms under

2Recall the twist-two long operators are absent from the supergravity spectrum and the cancellation of

such contributions between 〈2222〉
(1)
free and 〈2222〉

(1)
int is complete. Therefore there should be no twist-two

contributions in F
(2).
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considerations here. They are given by

Φ(l)(u, v) = −
1

x− x̄
φ(l)

(

x

x− 1
,

x̄

x̄− 1

)

, (6.1)

where

φ(l)(x, x̄) =
l
∑

r=0

(−1)r
(2l − r)!

r!(l − r)!l!
logr(xx̄)(Li2l−r(x)− Li2l−r(x̄)) . (6.2)

The functions Φ(l) obey

Φ(l)(u, v) = Φ(l)(v, u) (6.3)

while Φ(1) also obeys
1

u
Φ(1)

(

1

u
,
v

u

)

= Φ(1)(u, v) . (6.4)

We recall that the correlation function in the supergravity limit then takes the

form (2.6)

〈2222〉 = 〈2222〉free + g213g
2
24s(x, x̄; y, ȳ)F (u, v) . (6.5)

with

F (u, v) = aF (1)(u, v) + a2F (2)(u, v) +O(a3) . (6.6)

The tree-level supergravity contribution is given by

F (1)(u, v) = −4∂u∂v(1 + u∂u + v∂v)Φ
(1)(u, v) . (6.7)

Our final result for the one-loop correction contains a single unfixed parameter within

the ansatz outlined above. We first quote a particular solution where we set the free

parameter α to zero. Then we will give the ambiguity. In the next section we will argue

that α = 0 is in fact needed to maintain analyticity in the spin for the twist-four anomalous

dimensions at order a2.

Our particular solution is given by the crossing symmetric combination

F (2)(u, v) =
1

uv

[

f(u, v) +
1

u
f

(

1

u
,
v

u

)

+
1

v
f

(

1

v
,
u

v

)]

. (6.8)

To simplify the presentation of the function f(u, v) we write

f(u, v) = ∆(4)g(u, v) , ∆(4) = (x− x̄)−1uv∂2
x∂

2
x̄(x− x̄) . (6.9)

Furthermore we can decompose the function g into pieces according to the transcendental

weight of the polylogarithmic contributions

g = (x− x̄)−10[g(4) + g(3) + g(2) + g(1) + g(0)] . (6.10)

The pieces of given weight are then as follows,

g(4)(u, v) =P
(4)
− (u, v)Φ(2)(u, v)

g(3)(u, v) =P
(3)
+ (u, v)Ψ(u, v) + P

(3)
− (u, v) log(uv)Φ(1)(u, v)

g(2)(u, v) =P
(2)
+ (u, v) log u log v + P

(2)
− (u, v)Φ(1)(u, v)

g(1)(u, v) =P
(1)
+ (u, v) log(uv)

g(0)(u, v) =P
(0)
+ (u, v) . (6.11)

– 13 –



J
H
E
P
0
1
(
2
0
1
8
)
0
3
5

The function Ψ(u, v) is a particular derivative of the two-loop ladder integral,

Ψ(u, v) = (x− x̄)(u∂u + v∂v)[(x− x̄)Φ(2)(u, v)]

= [x(1− x)∂x − x̄(1− x̄)∂x̄]φ
(2)

(

x

x− 1
,

x̄

x̄− 1

)

. (6.12)

The coefficients P
(r)
± (u, v) in (6.11) are symmetric polynomials in u and v. The subscripts

± correspond to the symmetry properties under x ↔ x̄ of the pure transcendental factor

that each coefficient P (r) multiplies (antisymmetric for the ladder functions and symmetric

for constants, for logarithms of u and v and for Ψ(u, v)) . Note that the weight four piece

is entirely expressible in terms of Φ(2)(u, v), whose transcendental part is antisymmetric

in x and x̄. In principle there could have been a symmetric part, e.g. Φ(1)(u, v)2, but in

fact our function does not have such a contribution. The fact that the weight four piece is

given by Φ(2)(u, v) only implies the relationship between the coefficients of the Li2 terms

and the Li21 terms in the double discontinuity (5.2).

To express the coefficient polynomials it is helpful to introduce symmetric variables

s̄ = 1− u− v , p = uv . (6.13)

The coefficient polynomials are then given by

P
(4)
− (u, v) = 96p2s̄[s̄4 + 20ps̄2 + 30p2] , (6.14)

P
(3)
+ (u, v) =

8

5
p2[137s̄4 + 1214ps̄2 + 512p2] , (6.15)

P
(3)
− (u, v) = 336p2[s̄(1− s̄)(6− 6s̄+ s̄2) + 2p(3− 14s̄+ 4s̄2)− 16p2] , (6.16)

P
(2)
+ (u, v) = 2[(1− s̄)2s̄6 − 2ps̄4(20− 33s̄+ 14s̄2)

+ 8p2(756− 1323s̄+ 601s̄2 − 54s̄3 + 30s̄4)

− 32p3(583− 25s̄+ 26s̄2) + 1024p4] , (6.17)

P
(2)
− (u, v) = 56p2[−s̄2(2− s̄)(18− 18s̄+ 5s̄2)

+ 2p(108− 144s̄+ 128s̄2 − 11s̄3)− 8p2(63− s̄)] ,

P
(1)
+ (u, v) =

1

3
[5s̄7(2− 3s̄)− 2ps̄5(158− 193s̄)

+ 16p2s̄(378− 567s̄+ 233s̄2 − 147s̄3)

+ 32p3(378− 139s̄+ 129s̄2) + 256p4] , (6.18)

P
(0)
+ (u, v) =

2

15
(x− x̄)2[20(1− s̄)s̄6 − 5ps̄4(102− 75s̄− 4s̄2)

+ 8p2(630− 630s̄+ 481s̄2 − 255s̄3 − 30s̄4)

− 16p3(217− 215s̄− 60s̄2)− 1280p4] . (6.19)

The terms involving P
(4)
− , P

(3)
± , P

(2)
+ contribute to the double discontinuity and therefore

the coefficients are related to those appearing in (5.2). In particular we have

p(u, v) =
1

4
(x− x̄)∆(4)

[

P
(4)
− (u, v)

(x− x̄)11

]

. (6.20)
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The ambiguity in the result is much simpler. In fact all terms proportional to the

single free parameter α can be expressed in a similar way to the tree-level amplitude,

α
1

uv
[(1 + u∂u + v∂v)u∂uv∂v]

2Φ(1)(u, v) . (6.21)

At this stage our solution is given by the particular solution F (2)(u, v), as described in

equations (6.8)–(6.19), plus the amibiguity in eq. (6.21) above. Note that the ambiguity

in (6.21) has no double discontinuity, has no unphysical poles, is fully crossing symmetric

and has no twist-two contribution. When written out in terms of single-valued polyloga-

rithms with rational coefficients, the ambiguity in (6.21) has 13 powers of (x − x̄) in the

denominator. In terms of D̄-functions it can be expressed as D̄4444. In the next section we

argue that α = 0.

We should sound a note of caution that what we have presented is not strictly a

derivation of the one-loop correction. It is possible that the true answer differs from the

expression we have constructed above by a function that itself has no double discontinuity,

no unphysical poles, no twist-two sector and is fully crossing symmetric on its own.

In principle there are further ambiguities we could add within the class of single-valued

polylogarithms multiplied by rational functions. These all have higher powers of (x − x̄)

in the denominator than the 15 we allowed above. They correspond to crossing symmetric

D̄-functions with higher weights. Indeed such functions have arisen in the context of

possible stringy corrections [35].

Finally, it is also possible that there are functions which do not sit in the class of

single-valued polylogarithms that we have allowed. However it is highly non-trivial that

we are able to find a solution, unique up a single free parameter within the simplest class

of functions we are led to consider and we take this as very strong encouragement that our

amplitude is in fact correct.

While the result presented above in equations (6.8)–(6.19) and (6.21) is certainly one

way to represent the result of our crossing symmetric one-loop amplitude, we do not claim

that it is necessarily the most natural. It seems highly likely that it will be simpler in its

Mellin space representation, as the tree-level result is for general charges [24].

7 Twist 4 anomalous dimensions at order a
2

Having obtained the correlation function at NNLO we can try to extract anomalous dimen-

sions of the double trace operators from it. These should correspond to loop corrections

to the masses of the corresponding multi-particle supergravity states via AdS/CFT. The

order a2 anomalous dimensions appear within the partial wave decomposition of the single

discontinuity of the correlation function we have constructed in the previous section. For

general external half-BPS operators and exchanged operators of general twist, we expect

triple-trace operators to also contribute to the single discontinuity at order a2, although

they are absent from the double discontinuity used to construct the correlator. However

at twist four there are no such triple-trace operators and furthermore there is a single

double-trace operator for each spin so we can extract the anomalous dimensions of such

double-trace operators as we will now show.
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Recall that the correlator takes the form

〈2222〉 = 〈2222〉
(0)
free + a〈2222〉

(1)
free + a〈2222〉

(1)
int + a2〈2222〉(2) +O(a3) (7.1)

where

〈2222〉
(0)
free =

(

g212g
2
34 + g213g

2
24 + g214g

2
23

)

(7.2)

〈2222〉
(1)
free = 4

(

g12g34g13g24 + g12g34g14g23 + g13g24g14g23

)

(7.3)

〈2222〉
(1)
int = −4 g213g

2
24s(x, x̄; y, ȳ)D̄2422(x, x̄) (7.4)

〈2222〉(2) = 4 g213g
2
24s(x, x̄; y, ȳ)F

(2)(u, v) (7.5)

and F (2)(u, v) is our new result given in (6.8). We wish to equate this to a superconformal

partial wave expansion.

Focussing on the twist-four operators, the SCPW expansion reads

〈2222〉|twist 4 sector = g213g
2
24

∑

l∈2N

C2,l(N)F long
2+γ,l (7.6)

where

F long
2+γ,l = s(x, x̄; y, ȳ)(xx̄)

γ

2G2+γ,l(x, x̄) (7.7)

and where

G2+γ,l(x, x̄) =
xl+1

2F1

(

4+l+γ
2 , 4+l+γ

2 , 8+2l+γ, x
)

2F1

(

3+γ
2 , 3+

γ
2 , 6+γ, x̄

)

− x ↔ x̄

x− x̄
.

(7.8)

Since this discussion is focussed only on twist four, we define for convenience

Al := Ct=2,l. (7.9)

Expanding the normalisation and anomalous dimension in N as:

Al(N) = A
(0)
l + aA

(1)
l + a2A

(2)
l +O(a3)

ηl(N) = aη
(1)
l + a2η

(2)
l +O(a2) (7.10)

we get the following expansion of the SCPWs (7.6)

〈2222〉|twist 4 sector = s(x, x̄; y, ȳ)
∑

l∈2N

[

A
(0)
l G2,l

+ a

(

log(xx̄)A
(0)
l η

(1)
l G2,l +A

(1)
l G2,l +A

(0)
l η

(1)
l

∂

∂γ
G2+γ,l

)

+ a2

(

log2(xx̄)
A

(0)
l

2

(

η
(1)
l

)2
G2,l

+ log(xx̄)
(

A
(1)
l η

(1)
l G2,l +A

(0)
l η

(2)
l G2,l +A

(0)
l

(

η
(1)
l

)2 ∂

∂γ
G2+γ,l

)

+ log0(xx̄)
(

. . .
)

)

+ O(a3)

]

, (7.11)
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We now equate this expansion to the correlator (7.1). The problem can be split up

into a number of separate pieces, separating out the free theory from the tree-level and

one-loop interacting pieces. So we have

〈2222〉
(0)
free|twist 4 sector = g213g

2
24

∑

l

A
(0)
l F long

2,l (7.12)

〈2222〉
(1)
free|twist 4 sector = g213g

2
24

∑

l

A
(1)
free,lF

long
2,l , (7.13)

where we split the order a contribution to the normalisation into a piece arising from

connected free theory and a piece from supergravity

A
(1)
l = A

(1)
free,l +A

(1)
int,l . (7.14)

The conformal partial wave analysis of the free theory is well known and was first computed

in [34] and reproduced more recently in these conventions in [48]. It yields

A
(0)
l =

(l + 1)(l + 6)((l + 3)!)2

3(2l + 6)!
, A

(1)
free,l =

4((l + 3)!)2

3(2l + 6)!
. (7.15)

Next we consider the supergravity contribution to the correlator, which one splits into the

log xx̄ contribution and a log0 xx̄ contribution. We equate

−4D̄2422|log(xx̄) = A
(0)
l η

(1)
l G2,l +O(xx̄) (7.16)

−4D̄2422|log0(xx̄) = twist 2 contribution +A
(1)
int,lG2,l +A

(0)
l η

(1)
l

∂

∂γ
G2+γ,l +O(xx̄) . (7.17)

The first equation yields [34]

A
(0)
l η

(1)
l = −

16((l + 3)!)2

(2l + 6)!
⇒ η

(1)
l = −

48

(l + 1)(l + 6)
. (7.18)

Plugging these values into (7.17), and including the SCPW for the twist operators one first

obtains a twist two sector precisely cancelling that from the free theory, thus reproducing

the well-known result that the twist 2 sector drops out. Secondly we obtain values for

the correction to the normalisation due to supergravity which we haven’t found a closed

formula for. The first 20 even spin terms are:
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{

A
(1)
int,0, A

(1)
int,2, A

(1)
int,4, . . .

}

=
{

14

75
,

367

19845
,

57191

38648610
,

407117

3723149430
,

39792607

5131853787060
,

4665834631

8701123888957500
,

58812219091

1612868735890269000
,

3685539014567

1504379594743767670500
,

962595120061373

5901478806725536789755000
,

39734035774806913

3684714753239233013329029000
,

1718092704673177939

2423610205875655200585311130000
,

567891105901482934553

12242252973728717079772550894375400
,

30217552473152404437509

9993236004349870542057754236907837200
,

30320562388695385278449

154329038786388394824389455826138274000
,

109446992694061123595058871

8597820765253205965031168033609718974647200
,

219462793027791818759186957

266727848740241503233353281042665145463487000
,

14737793385980396424527387159

277702691081180314127738079406508049818507317200
,

76542295754540828585833174473697

22402592153542599025786896369422989563696466402467600
,

1394230554274187964861474712183

6348912756064704177348513141132021333841103838756000
,

330978918796758196002883841623103

23484210185550624295883397889889272366131868197598330800
, . . .

}

Finally, we turn to the next order a2 using our proposed correlator at this order. We

split into the log2(xx̄) piece, and the log(xx̄) piece. Equating to the SCPW we have

F (2)(u, v)|log2(xx̄) =
A

(0)
l

2

(

η
(1)
l

)2
G2,l +O(xx̄) (7.19)

F (2)(u, v)|log(xx̄) =
(

(

A
(1)
free,l +A

(1)
int,l

)

η
(1)
l +A

(0)
l η

(2)
l

)

G2,l +A
(0)
l

(

η
(1)
l

)2 ∂

∂γ
G2+γ,l +O(xx̄) .

(7.20)

The first equation indeed yields the correct result

A
(0)
l

2

(

η
(1)
l

)2
=

384((l + 3)!)2

(l + 1)(l + 6)(2l + 6)!
(7.21)

as it had to (recall that we derived our result for the string corrected correlator using

precisely this consistency condition along with similar for higher twists). Plugging this

into the second equation (7.20) and reading off the coefficients of the CPW we obtain from

the coefficients of the partial waves, the combination
(

A
(1)
free,l +A

(1)
int,l

)

η
(1)
l +A

(0)
l η

(2)
l .

Just as for A
(1)
int,l itself we have been unable to obtain a closed formula for this combination,

however inputting the known coefficients and rearranging, we obtain values for η
(2)
l directly,

and these are consistent with a simple closed formula (at least for l > 0)! We find

η
(2)
l =

{

1344(l−7)(l+14)
(l−1)(l+1)2(l+6)2(l+8)

− 2304(2l+7)
(l+1)3(l+6)3

l = 2, 4, . . .
9
14α+ 1148

3 l = 0
(7.22)

Here α is the remaining undetermined constant in our derivation of 〈2222〉(2). We see

that surprisingly only the spin zero anomalous dimension depends on the undetermined

constant. If we impose the condition α = 0 we find that the general formula for η(2) holds

also for spin zero, however we do not have an independent argument to fix the value of α.

– 18 –
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8 Conclusions

We have bootstrapped the one-loop amplitude for 4 graviton multiplets in AdS5 using

consistency with the OPE on the dual CFT side. We believe this to be the first such

complete one-loop result. As an ingredient to this computation we computed an entire

family of O(1/N2) anomalous dimensions of double-trace operators of arbitrary spin and

twist, and as an output we computed the O(1/N4) anomalous dimensions of all twist 4

double trace operators which survive the strong coupling limit.

A number of papers in recent years have discussed general aspects of large N CFTs and

their relation to gravitational theories via AdS/CFT from various perspectives. The results

here give new concrete data to compare with some of these predictions, and to conclude

we will examine a few of these, relating specifically to the twist 4 anomalous dimensions

at O(1/N4).

One aspect is the behaviour of anomalous dimensions in the large spin limit. For

example in [57–59] a non-trivial consistency condition for anomalous dimensions of large

spin operators has been shown, following from the reciprocity principle. Following [59] in

this context, for twist 4 operators, it can be phrased as follows. Define the Casimir

J2 = (4 + l + aη
(1)
2,l )(3 + l + aη

(1)
2,l ) , (8.1)

where, to the order we are interested in, we need to include the leading order anomalous

dimension in the definition of J2, but no further corrections. Then the claim is that

the anomalous dimension has an expansion at large l (equals large J) containing only

even powers of 1/J . This was checked to the previous order in [59] (where the coupling

dependent terms in J could be neglected). Remarkably we find this continues to hold at

the next order. Indeed, plugging in the values for the twist 4 anomalous dimensions above,

we find that

aη
(1)
2,l + a2η

(2)
2,l = −a

48

(J2−6)
+ a2

1344(J2−110)

(J2−20)(J2−6)2
+O(a3) . (8.2)

The key point here is that the anomalous dimension is a rational function of J2 only without

involving the square roots one would expect for an arbitrary function of l expressed in terms

of J . Note that at leading order, this statement is equivalent to symmetry of the twist 4

anomalous dimensions under l → −l − 7 (since J2 is symmetric under this transformation

at leading order). At next order, note that η(2) as a function of l, in (7.22) is written as a

sum of two terms. The first is symmetric under l → −l− 7 and the second antisymmetric.

We then see that the antisymmetric term is entirely predicted by η(1) together with the

above consequence of reciprocity. That our computation indeed agrees with this provides

a non-trivial check.

We also observe from (7.22) that the O(a2) twist 4 anomalous dimension η
(2)
2,l = O(1/l4)

at large spin, whereas at the previous order η
(1)
l = O(1/l2). Thus in the large l limit, the

leading term receives no O(a2) corrections. This is consistent with the results of [60–62]

that the coefficient of the leading large l term is related to the 〈TTT 〉 3-point function

which is protected, and its free field value is exactly O(a) with no a2 terms.
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Another interesting prediction concerning the twist 4 anomalous dimensions as a func-

tion of l is that the function is predicted to be negative, monotonic and convex for spins

2 and higher [61–63]. We find that the twist 4 anomalous dimensions indeed continue to

satisfy this property even after including the O(a2) corrections. Indeed remarkably these

hold for all physical values of a = 1/(N2−1) that is for all N ≥ 2 whereas it need only be

true for large N . Specifically, for all N ≥ 2

aη
(1)
2,l + a2η

(2)
2,l < 0 for l ≥ 2 (negativity)

∂

∂l

(

aη
(1)
2,l + a2η

(2)
2,l

)

> 0 for l ≥ 2 (monotonicity)

∂2

∂l2

(

aη
(1)
2,l + a2η

(2)
2,l

)

< 0 for l ≥ 2 (convexity) (8.3)

As a final comment, in [64, 65], numerical bounds on the anomalous dimensions of the

twist 4 operators have been found from crossing symmetry in any N = 4 superconformal

field theory, as a function of the central charge. For largeN our results seem to be consistent

with these bounds.3
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A Protected superconformal blocks

Following [48] we give explicit expressions for the protected superconformal blocks (i.e.

half-BPS and semi-short multiplets, see the discussion following equation (3.2)). For con-

venience, let

Hα(z) := 2F1(α, α, 2α, z). (A.1)
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The half-BPS states are then given by

F half
1,0 =

yȳ

xx̄
+

x̄(x− y)(x− ȳ)H1(x)− x(x̄− y)(x̄− ȳ)H1(x̄)

xx̄(x− x̄)

F half
2,0 =

( yȳ

xx̄

)2

−
s(x, x̄; y, ȳ)

(xx̄)2(x− x̄)(y − ȳ)
×

[((

yȳH1(x̄) + yx̄H2(x̄)H−1(ȳ)

(x− y)
− (y ↔ ȳ)

)

− (x ↔ x̄)

)

−
(

xH2(x)H1(x̄)− (x ↔ x̄)
)(

yH−1(ȳ)− (y ↔ ȳ)
)

]

(A.2)

whereas the semi-short multiplets are

F sh.
2,l = −

s(x, x̄; y, ȳ)

(x− x̄)(y − ȳ)

[

( yȳ

xx̄

)2
((

x̄l+1H−1(ȳ)Hl+2(x̄)

ȳ2(x− y)
− (y ↔ ȳ)

)

− (x ↔ x̄)

)

−

(

xl−1H1(x̄)Hl+2(x)

x̄2
− (x ↔ x̄)

)

(

yH−1(ȳ)− (y ↔ ȳ)
)

]

F ′ sh.
2,l =

s(x, x̄; y, ȳ)

(x− x̄)(y − ȳ)

[

( yȳ

xx̄

)2
((

x̄l+2Hl+3(x̄)

ȳ(x− y)
− (y ↔ ȳ)

)

− (x ↔ x̄)

)

+

(

xlH2(x̄)Hl+3(x)

x̄
− (x ↔ x̄)

)

(

yH−1(ȳ)− (y ↔ ȳ)
)

]

(A.3)

and their normalisations read (recall a = 1/(N2 − 1))

A2,0 = 8a

A4,0 = 2 + 4a

A4,l =
l!(l + 1)!((l + 1)(l + 2) + 4a)

(2l + 1)!

A′
4,l =

((l + 2)!)2((l + 1)(l + 4)− 12a)

(2l + 4)!
, (A.4)

for l even and zero otherwise.
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