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1 Introduction

Systematic ways to study the long-distance behaviour of nonabelian gauge theories, where

nonperturbative phenomena set in — confinement, the generation of mass gap, and the

breaking of chiral symmetries — are hard to come by. Up to date, there are only a

few examples in continuum quantum field theory where theoretically-controlled analytic

methods allow one to make progress. Many of those examples, such as Seiberg-Witten

theory, require various amounts of supersymmetry and utilize its power.

In the past 10 years, a new direction of research into nonperturbative dynamics, appli-

cable to a wider class of gauge theories, not necessarily supersymmetric, has emerged [1, 2]:

the study of gauge theories compactified1 on R1,2 × S1. The control parameter is the size

of the S1-circle L. When L is taken such that NLΛ� 1, where N is the number of colours

of an SU(N) gauge theory and Λ its dynamical scale, it allows — as we shall review here

for the theory we study — for semiclassical weak-coupling calculability. It has led to new

insight into a variety of nonperturbative phenomena and has spawned new areas of re-

search. A comprehensive list of references is, at this point, too long to include here and we

recommend the recent review article [3] instead.

This paper studies confining strings in deformed Yang-Mills theory (dYM). dYM is a

deformation of pure Yang-Mills theory, whose nonperturbative dynamics is calculable at

small L. It is also believed that the dynamics is continuously connected to the large-L limit

of R4, in particular that the theory exhibits confinement and has a nonzero2 mass gap for

every size of S1. The confining mechanism in dYM is a generalization of the three dimen-

sional Polyakov mechanism of confinement [4], but owing to the locally four-dimensional

nature of the theory many of its properties are quite distinct. As we further discuss, many

features of dYM on R3 × S1 can be traced back to the unbroken global center symmetry.

The properties we set out to study here are the N -ality dependence of the string

tensions and their behaviour in the large-N limit. Renewed motivation to study the large-

N limit of dYM arose from a recent intriguing observation [5]: in the double-scaling limit

L → 0, N → ∞, with fixed LNΛ, the four-dimensional theory on R3 × S1
L→0 dynamically

1Hereafter, as most of our studies are Euclidean, we shall denote the spacetime manifold simply by

R3 × S1, but we use R1,2 × S1 here in order to stress that S1 is a spatial circle and the object of our study

is not finite-temperature theory.
2Apart for the large-N limit, see below.
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Figure 1. Comparison of different SU(10) k-string ratios scaling laws with dYM k-string ratios,

labeled by “dYM” (blue triangles). The Sine law is labeled by “sin,” the Casimir scaling by “cas,”

and scaling with the Square root of the Casimir by “sqrtcas.” From the known theoretical models

predicting different scalings of k-string tensions, the ones we find in dYM are closest to the MIT

Bag Model “Square root of Casimir” k-string tension law. We argue that it gives an upper bound

on dYM k-string ratios.

generates a latticized dimension whose size grows with N. This phenomenon has superficial

similarities to T-duality in string theory and is not usually expected in quantum field theory.

Originally, the emergence of a discretized dimension and its properties were studied in a

R3×S1 compactification and double scaling limit of N = 1 super-Yang-Mills (sYM) theory.

We show here that, as already observed in sYM, in dYM string tensions also stay finite in

the large-N limit while the mass gap vanishes.

Most of this rather long paper is devoted to a review of dYM and to a detailed expla-

nation of the various methods we have developed; a guide to the paper is at the end of this

section.

The expert reader interested in the physics and not in the technical details should

proceed to our “Summary of results” section 1.1, and to the more extended discussion in

section 5.

1.1 Summary of results

Here we summarize our main results, concerning both the confining string properties and

the technical tools developed for their study:

– 2 –
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1. k-string tension ratios: in the regime of parameters studied in this work, in particular

NLΛ� 1, the asymptotic string tensions in dYM depend only on the N -ality of the

representation. We argue in section 5 that the lowest tension stable strings between

sources of N -ality k are sourced by quarks with charges in the highest weight of the

k-index antisymmetric representation, see (2.55).3 Their tensions are hence referred

to as the “k-string tensions.”

Denoting by Tk the k-string tension, on figure 1 we show the ratio Tk/T1 for SU(10),

the largest group we studied numerically. The string tension ratio in dYM is compared

to other known and much studied scaling laws, such as the Sine law and the Casimir

law. It is clear from the figure that k-string tension ratios in dYM are different

and do, instead, come closest to a less-known scaling, found long ago in the MIT

Bag Model of the Yang-Mills vacuum: the “Square root of Casimir” scaling [6]. In

section 5.1.3, we argue that the relation between the two is
(
Tk
T1

)

dYM

≤
√
k(N − k)

N
, (1.1)

where the r.h.s. is the square root of the ratio of quadratic Casimirs of the k-index

antisymmetric representation and the fundamental representation. The reason be-

hind the similarity is that the model assumptions of the MIT Bag, that inside the

bag the QCD chromoelectric fields can be treated classically and that the vacuum

abhors chromoelectric flux, are realized almost verbatim — albeit for the Cartan

components only — by the calculable confinement in dYM.

2. Large-N limit and 1
N corrections to string tensions: as already mentioned, string

tensions stay finite at large N and fixed LNΛ� 1, as we show using various tools in

section 5.2. Further, as can be inferred qualitatively from figure 1, and quantitatively

from the analysis of section 5.2, k-strings in dYM are not free at large N. We show that

T2

T1
= 1.347± 0.001 + (−2.7± 0.2)

(
1

N

)2

+ . . . ,

T3

T1
= 1.570± 0.001 + (−7.5± 0.2)

(
1

N

)2

+ . . . , (1.2)

instead of approaching the free-string values Tk = kT1.

The large-N limit leading to the above behaviour is taken after the large-RT limit (RT

is the Wilson loop area). As the discussion there shows, assuming large-N factoriza-

tion does not always imply that k-strings are free and the way the large-RT and large-

N limits are taken has to be treated with care, as we discuss in detail in section 5.2.4

3There is a plethora of metastable strings that can also be studied using the tools developed here. An

evaluation of their tensions and decay rates is left for future work. See appendix E for a calculation of some

metastable string tensions at leading order.
4An important additional subtlety is that the values of N for which the relations (1.2) have been derived,

while numerically large, are bounded above by an exponentially large number N � 2πe
c
λ , where λ ∼

| log ΛNL|−1 is the arbitrarily small ’t Hooft coupling and c is an O(1) coefficient. Preliminary estimates

suggest that the effect of the W-boson induced mixing on the string tensions (whose neglect is the source of

the upper bound on N, see section 5.2) will not qualitatively change the large-N limit. However, we prefer

to defer further discussion until the relevant calculations for dYM have been performed.

– 3 –
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3. Comparing abelian confinements: we compare the properties of confining strings in

dYM and in Seiberg-Witten theory [7], another four dimensional theory with calcu-

lable abelian confinement. We argue that the unbroken ZN center symmetry in dYM

has dramatic implications for the meson and baryon spectra. In particular there is

a “baryon vertex” in dYM, leading to “Y”-type baryons, while only linear baryons

exist in Seiberg-Witten theory [8]. Thus, owing to the unbroken center symmetry, in

many ways confinement in dYM is closer to the one in “real world” YM theory.5 For

a discussion of these issues, see section 5.1.2 and figures 2 and 3.

4. “Perturbative evaluation” of string tensions: a technical tool to calculate string ten-

sions analytically is developed in section 4. We call it “perturbative,” as it utilizes

a resummed all-order expansion and, at every step, requires the use of only Gaus-

sian integrals. This method serves as a check on the computationally very intensive

numerical methods that were employed in the numerical study. It also allows the

large-N limit to be taken analytically, subject to the limitations discussed above, and

permits us to discuss the subtleties regarding the order of limits that lead to (1.2).

This method can be generalized to perform a path integral expansion about a saddle

point boundary value problem (e.g. a transition amplitude in quantum mechanics)

using perturbation theory (Gaussian integrals) only. Further applications of these

tools is the subject of work in progress [12].

1.2 Open issues for future studies

As already stressed, one of our motivations is to study the peculiar large-N limit of dYM

confinement, similar to the large-N limit of sYM from ref. [5], which shows many intriguing

features that (at least superficially) resemble stringy properties. We have not yet fully

addressed this limit in dYM, as there is the upper bound on N discussed above. We believe

that this restriction on N is technical and more work is required to remove it.

Our study here also only briefly touched on the spatial structure of confining k-strings,

noting that, upon increasing N, they become more “fuzzy” due to the decreasing mass of

many of the dual photons, but retain a finite string tension due to the (also large) number

of dual photons of finite mass. This spatial structure may have to do with their interacting

nature and would be interesting to investigate further.

Further, in this paper, we ignored the θ-angle dependence of the k-strings. The topo-

logical angle dependence in Yang-Mills theory has received renewed recent attention, see

e.g. [13–21]. As seen in some of the aforementioned work, the corresponding physics in

dYM is also very rich and worth of future studies.

There are also the many intriguing observations of [11] on the nature of the dual

photon, glueball, etc., bound state spectra in dYM (at arbitrary N) that await better

understanding. Finally, there is the question about the (still conjectural) continuity of

dYM from the calculable small ΛNL regime to the regime of large ΛNL. To this end, it

5Some of these points were, without elaboration, made earlier in [9]. We also note that the glueball

spectra in dYM, as well as the mesonic and baryonic spectra with quarks added as in [10], exhibit many

intriguing properties and are the subject of the more quantitative recent study [11].

– 4 –
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would be desirable to study this theory on the lattice; for some lattice studies of related

theories, see [22–25].

1.3 Organization of this paper

Section 2 is devoted to a review of dYM theory.6 In section 2.1 we review how dYM

theory on R3×S1 avoids a deconfinement transition at small L. The perturbative spectrum

of dYM is discussed in section 2.2.1 and the nonperturbative minimal action monopole-

instanton solutions — in section 2.2.2. The action of a dilute gas of monopoles is discussed

in at length in section 2.3, with emphasis on details that often not emphasized in the

literature. The derivation of the string tension action, used to calculate the semiclassical

string tensions is given in section 2.4.

Section 3 is devoted to a numerical study of the k-string tensions in dYM. The action

and its discretization are studied in sections 3.1 and 3.2. The minimization procedure,

the numerical methods, and the error analysis are described in section 3.3. The numerical

results for the k-string tensions for gauge groups up to SU(10) are summarized in table 1,

see section 3.4.

Section 4 presents an analytic perturbative procedure to calculate the string tensions.

We begin by explaining the main ideas with fewer technical details. In sections 4.1 and 4.2

we give the detailed calculations for SU(2) and general SU(N) gauge groups, respectively.

The results are tabulated in appendix D, demonstrating the precision of this procedure,

which also serves as a check on the numerical results of section 3.

Section 5 contains the discussion of our results from various points of view, including

relations to other models of confinement and the behaviour of k-strings in the large-N limit:

in section 5.1.1 we argue that the lowest, among all weights of any given representation,

semiclassical asymptotic string tensions in dYM depends only on N -ality k of the repre-

sentation and is the one obtained for quark sources with charges in the highest weight (and

its ZN orbit) of the k-index antisymmetric representation.

In section 5.1.2 we compare confinement in dYM with confinement in Seiberg-Witten

theory and point out that the unbroken ZN center symmetry in dYM is responsible for the

major differences, which make abelian confinement in dYM closer — in many aspects —

to confinement in the nonabelian regime.

In section 5.1.3 we point out the similarity, already discussed around eq. (1.1), of the

k-string tension ratios in dYM to the ones in the MIT Bag Model and discuss the physical

reasons.

In section 5.1.4 we compare the k-string tension scaling laws to other scaling laws

considered in various theoretical models.

In section 5.2, we discuss the abelian large-N limit. The leading large-N terms in

the k-string tension ratios, eq. (1.2) above, are derived in 5.2.1. The fact that large-N

factorization does not always imply that k-strings become free at large-N is discussed in

section 5.2.2. The analytic methods of section 4 prove indispensable in being able to track

the importance of the way the large-N and large area limits are taken.

6The reader already familiar with dYM and interested in our numerical and analytic metnods can proceed

to sections 3 and 4 and the discussion in section 5.
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2 Review of dYM theory

In this section we will have a brief review of dYM theory. The emphasis is on topics usually

not covered in detail the literature and on topics that will be needed for the rest of the paper.

2.1 Confinement of charges in deformed Yang-Mills theory for all S1-circle

sizes

Consider four-dimensional Yang-Mills theory in the Euclidean formulation with one of its

dimensions compactified on the circle:

S =

∫

R3×S1
d4x

1

2g2
trF 2

µν(x) . (2.1)

We set the θ-angle to zero in this paper, leaving the study of the θ-dependence of strings’

properties for the future. Here, T a (a = 1, . . . , N2−1) refer to the Hermitean generators of

the group SU(N), Fµν = F aµνT
a, tr(T aT b) = 1

2δ
ab. The compactification circle S1 in pure

Yang-Mills theory can either be considered as a spatial dimension of size L, or as a temporal

one with L = 1/T being the inverse temperature T . It is known, see e.g. [26], that above a

critical temperature Tc = 1
Lc

Yang-Mills theory loses confinement (i.e. the static potential

between two heavy probe quarks no longer shows a linearly rising behaviour as a function

of distance between the quarks). The transition from a confining to a non-confining phase,

in theories with gauge groups that have a nontrivial center, is accompanied by the breaking

of the center-symmetry.7 The critical size Lc is approximately of order Λ−1, with Λ the MS

strong scale of the theory. Different studies give an estimate of 200 MeV < Tc < 300 MeV

for SU(2) Yang-Mills theory in four dimensions. In what follows we shall deform Yang-

Mills theory in a way that preserves confinement of charges for any circle size L. Due

to asymptotic freedom the coupling constant is small at the compactification scale 1
L for

small circle sizes (L � Λ−1; as we argue below, the precise condition for SU(N) gauge

theories turns out to be ΛLN � 1). This deformation would enable us to have a model of

confinement that we can study analytically in the limit of a small circle size L.

The expectation value of the trace of the Polyakov loop, P (x) =

tr Pexp(−i
∮
S1 dx4A4(x, x4)) (where P denotes path ordering) serves as an order

parameter for confinement [26]:

〈P (x)〉 = 0 confined phase with an infinite energy for an isolated free quark,

〈P (x)〉 6= 0 deconfined phase with a finite energy for an isolated free quark. (2.2)

On the other hand, the Polyakov loop is not invariant under a center-symmetry trans-

formation and picks up a center element z, i.e. UzP (x)U †z = zP (x), where we used the

7Center symmetry transformations are global symmetries that can be loosely thought as “gauge” trans-

formations periodic up to the centre of the gauge group. For example, for an SU(2) gauge group, the

center-symmetry transformation periodic up to the nontrivial Z2 center element z = −1 can be represented

by U−1(x, x4) = exp(i π
L
x4σ3), with U−1(x, 0) = −U−1(x, L) with σ3 the third Pauli matrix and x4 — the S1

coordinate. See [26] for a proper definition of center symmetry as a global symmetry on the lattice and [27]

for a continuum point of view.

– 6 –
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notation of footnote 7. Therefore for a center-symmetric vacuum |0〉 we have:

〈0|P (x)|0〉 = 〈0|U †zUzP (x)U †zUz|0〉 = z〈0|P (x)|0〉 =⇒ 〈P (x)〉 = 0, z 6= 1, (2.3)

indicating that a center-symmetric phase is a confined phase.

In order to show that Yang-Mills theory deconfines at high temperatures we need to

show that the expectation value of the Polyakov loop at high temperatures is nonzero.

The Polyakov loop is gauge invariant and the eigenvalues of the holonomy Ω(x) =

Pexp(−i
∮
S1 dx4A4(x, x4)) constitute its gauge invariant content (P = trΩ). At tree level

the eigenvalues of the holonomy can take any value, as there is no potential for Ω in the

classical Yang-Mills Lagrangian (2.1). To find an effective potential for the eigenvalues of

the holonomy at one-loop, we expand (2.1) around a constant diagonal A4 field and eval-

uate the one loop contribution to the effective potential by integrating out the quadratic

terms of gauge and ghost fields [2, 28], to find:

V1[Ω] = − 2

π2L3

∞∑

n=1

1

n4
|trΩn|2, where Ω = exp(−iLA4) . (2.4)

From (2.4) it can be seen that V1[Ω] is minimized when Ω is an element of the centre of

the gauge group, i.e. ωkN I, with I the unit matrix.8 This would imply 〈P (x)〉 = 〈tr(Ω)〉 =

NωkN 6= 0, indicating a deconfined center-symmetry broken phase of Yang-Mills theory at

high temperatures, or small circle sizes L (owing to asymptotic freedom, the small-L/high-

T regime is the one where the calculation leading to (2.4) can be trusted).

In order to change this picture and have a model of confinement at arbitrary small

circle sizes L we can add a deformation potential term to Yang-Mills theory [2, 29]:

S =

∫

IR3×S1

1

2g2
trF 2

µν(x) + ∆S, ∆S ≡
∫

IR3

1

L3
P [Ω(x)], P [Ω] ≡ 2

π2

[N/2]∑

n=1

bn
n4
|tr(Ωn)|2 , (2.5)

with bn — sufficiently large and positive coefficients. The effect of the ∆S term is to

dominate the gluonic and ghost potential (2.4) in a way that the minimum of V1[Ω]+ 1
L3P [Ω]

occurs when tr(Ωn) = 0 for n mod N 6= 0. This would imply 〈P (x)〉 = 〈tr(Ω)〉 = 0 and

hence a confinement phase for deformed Yang-Mills theory at arbitrarily small circle sizes.

The ∆S deformation term in (2.2) would make the theory non-renormalizable. To have

a well-behaved theory at high energies, the deformation can be considered as an effective

potential term generated by some renormalizable dynamics, notably nf flavors of massive

adjoint Dirac fermions with periodic boundary conditions along the S1. Following [30] for

conventions on Euclidean formulation of Dirac fermions we have:

SdYM =

∫

IR3×S1

{
1

2g2
trF 2

µν(x)− i
nf∑

i=1

ψ̄i( /D +m)ψi

}
(2.6)

The effective potential for the holonomy generated by the nf massive adjoint Dirac fermions

is given by [31, 32]:

V2[Ω] = +
2

π2L3

∞∑

n=1

nf (nLm)2K2(nLm)
|trΩn|2
n4

, (2.7)

8We defined ωN = e
2πi
N .
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where K2 is the modified Bessel function of the second kind. It has to be noted that in

the deformed theory (2.6) the compactified dimension S1 can only be a spatial dimension

since the heavy fermions satisfy periodic boundary conditions along this direction.

There are two free parameters nf and NLm in the effective potential (2.7).9 The beta

function of SU(N) Yang-Mills theory with nf flavours of Dirac fermions in the adjoint

representation of the gauge group is, at the one loop level, β(g) = − g3

(4π)2
(11

3 N − 4
3nfN),

hence to assure asymptotic freedom nf = 1 or 2. If we allow for massive Majorana

flavors, nf = 5/2 is the maximum value. On the other hand, if we want the effective

potential V2 to dominate the gluonic potential V1, NLm should be of order 1 (NLm ∼ 1;

for larger values of m, the fermions decouple and the theory loses confinement at small

L). To gain some intuition on how the coefficients of the potential V2 behave let

cn ≡ nf ( nNLmN)2K2( nNLmN). Choosing nf = 2 (nf = 1) and NLm = 4 (NLm = 3)

gives cn ≈ 4 (cn ≈ 2) for n/N ≈ 0, cn ≈ 2 (cn ≈ 1.3) for n/N ≈ 0.5, cn ≈ 0.56 (cn ≈ 0.55)

for n/N ≈ 1 and cn approaching zero exponentially for n/N > 1. Minimizing10 the

combined potential V1[Ω] + V2[Ω] gives 〈Ω〉 = diag(ωN−1
N , . . . , ωN , 1) for odd N , and

〈Ω〉 = ei
π
N diag(ωN−1

N , . . . , ωN , 1) for even N , which gives tr〈Ω〉n = 0 for n mod N 6= 0,

hence, a confined phase for deformed Yang-Mills theory.11

2.2 Perturbative and non-perturbative content of dYM

2.2.1 Perturbative content

The eigenvalues of the holonomy Ω(x) = Pexp(i
∮
dx4A4(x, x4)), are the only gauge invari-

ant content of the gauge field component in the compact direction A4(x) and are invariant

under any periodic gauge transformation. Working in a gauge such that the A4(x) field

assumes these eigenvalues (A4(x) = −iln(Λ(x))/L, with Λ(x) — the diagonal matrix of

eigenvalues of Ω(x)) and expanding around a center-symmetric vev

Avev4 =
1

NL
diag(2π(N − 1), . . . , 2π, 0) for odd N,

Avev4 =
1

NL
diag(2π(N − 1) + π, . . . , 3π, π) for even N, (2.8)

the perturbative particle content of dYM theory with action (2.6) can be worked out by

writing the second order Lagrangian of the modes expanded around the above center-

symmetric vev. Clearly, the vev of the “Higgs field” A4 breaks the gauge symmetry

SU(N) → U(1)N−1. The gauge fields associated with the non-compact direction can be

written as:

Ai(x, x4) =
√

2 Ai,0(x) +

+∞∑

k=−∞

′
Ai,k(x) exp

(
ik

2π

L
x4

) (∑′
over k 6= 0

)
, (2.9)

9The nf = 1/2 massless case leads to vanishing potential, as is clear by comparing the massless limit

of (2.7) with (2.4). This case corresponds to the minimally supersymmetric Yang-Mills theory in four

dimensions.
10This has been explicitly performed for the above choices of parameter up to SU(10) and with considering

the effective potentials up to n = 20.
11General SU(N) theories with semiclassically calculable dynamics at small-L have been classified in [33].

– 8 –



J
H
E
P
0
1
(
2
0
1
8
)
0
2
9

with Ai,k(x) = Ai,k1(x) + iAi,k2(x) = A†i,−k(x) in order to ensure reality of the Ai fields. It

turns out that the gauge-boson field content is a non-trivial one. We work out the quadratic

Lagrangian in appendix A, by substituting (2.9) in the action and expanding around (2.8).

We begin with a discussion of the abelian spectrum. The diagonal components of

the gauge fields Ai commute with the vev Avev4 . Hence, their zeroth Fourier modes along

S1 correspond to massless 3d photons and their higher Fourier modes gain mass of 2πm
L

where m = 1, 2, . . .∞ is the non-zero momentum in the compact direction. At tree level,

the Lagrangian for the N − 1 photons is simply the reduction of (2.1) to the Cartan

subalgebra of SU(N). The leading-order coupling of the 3d U(1)N−1 gauge theory is given

by g2
3 = g2/L, where g is the four-dimensional gauge coupling at the scale of the lightest

W -boson mass, mW = 2π
NL , see below.12

The physical components of the “Higgs” field A4(x) are diagonal and x4 independent.

They are massless at the classical level but gain mass of order at least g√
NL

via the one

loop effective potential V1 + V2 generated by quantum corrections.13

The massive adjoint Dirac fermions are also expanded in their Kaluza-Klein modes.

Taking into account the effects of Avev4 , it can be seen that there are massive Dirac fermions

with masses m+ 2πk
L + 2πp

LN for k = 0, 1, . . . and p = 0, 1, . . . , N − 1. As we are interested in

physics below the scale of the lightest fermion, we shall not present details of the massive

fermion spectrum.

Finally, the relation (A.5) from appendix A shows that there are W -bosons with masses

|2πmL −
2π|l−k|
NL | and |2πmL + 2π|l−k|

NL | respectively for m = 0, 1, 2, . . . and 1 ≤ l < k ≤ N . The

mass of the lightest W -boson is mW = 2π
NL . Clearly, below that scale, there are no fields

charged under the unbroken U(1)N−1 gauge group. Thus, the gauge coupling of the N − 1

photons is frozen at the scale O(mW ). The condition that the theory be weakly coupled,

therefore, is that mW � Λ, or NLΛ� 1. This is the semiclassically calculable regime that

we study in this paper.

In summary, the perturbative particle content of deformed Yang-Mills theory expanded

around the center-symmetric vev consists of N − 1 photons (the diagonal Cartan compo-

nents of the gauge fields, whose zero Fourier components along the S1 are massless), N2−N
massive gauge fields, charged under the U(1)N−1 unbroken gauge symmetry, whose spec-

trum is given in (A.5), N − 1 massive eigenvalues of the holonomy, neutral under U(1)N−1

and charged and uncharged massive Dirac fermions.

2.2.2 Non-perturbative content: minimal action instanton solutions

Finite action Euclidean configurations of pure Yang-Mills theory on R3 × S1 were studied

in [28]. It was shown that they are classified by their magnetic charge qα, Pontryagin index

12At subleading order, threshold corrections from the W -bosons cause the N − 1 photons (and conse-

quently, the dual photons) to mix. These mixing effects are expected to be similar to the ones in super-

Yang-Mills [32] and QCD(adj) [34, 35]. They become important in the abelian large-N limit [5], where

dYM has a curious “emergent dimension” representation. The mixing between the N − 1 photons is also

expected to affect the k-string tensions in the abelian large-N limit. In this paper, we have not taken these

effects into account.
13The N -dependence of the lightest A4 shows that the mass scale of the holonomy fluctuations remains

fixed in the abelian large-N limit, where g2N and mW � Λ remain fixed.
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p, and asymptotics of the S1 holonomy Ω at infinity, which are related by the following

formula:

Q = p+
lnµα
2πi

qα . (2.10)

Here, Q = 1
32π2

∫
R3×S1 d

4x F aµνF̃
a
µν is the topological charge with F̃µν = 1

2εµναβFαβ . In

this section, we use µα with α = 0, . . . , κ ≤ N − 1 to label the distinct eigenvalues of

the holonomy Ω(x) at spatial infinity. Notice that, for finite action configurations, the

eigenvalues of Ω are independent of the direction that we approach spatial infinity, and

that, for the center-symmetric holonomy, κ = N − 1 as all eigenvalues are distinct, given

by the N values of eiLA
vev
4 with Avev4 of (2.8): lnµα = 2πi(N−1−α)

N for odd N . The integer

magnetic charges are denoted by qα, satisfy
∑κ

α=0 qα = 0, and will be explicitly defined

further below, see paragraph after eq. (2.17). The Pontryagin index p is the winding

number for mappings of S3 onto the full group SU(N).14

It is expected that for any value of the quantities p, qα, and µα there is a separate

sector of finite action configurations, with the self-dual (Fµν = F̃µν) or anti-self dual (Fµν =

−F̃µν) solution corresponding to the minimum action configuration in that sector. For self-

dual or anti-self-dual solutions the topological charge is proportional to the value of the

action. Therefore finding configurations with the minimal non-zero topological charge is

equivalent to finding the minimal non-zero action configurations. Based on the values of

µα = exp(i2π(N−1−α)
N ) for α = 0, . . . , N − 1 in a center-symmetric vacuum, and the fact

that p and qα are integers with
∑N−1

α=0 qα = 0, it can be clearly seen that the minimal

non-zero topological charge is |Q| = 1
N . Configurations of minimal Q = 1

N would then

correspond to the following values of qα and p:

p = 0, qim =

(
0, . . . , 0,

i-th

1̂ ,−1, 0, . . . , 0

)
, i = 1, . . . , N − 1, (2.11)

p = 1, qNm = (−1, 0, . . . , 0, 1), (2.12)

where the N components of the vector qim are the magnetic charges qα corresponding

to the i-th minimal action configuration. Minimal action configurations with Pontryagin

indices and magnetic charges given in (2.11) will be referred to as the N − 1 SU(N) BPS

solutions and the minimal action configurations with Pontryagin number and magnetic

charges from (2.12) — as the Kaluza-Klein (KK) solution.15 The BPS (anti-BPS) and KK

(anti-KK) configurations have the opposite sign for the magnetic charges and Pontryagin

index and thus a negative topological charge Q = − 1
N . In total this classification shows that

there exist 2N minimum finite action non-trivial configurations. We will refer to these finite

action configurations as the “non-perturbative content” of deformed Yang-Mills theory —

14After any twist of Ω at infinity associated with the magnetic charges qα is removed by a (singular)

gauge transformation, the resulting field may be regarded as a mapping of compactified three space (or S3)

onto the group SU(N), leading to the familiar Pontryagin index. More details regarding the definitions of

these quantities can be found in [28].
15This terminology is adopted for historical reasons. In the limit when the mass of the physical holonomy

fluctuations is neglected, both our BPS and KK solutions satisfy a BPS bound and can be found by solving

first-order equations.
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because, as we shall see, it is these Euclidean configurations that lead to confinement of

charges, to leading order in NLΛ� 1.

In order to construct such configurations we start from the SU(2) BPS and Kaluza-

Klein monopoles and embed them in SU(N). For the BPS solution, this can be done

in N − 1 different ways leading to the N − 1 different configurations in (2.11) and for

the Kaluza-Klein monopole this can be done in only one way. The SU(2) BPS monopole

solution is given by [36, 37]:

Aa4 = ∓naνP(νr) , P(y) = coth(y)− 1

y

Aai = εaijnj
1−A(νr)

r
, A(y) =

y

sinh(y)
,

(2.13)

where na for a = 1, 2, 3 refer to the components of a unit vector in IR3 and ν is related

to the eigenvalues of the holonomy at infinity. In what follows, as in the above relations,

the upper sign always corresponds to the self-dual BPS solution and the lower one to the

anti-self-dual BPS solution. The magnetic field strength Bi = 1
2εijkFjk of this solution is:

Ba
i = (δai − nani)ν2F1(νr) + naniν

2F2(νr) (2.14)

The functions F1 and F2 are given below in (2.17). In order to embed these solutions in

SU(N) and in a center-symmetric vacuum Avev4 , we first make a gauge transformation that

will make the A4 component diagonal in colour space along τ3/2. For this we solve for the

equation S−τanaS
†
− = −τ3 for the BPS and S+τ

anaS
†
+ = τ3 for the BPS. This gives:

S+(θ, φ) = cos
θ

2
+ iτ2cos φ sin

θ

2
− iτ1sin φ sin

θ

2
= e−iφτ

3/2eiθτ
2/2eiφτ

3/2

S−(θ, φ) = −sin
θ

2
cos φ− i sin

θ

2
sin φ τ3 + i cos

θ

2
τ2 = eiφτ

3/2ei(θ+π)τ2/2eiφτ
3/2 .

(2.15)

After performing the gauge transformation Aµ −→ ASµ = SAµS
†+iS∂µS† for S = S− or S+

we get:

AS4 = νP(νr)
τ3

2

ASr = 0

ASθ =
A(νr)

2r
(±τ1sinφ+ τ2cosφ)

ASφ =
A(νr)

2r
(±τ1cosφ− τ2sinφ)± τ3 1

2r
tan

θ

2
,

(2.16)

where ASr = r̂iA
S
i , ASθ = θ̂iA

S
i , ASφ = φ̂iA

S
i are the components of ASi along the unit vectors

in spherical coordinates.16 It has to be noted that the ASφ solution shows a singular string

along θ = π. This is a gauge artifact and does not cause any problems for (2.16) to satisfy

the self-duality or anti-self-duality condition. In other words, the magnetic fields evaluated

16Our convention for spherical coordinates is r(sin θ cos φ, sin θ sin φ, cos θ) = (x1, x2, x3)).
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from (2.16) are everywhere smooth functions of the spherical coordinates, as can be seen

by finding the magnetic field strength in the stringy gauge:

BS
r = ∓ν2F2(νr)τ3/2, F2(y) =

1

sinh2y
− 1

y2

BS
θ = ν2F1(νr)/2(∓τ1cosφ+ τ2sinφ), F1(y) =

1

sinh y

(
1

y
− coth y

)

BS
φ = ν2F1(νr)/2(±τ1sinφ+ τ2cosφ) .

(2.17)

Using the diagonal components of the field BS at infinity, diag(BS), the magnetic charge

vector for the SU(2) BPS monopole solution, in the normalization of (2.11) can now be

defined17 by a surface integral at infinity, (q1, q2) =
∮
S2∞

d2σ diag(BS
r )/(2π) = (1,−1).18

There are N −1 SU(2) Lie subalgebras, corresponding to the elements aii, aii+1, ai+1i,

ai+1i+1 for i = 1, . . . , N −1, along the diagonal of an SU(N) Lie algebra matrix and we can

embed an SU(2) BPS monopole in each of them. Only these embedded BPS monopoles will

have the lowest topological charge |Q| = 1
N . We will illustrate the embedding for the top

left SU(2) Lie subalgebra. We simply place the SU(2) solution (2.16), with ν = 2π
NL , in the

top left SU(2) Lie subalgebra of an SU(N) Lie algebra matrix with all other elements being

zero. Next, in order to make the value of A
S,SU(N)
4 (≡ SU(2) AS4 solution of (2.16) embedded

in SU(N)) at infinity the same as Avev4 of (2.8), we add the matrix Ā = 1
NLdiag(2π(N−1)−

π, 2π(N−1)−π, 2π(N−2), . . . , 0) for odd N and Ā = 1
NLdiag(2π(N−1), 2π(N−1), 2π(N−

2) + π, . . . , π) for even N to A
S,SU(N)
4 . Similarly, BPS monopoles can be embedded in the

remaining N − 2 diagonal SU(2) subalgebras of SU(N).

For the Kaluza-Klein solution19 we start from the BPS solution of (2.13) in a vacuum

where ν is replaced by ν → 2π
L − ν. To obtain the KK solution (KK) we gauge transform

the BPS solution of (2.13) with S+ (with S−) using the upper sign (lower sign). Now the

asymptotic behaviour of the A4 field for both solutions is (ν − 2π
L ) τ

3

2 . In order to make

the asymptotics similar to the BPS AS4 field in (2.16), we perform an x4-dependent gauge

transformation U(x4) = exp(i2π
L x4

τ3

2 ), which brings the asymptotics back to ν τ
3

2 . This

gauge transformation gives a non-trivial x4-dependence to the cores of the KK and KK

solutions. Since the Pontryagin index p of a KK monopole in relation (2.12) is p = 1,

in order to obtain the lowest topological non-zero charge (which is |Q| = 1
N ), the second

term in (2.10) should equal −N−1
N therefore, as already discussed, there is only one way to

embed an SU(2) KK monopole in SU(N) in a centre-symmetric vev that would give the

lowest action and that is to choose the SU(2) subalgebra corresponding to the components

a11, a1N , aN1, aNN of an SU(N) Lie algebra matrix (i.e. with q1 = −qN = −1, as per (2.12)).

17This definition applies to when the eigenvalues of the holonomy Ω at infinity are distinct. For the

general definition of magnetic charges that would also apply to holonomies with degenerate eigenvalues at

infinity refer to relation (B.6) in [28].
18A direct calculation of Q for the SU(2) BPS solution yields Q = 1/2, thus verifying explicitly (2.10)

with p = 0 and the appropriate expression for µα.
19More details regarding this solution and its explicit form can be found in, e.g. [36]. These “twisted”

solutions were first found in [38, 39] using different techniques.
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This was a brief summary of the non-perturbative solutions in dYM theory that are

responsible for confinement of charges to leading order in the limit NLΛ→ 0.

2.3 Action of a dilute gas of monopoles

The action of the (anti-)self-dual solution (2.16) embedded in SU(N), with ν = 2π/NL, is

given by:

SBPS =
2L

g2

∫

IR3
d3xtr(BiBi) =

8πLν

g2

∫ ∞

0
dr̄r̄2

{
1

2
F 2

2 (r̄) + F 2
1 (r̄)

}
=

4πLν

g2
=

8π2

g2N
,

(2.18)

where r̄ = νr, r being the radial coordinate in spherical coordinates.

Next, we calculate the action of two far-separated BPS solutions of (2.16) embedded

in SU(N) and living in a center-symmetric vacuum Avev4 . We embed the first monopole

(second monopole) in the i-th (j-th) subalgebra of SU(N) along the diagonal for 1 ≤
i, j ≤ N − 1. We work in the limit ν−1 = NL

2π � r0 � d, where d denotes the distance

between the centers of the monopoles and r0 is the radius of a two-sphere surrounding each

monopole. In constructing far separated monopole solutions, first we need to mention how

the monopoles are patched together. To patch the monopoles together, we use the string

gauge and first subtract Avev4 from the A4 component of each monopole solution. The

resulting configuration will have an asymptotically vanishing behaviour at infinity for all

its gauge field components. Now we simply add up the fields corresponding to the various

monopole configurations, with their centres being separated by a large, in the precise sense

defined above, distance d from each other. At the end, we add Avev4 to obtain the final

configuration (had we simply added the two monopole configurations at a large separation

d, asymptotically the A4 component of the two monopole configuration would be 2Avev4 ;

this way of construction avoids this double counting of Avev4 ).

In calculating the action of far separated monopole configurations we only consider

gauge invariant leading order terms in the self-energy and interaction energy of the

monopoles.20 We write the fields as Aµ = A
(1)
µ +A

(2)
µ , for µ = 1, . . . , 4. A

(1)
µ and A

(2)
µ refer

to the contribution of the first and second monopole to the total Aµ field of the monopole

configuration respectively. When A4 appears in the commutator term of Fk4 the overall

Avev4 is considered as part of A
(i)
4 in the two-sphere region of radius r0 surrounding the i-th

monopole for i = 1, 2 and otherwise can be distributed in an arbitrary smooth way between

A
(1)
4 and A

(2)
4 and for the ∂kA4 term in Fk4 the overall Avev4 vanishes and can be neglected.

The total action of the far separated two-monopole configuration can be written as:

S′2-monopole =
L

g2

∫
d3x{tr(BkBk) + tr(Fk4Fk4)}

=
2∑

i=1

S
(i)
self-energy + Sinter.,>r0 + Sinter.,<r0 + Snon-gauge-invariant

(2.19)

20While we use energetics terminology, motivated by the electro-/magneto-static analogy, we clearly mean

Euclidean action. Also by gauge-invariant terms we refer to any terms in the action of two far separated

monopoles that are independent of the Dirac string (singularity of the solutions at θ = π in (2.16)) or its

orientation.
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Each of the above terms in (2.19) will be explained and evaluated below:

1. For the self-energy, we calculate the contribution of one monopole to the action

neglecting the other monopole. Similar to (2.18) we find:

S
(i)
self-energy =

L

g2

∫
d3x{tr(B(i)

k B
(i)
k ) + tr(F

(i)
k4 F

(i)
k4 )} =

8π2

g2N
+O(exp(−νr0)), i = 1, 2

(2.20)

where B
(i)
k and F

(i)
k4 refer to the magnetic and “electric” field21 of the i-th monopole

respectively. The fact that the overall Avev4 is distributed between A
(1)
4 and A

(2)
4

outside their surrounding two-spheres of radius r0 would make the monopole self-

energies in (2.20) to differ from (2.18) by O(exp(−νr0)).

2. The first contribution to the interaction between two monopoles at the classical level

comes from the long range magnetic and electric fields of each monopole. This contri-

bution comes from the region outside the two-spheres of radius r0 surrounding each

monopole (the second contribution comes from the long range electric influence that

each monopole has on the other monopole inside their surrounded sphere of radius r0,

see next item). The magnetic and electric interactions beyond the two surrounding

spheres can be evaluated as:

Sinter.,>r0 =
2L

g2

∫
d3x{tr(B(1)

k B
(2)
k )+tr(F

(1)
k4 F

(2)
k4 )} (2.21)

=
2L

g2

∫
d3x

{
x−x1

2|x−x1|3
· x−x2

2|x−x2|3
qim1 ·qjm2+

x−x1

2|x−x1|3
· x−x2

2|x−x2|3
qie1 ·qje2

}

+O

(
Lν−2

g2d3

)
, d= |x1−x2|

Here, qim1 = qim refers to the magnetic charge of the first monopole with qim —

an N -component charge vector given by relation (2.11). Similarly qjm2 = qjm,

1 ≤ i, j ≤ N − 1. We substituted, from the Cartesian form of the radial terms

proportional to 1
r2

in (2.17), the magnetic field B
(1)
k,r−2 ≡ diag(qim1

xk−x1k
2|x−x1|3 ) and

B
(2)
k,r−2 ≡ diag(qjm2

xk−x2k
2|x−x2|3 ) (understood as a diagonal matrix with entries determined

by the charge vectors qim1 and qjm1 (2.11) of the two monopoles) into the first line

in (2.21), and similarly for Fk4. We then replaced the trace of the product of these

abelian matrices with an inner product over the vector of magnetic (or electric, i.e.

scalar) charges corresponding to the diagonal elements of these abelian matrices. For

a self-dual BPS solution, the electric charges are qie1 = qim1 and qje2 = qjm2. The error

term in (2.21) comes from the inner product of the long range magnetic (or electric)

21At the classical level, the A4-field, mediating the so-called “electric” interactions, is massless hence it

is of long range. We stress that the term “scalar interaction” is the precise one, within the framework

of spatial-S1 compactifications; for brevity, we continue calling these interactions “electric” and omit the

quotation marks in what follows. Furthermore, as already explained, at the quantum level the A4 field

gains mass hence the electric interaction is short range and not important in the derivation of the string

tension action. We only discuss the electric interaction here for the sake of mentioning some points not

usually explicitly discussed with regard to the classical interaction of monopole-instantons.
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field of one monopole with the term ∼ r̂other 1
sinh2νr

of magnetic (or electric) field of

the other monopole in (2.17), integrated over the two-sphere of radius r0 surround-

ing the other monopole, with r̂other being the unit vector in the radial direction of

the other monopole. After writing x−xi
2|x−xi|3 = −∇x

1
2|x−xi| for i = 1, 2 in (2.21) and

integrating by parts with ∇2
x

1
|x−xi| = −4πδ3(x− xi) we get:

Sinter.>r0 =
2πL

g2d
qim1 · qjm2 +

2πL

g2d
qie1 · qje2 + O

(
Lν−2

g2d3

)
. (2.22)

3. The final Dirac-string independent contribution to the interaction between the two

monopoles is the electric influence of the second monopole on the core of the first

monopole22 There is also a similar electric influence from the first monopole on the

core of the second one. It originates from the following cross terms in the action:

S2−1
inter.,<r0

= −2iL

g2

∫

<r0,1
d3xtr([A

(1)
k , A

(2)
4 ]F

(1)
k4 )− L

g2

∫

<r0,1
d3xtr([A

(1)
k , A

(2)
4 ]2) .

(2.23)

The integration region is within a sphere of radius r0 centered around the first

monopole. The main contribution (∼ 1/d) in (2.23) comes from the first integral.

Since we excluded the overall Avev4 from A
(2)
4 within the two-sphere of radius r0 around

the first monopole, we have23 A
(2)
4 ≈ − 1

d

τ3
(j)

2 ; one can check that there are no other

(Dirac-string independent) terms that can contribute order 1/d interaction terms.

We can work out the integrand of the first integral, using the A
(2)
4 asymptotics just

given, as:

tr([A
(1)
k , A

(2)
4 ]F

(1)
k4 ) = tr([F

(1)
k4 , A

(1)
k ]A

(2)
4 ) = − i

4d
(F

(1),1
k4 A

(1),2
k − F (1),2

k4 A
(1),1
k ) qie1 · qje2 .

(2.24)

Here, A
(1),1
k refers to the component of the A

(1)
k along the first generator of the i-

th SU(2) subalgebra along the diagonal of an SU(N) Lie algebra matrix (similar to

τ1/2 in SU(2)) and similarly for the others. The values of the fields A
(1)
k and F

(1)
k4

can be read from relations (2.16) and (2.17) for a self-dual (Bk = Ek) solution. For

the integral of the first term in (2.23), we find
∫
<r0,1

d3x(F
(1),1
k4 A

(1),2
k −F (1),2

k4 A
(1),1
k ) =

−8π
r0ν∫
0

dyyF1(y)A(y) = 4π(A2(0)−A2(r0ν)) ' 4π+O(e−2νr0), where we used yF1 =

∂yA. Thus, going back to (2.23), one obtains in total:

Sinter.,<r0 = S2−1
inter.,<r0

+S1−2
inter.,<r0

= −2πL

g2d
qie1·qje2−

2πL

g2d
qje2·qie1+O

(
Lν−1

g2d2

)
. (2.25)

The O(Lν
−1

g2d2
) error term comes from the evaluation of the second integral in (2.23)

and the error of the first integral in (2.23) coming from the variation of A
(2)
4 from

its value at the center of the sphere around the first monopole over the region of

integration is of order O(Lν
−2

g2d3
) which we have neglected.

22For another discussion on the core interaction between dyons refer to [63].
23τ3(j) refers to the τ3 Pauli matrix placed in the j-th Lie subalgebra of SU(N) along the diagonal.

– 15 –



J
H
E
P
0
1
(
2
0
1
8
)
0
2
9

Summing up the electric interactions in (2.25) and (2.22) we get −2πL
g2d

qie2 ·qje1, which

shows a negative potential for same-sign electric charges, hence an attractive elec-

tric force between the two monopoles with same electric charges. Since the electric

interaction is mediated by the exchange of a massless (at the classical level) scalar

field A4, which is attractive for same sign charges, this is expected and was originally

observed in [40] using a slightly different approach. Although for simplicity we ini-

tially assumed that the solutions are BPS, eq. (2.25) is general, meaning that if we

had done the same calculation in (2.23) with two other monopoles (e.g. a KK and a

BPS) we would have reached the same relation in (2.25), but with their appropriate

electric charges replaced.

4. The Snon-gauge-invariant term in (2.19) consists of any term in the action that depends on

the Dirac-string singularity (in (2.16) it occurs at θ = π) or on its orientation. These

non-gauge-invariant terms are unphysical and will be neglected; we were careful to

only evaluate contributions that are independent of the Dirac string or its orientation.

To be more specific on this matter, we notice that the ASφ component in (2.16) is

singular at θ = π. Considering the commutator term [A
(1)
i , A

(2)
j ] in Fij for two far

separated monopoles at the location of the string of the first monopole, we realize

that the tan θ
2r

τ3

2 term in A
S,(1)
φ for this monopole does not commute with terms

proportional to τ1 or τ2 in the components A
S,(2)
θ or A

S,(2)
φ of the second monopole

therefore (even though these terms would be exponentially suppressed outside the

sphere of radius r0 of the second monopole) for the action they would give a term

proportional to
∫ π

0 dθsin(θ)tan2 θ
2 which is singular when integrated near θ = π. Or,

similar to the electric interaction inside the monopole cores as in (2.23), another

contribution can be evaluated for the magnetic interaction coming from the term

≈ tan θ
2

d
τ3

2 of A
S,(2)
φ near the center of the first monopole which would depend on

the orientation of the Dirac string of the second monopole. These contributions are

unphysical and a more precise treatment of the interaction of far separated monopoles,

as in [40–42], does not involve any orientation dependent contributions, at least in

the dν � 1 limit, but will only involve interactions similar to the gauge-invariant

interaction terms Sinter.,>r0 + Sinter.,<r0 evaluated above.24

To summarize, using the relations (2.25), (2.22), and (2.20), the (Dirac-string-

independent) action of two far separated monopole solutions in the limit ν−1 = NL
2π �

r0 � d, with |x1 − x2| = d, can be summarized as:

S2−monopoles = 2× 8π2

g2N
+

2πL

g2d
qim1 · qjm2 −

2πL

g2d
qie1 · qje2 + O

(
Lν−1

g2d2

)
. (2.26)

24This also implies that a more precise treatment (as opposed to simply summing far separated monopoles)

for the construction of far separated monopole solutions is required, in particular, one that will not involve

any non-gauge-invariant contributions. The construction of the monopole gas by summing far separated

monopole solutions is appealing due to its simplicity and the fact that its leading gauge-invariant interaction

terms reproduce results consistent with the more accurate far separated solutions, as studied in [40–42].
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Although for simplicity we assumed that both solutions are BPS, the relation (2.26) is

general and applies to two arbitrary monopoles or anti-monopoles. Therefore the action of

a dilute gas of n(i) monopoles of type i and n̄(i) anti-monopoles of type i for i = 1, . . . , N ,

referring to the KK monopole as the monopole of type N , with n =
∑N

i=1(n(i) + n̄(i)) their

total number, is given by:25

Smonopole-gas =
8π2

g2N
n+ Sint,m + Sint,e + O

(
n4/3Lν−1

g2d2

)
. (2.27)

In (2.27), Sint,m (Sint,e) is the sum of magnetic (“electric”) interaction terms similar

to (2.26) for every pair of monopoles in the gas:

Sint,m =
2πL

g2

[
1

2

∑

i,j,ki,kj
dist. pairs

qim ·qjm
|r(i)
ki
−r(j)

kj
|
+

1

2

∑

i,j,k̄i,k̄j
dist. pairs

q̄im ·q̄jm
|r̄(i)

k̄i
−r̄(j)

k̄j
|
+
∑

i,j,ki,k̄j

qim ·q̄jm
|r(i)
ki
−r̄(j)

k̄j
|

]
, (2.28)

Sint,e = −2πL

g2

[
1

2

∑

i,j,ki,kj
dist. pairs

qie ·qje
|r(i)
ki
−r(j)

kj
|
+

1

2

∑

i,j,k̄i,k̄j
dist. pairs

q̄ie ·q̄je
|r̄(i)

k̄i
−r̄(j)

k̄j
|
+
∑

i,j,ki,k̄j

qie ·q̄je
|r(i)
ki
−r̄(j)

k̄j
|

]
, (2.29)

with 1 ≤ i, j ≤ N , 1 ≤ ki ≤ n(i) and 1 ≤ k̄i ≤ n̄(i). The summation is being performed over

distinct pairs of monopole-monopole and anti-monopole-anti-monopole interactions and a

factor of 1
2 has been included to cancel the double counting of pairs in these summations.

Note that since the notion of anti-monopole is in regard to opposite magnetic charges,

although q̄jm = −qjm, this is not true for the electric charges, which satisfy q̄je = qje.

The reader should also be reminded that the electric interaction term will not be

important for us in the quantum theory since it is gapped due to the one loop effective

potential for the A4 field and hence is of short range (∼ ν−1). Therefore in the next section

we will be only concerned with the magnetic interaction term (2.28).

2.4 Derivation of the string tension action

The static quark-antiquark potential in a representation r of the gauge group is deter-

mined by evaluating the expectation value of a rectangular Wilson loop of size R × T in

representation r, and considering the leading exponential in the large Euclidean time T

limit [26]:

lim
T→∞

〈Wr(R, T )〉 = lim
T→∞

〈trr
(
Pexp

(∫

R×T
Aµdx

µ

))
〉 ∼ exp(−Vr(R)T ) . (2.30)

In confining gauge theories in the absence of string breaking effects the potential Vr(R)

has a linear behaviour Vr(R) = σrR at large distances,26 where σr is referred to as the

25The n4/3 power in the last term is an attempt at a better than naive estimate of the error. Naively,

one could imagine the correction scaling as n2, with d being the typical separation between monopoles, but

it is clear that not all monopoles are separated by the same distance. Assuming a uniform distribution of

monopoles, with d the closest distance between a given monopole and its neighbors, one can arrive at the

estimate given (one expects some power np with 1 < p < 2). Note also the fact that not all N types of

monopoles have classical interactions, is not taken into account in writing the last term in (2.27).
26At distances R ' Λ−1 with Λ being the strong scale of the theory.
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string tension for quarks in the representation r. At intermediate distances (≈ Λ−1), the

string tension can have a dependence on the particular representation r, it is known that

the asymptotic — a few Λ−1 and more — string tension, because of colour screening by

gluons, depends only on the N -ality k of the representation r, hence asymptotically σr is

referred to as the k-string tension σk.

In this section we will be deriving an expression for the k-string tensions in dYM theory

by evaluating (2.30). We want to calculate (2.30) using the low energy degrees of freedom,

to leading order in the limit of NLΛ→ 0:

〈Wr(R, T )〉 =

∫
[Dψ][Dψ̄][DA]trrPexp(i

∮
R×T dxµA

µ)exp(−SdYM )∫
[Dψ][Dψ̄][A]exp(−SdYM )

. (2.31)

To evaluate the partition function Z =
∫

[Dψ][Dψ̄][DA]exp(−SdYM ), we expand the ac-

tion around the perturbative and non-perturbative minimum action configurations (the 2N

minimum action monopole solutions discussed in section 2.2.2), including the contribution

of the approximate saddle points made up of far separated monopole configurations (dilute

gas of monopoles), to second order and evaluate the functional determinant in these back-

grounds, using the approximate factorization of determinants around widely separated

monopoles. The result is the grand canonical partition function of a multi-component

Coulomb gas [2]:27

Z = Zpert.

N
Π
i=1

{ ∞∑

n(i)=0

ζn
(i)

n(i)!

∞∑

n̄(i)=0

ζ n̄
(i)

n̄(i)!

∫

IR3

n(i)

Π
k=1

dr
(i)
k

∫

IR3

n̄(i)

Π
l=1
dr̄

(i)
l

}
exp(−Sint,m) , (2.32)

where the product over i implies the inclusion of the N types of minimal action BPS

and KK monopole-instantons (and anti-monopole-instantons) and the sum over n(i), n̄(i)

indicates that arbitrary numbers of such configurations with centers at r
(i)
k , r̄

(i)
k are allowed.

For any term in (2.32) involving n(i) monopoles and n̄(i) anti-monopoles for i = 1, . . . , N ,

Sint,m is given by (2.28) and the fugacity is:

ζ = Ce−S0 = ĀD̄f m
3
W (g2(mW )N)−2e−8π2/Ng2(mW ), (2.33)

similar to the expression for the fugacity derived in [2]. The only difference is that now

D̄f the finite part of Df ≡ det
nf ( /D+m)

det
nf ( /D+M)

, the Pauli-Villars regulated determinant of massive

adjoint fermions, is replacing e−∆S in the expression for fugacity in [2] (instead of the ∆S

term in (2.5) we now have massive adjoint fermions, of mass m ∼ mW , in (2.6)). Ā is a

dimensionless and N -independent coefficient and the finite part of Df can be absorbed in

its redefinition (after taking into account its effect on coupling renormalization; we omit

any details on this).

27More details regarding the derivation of this partition function can be found in [2]. In this section we

will use this partition function to derive the Wilson loop inserted dual photon action for the evaluation

of the k-string tensions. Zpert. refers to the perturbative contribution of the effective dual photon action:

Zpert. =
∫
D[σ] exp(−

∫
IR3 d

3x 1
2

g2

8π2L
(∇σ)2).
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Consider now the following identity,28 where σ denotes the N -component vector (σ1,

σ2, . . . σN ):
∫
D[σ] exp

(
−
∫

IR3
d3x

1

2

g2

8π2L
(∇σ)2

)
exp(iqim · σ(x1)) exp(iqjm · σ(x2)) =

= Zpert. × exp

(
−2πL

g2

qim · qjm
|x1 − x2|

)
exp

(
−2× 2πL

g2
lim
|x|→0

1

|x|

)
.

(2.34)

After regularizing the infinite self-energies (lim|x|→0{ 1
|x| −

exp(−µ|x|)
|x| } = µ) using the

Pauli-Villars method, a typical term in (2.32), abbreviated t.t. below, using the analog

of (2.34) for n monopoles, with n(i) monopoles and n̄(i) anti-monopoles of each kind, can

be written as:

Zt.t. =

∫
D[σ] exp

(
−
∫

IR3
d3x

1

2

g2

8π2L
(∇σ)2

)
× (2.35)

×
N
Π
i=1

{
(Ñζ)n

(i)

n(i)!

(Ñζ)n̄
(i)

n̄(i)!

n(i)

Π
k=1

∫

IR3
dr

(i)
k exp(iqim ·σ(r

(i)
k ))

n̄(i)

Π
l=1

∫

IR3
dr̄

(i)
l exp(iq̄im ·σ(r̄

(i)
l ))

}
,

where Ñ = exp(+2πL
g2
µ).

Before we continue, we pause to note that the scalar fields (σ1, . . . , σN ) are the magnetic

duals to the U(N) Cartan-subalgebra electric gauge fields, the so-called “dual photons.”

For the purpose of the paragraph that follows, in order to elucidate the physical meaning of

gradients of the σ fields, we revert to Minkowski space. The duality relation, with (+,−,−)

metric, is

FAkl = − g2

2
√

2πL
εklm∂

mσA , A = 1, . . . , N . (2.36)

The kinetic term in the Minkowski space version of (2.35) is nothing but a rewriting of the

first (“magnetic”) term in Minkowski space version of the action (2.19) restricted to its

Cartan subalgebra and considered for a U(N) gauge group via dual variables.29 In order

to do this in a proper way consider the Minkowski space action of the 3-dimensional low

energy theory in perturbation theory with the Bianchi identity imposed as a constraint via

the auxiliary field σ to eliminate gauge degrees of freedom:

S =

∫

R1,2

{
− L

4g2
FAklF

Akl + hεklm∂
mFAklσA

}
, A = 1, . . . , N. (2.37)

Integrating by parts the Lagrange multiplier term, completing the square of the F akl fields

and integrating them out leaves an action only in terms of the dual fields σ: Sdual =
2
Lh

2g2
∫
R1,2(∂kσ)2. Demanding 2

Lh
2g2 = g2

2
1

8π2L
, the coefficient of the gradient of the σ

fields in (2.35), gives h = 1/(4
√

2π). Varying the action (2.37) with respect to Fkl, we

obtain the duality relation (2.36). An immediate remark, relevant for the discussion in

section 5.1.3, is that the duality relation (2.36) implies that spatial gradients of σ represent

perpendicular electric fields ~EA, i.e.

EAi ≡ FAi0 =
g2

2
√

2πL
εij∂jσ

A . (2.38)

28For simplicity it has been written for only two insertions of eiq·σ.
29See footnote 30 for the relation between the U(N) and SU(N) Cartan fields and further comments on

the duality.

– 19 –



J
H
E
P
0
1
(
2
0
1
8
)
0
2
9

Returning to our main objective — obtaining the effective theory of the dYM vacuum

— we sum over the contributions of all monopoles and antimonopoles in (2.35), and find

that the full partition function becomes:

Z=

∫
D[σ]exp

(
−
∫

IR3
d3x

1

2

g2

8π2L
(∇σ)2

) ∞∑

n=0

(Ñζ)n

n!

{ N∑

i=1

∫

IR3
d3x(eiq

i
m·σ(x)+eiq̄

i
m·σ(x))

}n
.

(2.39)

Thus, the final form of the dual photon action reads:

Z =

∫
D[σ]exp

(
−
∫

IR3
d3x

{
1

2

g2

8π2L
(∇σ)2 − ζ̃

N∑

i=1

cos(qim · σ)

})
, (2.40)

where ζ̃ = 2Ñζ.30

Before working out the Wilson loop integral, we will derive the NLΛ dependence of the

fugacity and the dual photon mass, verify the dilute gas limit conjecture and discuss the

30The remarks that follow are tangential to our exposition, but serve to convince the reader of the

consistency of our dual action coefficients with charge quantization (our eq. (2.40) was derived solely by

demanding that the long-distance interactions between monopole-instantons from section 2.3 are correctly

reproduced) and to correct minor typos in expressions that have appeared previously in the literature.

Integrating the duality relation (2.38), we obtain

g2√
2L

∮
C

dσA

2π
=

∮
C

d~n · ~EA, (2.41)

representing the fact that a static electric charge inside C generates flux through C (~n is an outward unit

normal to C) which duality relates to the σ-field monodromy around C. eq. (2.41) implies that the σA fields

have periodicities determined by the fundamental electric charges. To find them, we begin with the relation

between the N Cartan field strengths FAkl that first appeared in (2.36), (2.37) and the original N −1 SU(N)

fields F akl in (2.1). The reader can convince themselves that it is given by FAkl = 1√
N
F 0
kl +

N−1∑
a=1

F aklλ
aA,

with λaA ≡ (θaA − aδa+1,A)/
√
a(a+ 1), where θaA = 1 for a ≥ A and θaA = 0 otherwise. The spectator

U(1) field F 0
kl is not coupled to dynamical sources. The relations

N∑
A=1

λaAλbA = δab and
N∑
A=1

λaA = 0

help establish that
N∑
A=1

(FA)2 =
N−1∑
a=1

(F a)2 + (F 0)2. A fundamental static charge is represented by the

insertion of a static Wilson loop in the fundamental representation. Early on, see (2.1), we stated that our

fundamental representation generators are normalized as tr(T aT b) = δab/2. Thus, using the definitions just

made, it follows that the fundamental representation Cartan generators are T a = diag(λa1, . . . , λaN )/
√

2.

A fundamental static Wilson loop is then represented by insertions of
∫
dtAa0(~r, t)λaA/

√
2 (A labels the

Wilson loop eigenvalues) in the path-integral action. Considering one of the eigenvalues of the Wilson loop

(one component of the fundamental static quark), the corresponding electric flux is found by solving the

static equation of motion, L
g2
∇2Aa0 = λaA√

2
δ(~r), thus

∮
CA

d~n · ~Ea = −λaA g2√
2L

. From the earlier relations, we

also have that ~Ea =
N∑
A=1

λaA ~EA, thus
N∑
B=1

λaB
∮
CA

d~n · ~EB = g2√
2L
λaA. Finally, from (2.41), this leads to

N∑
B=1

λaB
∮
CA

dσB

2π
= λaA. It can be already seen, from the explicit form of λaA, that this relation implies that

the periodicity (monodromies) of differences of σA’s have to be proportional to 2π. Even more explicitly,

from the relation
N−1∑
a=1

λaAλaB = δAB − 1
N

, one finds that the monodromies of the dual photons are given

by 2π times the weights of the fundamental representation. This is consistent with the periodicities of the

potential terms in (2.39) and with the dual photon actions given in e.g. [32, 36, 43].
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hierarchy of scales in this theory. Using the one loop renormalization group invariant scale

Λ for nf = 1, 2 flavours of Dirac fermions in the adjoint representation of the gauge group:

Λb0 = µb0 exp

(
− 8π2

Ng2

)
, b0 = (11− 4nf )/3 , (2.42)

we can determine the leading dependence of the fugacity on NLΛ. The Pauli-Villars scale

used in (2.34) should be thought of as the cutoff of the long-distance theory containing

no charged excitations and should be taken below the scale of any charged excitation; for

the sake of definiteness, we shall take µ ∼ g
√
N

NL , the lowest eigenvalue of the holonomy

fluctuations. Then, we can neglect Ñ compared to exp(−S0) in the small-NLΛ limit.31

The one-loop massive fermion determinant contributes some calculable constant and

renormalizes the coupling of the long-distance theory, as already accounted for in (2.42).

From (2.33) and (2.42), neglecting any log(NLΛ) (or, equivalently, g2N) dependence, for

the leading NLΛ dependence of the fugacity we obtain:

ζ̃ ∼ ζ ∼
(

1

NL

)3

(NL)b0Λb0 = (NLΛ)b0−3Λ3 . (2.43)

The fugacity ζ̃ or ζ is proportional to the monopole density nd. For a gas with density nd
the average distance between the particles in the gas is ∼ 1

n
1/3
d

and in order to verify the

dilute gas conjecture we should have that this separation be much larger than the size of

the monopoles, of order NL:

d ∼ 1

ζ1/3
� NL −→ (NLΛ)−

b0
3 � 1 −→ b0 > 0, nf ≤ 2 . (2.44)

Since we are working in the limit NLΛ→ 0, the condition (2.44) will be satisfied if b0 > 0,

which is the same condition as the asymptotic freedom condition and gives nf ≤ 2 (or

nf ≤ 5/2 if Majorana masses are considered instead).

The mass of the dual photon can be read from (2.40). The coefficient of the quadratic

term in the dual photon action, after expanding the cosine term and factoring out g2

8π2L
is

8π2L
2g2

ζ̃. We define the dual-photon mass scale

m2
γ =

8π2NL

Ng2
ζ̃ ∼ (NLΛ)b0−2 Λ2 , (2.45)

and note that it is of order the mass of the heaviest dual photon (the dual photon mass

eigenvalues, after diagonalizing the quadratic term via a discrete Fourier transform, are

mγ sin πk
N with k = 1, . . . , N − 1).

31We note that with this choice the effect of µ on ζ̃ is comparable to the effect of finite A4 mass on the

classical monopole action, an effect that we have neglected throughout. Matching between the UV theory,

valid at scales ≥ mW , and the IR theory, valid at scales� mW , to better precision that has been attempted

so far is needed to properly account for these effects. We also note that in the supersymmetric case, the

only case where the determinants in the monopole-instanton backgrounds have actually been computed,

where σ is replaced by a chiral superfield and the monopole-instantons are “localized in superspace,” this

ambiguity is absent [32] — in super-Yang-Mills, divergent self energies of monopoles due to electric and

magnetic charge cancel out in the analogue of (2.34).

– 21 –



J
H
E
P
0
1
(
2
0
1
8
)
0
2
9

Thus, the hierarchy of scales in this theory can be summarized as:

mW ∼
1

NL
� mH ∼

g
√
N

NL
∼ µ � 1

d
∼
(

1

NLΛ

)1− b0
3

Λ � mγ ∼
(

1

NLΛ

)1− b0
2

Λ .

(2.46)

For nf = 1, we have 1
d � Λ � mγ , but for nf = 2: 1

d � mγ � Λ; we stress again that

the scale Λ has no physical significance in the small-L theory (except that to ensure weak

coupling, we must have mW � Λ).

Now we will work out the Wilson loop integral. In the dilute gas limit (NLΛ → 0)

the leading contribution to the Wilson loop integral comes from the long distance abelian

behaviour of the monopole gas far from the cores (∼ NL) of the monopoles. Therefore

for a Wilson loop in the x1, x2 plane and representation r with N -ality k and for a typical

monopole gas background involving n monopoles we have:

{
trr exp

(
i

∮

R×T
Acmt

c
rdxm

)}

typ. mon.

=trr exp

(
i

∫

S(R×T )
εanm∂nA

c
mt

c
rdSa

)
(2.47)

=

d(r)∑

j=1

exp

(
i

∫

S(R×T )
dx1dx2

n∑

i=1

µjr ·qim
Ri

3

2|Ri−x|3

)
,

where c = 1, . . . , N − 1 labels the Cartan generators of SU(N) in the representation r and

µjr is it’s j-th weight. On the first line above, we used Gauss’ law to rewrite the Wilson

loop integral as an integral of the magnetic flux through a surface S spanning the loop, and

on the second line, we replaced the magnetic field by the field of n monopole-instantons

at positions Ri ∈ R3, i = 1, . . . , n.32 Defining the solid angle η(x) that the Wilson loop is

seen at from the point x ∈ R3, η(x) ≡
∫
S(R×T ) dy1dy2

x3
2|y−x|3 , we have for the contribution

to the Wilson loop expectation value of an n-monopole configuration:

{
trr exp

(
i

∮

R×T
Amdxm

)}

typ. mon.

=

d(r)∑

j=1

exp

(
i

n∑

i=1

µjr · qimη(Ri)

)
. (2.48)

Comparing with (2.35), we see that the effect of the Wilson loop insertion is to shift the

σ(r
(i)
k ) field multiplying the magnetic charges in (2.35) by µjrη(r

(i)
k ) (and similarly for σ(r̄

(i)
k )

and the σ(x) field in (2.39)). Thus, shifting the σ(x) field by σ(x) → σ(x) − µjrη(x) gives

the final form of the expectation value of the Wilson loop in dYM theory to leading order

in NLΛ→ 0, calculated using the low energy effective theory:

〈Wr(R,T )〉=
∫
D[σ]

d(r)∑

j=1

exp

(
−
∫

IR3
d3x

{
1

2

g2

8π2L
(∇σ−µjr∇η)2−ζ̃

N∑

i=1

cos(qim ·σ)

})
/Z.

(2.49)

The string tension action is given by making a saddle point approximation to (2.49). The

Lagrange equations of motion for the contribution of the j-th weight of r to the Wilson

32A more detailed derivation of (2.47) is done in appendix C.2.
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loop expectation value are:

∇2σi = 2π(µjr)iθA(x1, x2)∂3δ(x3) +m2
γ(sin(σi − σi+1) + sin(σi − σi−1)), i = 1, . . . , N ,

(2.50)

where σ0 ≡ σN , σN+1 ≡ σ1 and ∇2η(x) = 2πθA(x1, x2)∂3δ(x3). θA(x1, x2) is one for

(x1, x2) ∈ A and zero for (x1, x2) /∈ A, with A being the area of the Wilson loop R × T
in the x1, x2 plane. For large Wilson loops (R, T → ∞) the saddle point configuration

of (2.49) is zero for regions outside the Wilson loop. The solution near the boundaries

would be more complicated and gives a contribution proportional to the perimeter of the

Wilson loop. The solution interior to the Wilson loop far from the boundaries would

depend on x3 only. The corresponding one-dimensional equation is:

∂2σi
∂x2

3

= 2π(µjr)iθA(x1, x2)∂3δ(x3)+m2
γ(sin(σi−σi+1)+sin(σi−σi−1)), (x1, x2) ∈ A . (2.51)

Eq. (2.51) represents a boundary value problem showing a discontinuity of 2π(µjr)i for the

σi (i = 1, . . . , N) fields at x3 = 0. Therefore (2.49) to leading order in NLΛ → 0 (the

saddle point approximation is valid in this limit) and R, T →∞ is

〈Wr(R, T )〉 ∼
d(r)∑

j=1

exp(−T jrRT ) , (2.52)

given by a sum over the exponential contributions of the different weights of the represen-

tation r. Sources in every weight have their own string tension, T jr , given by:

T jr = min
σ(x3)

∫ +∞

−∞
dx3

{
1

2L

g2

8π2

(
∂σ

∂x3

)2

+ ζ̃
N∑

i=1

[1− cos(σi − σi+1)]

}∣∣∣
∆σ(0)=2πµjr

, (2.53)

with ∆σ(0) ≡ σ(0+)− σ(0−).

Notice that because the long-distance theory is abelian, within the abelian theory, we

can insert static quark sources with charges given by any µjr, j = 1, . . . , d(r). Clearly,

this is not the case in the full theory, where the entire representation appears and color

screening from gluons is operative. In our NLΛ → 0 limit, the gauge group is broken,

SU(N) → U(1)N−1, and the screening is due to the heavy off-diagonal W -bosons, which

were integrated out to arrive at (2.52). Thus, we expect that at distances R such that

T jrR > O(mW ), W -bosons can be produced (as in the Schwinger pair-creation mechanism)

causing the strings in representation r with higher string tensions to decay to the string

with lowest tension in r. Hence, we shall not study all T jr tensions, but will focus only on

the strings of lowest tension confining quarks in representation r.33

It is shown, in appendix C.1, that any representation of SU(N) with N -ality k (=

1, . . . , N − 1) contains the k-th fundamental weight, µk (given by (3.2) below) as one of its

weights. Furthermore, in section 5.1.1 it is shown that this weight would give the lowest

33The order of magnitude of the string tension is g2NmγmW . Thus W -boson production takes place once

R ∼ O(1/(g2Nmγ)) and Higgs production (recall mH ∼ g
√
NmW ) when R ∼ O(1/(g

√
Nmγ)). Notice that

the values on the r.h.s., owing to small coupling, are much larger than the Debye screening length 1/mγ .
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string tension action among the other weights of that representation. Therefore (2.52)

reduces to:

〈Wr(R, T )〉 ∼ exp(−TkRT ) , (2.54)

up to pre-exponential factors and subdominant terms corresponding to the higher string

tensions. The k-string tension Tk, defined by:

Tk = min
σ(x3)

∫ +∞

−∞
dx3

{
1

2L

g2

8π2

(
∂σ

∂x3

)2

+ ζ̃
N∑

i=1

[1− cos(σi − σi+1)]

}∣∣∣
∆σ(0)=2πµk

(2.55)

will be the object of our numerical and analytical studies in the rest of this paper.

3 String tensions in dYM: a numerical study

3.1 String tension action

As derived in section 2.4 the “k-string tension action” is given by:

Tk = min
σ(z)

∫ +∞

−∞
dz

{
1

2L

g2

8π2

(
∂σ

∂z

)2

+ ζ̃

N∑

j=1

[1− cos(σj − σj+1)]

}∣∣∣
∆σ(0)=2πµk

, σN+1 ≡ σ1 ,

(3.1)

where µk, the fundamental weights of SU(N), are obtained by solving the equation

2αi · µk/ |αi|2 = δik [44], and are given by:

µk =


N − k

N
, . . . ,

k-th

N̂ − k
N

,
−k
N
, . . . ,

−k
N


 , 1 ≤ k ≤ N − 1, (3.2)

Here αi are the simple roots of SU(N), given in their N -dimensional representation by:

αi =

(
0, . . . , 0,

i-th

1̂ ,−1, 0, . . . , 0

)
, 1 ≤ i ≤ N − 1. (3.3)

In deriving the relation for the µk’s, it is assumed that the µk’s and αi’s span the same

subspace in IRN , orthogonal to the vector (1, 1, 1, . . . , 1, 1). The string tension action (3.1)

will be minimized when the discontinuity ∆σ(0) = 2πµk is equally split between σ(0+) and

σ(0−).34 Therefore the value of the action would also be equally split between the positive

and negative z-axis and we can consider half the k-string action. Defining m2
γ ≡ 8π2

g2
Lζ̃, the

parameter-free form of half of (3.1) is given by making the change of variable z = z′ 1√
2mγ

:

√
2mγ

ζ̃

Tk
2
≡ T̄k = min

f(z′)

∫ +∞

0
dz′
{(

∂f

∂z′

)2

+
∑

j

[1− cos(fj − fj+1)]

}
, (3.4)

f(+∞) = 0, f(0) = πµk and f(z′) = σ

(
z′√
2mγ

)
.

34This can be seen as follows. Consider the boundary conditions σ(0+) = πµk+z̄ and σ(0−) = −πµk+z̄.

We will show that the minimum of (3.1) is when z̄ = 0. If σ(z) is an extremum solution of (3.1) so is σ(−z)

and −σ(z), therefore it can be seen that z̄ = 0 is an extremum point. It is a minimum since otherwise the

kinetic term will increase if we make the magnitude of the boundaries larger than π(µk)j on either side of

z = 0+ or z = 0−.
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The equations of motion for f are given by:

d2fj
dz2

=
1

2
(sin(fj − fj+1) + sin(fj − fj−1)), 1 ≤ j ≤ N, f0 ≡ fN , fN+1 ≡ f1. (3.5)

It is possible to solve the equations of motion (3.5) directly for SU(2) and SU(3) and derive

the exact value of (3.4).35 The solution for SU(2) and its corresponding T̄1 value is:

− f2(z) = f1(z) = 2 arctan
(

exp(−
√

2 z)
)

after inserting in (3.4)−−−−−−−−−−−−−→ T̄1 = 8/
√

2 . (3.6)

Due to charge conjugation symmetry T̄k = T̄N−k [2] hence for SU(3) T̄1 = T̄2 and therefore

it suffices to solve the equations of motion and find the action for the first fundamental

weight µ1 of SU(3):

−2f2(z)=−2f3(z)=f1(z)=
8

3
arctan

(
exp(−

√
3/2z)

)
after inserting in (3.4)−−−−−−−−−−−−−→ T̄1 =16/

√
6 >

(3.7)

In the following sections, these exact values will be used as a check on our numerical

methods.

3.2 Discretization of the string tension action

We will obtain the numerical value of the string tensions in deformed Yang-Mills theory by

discretizing (3.4) and minimizing the multivariable function obtained upon discretization.

We set the boundary conditions at fj(0) = π(µk)j and fj(J) = 0 for J > 0.

To discretize (3.4) divide the interval [0, J ] into m partitions and consider the following

array of discretized variables:

{fjl | 1 ≤ j ≤ N , 0 ≤ l ≤ m, fj0 = π(µk)j , fjm = 0} . (3.8)

We denote δz = J/m, and introduce the discretized functions f
(m)
j , linearly interpolated

in every interval of width δz:36

f
(m)
j (z) = fjh +

fjh+1 − fjh
δz

(z− hδz) , z ∈ [hδz, (h+ 1)δz] , h = 0, . . . ,m− 1 . (3.9)

Inserting (3.9) in (3.4) and performing the z integration, the linearly discretized action is:

T̄m,Jk = T̄m,Jk1 + T̄m,Jk2 , T̄m,Jk1 =
∑

j,h

(fjh+1 − fjh)2

δz
, (3.10)

T̄m,Jk2 = NJ − δz
∑

j,h

sin(fjh+1 − fj+1h+1)− sin(fjh − fj+1h)

(fjh+1 − fj+1h+1)− (fjh − fj+1h)
,

where we split the discretized action into a kinetic (T̄m,Jk1 ) and potential (T̄m,Jk2 )parts. Notice

their different scalings with the width of partition δz (we shall make use of this fact in

section 5.1.3 when discussing similarities with the MIT Bag Model).

35That an ansatz with a single exponential works for SU(3) is a consequence of the existence of only a

single mass scale in the dual-photon theory, a fact that only holds for N = 2, 3.
36The superscript (m) indicates that this is the discretization with m partitions of the interval.
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3.3 Minimization of the string tension action and error analysis

In order to obtain more accurate numerical results and have control over the minimization

process, a systematic method is utilized for minimizing the multivariable function (3.10).

For sufficiently small δz, T̄m,Jk has a parabolic structure along the direction of any variable

flp (i.e.
∂2T̄m,Jk

∂f2lp
> 0). The second derivative of the 1st term in (3.10) with respect to flp is

4
δz and the second derivative with respect to the 2nd term is at least37 −4

3δz, hence:

∂2T̄m,Jk

∂f2
jh

> 0 =⇒ 4

δz
− 4

3
δz > 0 =⇒ δz <

√
3 . (3.11)

To minimize (3.10) we assume δz small enough in order to satisfy (3.11) and have a

parabolic structure along the direction of any variable. The string tension action (3.4)

and its discretized form (3.10) are positive quantities with the extremum solution of (3.5)

being the minimum point of the action, therefore following the parabolas along the direc-

tion of any variable downward should lead us to this minimum point. In order to do this in

a systematic way R random points are generated in the N × (m− 1) dimensional space of

discretized variables and starting from each random point the multivariable function (3.10)

is minimized to width w (i.e. it is minimized to a point such that moving w in either di-

rection along any variable flp and keeping other variables fixed gives a higher value for the

action). This process is continued by dividing w in half and minimizing to width w
2 and

further continued to minimization to width w
2n at the n-th step until the difference between

the string tension value at step n and n−1 is sufficiently small. Let Xn denote the random

variable for the value of the string tension at step n obtained by this minimization process.

The minimization error (i.e.|minT̄m,Jk −〈Xn〉|) in minimizing the multivariable function is

reduced to the desired accuracy if the following quantities are sufficiently small:

i)
σn√
R
, ii) |〈Xn〉 − 〈Xn−1〉| , (3.12)

where σn is the standard deviation of Xn and 〈Xn〉 denotes the average of Xn.

The same analysis described above is done for 2m number of partitions and the dis-

cretization error (i.e. |minT̄m,Jk − minT̄∞,Jk |) of the string tensions is reduced to the de-

sired accuracy if the difference between the string tension values obtained for m number

of partitions and 2m number of partitions is small enough. We consider the difference

|minT̄m,Jk − minT̄ 2m,J
k | as an estimate for the discretization error of the string tension

values obtained for 2m number of partitions.

The boundary value number z = J is assumed large enough to ensure the truncation

error (i.e. |minT̄∞,Jk − minT̄∞,∞k (= T̄k)|) is small enough. An upper bound estimate for

the truncation error is given by B.1:

|minT̄∞,Jk − T̄k| < 2|minT̄∞,Jk1 −minT̄∞,Jk2 |. (3.13)

37Minimizing the second derivative of T̄m,Jk,2 with respect to flp, gives − δz
3

for each time the variable flp
appears in the sum over j and h. Since it appears 4 times when replacing each variable fjh+1, fj+1h+1, fjh
and fj+1h in the expression and the minimum value is the same for all 4 cases, this gives − 4

3
δz for a lower

bound on the 2nd derivative of the second term.
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SU(N) k 1 2 3 4 5 6 7 8 9

2 5.6576 - - - - - - - -

3 6.5326 6.5326 - - - - - - -

4 6.8583 8.0006 6.8583 - - - - - -

5 7.0140 8.6602 8.6602 7.0140 - - - - -

6 7.1001 9.0168 9.5547 9.0168 7.1001 - - - -

7 7.1526 9.2318 10.0744 10.0744 9.2318 7.1526 - - -

8 7.1868 9.3713 10.4051 10.7192 10.4051 9.3713 7.1868 - -

9 7.2104 9.4670 10.6292 11.1455 11.1455 10.6292 9.4670 7.2104 -

10 7.2273 9.5355 10.7882 11.4434 11.6491 11.4434 10.7882 9.5355 7.2273

Table 1. The numerical values, (3.4), of half k-string tensions for gauge groups ranging from SU(2)

to SU(10). The upper bound estimate for error is −0.006.

The total error estimate in minimizing (3.4) is given by:

Total Error = Min. E. + Dis. E. + Trunc. E.

= |〈Xn〉 − 〈Xn−1〉|+
σn√
R

+ |minT̄m,Jk −minT̄ 2m,J
k |

+ 2|minT̄∞,Jk1 −minT̄∞,Jk2 | .

(3.14)

The analysis of the errors defined above is discussed at length in appendix B.

3.4 Numerical value of k-string tensions in dYM

The numerical values of (3.4) obtained by the minimization method above with their

corresponding errors are listed in table 1 above.38 Since the minimum value in (3.4) always

lies below the numerical values obtained in a numerical minimization procedure the upper

bound estimate for the error has been indicated with a minus sign only.

The minimization method was carried out for J = 14.0, m = 100 and m = 200 number

of partitions and the initial width was w = 1. The number of random points R generated

initially is R = 24. The multivariable function (3.10) for m = 100 was minimized to width
w
2n for n = 20. For m = 200, (3.10) was minimized to step n = 20 for SU(2 ≤ N ≤ 7) and

to step n = 22 for SU(8 ≤ N ≤ 10). The numerical values listed in table 1 refer to the

numbers obtained with m = 200 number of partitions rounded to the fourth decimal. A

comparison of the known analytical results for SU(2) ((3.7)) and SU(3) ((3.8)) half k-string

tensions with the numerical results is made in table 2.

The same minimization process and error analysis used to derive the SU(2) and SU(3)

half k-string tensions was utilized for the higher gauge groups.

A discussion of the results shown in table 1, especially regarding the k-scaling of string

tensions and the large-N limit will be given in section 5.

38Numerical computations of the string tensions were performed on the gpc supercomputer at the SciNet

HPC Consortium [45]. Due to a high number of k-string calculations (> 1000) with most of them involving

minimization of multivariable functions with more than 500 variables, using a cluster that could perform

many k-string computations at the same time in parallel was necessary.
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Numerical value Analytical (exact) value

SU(2) 5.6576−0.006 8/
√

2 ≈ 5.6569

SU(3) 6.5326−0.006 16/
√

6 ≈ 6.5320

Table 2. SU(2) & SU(3) numerical and analytical half k-string tensions.

4 String tensions in dYM: perturbative evaluation

Here, we will rederive the half k-string tensions in table 1 by a perturbative evaluation of

the saddle point. We stress that this is not an oxymoron and that, indeed, we will be using

(resummed) expansions and only Gaussian integrals to compute a nonperturbative effect.

In order to explain the main ideas, we briefly summarize them now, in an attempt

to divorce them from the many technical details given later. Our starting point is the

partition function of the Wilson loop inserted dual photon action for a fundamental weight

µk from section 2.4:

Zη =

∫
[Dσ]exp


−

∫

IR3
d3x

{
1

2L

g2

8π2
(∇σ −∇ηµk)2 − ζ̃

N∑

j=1

cos(σj − σj+1)

}
 . (4.1)

For a Wilson loop in the y1, y2 plane, η(x) =
∫
A

dy1dy2
x3

2|x−y|3 with y = (y1, y2, 0) and “A”

stands for the area of the rectangular Wilson loop R× T where the integral is being eval-

uated. We will rewrite (4.1) in a form appropriate for a perturbative evaluation. Defining
1
β ≡

ζ̃
m3
γ
, rescaling xl → 1

mγ
x̂l, yl → 1

mγ
ŷl (l = 1, 2, 3) with m2

γ = 8π2

g2
Lζ̃ and expanding the

cosine term (neglecting the leading constant term) we have:

Zη =

∫
[Dσ]exp

(
− 1

β

∫

IR3
d3x̂

{
1

2
(∂lσ)2 − (µk)j∂lσj∂lη +

1

2
(∂lη)2µk

2 (4.2)

+
1

2
(σj − σj+1)2 − 1

4!
(σj − σj+1)4 + . . .

})
,

with σN+1 ≡ σ1 and an implicit sum over j = 1, . . . , N and l = 1, 2, 3. We note that

based on (2.43) and (2.45) for the leading NLΛ dependence of β we have β ∼ (NLΛ)
b0
2

with b0 > 0 given by (2.42). Thus, in the regime of validity NLΛ→ 0 of the semiclassical

expansion β → 0 and the partition function (4.2) can be evaluated using the saddle point

approximation, which was done numerically in section 3 and analytically in this section.

We shall present details for both SU(2), in section 4.1, and SU(N), in section 4.2 below,

but begin by explaining the salient points of the analytic method here. For this purpose

consider (4.2) for an SU(2) gauge group. Following steps from equations (4.6) to (4.10) we

obtain:

Zη
g4

=

∫
[Dg]exp

(
−
∫

IR3
d3x̂

{
1

2
(∂lg)2 +

m2

2
g2 + βλg4 +

1

2

(
b

2π

)2

(∂lη)2

})
(4.3)

×exp

(
+

b√
β

∫

A

dx̂1dx̂2∂3g

)
.
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The differences between (4.3) and (4.2) are that: i.) the integration variable, the single dual

photon of SU(2), is now called g, ii.) nonlinear terms higher than quartic are discarded

in order to simply illustrate the procedure, iii.) arbitrary dimensionless constants are

introduced: mass parameter m, quartic coupling λ and the boundary coefficient b in (4.3).

Naturally the values of m,λ and b are determined by the original action in (4.2) (or see

below equation (4.7)), but it is convenient to keep them general in order to organize the

expansion. As we explain below, we perform a combined expansion in β to all orders, and

in λ to any desired order.39

To explain the procedure, from (4.2) it can be seen that the β parameter is similar to an

~ parameter and in (4.3) the fields have been rescaled by this parameter for a perturbative

evaluation of the saddle point. A rescaling of fields by a parameter will not change how

an expansion in that parameter behaves therefore the expansion in β is similar to an ~
expansion. In the limit of an infinite Wilson loop the β expansion will be organized in the

following way:

e
−R̂T̂{ 1

β
S0(λ)+f1-loop(λ)+βf2-loop(λ)+...}

, (4.4)

S0 is the one-dimensional saddle-point action, f1-loop, f2-loop, etc correspond to the sum-

mation of the one loop, two loop, etc diagrams. For brevity we have only included a λ

dependence although generally they depend on λ, m and b. In this section we will be only

concerned with the leading saddle point result of order 1
β in the exponent of (4.4). To

carry this out we expand the Wilson loop exponent and the g4 term in (4.6) and look for

connected terms of order 1
β . These will be the terms that exponentiate to produce the

saddle point action in (4.4). As an example consider the Wilson loop exponent expanded

to second order: 1
2!(

b√
β

∫
A

dx̂1dx̂2∂3g)2. When evaluated using the free massive propagator

it is a connected diagram of order 1
β , combined with the evaluation of the non-connected

terms 1
4!(

b√
β

∫
A

dx̂1dx̂2∂3g)4, etc it would exponentiate to produce the term − R̂T̂
β S0(λ = 0) in

the exponent of (4.4). The odd terms in the expansion of the Wilson loop exponent vanish

due to an odd functional integral. Similarly higher order contributions in λ to the saddle

point action can be evaluated. The order λ contribution comes from the exponentiation of

the connected diagram involving one g4 term and four Wilson loop terms which is of order
1
β : −βλ

∫
IR3 d3xg4 1

4!(
b√
β

∫
dx1dx2∂3g)4. Terms of order λ2, etc in the expansion of the

saddle point action in (4.4) can also be evaluated perturbatively which would result in the

perturbative expansion of the saddle point in λ (or more precisely λb2

m2 ) as in (4.31). Clearly

the large value of 1
β causes no problem for these exponentiations since the radius of con-

vergence of an exponential function is infinite. At every order in this combined expansion,

we are faced with the calculation of Gaussian integrals only — hence the “perturbative

evaluation” in the title of this section.

39As is evident from equation (4.31), the expansion parameter is λb2

4m2 ; as discussed there, convergence of

the perturbative expansion of the saddle point for a g4 interaction term only requires that this parameter be

less than 1/2. This condition is met in dYM theory, but not in QCD(adj) [9], for the choices of parameters

following from the underlying action (In dYM from below equation (4.7)), although not strictly required

since the full potential in both theories includes higher non-linearities and in taking these into account the

perturbative series evaluation of the saddle point would be a convergent one.
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In this paper, we compute the leading-order contributions to the Wilson loop expec-

tation value that behave as

e
− R̂T̂

β
(a1+a2λ)

, (4.5)

where R̂T̂ is the dimensionless area of the Wilson loop, defined in section 4.1, and a1(

= S0(λ = 0)), a2 are numerical coefficients that we compute (for SU(2) we will evaluate a

few higher order corrections as well).

Setting λ = 0 in (4.5) corresponds to ignoring non-linearities and is equivalent to

a calculation of the saddle point action using the Gaussian approximation for the dual

photon action. This was previously done in the 3d Polyakov model in [46, 47]. However,

as noted in [47] and also follows from our results, the neglect of nonlinearities introduces

an order unity error in the string tension. On the other hand, incorporating even only the

leading quartic nonlinearity and setting λ equal to the value that follows from (4.2) at the

end of the calculation leads to a significantly better agreement with the exact analytic or

numerical data. One explanation for this is that the value of the saddle point functions

approach zero quickly from its boundary value at x3 = 0 which for SU(2) is π and for higher

gauge groups is less than π therefore the non-linearities will be suppressed. We show this

in great detail in appendix D for a wide range of N and k. Here, to illustrate the utility

of the method, in table 3, we only list the results for the k = 1-string tension for gauge

groups SU(2) — SU(10), obtained via the method explained above and keeping the quartic

nonlinearity only. A look at table 3 shows that the convergence to the numerical (or exact

analytic, when available) result is evident.40

Our final comment is that, in principle, this approach would also allow one to compute

corrections to the leading semiclassical result. In the case at hand, this would necessitate a

more precise matching of the long-distance theory to the underlying gauge theory; needless

to say, any detailed study of such corrections is left for future work.

4.1 Evaluation for SU(2)

We will first demonstrate the basic ideas of the method in the simpler case of SU(2) which

an analytic solution to the saddle point is available, hence a direct comparison can be made

with the perturbative evaluation. Defining g1 ≡ (σ1− σ2)/
√

2 and g2 ≡ (σ1 + σ2)/
√

2 with

µ1 = (0.5,−0.5), (4.2) for SU(2) reduces to:

Zη =

∫
[Dg]exp

(
− 1

β

∫

IR3
d3x̂

{
1

2
(∂lg1)2 +

1

2
(∂lg2)2 − 1√

2
∂lg1∂lη (4.6)

+
1

4
(∂lη)2 +

4

2
(g1)2 − 8

4!
(g1)4 + . . .

})
.

From (4.6) it is clear that g2 only appears in the kinetic term hence can be neglected. In

what follows we will neglect the higher order interactions and demonstrate how the method

40This agreement can be further improved, as we have verified for SU(2). Summing only contributions

to (4.5) to order λ we obtain the value 7.84 shown in table 3. Including the higher-order correction terms

show an oscillatory convergence: including the first order correction due to the g61 term in (4.8) gives 8.285

and including order λ2 of the quartic term expansion, we obtain 8.007, to be compared with the exact value 8.
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SU(N) a1 a2λ a1 + a2λ Num. value

2 9.870 -2.029 7.841 8.000 (exact)

3 11.396 -2.343 9.053 9.238 (exact)

4 11.913 -2.396 9.517 9.699

5 12.150 -2.410 9.740 9.919

6 12.277 -2.415 9.862 10.041

7 12.355 -2.417 9.938 10.114

8 12.405 -2.418 9.987 10.163

9 12.439 -2.418 10.021 10.196

10 12.463 -2.418 10.045 10.221

Table 3. Comparison of N -ality 1 k-string tensions for SU(2 ≤ N ≤ 10), obtained using the

perturbative method explained here — leading contribution a1 plus first subleading a2λ, from

eq. (4.5) — with the results of the numerical study. To avoid confusion, we note that the exact

analytic values for SU(2) and SU(3) in the dimensionless units used here are 8 and 9.238, respectively

which agree with the numerical values listed in appendix D; see also the end of section 4.1.

works for a g4
1 interaction term only. We replace g1 with g and use general dimensionless pa-

rameters for the mass, the g4 coupling constant and the coefficient of the Wilson loop terms:

Zη
g4

=

∫
[Dg]exp

(
− 1

β

∫

IR3
d3x̂

{
1

2
(∂lg)2 +

m2

2
g2 + λg4 − b

2π
∂lg∂lη +

1

2

(
b

2π

)2

(∂lη)2

})
.

(4.7)

For later use we note that the corresponding values of m, λ and b in (4.6) are m = 2,

λ = − 8
4! and b =

√
2π. Integrating by parts the Wilson loop term (linear term in ∂lg) with:

∂l∂lη(x) = −2π

∫

A

dy1dy2∂3∂
2 1

4π|x− y| = 2πθA(x1, x2)∂3δ(x3) (4.8)

gives:

Zη
g4

=

∫
[Dg]exp

(
− 1

β

∫

IR3
d3x̂

{
1

2
(∂lg)2 +

m2

2
g2 + λg4 (4.9)

+b∂3δ(x̂3)θA(x̂1, x̂2)g +
1

2

(
b

2π

)2

(∂lη)2

})
,

where θA(x̂1, x̂2) is 1 on the Wilson loop area and zero otherwise. To evaluate (4.7)

perturbatively rescale g → √βg:

Zη
g4

=

∫
[Dg]exp

(
−
∫

IR3
d3x̂

{
1

2
(∂lg)2 +

m2

2
g2 + βλg4 +

1

2

(
b

2π

)2

(∂lη)2

})

×exp


+

b√
β

∫

A

dx̂1dx̂2∂3g


 . (4.10)
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In what follows, we will drop the hat on x; due to the rescaling made earlier it should be

remembered that we are working with dimensionless variables.

We will first calculate the Wilson loop exponent using the quadratic terms (kinetic

term + mass term) in (4.10). In expanding the exponential exp(+ b√
β

∫
A

dx1dx2∂3g) the odd

terms vanish due to an odd functional integral and the even terms will be organized in the

form of an expansion of an exponent (hence they would exponentiate) therefore it would

be sufficient to only evaluate the second order term:41

〈 b2
2β

∫∫

A A

′
∂3g∂

′
3g
〉

0
=
b2

2β

∫∫

A A

′
∂3∂
′
3P (x−x′) =

b2

2β

∫∫

A A

′
∂3∂
′
3

exp(−m|x− x′|)
4π|x− x′| , at x3 = x′3 = 0 .

(4.11)

The last expression can be evaluated as:

∫∫

A A

′
∂3∂
′
3P (x−x′) =

∫∫ ′

A A

{(−∂2 +m2)P (x−x′)+(∂2
1 +∂2

2)P (x−x′)−m2P (x−x′)} . (4.12)

For a Wilson loop in the x1, x2 plane we can bring the second term on the right hand side

of (4.12) on the boundaries of the Wilson loop using the identity:

∫∫ ′

b(A) b(A)

dxldx′kδlkP (x− x′) =

{∫∫ ′

A A

dSldS′l∂n∂′n −
∫∫ ′

A A

dSldS′k∂k∂
′
l

}
P (x− x′)

= −
∫∫ ′

A A

d2xd2x′{∂2
1 + ∂2

2}P (x− x′) .

(4.13)

Here, b(A) stands for the boundary of the Wilson loop area.

Using relations (4.11), (4.12), (4.13) and noting that P (x− x′) is the Greens function

of the operator −∂2 +m2 we have:

〈 b2
2β

∫∫

A A

′
∂3g∂

′
3g
〉

0
=
b2

2β

{
δ(0)R̂T̂−

∫∫ ′

b(A) b(A)

dxldx′kδlkP (x−x′)−m2

∫∫ ′

A A

P (x−x′)
}
. (4.14)

The subscript of zero of the expectation value refers to it being evaluated using the free

theory Lagrangian (i.e. at λ = 0). The first term and the infinite part of the second term on

the right hand side of (4.14) would cancel with the infinite parts of the 1
2( b

2π )2(∂lη)2 term

in (4.10) to give a finite perimeter law for the Wilson loop and the third term on the right

hand side of (4.14) would give rise to an area law in the large area limit. Evaluating the

41We have to note that since we are summing to all orders such a perturbative expansion is justified

although 1√
β

becomes large as β → 0.
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1
2( b

2π )2(∂lη)2 term in (4.10) using (4.8) and similar methods used to evaluate (4.14) gives:

∫

IR3
d3x

1

2

(
b

2π

)2

(∂lη)2 = −1

2

(
b

2π

)2 ∫

IR3
d3xη(x)2πθA(x1, x2)∂3δ(x3)

= −b
2

2

∫

A
d2x

∫

A
d2y∂2

3

1

4π|x− y|

=
b2

2

{
δ(0)R̂T̂ −

∫∫ ′

b(A) b(A)

dxldykδlk
1

4π|x− y|

}
. (4.15)

Further, (4.10), (4.14) and (4.15) give:

{Zη
g4
}λ=0

{Zη
g4
}b=λ=0

= exp

(
− 1

β

{
m2b2

2

∫∫ ′

A A

P (x− x′) (4.16)

+
b2

2

∫∫ ′

b(A) b(A)

dxldx′kδlk
(
P (x− x′)− 1

4π|x− x′|

)})
.

In the limit that the area of the Wilson loop goes to infinity the first term on the right

hand side of (4.16) can be evaluated explicitly. Consider a Wilson loop with R̂ = T̂ ≡ a.

Rescaling xk → axk, x′k → ax′k for k = 1, 2 and considering the limit a→∞ we have:

∫∫

A A

′
P (x− x′) = a3

∫

A1×1

d2x

∫ ′

A1×1

d2x′
exp(−am|x− x′|)

4π|x− x′|

= a3

∫

A1×1

d2x2π

∫ ∞

0
rdr

exp(−am
√

(x3 − x′3)2/a2 + r2)

4π
√

(x3 − x′3)2/a2 + r2
(4.17)

=
1

2m
exp(−m|x3 − x′3|)a2 → a2

2m
=
R̂T̂

2m
.

To arrive at the result above, we noted that in the limit of a large Wilson loop area (a→∞)

due to the exponential suppression the main contribution to the d2x′ integral comes from

a small circle with radius r ∼ 1
a centered at the point x = (x1, x2, 0) in the Wilson loop.

Therefore it can be seen that the exact value of the d2x′ integral in this limit would be given

when the dr integral is evaluated from zero to infinity. This would imply that the d2x′

integral is independent of x, hence the d2x integral would be a trivial one over a unit square.

Using (4.17), (4.16) in the limit of a large Wilson loop becomes:

{Zη
g4
}λ=0

{Zη
g4
}b=λ=0

= exp

(
− 1

β

{
mb2

4
R̂T̂ +

b2

2

∫∫ ′

b(A) b(A)

dxldx′kδlk
(
P (x− x′)− 1

4π|x− x′|

)})
.

(4.18)

(4.18) contains an area law term (first term in the exponent) and a perimeter law term (last

two terms in the exponent). We note that without the use of the perturbative saddle point

method the evaluation of the perimeter law term, due to the complicated behaviour of the

saddle point solution near the boundaries of the Wilson loop, would have been a difficult
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task. The perimeter law term in (4.18) is a finite quantity and proportional to Log(a)a (for

a = R̂ = T̂ ) hence negligible compared to the area law term in the limit a → ∞. Due to

this and the fact that our main focus in this section is the area law term we will drop this

term in what follows. Another point worth mentioning, as will be seen in what follows, is

that in the limit of a→∞ only the area law term in (4.18) will receive λ corrections.

The saddle point equation of motion of (4.9) is given by:

∂2g = m2g + 4λg3 + b∂3δ(x3)θA(x1, x2) . (4.19)

For large Wilson loops, far from the boundaries of the Wilson loop the saddle point solution

to (4.9) obeys (4.19). For regions outside the Wilson loop the solution is zero. For regions

close to the boundaries the saddle point solution will be more complicated and gives the

perimeter law contribution in (4.18). For regions interior to the Wilson loop far from the

boundaries the solution only depends on x3 with a discontinuity of b at x3 = 0 and gives the

area law contribution in (4.18). The corresponding one dimensional problem is given by:

d2

dx2
3

h = m2h+ 4λh3 h(0+) = b/2, h(0−) = −b/2 . (4.20)

The discontinuity should be equally split above and below the Wilson loop in order to

give the lowest action. The solution to (4.20) for λ = 0 is given by:

h(x3) =

{
b
2exp(−mx3) for x3 > 0

− b
2exp(mx3) for x3 < 0

(4.21)

The action of this solution is:

S[h] =

∫ +∞

−∞
dx3

{
1

2

(
dh

dx3

)2

+
1

2
mh2

}
=
m

4
b2, at λ = 0 , (4.22)

which is the same as the coefficient of the area law term in (4.18). This demonstrates the

validity of the perturbative saddle point method in producing the corresponding action of

the saddle point boundary value problem. In order to further verify this method we will

evaluate the saddle point action for a nonzero λ and compare it with the corresponding

analytic solution. We expand the exponential of the g4 term in (4.10). The order λ term

contracts with the fourth order term in the expansion of the Wilson loop exponent:

〈
− βλ

∫
d3xg4

(
b√
β

)4 1

4!

(∫

A
d2y∂y3

g

)4〉
0,C

= −4!

4!

λ

β
b4
∫
d3x

4∏

i=1

∫

A
d2yi − ∂x3P (x− yi) .

(4.23)

The subscript C refers to the connected contribution. It has to be reminded that we will

only be interested in connected terms of order 1
β since these terms would exponentiate to

produce the series expansion of the saddle point action in (4.31). In the limit of a → ∞
(after rescaling the variables xk → axk, y

i
k → ayik for k = 1, 2) due to the exponential

suppression the x1 and x2 components of x will be restricted to the Wilson loop and the
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main contribution to the integrals would come from a small circle of radius ∼ 1
a centred

at (x1, x2, 0). Following similar steps as (4.17) we have:

∫

A
d2y(−∂x3P (x− y)) = −∂x3

∫

A
d2yP (x− y)

xk→axk
yik→ayik
a→∞

= −∂x3

1

2m
exp(−m|x3|)

=
sign(x3)

2
exp(−m|x3|) . (4.24)

Then (4.23) becomes:

〈
− λ

β

b4

4!

∫
d3xg4

(∫

A
d2y∂y3

g

)4〉
0,C

= − 1

β

λb4

16m
k1a

2 = − 1

β

λb4

32m
R̂T̂ , (4.25)

with k1 given by:

k1 ≡
∫ +∞

−∞
dx3E(x3)4 =

1

2
, E(x3) ≡ sign(x3)exp(−|x3|) . (4.26)

We note that the dx1dx2 integral would be a trivial one over a unit square and hence only an

integral over dx3 would remain. In a similar way the λ2 term can be evaluated. This term

would contract with the sixth order term in the expansion of the Wilson loop exponent:

〈β2λ2

2

(∫
d3xg4

)2( b√
β

)6 1

6!

(∫

A
d2y∂y3

g

)6〉
0,C

=
16×6!

2×6!

λ2

β
b6
∫∫

d3xd3x′ (4.27)

×
3∏

i=1

∫

A
d2yi∂x3P (x−yi)

×P (x−x′)
3∏

i=1

∫

A
d2y′i∂x′3

P (x′−y′i).

Rescaling the variables (xk → axk, . . . for k = 1, 2), considering the limit a → ∞,

using (4.24) and (4.17) we have:

〈λ2b6

2β6!

(∫
d3xg4

)2(∫

A
d2y∂y3

g

)6〉
0,C

=
1

β

8λ2b6

128

k2

m3
a2 =

1

β

λ2b6

16

1

24m3
R̂T̂ , (4.28)

with k2 given by:

k2 ≡
+∞∫∫

−∞

dx3dx′3E(x3)3exp(−|x3 − x′3|)E(x′3)3 =
1

24
. (4.29)

Higher order terms in λ can be calculated similarly. The λn term contracts with the 2n+2

order term in the expansion of the Wilson loop exponent. For n > 3 there would be more

than one way of contracting the connected diagrams hence the evaluation would be more

complicated but possible in principle

Now we will directly solve for the saddle point and compare the result with the above

expressions. (4.20) is the one dimensional problem of interest. This is the motion of a
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particle moving in a potential V (h) = −(m
2

2 h
2 + λh4). Therefore the total energy is a

constant of motion 1
2( dhdx3

)2 + V (h) = C. The minimum action corresponds to when C = 0

therefore 1
2( dhdx3

)2 = −V (h):

S[h] =

∫ +∞

−∞
dx3

{
1

2

(
dh

dx3

)2

− V (h)

}
= 2

∫ 0

b
2

dx3

dh
dh{−2V (h)} = 2m

∫ b
2

0
dhh

√
1 +

2λh2

m2
.

(4.30)

We expand the square root42 and evaluate the integral term by term. We also multiply the

action by a negative sign to take into account the negative in the exponent. We find:

−S[h] =

∫ b
2

0
dh

{
− 2mh+−2λ

m
h3 +

∞∑

n=2

(−1)n
2λn

m2n−1

(2n− 3)!!

n!
h2n+1

}

= −mb2

4
− λb4

32m
+

∞∑

n=2

(−λ)nb2n+2

m2n−1

(2n− 3)!!

22n+2(n+ 1)!
(4.31)

= −mb
2

4

{
1 +

1

2

λb2

4m2
−
∞∑

n=2

(−1)n
(2n− 3)!!

(n+ 1)!

(
λb2

4m2

)n}
.

The order λ and λ2 terms in (4.31) match with the coefficients of R̂T̂
β in (4.25) and (4.28)

respectively. This further demonstrates the validity of the perturbative evaluation of the

saddle point. The verification to higher orders in λ (n ≥ 3) can be made if the corresponding

diagrams are evaluated.

The higher order terms in (4.6) (g6
1, g

8
1, . . .) and their cross terms with each other can

also be evaluated similarly.

Next we will compare the SU(2) k-string result of the perturbative evaluation of the

saddle point to next to leading term, with the exact result of SU(2) k-string in table 2 of

section 3.4. The exact SU(2) saddle point area law is given by (3.1), (3.4):

Zη

Z0
= exp(−T1RT ) = exp

(
− 2T̄1√

2β
R̂T̂

)
= exp

(
− 8

β
R̂T̂

)
, R̂, T̂ →∞, β → 0 , (4.32)

where R = 1
mγ
R̂, T = 1

mγ
T̂ , β = m3

γ/ζ̃ and, from table 2 of section 3.4, T̄1 = 8√
2
.

Using (4.18) and (4.25) the perturbative saddle point method gives:

Zη

Z0
=exp

(
− 1

β

(
mb2

4
+
λb4

32m
+...

)
R̂T̂

)
=exp

(
− 1

β
(7.84+... )R̂T̂

)
,R̂,T̂→∞, β→0.

(4.33)

From the comment below equation (4.7), the values of m = 2, λ = − 8
4! and b =

√
2π have

been replaced. This shows the convergence of the SU(2) perturbative saddle point method

result to the exact value obtained by a direct calculation of the saddle point.

42The Taylor series expansion of
√

1 + x converges for |x| < r = 1. Evaluating x = 2λh2/m2 for h = b/2

with values of parameters from below equation (4.7) gives |x| = π2/12 < 1 which lies within the radius of

convergence. As a reminder we mention that the condition |x| = |2λh2/m2| < 1 is not strictly required in

dYM since the full potential is cosine which would allow for a wider range of these parameters.
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4.2 Evaluation for SU(N)

Having shown how the method works for SU(2), in this section we will evaluate the k-string

tensions perturbatively to next to leading order for SU(N). We start from (recall (4.2)):

Zη =

∫
[Dσ]exp

(
− 1

β

∫

IR3
d3x̂

{
1

2
(∂lσ)2 − (µk)j∂lσj∂lη +

1

2
(∂lη)2µk

2 (4.34)

+
1

2
(σj − σj+1)2 − 1

4!
(σj − σj+1)4 + . . .

})
.

The mass term in (4.34) can be diagonalized. Let (σj − σj+1)2 = σTAσ (for j = 1, . . . , N)

where A is the following N ×N matrix for N ≥ 3:

Aij = 2 for i = j , Aij = −1 for |i− j| = 1 , A1N = AN1 = −1 , Aij = 0 otherwise , (4.35)

while for SU(2):

A11 = A22 = 2 and A12 = A21 = −2 . (4.36)

The matrix A is symmetric and can be diagonalized by an orthogonal transformation D,

explicitly DTD = I, A = DΛDT . D = (v1 v2 . . . vN ) with vq the eigenvectors of A. This

gives (σj − σj+1)2 = gTΛg with g = DTσ. A has an eigenvalue43 of zero corresponding to

the eigenvector vTN ≡ ( 1√
N
, . . . , 1√

N
). The corresponding field gN = (σ1 + . . . + σN )/

√
N

would be a massless component which decouples from the rest of the fields and hence can

be neglected. We will now express the higher order interaction terms in a form convenient

for a perturbative expansion. For this define the matrix B as follows:

Bij = 1 for i = j , Bij = −1 for j = i+ 1 , Bij = 0 otherwise . (4.37)

Defining hq ≡ σq −σq+1 for q = 1, . . . , N − 1 we have BDg = Bσ =
( h
σN

)
. Also define the

top left (N−1)×(N−1) block of the matrix BD asK ≡ (BD)N−1×N−1. Since the first N−1

elements of the last column of BD are zero44 this gives: Kpqgq = hp ≡ σp − σp+1 for p =

1, . . . , N − 1. Using the previous notations and definitions, (4.34) can now be rewritten as:

Zη =

∫
[Dg]exp

(
− 1

β

∫

IR3
d3x

{
1

2
(∂lgN )2 +

1

2
(∂lgq)

2 +
1

2
Λqg

2
q − (µk)jDjq∂lgq∂lη

+
1

2
(∂lη)2µk

2 − 1

4!

∑

p

(Kpqgq)
4 − 1

4!

(∑

p

Kpqgq

)4

+ . . .

})
, (4.38)

where a summation over p, q and l is implicit. Note that (µk)jDjN = 0, hence the massless

mode gN completely decouples from the rest of the modes and interactions. Integrating

43The diagonalization matrix D has the effect of an ZN Fourier transform and the eigenvalues of A are

Λq = 4 sin2 πq
N

, q = 1, . . . , N − 1 and ΛN = 0. As discussed in [5], this is the spectrum of a latticized

emergent dimension of N sites.
44Because D = (v1, . . . , vN ), where vq, q = 1, . . . N − 1 are the eigenvectors of A with eigenvalues Λq =

4 sin2 πq
N

and vN = 1√
N

(1, 1, 1 . . . , 1)T is the zero eigenvector. For use below, the other N−1 eigenvectors, for

brevity shown for odd N only, with components vlq are: vl
q<N

2
=
√

2
N

sin 2πql
N

and vlN
2
<q<N

=
√

2
N

cos 2πql
N

.
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by parts the Wilson loop term and rescaling gq →
√
βgq, we cast it, similar to (4.10), into

a form appropriate for a perturbative evaluation of the saddle point:

Zη=

∫
[Dg]exp

(
−
∫

IR3
d3x

{
1

2
(∂lgN )2+

1

2
(∂lgq)

2+
1

2
Λqg

2
q+

1

2

(
bq
2π

)2

(∂lη)2 (4.39)

+β
λ

8

∑

p

(Kpqgq)
4+β

λ

8

(∑

p

Kpqgq

)4

+...

})
exp

(
+
bq√
β

∫

A
dx1dx2∂3gq

)
.

Here, we defined bq = 2π(µk)jDjq and λ = − 8
4! . To evaluate the Wilson loop exponent

using the quadratic terms, we follow steps similar to the ones leading from (4.11) to (4.16).

We obtain the analogue of (4.16) for SU(N):

{Zη
g4
}λ=0

{Zη
g4
}bq=λ=0

= exp

(
− 1

β

{
Λqb

2
q

2

∫∫ ′

A A

Pq(x− x′) (4.40)

+
b2q
2

∫∫ ′

b(A) b(A)

dxldx′kδlk
(
Pq(x− x′)− 1

4π|x− x′|

)})
,

where Pq(x − x′) = exp(−
√

Λq|x− x′|)/(4π|x− x′|) and with an implicit summation over

q. In the limit of a large Wilson loop area (R̂, T̂ → ∞), eq. (4.40), following a similar

calculation as in (4.17), reduces to:

{Zη
g4
}λ=0

{Zη
g4
}bq=λ=0

= exp

(
− 1

β

{√
Λqb

2
q

4
R̂T̂ +

b2q
2

∫∫ ′

b(A) b(A)

dxldx′kδlk
(
Pq(x−x′)− 1

4π|x− x′|

)})
,

(4.41)

Using the explicit form of the eigenvectors given in footnote 44, we can analyti-

cally show that confining strings have finite tension in the large-N limit, despite the

vanishing mass gap.45 In particular, for k = 1 strings we find the infinite-N limit

a1 = lim
N→∞

N−1∑
q=1

1
4

√
Λqb

2
q = 4π, consistent with the results from table 3. For further

comments on the large-N limit, see sections 5.1.2 and 5.2. Appendix E discusses the

large-N limit of the string tensions in product representations and gives more details on

the analytic calculations using the leading-order saddle point method of this section.

Next, we evaluate the leading corrections to this result for SU(N) and compare the

values obtained with the numerical results in table 1. The integrals we need to do are the

45Note that the string tension remains fixed at large-N, despite the vanishing mass gap, as there is a

number of dual photons of nonzero mass (∼ mγ) whose flux is confined, as well as a number of dual

photons approaching zero mass (∼ mγ/N) whose flux spreads out. Thus the finite tension confining string

in the gapless abelian large-N limit is a rather fuzzy object. We defer a further study until the large-N

corrections, discussed in [5] for sYM, are better understood in the dYM case.
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generalization of (4.23) from the SU(2) calculation:

Iλ ≡
〈
−
∫
d3x

{
β
λ

8

∑

p

(Kpqgq)
4 + β

λ

8

(∑

p

Kpqgq

)4} 1

4!

(
bq√
β

∫

A
d2y∂y3

gq

)4〉
0,C

(4.42)

= − 1

β

4!

4!

λ

8
Pq1q2q3q4

{ 4∏

i=1

Kpqibqi +

4∏

i=1

Kpiqibqi

}
,

and a summation over p, qi, pi (i = 1, 2, 3, 4) from 1, . . . , N − 1 is implicit. The quantities

Pq1q2q3q4 are given by:

Pq1q2q3q4 ≡
∫
d3x

4∏

i=1

∫

A
d2yi∂yi3

Pqi(x− yi) . (4.43)

In the limit that a→∞ (a = R̂ = T̂ ) using (4.24) we have:

Pq1q2q3q4
a→∞

=
a2

16
P̄q1q2q3q4 with P̄q1q2q3q4 =

∫ +∞

−∞
dx3

4∏

i=1

E(
√

Λqix3) , (4.44)

hence Iλ becomes:

Iλ
a→∞

= − 1

β

λ

128
P̄q1q2q3q4

{ 4∏

i=1

Kpqibqi +
4∏

i=1

Kpiqibqi

}
R̂T̂ , (4.45)

where Kpq = BpjDjq and bq = 2π(µk)jDjq for q, p = 1, . . . , N − 1. The leading area

law term in (4.41) and its leading correction in (4.45) need to be evaluated numerically

with mathematical software. The results are summarized in appendix D; results for k = 1

strings for SU(3)−SU(10) were already shown in table 3; the inclusion of the leading order

correction brings the numerical value closer to the numerical or analytic (for SU(3)) value.

5 N-ality dependence and large-N behaviour of k-strings in dYM

In this section we give a discussion on two main questions regarding the properties of

k-string tensions: their N -ality dependence and large-N behaviour in dYM theory. The

N -ality of an irreducible representation of a gauge group SU(N) refers to the number of

boxes in the Young tableaux of the representation mod N [44] or the charge of the represen-

tation under the action of the center element exp(−i2π
N )I of the gauge group. It is believed

that asymptotically the string tensions in a gauge theory depend only on the N -ality of that

representation, see [26]. This is due to the screening effect by gluons. A cloud of gluons

would transform any charge in a representation with N -ality k to its k-antisymmetric rep-

resentation which carries the stable lowest energy k-string among different representations

with the same N -ality k.

We will argue that this is also true in dYM theory and show that the asymptotic

string tensions will only depend on the N -ality k of the representation k. The screening

by gluons, in the framework of dYM theory, is due to the pair production of W -bosons, an

effect (in principle) calculable using weak coupling semiclassical methods.
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We discuss qualitatively the role of the unbroken ZN center symmetry in dYM for

the confining string properties and contrast them to those in another theory with abelian

confinement — Seiberg-Witten theory. We also derive an approximate analytic formula for

k-string ratios in dYM theory for N ∼ 10 and smaller and have a comparison with known

scaling laws of k-string ratios.

In regards to their large-N behaviour we show that dYM k-string ratios favour even

power corrections similar to the sine law scaling and derive the leading terms in the 1/N

expansion of k-string ratios in dYM theory. At the end we will argue that at large N

k-strings are not necessarily free in gauge theories; in other words, T k can remain smaller

than kT 1 in the large-N limit.

5.1 N-ality dependence

5.1.1 Asymptotic string tensions depend only on the N-ality of the represen-

tation

The expectation value of the Wilson loop for charges in a representation r with N -ality k

of SU(N) evaluated using the low energy effective theory in dYM theory in the limit of

R̂, T̂ →∞ and β(=
m3
γ

ζ̃
)→ 0 using (2.52) and (3.4) is given by:

〈Wr(R, T )〉 =

d(r)∑

i=1

exp(−T irRT ) =

d(r)∑

i=1

exp

(
− 2T̄ ir√

2β
R̂T̂

)
, (5.1)

where d(r) refers to the dimension of the representation r and T̄ ir is given by a similar

expression as (3.4) but with µk replaced by the weight µir of representation r with N -ality k:

T̄ ir = min
f(z)

∫ +∞

0
dz

{(
∂f

∂z

)2

+
∑

j

[1− cos(fj − fj+1)]

}
, f(+∞) = 0, f(0) = πµir . (5.2)

Expression (5.1) is the sum of exponential of area laws. The leading exponential in the limit

of large T̂ and R̂ would give the string tension for charges in representation r with N -ality

k. Any representation of SU(N) with N -ality k contains the fundamental weight µk as one

of its weights (appendix C.1). Therefore in order to show that string tensions would only

depend on the N -ality of the representation r of the group SU(N) we have to show that

the lowest string tension action in (5.2) corresponds to boundary conditions dictated by

the fundamental weight µk among all the weights µir (i = 1, . . . , d(r)) of the representation

r. Any weight of a representation of SU(N) can be obtained from the highest weight by

lowering with the simple roots [44] and as noted above any representation with N -ality k

contains µk as one of its weights. Therefore any weight of a representation r with N -ality k

can be obtained from the fundamental weight µk by adding or subtracting the simple roots.

We will now qualitatively (but convincingly) argue that adding or subtracting any

simple root from µk would result in boundary conditions that would give a value for the
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minimum of the action (5.2) which is equal to46 or more than the value obtained by

boundary conditions of µk.

The saddle point solutions fj of (5.2) for µir = µk start from π(µk)j at z = 0 and

decrease or increase monotonically to zero at z = +∞. From the form of µk given in (3.2),

one sees that there are two discontinuities, as a function of j, in the boundary conditions

for fj . These occur between j = N and j = 1, since (µk)N = −k/N and (µk)1 = 1− k/N ,

and between j = k and j = k + 1, as (µk)k = 1 − k/N and (µk)k+1 = −k/N . These

two discontinuities in the boundary conditions make the corresponding terms in the cosine

potential 1 − cos(fN − f1) and 1 − cos(fk − fk+1) to start from 2 at z = 0 and reach 0

at z = +∞ (this is in contrast to all the other terms, which start from 0 at z = 0 and

reach 0 again at z =∞). Thus, for boundary conditions given by µk we would summarize

the behaviour of fj ’s as follows. For the kinetic term in (5.2) we would have k functions

f1, . . . , fk that start from π(1−k/N) at z = 0 and reach 0 at z = +∞ and N −k functions

fk+1, . . . , fN that start from −πk/N at z = 0 and reach 0 at z = +∞. For the potential

term, since only the difference between the fj ’s enters the cosine, the 1− cos(fN − f1) and

1− cos(fk − fk+1) terms start at 2 at z = 0 and reach 0 at z = +∞, while the rest of the

terms start from 0 at z = 0 and reach 0 at z = +∞.

Now let us ask how this picture would change if simple roots are added or subtracted

from µk. The picture of the kinetic term will either remain the same (k functions start

from π(1 − k/N) and N − k functions starting from −πk/N) or it would become worse

(and thus increase the value of action) in a way that the boundaries values at z = 0 become

higher and result in an increase in the kinetic term (since it is the square of the derivative

of the functions). The same is true for the cosine term — any addition or subtraction of

the simple roots from the weight µk would either not change the picture of the cosine term

or it would make it worse (increase the value of action) in a way that we would have more

than 2 discontinuities in the boundaries that would result in more than two terms of the

potential term having to start from 2 at z = 0, or we would still have two discontinuities

but the boundary conditions would have become larger and the cosine terms corresponding

to these discontinuities would oscillate between 2 and zero more than once. Both our

numerical results and the simple variational ansatz of section 5.1.3 confirm this picture.

5.1.2 Comparing different abelian confinements: strings in dYM vs. softly-

broken Seiberg-Witten theory

The two most-studied examples where confinement of quarks becomes analytically cal-

culable within quantum field theory are softly-broken Seiberg-Witten theory on R4 and

QCD(adj) with massive or massless adjoint fermions on R3 × S1. This paper is devoted

to the study of dYM theory, which belongs to the second class, QCD(adj) with massive

adjoint fermions. Semiclassical calculability in dYM is achieved, as mentioned many times,

by taking the NLΛ� 1 limit.

46Degenerate string tensions will occur when the corresponding weights are related by the unbroken ZN
center symmetry. For example, for the fundamental representation all weights have the same string tension,

see section 5.1.2. For higher N -ality representations, the dim(r) weights fall into distinct ZN orbits, each

of which has degenerate string tensions.
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In both dYM and Seiberg-Witten theory confinement is “abelian”:47 the confining

strings form in a regime where W -bosons are not relevant and the dynamics of confinement

is described by a weakly-coupled abelian gauge theory. In Seiberg-Witten theory, this is

the dual magnetic gauge theory on R4, while in dYM it is the long-distance theory on

R3 × S1 — the theory of the dual photons discussed at length in earlier sections. In both

cases, the confining dynamics involves magnetically charged — and thus nonperturbative

from the point of view of the electric gauge theory — objects: the magnetic monopoles or

dyons in Seiberg-Witten theory condense to break the magnetic gauge symmetry, while in

dYM, the proliferation of monopole-instantons in the vacuum (which should not really be

called “condensation,” the title of [1] nothwithstanding) leads to the expulsion of electric

flux.48 We shall see, in the next section, that the physics of confinement in dYM has a

flavor very similar to the picture of the QCD vacuum underlying the MIT Bag Model.

Here, we want to stress two aspects in which dYM confinement is distinct from Seiberg-

Witten theory that have not been much discussed in the literature:

1. The presence of a global unbroken ZN (zero-form49) center symmetry in dYM vs.

the fact that the Weyl group in Seiberg-Witten theory is broken [8]. The unbroken

ZN symmetry has implications for the “meson” and “baryon” spectra of the theory,

as we explain further in this section.

2. The abelian large-N behaviour: confining string tensions remain finite in dYM in the

large-N , fixed ΛNL� 1 limit. This is different from their behaviour in the analogous

limit of Seiberg-Witten theory, where the string tensions vanish along with the mass

gap [8]. For further discussion, see section 5.2.

Here we concentrate on the first point above: the unbroken ZN center symmetry in dYM.

In the long-distance theory, in the N -dimensional basis of dual photons we are using, this

symmetry appears as a clock symmetry, taking σi → σi+1, with N+1 ≡ 1. In gauge-variant

terms, the action of the ZN center symmetry resembles that of an unbroken cyclic subgroup

of the Weyl symmetry of SU(N), as can be seen by noting that it cyclically interchanges

the N monopole-instantons associated with the simple and affine root of the Lie algebra.50

On the other hand, in Seiberg-Witten theory, the Weyl group is spontaneously broken, as

pointed out long ago [8].

The different global symmetry realization has interesting implications for the nature

of confining strings in the two theories. To illustrate the differences it suffices to consider

the confinement of fundamental quarks in SU(3). In dYM theory, there are degenerate

“mesons” composed of quarks (introduced as static sources) of the three different colors,

of weights ν1 = µ1, ν2 = ν1 − α1, and ν3 = ν2 − α2, respectively. These mesons are

confined by distinct flux tubes related by the ZN global symmetry action (the action of ZN
47This should not be taken to mean that the nonabelian nature of the theory is not relevant: on the

contrary, it is crucial in both examples.
48There are hints that the two confinement mechanisms are related, see [48].
49In the terminology of [27].
50In terms independent of the choice of basis vectors of the root lattice, the ZN center acts on the dual

photons σ as the ordered product of Weyl reflections with respect to all simple roots, see [49].
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C Perturbative saddle point k-strings (Leading + Leading correction) 39

1 Introduction

2 Review of dYM theory

⌫1
⌫2
⌫3
µ1 = ⌫1
µ2 = �⌫3
In this section we will have a brief review of dYM theory. The emphasis is on topics less

covered in the literature and topics that will be needed for the rest of the paper.

2.1 Confinement of charges in deformed Yang-Mills theory for all circle size S1

Consider four dimensional Yang-Mills theory in the Euclidean formulation with one of its

dimensions compactified on the circle:

S =

Z

IR3⇥S1

d4x
1

2g2
trF 2

µ⌫(x) (2.1)

Fµ⌫ = F a
µ⌫T

a, tr(T aT b) = 1
2�

ab. T a’s (a = 1, ..., N2 � 1) refer to the generators of the group

SU(N). The compactification circle S1 in pure Yang-Mills theory can either be considered as

a spacial dimension or a temporal one with L = 1/T being the size of the circle which is

equivalent to the inverse temperature T . It is known [2] that above a critical temperature

Tc = 1
Lc

Yang-Mills theory loses confinement (i.e. The static potential between two heavy

probe quarks no longer shows a linearly rising behaviour as a function of distance between

the quarks) and therefore centre-symmetry 1 breaks spontaneously. The critical size Lc is

approximately ⇤�1 with ⇤ the MS strong scale of the theory [1]. Di↵erent studies give an

estimate of 200 Mev < Tc < 300 Mev for SU(2) Yang-Mills theory in four dimensions [3].

In what follows we would like to deform Yang-Mills theory in a way that would preserve

confinement of charges for all circle size L. Due to asymptotic freedom the coupling constant

is small at the compactification scale 1
L for small circle sizes (<< ⇤�1). This would enable us

to have a model of confinement that we can study analytically in the limit of a small circle

size L.

1Centre symmetry transformations are ”gauge” transformations periodic up to the centre of the gauge

group. For example for U�1(x, x4) = exp(i ⇡
L
x4�3) we have U(x, 0) = �U(x, L) with �3 the third Pauli matrix.
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Figure 2. Strings between static quarks of different colors (denoted by color circles) in SU(3) dYM
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of each weight (color). Right panel: a “baryon vertex” in dYM is a 3-domain wall junction, which

exists due to the vanishing total flux ν1 + ν2 + ν3 = 0. Similar structures persist for arbitrary

number of colors in dYM theory.

on the weights of the SU(N) fundamental representation is to cyclically permute them).

Furthermore, the fluxes carried by these three strings add up to zero, so one can form a

“baryon,” where the “baryon vertex” is a junction of three strings (a domain wall junction),

as illustrated on figure 2.

In contrast, in SU(3) Seiberg-Witten theory, there are two U(1) magnetic gauge groups

broken by the monopole condensate, giving rise to two Abrikosov-Nielsen-Olesen (ANO)

vortices. The flux of one vortex is proportional to µ1 and confines quarks in the highest

weight of the fundamental representation. The other flux tube carries electric flux propor-

tional to µ2 (the second fundamental weight of SU(3)) and confines quarks in the highest
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no third flux tube. The picture of “mesons” in SU(3) Seiberg-Witten theory that results is
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one of flux µ2 and an anti-flux tube of flux µ1. The lack of a third flux tube becomes

especially noticeable when baryons are considered: baryons in Seiberg-Witten theory are

“linear molecules” only, as shown on figure 3. This difference persists and becomes more

pronounced for higher rank SU(N) gauge groups.51

As the SU(3) example illustrates, the different symmetry realizations in dYM and

Seiberg-Witten theory have implications for the spectrum of mesons and baryons. We shall

not pursue this further here, but only note that in dYM one can add dynamical massive

quarks and the meson, baryon (as well as glueball) spectra can be studied within weakly-

coupled field theory, revealing many unusual and surprising features discussed in [11].

51See [50] for a description of confining strings in softly-broken Seiberg-Witten theory within its M -theory

embedding.
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Figure 3. Strings in SU(3) Seiberg-Witten theory. Left panel: QiQi mesons for different color

quarks are non degenerate, due to existence of only two ANO flux tubes (denoted by lines with a

single or double arrow) carrying electric fluxes µ1 and µ2 (notice that ν2 = µ2 − µ1), respectively.

Right panel: only linear baryons exist in Seiberg-Witten theory. Similar pictures hold for any

number of colors.

5.1.3 An approximate form of k-string ratios and the MIT Bag Model

Here, we shall derive a naive analytic upper bound for the half k-string tensions in table 1

by approximating the integral in (3.4) in a simple manner. We shall arrive at a simple k-

string tension scaling law, which is in good agreement with the available data, as described

further below. We shall also elaborate on the similarity between confinement in dYM and

the MIT Bag Model of the Yang-Mills vacuum.

We begin by repeating the dimensionless half k-string tension action (recall e.g.

eq. (5.2)):

T̄k = min
f(z′)

∫ +∞

0
dz′
{(

∂ ~f

∂z′

)2

+

N∑

j=1

[1− cos(fj − fj+1)]

}
, ~f(+∞) = 0, ~f(0) = π~µk . (5.3)

Here ~f represents the N -dimensional vector of dual photon fields (whose components are

summed explicitly in the second term; we omit the arrows in what follows) and the bound-

ary conditions at the origin and at infinity are the ones appropriate for static sources in

the highest weight of the k-index antisymmetric tensor representation.

A simple variational ansatz for the half domain wall extremizing (5.3) can be obtained

by approximating the first term in the action as a linear function connecting the boundary

value πµk at z = 0 to zero at a finite positive z = J . The second term is approximated

by simply taking its value at z = 0 (i.e. with f = πµk) multiplied by J ; in other words,

the fields fi are taken in the vacuum (where the potential term in (5.3) vanishes) outside a

region of width J which represents the thickness of the flux tube in our variational ansatz.

As the form of µk and the potential term imply, for f = πµk only two terms in the sum

of N cosines contribute a factor of 2 each, giving rise to second term in (5.4), while the

remaining N − 2 terms do not contribute.52 Collecting everything, using the explicit form

52As discussed in section 5.1.1, one of the qualitative reasons why charges µk are confined by strings of

the lowest tension (for every representation) is that adding or subtracting any root from µk leads to higher

“vacuum energy” cost.
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of the fundamental weight µk from (3.2), we obtain the string tension as a function of the

one variational parameter J , the flux tube thickness:

T̄k
naive

(x) = J

{(
πN−kN

J

)2

k +

(
π k
N

J

)2

(N − k)

}
+ 4J =

βk
J

+ 4J , (5.4)

where the parameter

βk ≡
(
π
N − k
N

)2

k +

(
π
k

N

)2

(N − k) = π2 (N − k)k

N
, (5.5)

is proportional to the quadratic Casimir of the k-index antisymmetric tensor. Extrem-

izing (5.4) with respect to J gives Jk,ext =
√
βk
2 . The value of the string tension at the

extremum point is:

T̄ naive
k = 4π

√
(N − k)k

N
. (5.6)

Although the relation (5.6) is only a naive upper bound estimate for the k-strings in

table 1, its ratio with the fundamental (k = 1) k-string gives a good fit to the ratios of

k-strings of table 1:

T̄ naive
k

T̄ naive
1

=

√
(N − k)k

N − 1
. (5.7)

The relation (5.7) is, in fact, known as the “square root of the Casimir” scaling law

for k-string ratios. It was first seen to arise in the MIT Bag Model of the QCD vacuum a

long time ago [6].53 As far as we are aware, dYM theory is the only known example where

this “square root of Casimir” k-string scaling has been seen to arise within a controlled

approximation in quantum field theory.

We shall now discuss the physics behind (5.4) and (5.7) and will argue that the sim-

ilarity of strings in dYM to those in the MIT Bag Model is not an accident. The first

term on the r.h.s. of (5.4) represents the gradient energy of the σ-field. Recall that the

duality relation (2.36) maps spatial gradients of the dual photon field to electric fields in

the perpendicular direction (i.e. to electric flux going from the quark to the antiquark,

which are here taken at infinite separation). Thus, the βk
J term represents the electric field

energy cost (per unit length) for a flux tube of thickness J . The coefficient βk, the total

electric flux, is determined by the sources — quarks in the k-index antisymmetric tensor

representation — and is proportional to the quadratic Casimir of that representation, as

in the classical MIT Bag Model of the confining string.54 Naturally, in order to minimize

its energy, the electric flux tube wants to expand, i.e. maximize J — in a perturbative

53Ref. [6] studied a rotating string solution, but a simpler static one exists, see discussion below and

ref. [51], which also contains a review of the physical picture underlying the MIT Bag Model of the Yang-

Mills vacuum.
54The classical chromoelectric flux of static sources in a given representation is proportional to the

quadratic Casimir, see section 3.3 in [51]. Also note that the “square root of Casimir” scaling is obtained

in the Bag Model without surface tension and that introducing additional Bag Model parameters, e.g. bag

surface tension, modifies the scaling with the Casimir of the representation.
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vacuum, the chromoelectric field would relax to the dipole field of the quarks. The sec-

ond term on the r.h.s. of (5.4), equal to 4J , represents the energy cost per unit length to

“expelling the vacuum” and replacing it with electric flux in a region of width J . This

term represents the “volume energy cost,” proportional to the bag constant parameter of

the MIT Bag Model. In dYM, the vacuum is a monopole-antimonopole medium which

abhors electric flux and wants to minimize J ; the “bag constant” in dYM is not a model

parameter, but is determined by the fugacity of monopole-instantons, ultimately fixed by

the underlying gauge theory. The compromise between the two contributions to the energy

results in k-strings of width Jk,ext =
√
βk/2 and tensions given in (5.6).

As we already alluded to, the agreement between the dYM and MIT Bag Model k-

string tensions is not accidental. In the MIT Bag Model, the major assumption is that

the chromoelectric fields within the confines of the (presumably small) bag can be treated

classically, owing to asymptotic freedom. The “bag constant” of the YM vacuum, charac-

terizing its abhorrence of electric flux, is introduced as a model parameter. In dYM, both

the classical treatment of the Cartan electric fields and the expulsion of electric flux are

dynamical features arising from the judiciously chosen deformation of YM theory and are

justified in the NΛL� 1 limit.

Finally, we note that while the physical picture in dYM is similar to that in the bag

model, the “square root of Casimir” scaling of k-string tensions discussed here is not exact

in dYM, as it results from a simple variational estimate. It is only an upper bound on the

string tensions in dYM, see the following section and, in particular, figure 4.

5.1.4 Comparison with known scaling laws

It is known that the asymptotic string tensions depend only on the N -ality k of the repre-

sentation of the confined charges, hence they are often referred to as the k-strings. Different

models of confinement make different predictions for the ratios of k-string tensions. The

main ones are the sine law and Casimir scaling. We also include the square root of Casimir

scaling in the list below, due to its similarity with the k-string ratios in dYM theory for N

∼ 10 and smaller:

Sine law:
Tk
T1

=
sin(π k

N )

sin( πN )
,

Casimir scaling:
Tk
T1

=
k(N − k)

N − 1
, (5.8)

Square root of Casimir scaling:
Tk
T1

=

√
k(N − k)

N − 1
.

In field theory calculations, usually the corresponding k-string tension is calculated to

leading order in a small parameter expansion. It has to be noted that the above relations

correspond to the leading order result in that expansion and, in each case, are subject to

corrections.

The Sine law is found in Seiberg-Witten theory [8], in MQCD [50], in three-dimensional

SU(N) gauge theories with massless Dirac or Majorana fermions [64], and in some

AdS/CFT-inspired models [52]. Casimir scaling of string tensions refers to the relation
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Figure 4. Comparison of SU(10) k-string ratios of (5.6) with dYM k-string ratios, labeled by

“dYM”, to other k-string tension laws. The Sine law labeled by “sin”, the Casimir scaling by “cas”,

and scaling with the Square root of the Casimir scaling by “sqrtcas”. From the known theoretical

models predicting different scalings of k-string tensions, the ones in dYM are closest to the MIT

Bag Model “square root of Casimir” k-string tension law. There is a clear physical reason behind

this similarity, explained in section 5.1.3.

between string tensions Tr/TF = C2(r)/C2(F ), where C2(r) and C2(F ) are the quadratic

Casimir of representation r and the fundamental representation, respectively (Tr denotes

the string tension for charges in representation r). This relation can be derived from the

“dimensional reduction” form of the Yang-Mills vacuum wave functional [53], from the

stochastic vacuum picture [54], and from certain supersymmetric dual models [55, 56].

SU(3) lattice simulations have shown scaling with the Casimir of the representation

C2(r) with a good accuracy [57]: it holds at intermediate distances (/ 1 fm) but at larger

distances (asymptotically) gluons screen the charges down to the representation of the same

non-zero N -ality with the lowest dimensionality which carries the most stable lowest string

tension — then C2(r) is replaced by the Casimir of the k-antisymmetric representation

which leads to the Casimir scaling relation shown in (5.8); notice however, that for N = 3

T1 = T2. Lattice studies of 3-dimensional YM theory seem to also favor Casimir scaling of

k-string tensions ratios for gauge groups up to SU(8) [58], while studies of 4-dimensional

YM theory (for similar number of colors) appear to favor scaling in-between the sine and

Casimir laws, see [59] for references and discussion.
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The various k-string ratios shown in (5.8) are compared with dYM k-string ratios for

SU(10) in figure 4. It is clear from the figure that the square root of Casimir scaling shows

most similarity with the dYM k-string ratios. This scaling arises in the MIT Bag Model

of QCD [6] and the reasons for the similarity was discussed in section 5.1.3.

5.2 Large-N behaviour

One feature of the abelian large-N limit in dYM was already mentioned: in the N → ∞,

fixed-NLΛ � 1 double scaling limit, the mass gap vanishes, but the string tensions stay

finite. This large-N behaviour is quite different from a similar abelian large-N limit of

Seiberg-Witten theory, where both the string tensions and mass gap vanish [8]. Further-

more, as observed in [5], in the above double-scaling limit on R3×S1, where the size of the

dimension L → 0 and the number of colors N → ∞, with NL-fixed, in both super Yang-

Mills and dYM, the infrared theory can be viewed as a theory “living” in an emergent latti-

cized dimension, in a manner reminiscent of T-duality in string theory. This is a behaviour

not quite expected of quantum field theory and clearly deserves a better understanding.

The results of this paper show the nonvanishing of the string tension in dYM at large

N. In the remainder of this section, we study the leading large-N corrections to k-string

ratios and their large-N behaviour, for a range of N that includes exponentially large values,

but does not strictly extent to infinity.

The reason for this restriction, already mentioned in section 1.1 of the Introduction, is

that our analysis has neglected the fact that at large values of N, the virtual effects of the

W-bosons become important, as there is a large number of them. In particular, W-boson

loops induce mixing between the Cartan algebra photons (and hence between dual pho-

tons), which were not incorporated in our effective Lagrangian. Similar to the discussion of

ref. [5] for sYM (using the calculations of refs. [32, 34]), we estimate that these mixing terms

become important when N becomes comparable to N∗ = 2πe
+ 24π2

(11−4nf )(Ng
2) . This exponen-

tially large value of N∗ is the one that applies to massless adjoint QCD, and uses the compu-

tations in [35]. The corresponding calculation for dYM (adjoint QCD with massive adjoint

flavors) has not yet been performed, but we expect the appearance of a similar exponentially

large N∗. Studying the role of these corrections in dYM is an interesting task for future

work, which will allow to further study the intriguing features of the abelian large-N limit.

5.2.1 Leading large-N terms

In this section, we derive the leading large-N corrections to k-string ratios in dYM theory

for T2/T1 and T3/T1. We will show that the k-string ratios in dYM theory favour even

power corrections in 1
N . For this we add noise55 of order 0.0005, the typical value of error

55Noise of order ε refers to a random fluctuation of order ε imposed on the data. The fluctuation can

be a Gaussian, uniform, etc., distribution of width ε centred on the data point. We have used a uniform

distribution.
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of dYM k-string ratios56 to the exact k-string ratios of the Casimir scaling and sine law,

whose scaling behaviour is known, and analyze them along with the k-string ratios in

dYM theory. From figures 5 and 6 it can clearly be seen that the coefficient of the linear

correction term in dYM k-string ratios similar to the sine law is suppressed (whereas for

the Casimir scaling law it is of same order) compared to the constant or the coefficient of

the second order term therefore it can be concluded that dYM k-string ratios similar to

the sine law disfavour a linear correction term and favour even power corrections.

To find the leading term and leading correction term, we add noise of order 0.0005 to

the exact k-string ratios of the sine law for SU(5 ≤ N ≤ 10) to generate data with errors of

order of the errors of the dYM data. Next we generate n = 1000 noised data for dYM and

the sine law data with noise and make even power polynomial fits: c0 + c2x2 + . . . + cpx
p

for p = 2k, k ≥ 0, with x = 1/N . The average and standard deviation of c0 and c2 give

estimates for the values of these coefficients and their errors. We increase p and make higher

order polynomial fits until consistent results are reached. Tables 4 and 5 summarize the

values obtained by this analysis. It can be seen that consistent results are obtained for p = 6

and p = 8 polynomial fits. In fact the values of the p = 6 column for the noised sine law data

are in agreement with the exact coefficients of the 1
N expansion of the sine law k-string ratios

as can be seen from (5.9). This is not limited to the sine law. Any other function with even

power corrections shows a similar behaviour and the results for c0 and c2 coefficients for an

even polynomial fit with p = 6 would agree with the true values of the coefficients in its 1/N

expansion (e.g. doing the same analysis for a cosine(x) function with x = 1
N ). So assuming

dYM k-string ratios have only even power corrections, the values of the coefficients in the

p = 6 column would be in agreement with the true values in dYM theory.

The following relations summarize the leading large N corrections in sine, Casimir,

square root of Casimir and dYM k-string ratios:

Sine: sin
(
k
π

N

)
/sin

( π
N

)
= k + (k/6− k3/6)π2

(
1

N

)2

+ . . . ,

Casimir: k(N − k)/(N − 1) = k + (k − k2)

(
1

N

)
+ . . . ,

Sqrt of Casimir:
√
k(N − k)/(N − 1) = k

1
2 +

1

2
(k

1
2 − k 3

2 )

(
1

N

)
+ . . . , (5.9)

dYM: T2/T1 = 1.347± 0.001 + (−2.7± 0.2)

(
1

N

)2

+ . . . ,

T3/T1 = 1.570± 0.001 + (−7.5± 0.2)

(
1

N

)2

+ . . . .

As a short summary of this section, we argued that k-strings in dYM are not free at

large N, i.e. Tk/T1 6= k, and leading corrections to Tk/T1 are of order 1/N2. In the next

section, we discuss some theoretical questions behind these findings.

56We consider half of the upper bound estimate of the error in table 1 (−0.006/2 = −0.003) as

the value of error for k-strings. Hence for k-string ratios as a typical example we get: T2/T1 =

8.0006−0.003/6.8583−0.003 ≈ 1.1666+0.0005
−0.0004. The reader has to be reminded that an error of −0.003 is

still a high confidence interval for the true value of k-strings.
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Figure 5. Polynomial fits for T2/T1 k-string ratios in dYM and noised (∼ 0.0005) data in sine,

Casimir for SU(6 ≤ N ≤ 10). Sine: 2.007 − 0.150x − 9.013x2, Casimir: 1.995 − 1.873x − 2.981x2,

dYM: 1.345 + 0.035x− 2.917x2.

Figure 6. Polynomial fits for T3/T1 k-string ratios in dYM and noised (∼ 0.0005) data in sine,

Casimir for SU(6 ≤ N ≤ 10). Sine: 3.105 − 2.222x − 26.447x2, Casimir: 2.980 − 5.552x − 9.178x2,

dYM: 1.551 + 0.390x− 9.734x2.
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p=2 p=4 p=6 p=8

c0(sin) 1.9962 ± 0.0001 2.001 ± 0.0004 2.001 ± 0.001 1.998 ± 0.005

c2(sin) -9.458 ± 0.006 -9.91 ± 0.03 -9.9 ± 0.2 -9 ± 1

c0(dYM) 1.3482 ± 0.0001 1.3465 ± 0.0004 1.347 ± 0.001 1.347 ± 0.005

c2(dYM) -2.822 ± 0.006 -2.65 ± 0.03 -2.7 ± 0.2 -3 ± 1

Table 4. c0 and c2 for even power polynomial fits of order p for T2/T1 for noised (∼ 0.0005) sine

law data and dYM.

p=2 p=4 p=6 p=8

c0(sin) 2.9397 ± 0.0001 2.9984 ± 0.0004 3.000 ± 0.001 2.999 ± 0.005

c2(sin) -33.334 ± 0.006 -39.17 ± 0.03 -39.4 ± 0.2 -39 ± 1

c0(dYM) 1.5815 ± 0.0001 1.5682 ± 0.0004 1.570 ± 0.001 1.569 ± 0.005

c2(dYM) -8.594 ± 0.006 -7.27 ± 0.03 -7.5 ± 0.2 -7 ± 1

Table 5. c0 and c2 for even power polynomial fits of order p for T3/T1 for noised (∼ 0.0005) sine

law data and dYM.

5.2.2 Comments on free k-strings and large-N factorization

An often-discussed expected behaviour of k-strings at large N is that they become free,

meaning that the string tension with N -ality k becomes k times the tension of the funda-

mental k = 1-string at large N [60, 61]. From the previous section, in particular (5.9), it

can be clearly seen that the k-string tensions in dYM theory show a different behaviour:

lim
N→∞

T2 = (1.347±0.001)T1 < 2T1 and lim
N→∞

T3 = (1.570±0.001)T1 < 3T1. The usual line

of reasoning that leads to the conclusion that k-strings become free at large N is based on

large-N factorization and assumes the commutativity of the large-N and large Euclidean

time T limits. We will show that factorization and commutativity of limits should be

treated more carefully.57

We first briefly review the usual arguments that lead to free k-strings at large N : a

correlator of two gauge invariant operators A and B can always be written as a factorized

expectation value plus a connected expectation value. In the lattice strong coupling expan-

sion and in perturbation theory in gauge theories it is known that the leading term in the

large N limit is the factorized one [62]. Assuming a normalization 〈AB〉 ∼ O(1) we have:

〈AB〉 = 〈A〉〈B〉+ 〈AB〉C , 〈A〉〈B〉 ∼ O(1), 〈AB〉C ∼ O
(

1

N2

)
. (5.10)

In particular, we will apply this formula to the expectation value of a Wilson loop in the

product representation:

〈W�⊗�〉 ≡ 〈tr(U�⊗� . . . U�⊗�)〉 = 〈tr{(U� . . . U�)⊗ (U� . . . U�)}〉 = 〈W�W�〉
=⇒ 〈W�⊗�〉 = 〈W�W�〉 = 〈W�〉〈W�〉+ 〈W�W�〉C . (5.11)

57For another discussion on the non-commutativity of the large-N and large-T limits refer to [65].
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A subscript of a “square” (as in W�) refers to the fundamental representation. The

product of the link matrices U is being taken along a rectangular Wilson loop R × T .

To find the k-string tensions we take the large T and R limit and consider the leading

exponential on the right hand side of (5.11). To consider the properties of the k-strings at

large N we also take the large N limit. If the large T and R and large N limits commute,

then we can reverse the order of limits. Taking the large N limit first makes the connected

term vanish, then taking the large T and R limit we would find:

〈W�⊗�〉 ∼ 〈W�〉〈W�〉, 〈W�⊗�〉 ∼ exp(−T2RT ), 〈W�〉 ∼ exp(−T1RT ) =⇒ T2 = 2T1,

i.e. the result that the k = 2-string tension is twice the fundamental string tension.

The line of reasoning represented above leads to the result that k strings are “non-

interacting” and would be correct if the large T and R and large N limits commuted, which

is not always true, as we discuss at length below (see [65] for a discussion in a similar frame-

work and [66] for a reminder that large-distance and large-N limits’ non-commutativity

has a long history). An important difference between the large area limit and large-N limit

relevant to their non-commutativity is the fact that the large area limit is taken in the same

quantum field theory where as the large-N limit is taken in different quantum field theories.

To study the general properties of field theories at large N , e.g. large N factorization,

one takes the large N limit first but to study the asymptotic k-string tensions at large N ,

due to the non-commutativity of the large area and large N limits, one should not take

the large N limit first. For any SU(N) theory, the proper way to find asymptotic k-string

tensions at large N is to first solve for the k-string tensions at fixed N , this is done by taking

the large area (RT ) limit and considering the leading exponential in this limit. Then, once

the asymptotic k-string tensions are determined for each N from the coefficient of the area

term of the leading exponential, the large-N limit of k-string tensions can be taken.

The limits cannot be taken in reverse order as the leading exponential in the large area

(RT ) limit, which gives the k-string tension for the given value of N , can be suppressed in

the large-N limit compared to exponentials sub-leading in the large area limit. Let us first

illustrate this important point in a toy example, similar to the way the non-commutativity

of limits is realized in dYM. As the discussion of dYM is somewhat lengthy and slightly

technical58 we prefer to first illustrate the result by the following example. Consider the

function

g(A,N) = exp(−TNA) +
1

Np
exp(−T ′NA) , with p > 0, (5.12)

where A stands in for the area of the Wilson loop. Let the large-N limits of TN and T ′N ,

lim
N→∞

T ′N = T ′, lim
N→∞

TN = T , be such that T ′ < T . For any large but fixed N the leading

term in the large-A limit is g(A,N) ∼ exp(−T ′A) and for any large but fixed A the leading

term in the large-N limit is g(A,N) ∼ exp(−TA). Therefore, if one is interested in the

leading exponential in the large-A limit, one should not take the large-N limit first, as

this will make the second term in (5.12), which is leading in the large area limit, vanish.

One would then find g(A,N) ∼ exp(−TA), which is an incorrect result for the leading

58See further below the discussion of this section (between eqs. (5.13) and (5.15)) as well as the explicit

calculations in appendix E.
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exponential in the large-A limit. A similar behaviour happens in dYM as we discuss in

detail further below, see discussion after (5.13).

In what follows, we shall see that in the regime of parameters studied in this work,

in particular in the framework of a bounded large-N (see the comments in the beginning

of section 5.2), the leading exponential in the large T and R limits, which determines the

k-string tensions, comes from the connected term, although it can be shown that for fixed

R and T this term will be sub-leading in N compared to the factorized term, similar to

the toy example of eq. (5.12).

First, we argue how this can be seen more explicitly from the results of section 5.1.1.

There, it was argued that the lowest string tension action in the product representation

of N -ality 2 corresponds to boundary conditions on the dual photon fields determined

by the fundamental weight µ2 (T̄ i�⊗� in relation (5.2) for µi�⊗� = µ2) and for a fun-

damental representation of unit N -ality it corresponds to µ1 (T̄ i� in relation (5.2) for

µi� = µ1). Hence the leading exponential of the factorized term in the limit of large T̂

and R̂ is exp(−2 × 2T̄1√
2β
R̂T̂ ) and the leading exponential for the Wilson loop in the prod-

uct representation is exp(− 2T̄2√
2β
R̂T̂ ). For large values of N from equation (5.9) we have

lim
N→∞

2T̄2 = (1.347± 0.001)2T̄1 < 2× 2T̄1. Clearly, the factorized term can never produce

this leading exponential which should, therefore, come from the connected term.

This result quoted above can also be obtained without referring to numerics, via the

perturbative saddle point method developed in section 4, as shown in appendix E.

Next, we wish to verify the large N factorization result in dYM and directly argue

that, for a Wilson loop in the product representation the factorized term is leading and

the connected term is sub-leading for large N . The discussion that we begin now becomes

more transparent and explicit after reviewing the calculations of appendix E.

Consider the expectation value of a Wilson loop in the product representation �⊗�.

Based on (5.1), for fixed but large R and T we have:

〈W�⊗�(R, T )〉 ∼
d(�⊗�)∑

h=1

exp(−T h�⊗�RT ) , (5.13)

where d(�⊗�) = N2 refers to the dimension of the product representation. In words,

the expectation value of the Wilson loop in the product representation is given, in the

abelianized dYM theory, by a sum of decaying exponentials, one for each weight h of the

product representation, with string tension T h�⊗� corresponding to each weight.

On the other hand, for a Wilson loop in the fundamental representation � we have:

〈W�(R, T )〉 ∼
d(�)∑

i=1

exp(−T i�RT ) = Nexp(−T1RT ) . (5.14)

Similar to (5.13), this is a sum of decaying exponentials, one for every weight of the

fundamental representation, with the only simplification ocurring because of the unbroken

ZN center symmetry, ensuring that the string tensions for all weights of the fundamental

representation have the same value T1.
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Now, let us study (5.13) in more detail. Our considerations from this point to eq. (5.15)

are more qualitative than quantitatively rigorous (although, as already mentioned, they can

be justified in the leading order perturbative evaluation of the saddle point, see appendix E).

They carry similar flavor to our argument of section 5.1.1 that strings sourced by quarks

with charges in the highest weight of the k-index antisymmetric representation have the

smallest string tension. However, we find the considerations below quite suggestive and

intuitive, supporting the large-N vs. large-RT limit subtlety.

The weights of the product representation are given by the sum of the weights of

the fundamental representation in (C.12): µh�⊗� ≡ µ
(ij)
�⊗� = µi� + µj� for 1 ≤ h ≤ N2

and 1 ≤ i, j ≤ N . These weights enter the boundary conditions of the string tension

action (2.53). In what follows, we show that for large N and for |i− j| � 1 and |i− j| � N

the string tensions of the product representation become approximately equal to two times

the string tension of the fundamental representation at large N , i.e. T h�⊗� ≡ T
(ij)
�⊗� ≈ 2T1.

As there are O(N2) such tensions, it will be concluded, after considering eq. (5.15), that

〈W�⊗�(R, T )〉− 〈W�(R, T )〉〈W�(R, T )〉 < O(N2) and therefore the connected term would

be sub-leading in N .

Consider the fundamental string tension T q� given by (2.53) with r = � and q denoting

one of the weights of the fundamental representation. The weight µq� is given in (C.12).

Recall, from section 3.2, that the dual photon configuration extremizing the action of a

given string interpolates between a value at the origin given by πµq� and zero at infinity.

Since the p-th component of µq� is (µq�)p = − 1
N + δpq, for large values of N all the com-

ponents of σa, 1 ≤ a ≤ N at z = 0 approach zero except for the q’th component which

approaches π. The fact that one component, namely σq, differs in its boundary conditions

from the rest would result in a non-zero action for T q�, otherwise if all components had the

same boundary conditions (e.g. −π/N) at z = 0 they would be linear functions interpo-

lating between −π/N at z = 0 and zero at z = J and when J is taken to infinity would

result in a zero action. This suggests that the main contribution to T q� would come from

the components of σa near59 the q’th (also, see appendix E). Conversely, the components

farther away from the q’th component would approach a linear configuration, similar to

the case when all boundary conditions were the same, in order to minimize the action as

much as possible and will have negligible effect on the value of the string tension action

T q�, with their contribution being suppressed by a power of 1/N .

A similar picture is true for T
(ij)
�⊗� with µh�⊗� = µ

(ij)
�⊗�.60 Due to the ZN sym-

metry of the action without loss of generality we can take i = [(N − ∆ij + 1)/2] and

j = [(N + ∆ij + 1)/2] with ∆ij = |i − j| 6= 0; the square brackets refer to the integer

part. For large N , all components (µ
(ij)
�⊗�)p approach zero, except for the i-th and j-th

components, which approach 1.

59Note that due to the ZN symmetry of (2.53) the N components of σa, 1 ≤ a ≤ N can be considered

similar to N points on a circle corresponding to angles θ = 2πa/N . The components near the q’th component

are defined as the points (components) close to the q’th point on this circle.
60In components, the weights of the product representation are (µ

(ij)
�⊗�)p = δip + δjp − 2/N . The ZN

symmetry acts as µ
(ij)
�⊗� → µ

(i+1(modN),j+1(modN))
�⊗� , i.e. the N2 weights of the product representation fall

into N ZN orbits.
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Consider now the calculation of the string tension T
(ij)
�⊗� for large N with |i−j| � 1 and

|i−j| � N . The components σa, 1 ≤ a ≤ N interpolate between π(µ
(ij)
�⊗�)a at the origin and

zero at infinity and therefore for large values of N all the components would approach zero

at z = 0 except for σi and σj which approach π. Similar to the picture above for T q� it can be

seen that the components of the dual photon fields σa near the σi and σj components would

make the main contribution to the string tension T
(ij)
�⊗�. The components farther away from

the i’th and j’th components would approach a linear configuration, similar to the case

when all boundary conditions are the same, in order to minimize the action as much as

possible and will have negligible effect on the values of the string tension action T
(ij)
�⊗�, with

their contribution being suppressed by a power of 1/N . Next, we divide the string tension

action of T
(ij)
�⊗� into two parts, one part associated with the components σa for 1 ≤ a ≤ N/2

and one forN/2 < a ≤ N ; at large-N and |i−j| � 1, |i−j| � N , these actions become inde-

pendent of each other. In each part, the components closer to the i’th and j’th components

of σa, which are relevant to the string tension value and their boundary conditions are sim-

ilar to the components near the q’th component of σa for T q� for SU([N/2]).61 For large N ,

these string tensions approach — as per our numerical results of table 3 or from the analytic

study, recall paragraph after (4.41) — a nonzero value T1 with their differences suppressed

by a power of 1/N . From this observation, we conclude that for large N and for |i− j| � 1

and |i− j| � N , T
(ij)
�⊗� ≈ 2T1. Clearly, there are O(N2) such string tensions at large N .

On the other hand, the highest weight of the antisymmetric two index representation,

µ2, see (3.2), which was argued and numerically found to give rise to the smallest N -ality

two string tension, T2 < 2T1, is obtained from µ
(ij)
�⊗�, by taking i = j + 1 (modN). There

are O(N) such string tensions, including the ZN -center orbit of the highest weight of the

antisymmetric two-index representation.

We now combine the results of the previous two paragraphs to conclude, recall-

ing (5.13), that at large N

〈W�⊗�(R, T )〉 ∼
d(�⊗�)∑

h=1

exp(−T h�⊗�RT ) ≈ O(N2) e−2T1RT +O(N) e−T2RT . (5.15)

The first term in the last expression above represents the contribution of the O(N2) string

tensions of weights µ
(ij)
�⊗� with |i − j| � 1 and |i − j| � N . The second term is the

contribution of the O(N) k = 2 strings in the ZN orbit of the highest weight of the

two-index antisymmetric representation. We now note that eq. (5.15) exactly mirrors the

situation described and discussed earlier in eq. (5.12), showing the subtlety of taking the

large-N vs. large-RT limit. See also appendix E, where (5.15) is recovered using the

leading-order perturbative saddle point, evaluated analytically for large-N .

The discussion in this subsection demonstrates that in the framework of a bounded

large N studied in this work (recall the preamble62 of section 5.2) large N factorization

61In this regard, notice that the components of µ
(ij)
�⊗� with i 6= j can also be written as −1/(N/2) or

1− 1/(N/2), similar to the components of µi� for SU([N/2]) (when N is odd the difference would be clearly

negligible).
62At larger values of N , as mentioned in the preamble of section 5.2, the virtual effects of the W-bosons

become important which has not been taken into account in this work. We speculate, based on preliminary

results, that with taking these effects into account the same picture, i.e. large N factorization and interacting

k-strings, persists at large N .
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would not necessarily imply free k-strings and the leading exponential in the large area limit

can come from the connected term of the correlator of two Wilson loops in the fundamental

representation that is sub-leading in N compared to the factorized term. We remind the

reader that although the connected term is sub-leading in N it would still contribute to

the k-string tensions at large N — since, as already stressed at the beginning of this

section, to find asymptotic k-string tensions, the large area limit must be taken first and

the leading exponential in this limit should be considered. Thus, no matter how large N is,

the connected term, which contains the leading exponential in the large area limit, would

contribute to the k-string tensions at large N .

5.2.3 A comment on “holonomy-decorated” Wilson loops

Here, we want to make a point which gives additional justification of our emphasis to study

k-strings of minimal tensions, corresponding to quark sources of a particular weight (e.g.

µ
(ij)
�⊗�, with i = j+1 (modN) for k = 2). So far, we only considered gauge invariant Wilson

loop operators without insertions of the Higgs field (holonomy). In the small-L abelianized

regime of dYM theory, one can isolate the contribution of individual components of the

fundamental quarks by inserting powers of the holonomy inside the trace defining the Wil-

son loop. This gives rise to Wilson loops in R3 “decorated” by loops winding around the S1,

similar to the construction of [5, 11]. The construction of these loops shows that the abelian

strings of different tensions (due to quarks of a single weight) in product representations are

physical, i.e. they are created by gauge invariant operators. We now define a “decorated”

Wilson loop as follows. The fundamental representation holonomy around the S1 is

Ω(x)F = Pe
i
∮
S1
Aa4(x,x4)taF dx4

, a = 1, . . . , N − 1. (5.16)

The gauge invariant Wilson loop projecting on a single component of a quark field can

then be written as

W k
F = trFP


 1

N

N∑

p=1

ω
−(N−k)p
N (Ω(x)F )p


 e

i
x∫
x
Aµdxµ

, (5.17)

where ωN = ei
2π
N and the integral

x∫
x

is taken along a large RT contour in R3, broken

up at the point x where the Higgs field is inserted. In the center symmetric vacuum at

weak coupling Ω can be replaced by its vacuum expectation value, 〈Ω〉, given (for brevity,

shown below only for odd N and recalling (2.8)), by

〈Ω〉 = diag(ωN−1
N , ωN−2

N , . . . , ωN , 1) . (5.18)

Hence, the holonomy insertion and discrete Fourier transform in (5.17)project (the term

in square brackets inside the trace in (5.17)) the Wilson loop to an abelian component

corresponding to a source given by the k-th component (weight) of the fundamental quark

(in the ordering of eigenvalues as in (5.18)). Using (5.17), one can construct sources of

various weights in product representations.
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A Derivation of W-boson spectrum

Consider two analogs of off-diagonal SU(2) generators in SU(N), namely T 1
(kl) and T 2

(kl)

(analogs of τ1/2 and τ2/2 in SU(2) respectively), 1 ≤ k, l ≤ N , where k 6= l, refer to the

row and column of the non-zero components of these generators. We will work out the

quadratic mass terms associated with their corresponding gauge fields A1
iT

1
(kl) and A2

iT
2
(kl).

The mass term comes from the F 2
i4 term in (2.6) with Fi4 = ∂iA4 − ∂4Ai − i[Ai, A4]:

{
1

2g2
trF 2

i4(x)

}

quad,A1,2
i

=
1

2g2

{
tr(∂4A

1,2
i )2 − tr([A1,2

i , Avev4 ])2 (A.1)

+2itr(∂4A
1,2
i [A1,2

i , Avev4 ])
}
,

with A1,2
i = A1

iT
1
(kl)+A2

iT
2
(kl). Noting that [A1,2

i , Avev4 ] = 2π|l−k|
NL i(A2

iT
1
kl−A1

iT
2
kl), expanding

each component in its Fourier modes using (2.9), and integrating over the compact x4

direction we have:

∫ L

0
dx4

{
1

2g2
trF 2

i4(x)

}

quad,A1,2
i

=
L

2g2

+∞∑

m=0

{(
2πm

L

)2

(A1
i,mA

1†
i,m +A2

i,mA
2†
i,m)

+

(
2π|l − k|
NL

)2

(A1
i,mA

1†
i,m +A2

i,mA
2†
i,m) (A.2)

+ 2i
2π|l − k|
NL

2πm

L
(A1†

i,mA
2
i,m −A2†

i,mA
1
i,m)

}
.

Expanding in real and imaginary parts of Fourier components we have:

∫ L

0
dx4

{
1

2g2
trF 2

i4(x)

}

quad,A1,2
i

=
L

2g2

+∞∑

m=0

{(
2πm

L

)2

[(A1
i,m1)2+(A1

i,m2)2+(A2
i,m1)2+(A2

i,m2)2]

+4
2π|l−k|
NL

2πm

L
(A1

i,m2A
2
i,m1−A2

i,m2A
1
i,m1) (A.3)

+

(
2π|l−k|
NL

)2

[(A1
i,m1)2+(A1

i,m2)2+(A2
i,m1)2+(A2

i,m2)2]

}
,

with A1
i,02 = A2

i,02 = 0. The above mass terms can be diagonalized by defining the following

fields:

Ā1
i,m ≡ (A1

i,m1 +A2
i,m2)/

√
2, Ā2

i,m ≡ (A1
i,m2 +A2

i,m1)/
√

2

Ā3
i,m ≡ (A1

i,m2 −A2
i,m1)/

√
2, Ā4

i,m ≡ (A1
i,m1 −A2

i,m2)/
√

2 ,
(A.4)
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leading to the quadratic Lagrangian for the off-diagonal components:

∫ L

0
dx4

{
1

2g2
trF 2

i4(x)

}

quad,A1,2
i

=
L

2g2

+∞∑

m=0

{(
2πm

L
− 2π|l − k|

NL

)2

[(Ā1
i,m)2 + (Ā3

i,m)2]

+

(
2πm

L
+

2π|l − k|
NL

)2

[(Ā2
i,m)2 + (Ā4

i,m)2]

}
. (A.5)

Relation (A.5) shows that there are W-bosons W±1 = (Ā1
i,m ± iĀ3

i,m)/
√

2 and

W±2 = (Ā4
i,m ± iĀ2

i,m)/
√

2 with masses |2πmL − 2π|l−k|
NL | and |2πmL + 2π|l−k|

NL | respectively for

m = 0, 1, 2, . . . and 1 ≤ l < k ≤ N .

B Error analysis

B.1 Truncation error

In this section we will discuss relation (3.13). Consider (3.10) at m → ∞ and at its

minimum solution:

T̄m,Jk,min = T̄m,Jk1,min + T̄m,Jk2,min . (B.1)

The only explicit dependence on J in (B.1) is through ∆z = J/m. Extracting this explicit

dependence and suppressing the indices we have:

HJ =
H1

J
+ JH2, T̄m,Jk,min ≡ HJ , T̄m,Jk1,min ≡

H1

J
, T̄m,Jk2,min ≡ JH2 . (B.2)

Taking the derivative of HJ with respect to J gives:

dHJ

dJ
= −H1

J2
+H2 +

1

J

∂H1

∂fjh

dfjh
dJ

+ J
∂H2

∂fjh

dfjh
dJ

. (B.3)

Since the partial derivatives at the minimum solution vanish we have:

dHJ

dJ
=

1

J

(
−H1

J
+ JH2

)
. (B.4)

For J1 < J2 it can be shown that HJ2 < HJ1 . The minimum solution of HJi is a path Pi
that connects the boundary point πµk at z = 0 to 0 at z = Ji for i = 1, 2 (section 3.2). If

we extend path P1 on the z-axis from z = J1 to z = J2 we would obtain a path P̃1 that

connects the boundary point πµk at z = 0 to 0 at z = J2. But the value of the action

of the paths P1 and P̃1 is the same since the portion of the path P̃1 that is on the z-axis

gives zero action. On the other hand the action of P̃1 should be higher than the action of

P2 since P2 is the minimizing path of HJ2 hence HJ2 < HJ1 . Due to this dHJ/dJ < 0.

From (B.4) this gives H1/J > JH2 and hence T̄m,Jk1,min > T̄m,Jk2,min for all 0 < J < ∞. Also

we should have lim
J→∞

dHJ/dJ = 0 since HJ is a decreasing function of J and it is bounded

from below ( lim
J→∞

HJ = T̄k). This shows that T̄m,∞k1,min = T̄m,∞k2,min. Also in the limit of J → 0

the relations lim
J→0

T̄m,Jk1,min = ∞ and lim
J→0

T̄m,Jk2,min = 0 can be easily verified from (3.4). This

– 58 –



J
H
E
P
0
1
(
2
0
1
8
)
0
2
9

can also be seen from relation (B.2), H1 and H2 are finite quantities hence the previous

limits follow. Summarizing the previous relations derived we have:

T̄m,Jk1,min > T̄m,Jk2,min, T̄m,Jk,min > T̄m,∞k,min, 0 ≤ J <∞

T̄m,0k1,min =∞, T̄m,0k2,min = 0, T̄m,∞k1,min = T̄m,∞k2,min =
1

2
T̄m,∞k,min .

(B.5)

From (B.5) it can be seen that T̄m,Jk2,min starts from 0 at J = 0 and approaches 1
2 T̄

m,∞
k,min at

J =∞. We conjecture that for 0 < J <∞, T̄m,Jk2,min <
1
2 T̄

m,∞
k,min.63 Also from (B.5) we have

1
2 T̄

m,∞
k,min <

1
2 T̄

m,J
k,min = 1

2(T̄m,Jk1,min + T̄m,Jk2,min) < T̄m,Jk1,min so we obtain the following inequalities:

T̄m,Jk2,min <
1

2
T̄m,∞k,min <

1

2
T̄m,Jk,min < T̄m,Jk1,min . (B.6)

From (B.6) relation (3.13) easily follows.

B.2 Sample error calculation

We have shown data for half k-string tensions of SU(10), k = 5 in tables 6 and 7 to perform

a sample error calculation.

Sample minimization error calculation. Sample calculation for SU(10), k = 5 and

m = 100:

Min. Error for < Tk2 >= |∆20|+ σk√
R

= 3E-05 + 3.9E-06 ∼ 3E-05

From tables 6 and 7 and the sample calculation above it is clear that the minimization

errors are of order 10−5 and less so they can be safely neglected in comparison to the

discretization and truncation errors.

Sample discretization error calculation. The difference between < Tk1 >, < Tk2 >

and < Tk > for m = 100 and m = 200 is:

< Tk >200 − < Tk >100 = 11.6491437− 11.6503335 = −0.0011898

< Tk1 >200 − < Tk1 >100 = 5.82482467− 5.82420397 = 0.0006207

< Tk2 >200 − < Tk2 >100 = 5.82431903− 5.82612949 = −0.00181046 .

(B.7)

Hence we predict that the continuum value of the string tensions of SU(10), k = 5 for

J = 14.0 would be:
< Tk > = 11.6491−0.001

< Tk1 > = 5.8248+0.0006

< Tk2 > = 5.8243−0.0018 .

(B.8)

63This behaviour has been verified in the numerical simulations up to J = 14. It has also been verified

for cases when an analytic solution is possible. For example expanding the cosine term and keeping only

the quadratic term. For this case it would be possible to solve the saddle point analytically for a finite

boundary condition at z = J and see that T̄∞,Jk2,min starts from 0 at z = 0 and increases monotonically to
1
2
T̄∞,∞k,min at z =∞.
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m n < Tk1 >
σk1√
R

< Tk2 >
σk2√
R

< Tk >
σk√
R

100 18 5.82434259 6.9E-05 5.82600776 6.2E-07 11.6503503 6.2E-07

100 19 5.82423417 1.4E-05 5.82610277 1.4E-05 11.6503369 1E-07

100 20 5.82420397 3.9E-06 5.82612949 3.9E-06 11.6503335 1.3E-08

200 20 5.82500582 1.20E-04 5.82415592 1.20E-04 11.6491617 6.90E-07

200 21 5.82486451 5.00E-05 5.82428283 5.00E-05 11.6491473 1.70E-07

200 22 5.82482467 2.30E-05 5.82431903 2.30E-05 11.6491437 4.00E-08

Table 6. SU(10), k = 5 sample data with error in the mean ( σ√
R

).

m n < Tk1 > ∆n < Tk2 > ∆n < Tk > ∆n

100 18 5.82434259 - 5.82600776 - 11.6503503 -

100 19 5.82423417 -(1E-04) 5.82610277 1E-04 11.6503369 -(1E-05)

100 20 5.82420397 -(3E-05) 5.82612949 3E-05 11.6503335 -(3E-06)

200 20 5.82500582 - 5.82415592 - 11.6491617 -

200 21 5.82486451 -(1E-04) 5.82428283 1E-04 11.6491473 -1E-05

200 22 5.82482467 -(4E-05) 5.82431903 4E-05 11.6491437 -(4E-06)

Table 7. SU(10), k = 5 sample data with ∆n =< Xn > − < Xn−1 >.

Sample truncation error calculation. Relation (3.13) gives an upper bound estimate

for the truncation error. Based on (B.8):

| < Tk1 > − < Tk2 > | / 5.8248 + 0.0006− (5.8243− 0.0018) = 0.0029

=⇒ Trunc. E. / 2× 0.0029 = 0.0058 .
(B.9)

Adding the truncation and discretization error and neglecting the minimization error we

have:

Total Error = Trunc. E. + Dis. E. = 0.0058 + 0.001 = 0.0068 ≈ 0.007 . (B.10)

Hence we predict the value of the half string tension for SU(10) and k = 5 is:

11.6491−0.007. The errors obtained by this method for different half k-string tensions varied

from 0.005 to 0.007 therefore we have considered the average as an upper bound estimate

for the value of the error for all half k-string tensions and included it in table 1. It has to

be noted that upper bound estimates for errors always overestimate the true value of the

errors as can be seen from table 2.
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C Derivation of group theory results

C.1 Any representation of SU(N) with N-ality 1 ≤ k ≤ N − 1 contains the

fundamental weight µk as one of its weights

The simple roots αi and fundamental weights µk of SU(N) are given by the following

relations:

αi =

(
0, . . . , 0,

i-th

1̂ ,−1, 0, . . . , 0

)
, 1 ≤ i ≤ N − 1

µk =


N − k

N
, . . . ,

k-th

N̂ − k
N

,
−k
N
, . . . ,

−k
N


 , 1 ≤ k ≤ N − 1

(C.1)

An arbitrary representation of SU(N) with N -ality 1 ≤ k ≤ N − 1 can be represented by

its highest weight wk:

wk = hiµi with h ≡ h1 + 2h2 + . . .+ (N −1)hN−1 = mN +k, m, hi ∈ Z, m, hi ≥ 0 , (C.2)

where hi ≥ 0 are the N − 1 Dynkin indices of the representation, which determine k, its

N -ality, by the mod(N) relation given above. The proof involves two steps. First we will

prove the following lemma:

Lemma. wk = µk + aiαi for ai ∈ Z and ai ≥ 0

Proof. It can be easily seen that:

µk = kµ1 − βk with βk = (k − 1)α1 + (k − 2)α2 + . . .+ αk−1, β1 = 0 (C.3)

Hence wk can be written as:

wk = (h1 + 2h2 + . . .+ (N − 1)hN−1)µ1 − (h2β2 + . . .+ hN−1βN−1) (C.4)

With knowing Nµ1 = (N − 1)α1 + (N − 2)α2 + . . .+ αN−1 and (C.3) we have:

hµ1 = (mN + k)µ1 = µk + (m(N − 1) + k − 1)α1 + . . .+ (m(N − (k − 1)) + 1)αk−1

+m(N − k)αk + . . .+mαN−1 (C.5)

Therefore using (C.3) and (C.5), wk in (C.4) can be written as:

wk = µk + biαi with bi ∈ Z (C.6)

We need to show that bi is greater than or equal to zero. Lets assume the contrary. First

lets assume bk < 0:

bk < 0 =⇒ bk ≤ −1 (C.7)

(C.6) & (C.2) =⇒ αk · wk = 2bk + 1− bk+1 − bk−1 = hk ≥ 0,

bk ≤ −1 & 2bk + 1− bk+1 − bk−1 ≥ 0 =⇒ bk+1 ≤ bk or bk−1 ≤ bk .
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Lets assume bk−1 ≤ bk:

(C.6) & (C.2) =⇒ αk−1 · wk = 2bk−1 − bk − bk−2 = hk−1 ≥ 0,

bk−1 ≤ bk & 2bk−1 − bk − bk−2 ≥ 0 =⇒ bk−2 ≤ bk−1 .
(C.8)

Similarly, it can be concluded that 0 > bk ≥ bk−1 ≥ bk−2 ≥ bk−3 ≥ . . . ≥ b2 ≥ b1. Here we

will clearly have a contradiction since we have:

(C.6) & (C.2) =⇒ α1 · wk = 2b1 − b2 = h1 ≥ 0

But if b1 ≤ b2 < 0 =⇒ 2b1 − b2 < 0 .
(C.9)

Similarly, a contradiction occurs if it is assumed that bk+1 ≤ bk. Now, if any other bi < 0

for i 6= k, similarly it can be argued that either bi+1 ≤ bi or bi−1 ≤ bi and concluded that

2b1−b2 < 0 or 2bN−1−bN−2 < 0 or bk ≤ bi < 0, which would lead to contradictions similar

to above.

The next step of the proof is to show that given a highest weight wk of a representation

with N -ality k, it is always possible to lower with the simple roots to obtain µk. Given a

weight µ of a representation of SU(N), the master formula in [44] can be applied:

2µ · αi
α2
i

= µ · αi = −(pi − qi) (C.10)

Where pi ∈ Z and pi ≥ 0 is the number of times which we can raise µ with αi and

qi ∈ Z and qi ≥ 0 is the number of times which we can lower µ with αi. Based on the above

Lemma, we have wk = µk + aiαi. If ai = 0 for all i then the representation contains µk as

one of its weights but if at least one is greater than zero then we will show that for some αi
which ai > 0, wk ·αi > 0 which would imply that qi > 0 and hence wk can be lowered with

some αi which ai > 0. Let aj = Max{ai|1 ≤ i ≤ N − 1} for some 1 ≤ j ≤ N − 1. Since we

assumed at least one ai is greater than zero then aj > 0. If j = 1, j = N − 1 or j = k then

wk ·αj = 2a1− a2 > 0, wk ·αj = 2aN−1− aN−2 > 0 or wk ·αj = 2ak + 1− ak−1− ak+1 > 0

respectively, since we assumed that aj > 0 and is the maximum among others. Otherwise

if aj > aj+1 or aj > aj−1 then wk · αj = 2aj − aj+1 − aj−1 > 0. But if aj = aj+1 = aj−1

then wk · αj = 0. In this case aj−1 and aj+1 are greater than zero and both maximum

among other ai. Hence we can repeat what we did for aj for aj+1 or aj−1 for a number

of steps until j + r in aj+r for an r 6= 0 becomes j + r = 1, j + r = N − 1 or j + r = k

or we would have aj+r > aj+r+1 or aj+r > aj+r−1 which in that case wk can be lowered

with αj+r. So we proved that if at least one ai is greater than zero then wk can always be

lowered with some αh which ah > 0. Hence we continue this process until all the αi are

removed from the highest weight wk = µk + aiαi and we reach µk. This shows that any

representation of SU(N) with N -ality k contains µk as one of its weights.
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C.2 Derivation of (2.47)

To derive (2.47), we will work out the steps for the contribution of one monopole with

magnetic charge q1
m. Consider the long distance behaviour of (2.47) for generators in the

fundamental representation of the gauge group, located at R ∈ R3:

{
tr exp

(
i

∮

R×T
Acmt

c
Fdxm

)}

1 mon.

= tr exp

(
i

∫

S(R×T )
εanm∂nA

c
mt

c
FdSa

)

= tr exp

(
i

∫

S(R×T )
dx1dx2

R3

2|R− x|3 Q
1

)
.

(C.11)

Here c = 1, . . . , N − 1 labels the abelian generators of SU(N), Q1 = diag(1,−1, 0, . . . , 0),

and we substituted the magnetic field of a monopole, (2.17) converted to Cartesian coor-

dinates. Next, we first write Q1 as a linear combination of the abelian generators of the

fundamental representation Q1 = V̄it
i
F = diag(V̄ · µ̄1

F , . . . , V̄ · µ̄NF ) for i = 1, . . . , N − 1;

here µ̄jF for j = 1, . . . , N are the (N − 1)-dimensional weight vectors of the fundamental

representation of SU(N) and V̄ is an (N − 1)-dimensional vector. In order to transform

this to an arbitrary representation r we replace tcF by its corresponding generator in the

representation r and write Q1
r≡V̄itir = diag(V̄ · µ̄1

r , . . . , V̄ · µ̄d(r)
r ). In order to write this in

the N -dimensional form of weights used in this work (C.1), we note that the weight vectors

of the fundamental representation of SU(N) in their N -dimensional form are:

µjF =


− 1

N
, . . . ,− 1

N
,

j-th

̂
1− 1

N
,− 1

N
, . . . ,− 1

N


 , j = 1, . . . , N , (C.12)

which can be easily verified by lowering the fundamental weight µ1 in (C.1) with the

simple roots. From (C.12), the N -dimensional form of V̄ , named V , can be determined

by requiring: Q1 = diag(V̄ · µ̄1
F , . . . , V̄ · µ̄NF ) = diag(V · µ1

F , . . . , V · µNF ), which gives

V = q1
m = (1,−1, 0, . . . , 0). Hence Q1

r , using the N -dimensional form of weights, becomes

Q1
r = diag(V ·µ1

r , . . . , V ·µd(r)
r ) = diag(q1

m·µ1
r , . . . , q

1
m·µd(r)

r ). Therefore (C.11), for generators

in an arbitrary representation r, becomes:

{
tr exp

(
i

∮

R×T
Acmt

c
rdxm

)}

1 mon.

= tr exp

(
i

∫

S(R×T )
εanm∂nA

c
mt

c
rdSa

)
(C.13)

=

d(r)∑

j=1

exp

(
i

∫

S(R×T )
dx1dx2 µ

j
r · q1

m

R3

2|R− x|3
)
.

D Perturbative saddle point k-strings: leading order + leading correc-

tion

The following tables 8–16 compare the values of k-strings obtained from a perturbative

saddle point calculation to their numerical values in table 1. The “Leading” and “Leading

Corr.” column give values for the coefficient of −RT
β in (4.41) and (4.45) respectively. If
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SU(N) Leading Leading Corr. Sum(Lead.+Lead. Corr.) Num. value Num. value - Sum

2 9.870 -2.029 7.841 8.000 0.159

3 11.396 -2.343 9.053 9.238 0.185

4 11.913 -2.396 9.517 9.699 0.182

5 12.150 -2.410 9.740 9.919 0.179

6 12.277 -2.415 9.862 10.041 0.179

7 12.355 -2.417 9.938 10.114 0.176

8 12.405 -2.418 9.987 10.163 0.176

9 12.439 -2.418 10.021 10.196 0.175

10 12.463 -2.418 10.045 10.221 0.176

Table 8. Comparison of N -ality 1 k-strings for SU(2 ≤ N ≤ 10).

SU(N) Leading Leading Corr. Sum(Lead.+Lead. Corr.) Num. value Num. value - Sum

3 11.396 -2.343 9.053 9.238 0.185

4 13.958 -2.870 11.088 11.314 0.226

5 15.018 -2.99 12.028 12.247 0.219

6 15.568 -3.029 12.539 12.751 0.212

7 15.891 -3.045 12.846 13.055 0.209

8 16.097 -3.052 13.045 13.253 0.208

9 16.237 -3.056 13.181 13.388 0.207

10 16.337 -3.058 13.279 13.485 0.206

Table 9. Comparison of N -ality 2 k-strings for SU(3 ≤ N ≤ 10).

T represents a half k-string value in table 1 and T ′ its corresponding one in the “Num.

value” column, they are related by:

T ′ = ROUND(T̄ , 3) with T̄ ≡ ROUNDDOWN(T, 3)× 2/
√

2 (D.1)

We multiply the half k-strings by 2 to obtain the full k-string then we divide it by
√

2

to normalize them similar to the perturbative saddle point method k-strings as in (4.32)

and (4.33). There is a high chance that the numerical half k-strings in table 1 will match

the exact half k-strings rounded to the third decimal if they are rounded down to the 3rd

decimal. This is due to the fact that the true value of half k-strings always lies below the

values obtained in table 1 and the true value of the error is of order 0.001 or less as can be

seen from table 2.

– 64 –



J
H
E
P
0
1
(
2
0
1
8
)
0
2
9

SU(N) Leading Leading Corr. Sum(Lead.+Lead. Corr.) Num. value Num. value - Sum

4 11.913 -2.396 9.517 9.699 0.182

5 15.018 -2.990 12.028 12.247 0.219

6 16.449 -3.142 13.307 13.511 0.204

7 17.248 -3.197 14.051 14.247 0.196

8 17.746 -3.222 14.524 14.715 0.191

9 18.078 -3.234 14.844 15.032 0.188

10 18.311 -3.241 15.070 15.257 0.187

Table 10. Comparison of N -ality 3 k-strings for SU(4 ≤ N ≤ 10).

SU(N) Leading Leading Corr. Sum(Lead.+Lead. Corr.) Num. value Num. value - Sum

5 12.15 -2.410 9.740 9.919 0.179

6 15.568 -3.029 12.539 12.751 0.212

7 17.248 -3.197 14.051 14.247 0.196

8 18.237 -3.262 14.975 15.159 0.184

9 18.876 -3.292 15.584 15.761 0.177

10 19.317 -3.307 16.010 16.183 0.173

Table 11. Comparison of N -ality 4 k-strings for SU(5 ≤ N ≤ 10).

SU(N) Leading Leading Corr. Sum(Lead.+Lead. Corr.) Num. value Num. value - Sum

6 12.277 -2.415 9.862 10.041 0.179

7 15.891 -3.045 12.846 13.055 0.209

8 17.746 -3.222 14.524 14.715 0.191

9 18.876 -3.292 15.584 15.761 0.177

10 19.629 -3.326 16.303 16.474 0.171

Table 12. Comparison of N -ality 5 k-strings for SU(6 ≤ N ≤ 10).

SU(N) Leading Leading Corr. Sum(Lead.+Lead. Corr.) Num. value Num. value - Sum

7 12.355 -2.417 9.930 10.114 0.176

8 16.097 -3.052 13.045 13.253 0.208

9 18.078 -3.234 14.844 15.032 0.188

10 19.317 -3.307 16.010 16.183 0.173

Table 13. Comparison of N -ality 6 k-strings for SU(7 ≤ N ≤ 10).

SU(N) Leading Leading Corr. Sum(Lead.+Lead. Corr.) Num. value Num. value - Sum

8 12.405 -2.418 9.987 10.163 0.176

9 16.237 -3.056 13.181 13.388 0.207

10 18.311 -3.241 15.070 15.257 0.187

Table 14. Comparison of N -ality 7 k-strings for SU(8 ≤ N ≤ 10).
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SU(N) Leading Leading Corr. Sum(Lead.+Lead. Corr.) Num. value Num. value - Sum

9 12.439 -2.418 10.021 10.196 0.175

10 16.337 -3.058 13.279 13.485 0.206

Table 15. Comparison of N -ality 8 k-strings for SU(9 ≤ N ≤ 10).

SU(N) Leading Leading Corr. Sum(Lead.+Lead. Corr.) Num. value Num. value - Sum

10 12.463 -2.418 10.045 10.221 0.176

Table 16. Comparison of N -ality 9 k-strings for SU(10).

E Large-N limit of string tensions for product representations: a saddle

point leading-order perturbative evaluation

Our starting point is (4.41). Recall that this equation gives the contribution to the ex-

pectation value of the Wilson loop of quarks of charges (weight) µ, evaluated to leading

order using the perturbative saddle point method. For convenience, we now reproduce the

area-law part of that equation (R̂, T̂ →∞, β → 0):

{Zη
g4
}λ=0

{Zη
g4
}bq=λ=0

= exp

(
− 1

β

{
1

4

N−1∑

q=1

√
Λqb

2
qR̂T̂

})
. (E.1)

Here, bq ≡ 2π(µ)jDjq for a representation of weight µ; (µ)j denotes the j-th component,

j = 1, . . . N , of the weight vector. Recall also that Λq = 4 sin2 πq
N is the dimensionless

mass of the q-th dual photon and that the components of the matrix Djq, 1 ≤ j ≤ N , are

Djq =
√

2
N sin 2πqj

N , for 1 ≤ q < N
2 and Djq =

√
2
N cos 2πqj

N , for N
2 < q < N ; for brevity, we

only give the values for odd N . The q = N component of Djq does not contribute to (E.1).

The main difference compared to the discussion in the main text is that we now con-

sider also weights corresponding to product representations, for concreteness the �⊗�
representation. Recall, from (5.15), that the expectation value of the Wilson loop in the

product representation is given, in the abelianized regime of this paper, by a sum of expo-

nentials, one for each weight of the product representation:

〈W�⊗�(R, T )〉 ∼
d(�⊗�)∑

h=1

exp(−T h�⊗�RT ) =

d(�⊗�)∑

h=1

exp

(
− 1

β
T̂ h�⊗�R̂T̂

)
. (E.2)

Where we have also written it in its dimensionless form (recall the relations R = R̂/mγ ,

T = T̂ /mγ , β = m3
γ/ζ̃ from the comment below (4.32)). Comparing with (E.1) T̂ h�⊗� to

leading order (l.o.) is given by:

T̂ h�⊗�,l.o. =
1

4

N−1∑

q=1

√
Λqb

2
q , bq ≡ 2π

N∑

j=1

(µh)jDjq , (E.3)

with µh — the h-th weight of the �⊗� representation.
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The goal of this appendix is to evaluate (E.3) for all weights of the �⊗� product

representation, to leading order in the analytic perturbative saddle point method and in

the large-N limit. We shall see that the leading-order analytic considerations support the

findings discussed qualitatively after around eqs. (5.12) and (5.15) of the main text of the

behaviour of the product-representation Wilson loop at large N .

We begin by noting that the weights of the �⊗� representation are labeled by two

integers a, b = 1, . . . N (there are N2 weights) and are given by

(µh)j → (µab)j = δaj + δbj −
2

N
≈ δaj + δbj . (E.4)

The last equality is valid for sufficiently large N . From (E.3), recalling that we consider

odd-N , we find an explicit expression for the tension of strings sourced by quarks with

weight µab, (E.4), of the product representation at leading order:64

T̂ ab�⊗�,l.o. = 4π




[N2 ]∑

q=1

π

N
sin

πq

N

(
sin

2πaq

N
+ sin

2πbq

N

)2

(E.6)

+

N−1∑

q=[N2 ]+1

π

N
sin

πq

N

(
cos

2πaq

N
+ cos

2πbq

N

)2




The sum in (E.6) can be evaluated exactly for arbitrary N , but to illustrate our point it

suffices to consider i.) the results of a numerical evaluation and ii.) the evaluation of (E.6)

at infinite N by replacing the sum by an integral.

We begin with a discussion of the numerical results for the N2 product representation

string tensions shown on figure 7. The N2 string tensions for N = 21 are evaluated

numerically using (E.6). As the plot shows, most of the N2 string tensions are of order

2T1,l.o., while 2N of them are approximately equal to the minimal value T2,l.o., and N are

equal to approximately 4T1,l.o.. Clearly, this is conforming to the discussion in the main

text, section 5.2.2. . .

We can also evaluate (E.6) in the infinite-N limit by replacing the sum by an integral,

for a, b fixed, i.e.,

T̂ ab�⊗�,l.o.

4π
=

π
2∫

0

dx sinx (sin 2xa+ sin 2bx)2 +

π∫

π
2

dx sinx (cos 2ax+ cos 2bx)2 . (E.7)

64To obtain (E.5), we noted that for large and odd N , for 1 ≤ q < N
2

:

bq
2π

=
N∑
j=1

(µh)jDjq =

√
2

N

{
sin

2πaq

N
+ sin

2πbq

N
−

N∑
j=1

2

N
sin

2πjq

N

}

≈
√

2

N

{
sin

2πaq

N
+ sin

2πbq

N
+ 0

}
, (E.5)

and used the fact that the last term in the first line of (E.5) for large N can be approximated by ≈
− 1
π

∫ 2π

0
dy sin qy = 0. Also, a similar expression can be written for N

2
< q < N .
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Figure 7. The product �⊗�-representation string tensions T̂ ab�⊗�, evaluated for N = 21. They

take values between 1.32 and 3.99 times the fundamental string tension. As the plot shows,

42 = O(N) string tensions take the minimal value (these correspond to a = b ± 1(mod N)),

21 = O(N) tensions approximately equal four times the fundamental string tension (corresponding

to a = b) and the rest of the string tensions (378 = O(N2)) are slightly less than twice the

fundamental string tension.

Thus, the product representation string tensions, normalized to the fundamental string ten-

sion (equal to 4π in the leading saddle point approximation), becomes in the large-N limit

T̂ ab�⊗�,l.o.

4π
= 2− 2

4(a− b)2 − 1
. (E.8)

Due to the ZN symmetry of the string tension action we expect to obtain the same tensions

for |a− b| = n and |a− b| = N − n for 1 ≤ n ≤ [N/2]. This symmetry is lost in (E.8) due

to the infinite N limit, therefore it is best to use this relation for |a − b| ≤ [N/2] only at

large N and for |a− b| > [N/2] make the replacement |a− b| → N − |a− b| in (E.8). In the

limit |a − b| � 1, this relation approaches the value of 2, while for |a − b| = 1, we obtain

the value 4
3 ≈ 1.33; the value of 4 for a = b is also obtained. This distribution of the N2

string tensions in the infinite-N limit is consistent with the numerical result shown for

N = 21 and with the general discussion of section 5.2.2.

At the end, we also acknowledge an additional subtlety one might be worried about.

The calculation that led to eq. (E.6) — see (4.41) as well as eqs. (4.10)–(4.18) which directly

lead to it — assumes that RT is larger than the inverse mass squared of all dual photons,

including the lightest one. Thus, strictly speaking one expects (E.6) to pertain to the order

of limits we advocated for here: infinite area at fixed N, followed by N →∞ which is the

proper order of limits necessary for calculating k-strings at large N .
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However for the discussion of large N factorization in gauge theories the large N limit

is taken first. Now, if RT is smaller than the mass of some dual photons, the area law

due to these photons should be replaced with a perimeter law contribution. This remark

is relevant because if the large-N limit is taken first, the masses of some dual photons

vanish — recall that their masses are scale as
√

Λq = 2 sin πq
N — and these dual photons

do not lead to an area law. To take this into account, consider the integral (E.7) and omit

contributions of dual photons of (dimensionless) mass 2 sin πq
N = 2 sinx < 1√

R̂T̂
, as they

do not give rise to area law. Thus, the region of integration in (E.7), instead of (0, π2 ) and

(π2 , π), should be replaced by, respectively, (ε, π2 ) and (π2 , π − ε), with ε ∼ 1√
R̂T̂

. In the

further large R̂T̂ limit, we have that ε → 0, showing that the contributions to the string

tension of dual photons of mass vanishing at large-N is negligible. Thus, we expect that

if the order of limits is taken as described now (N to infinity first, large area next), the

factorization result analyzed above in terms of string tensions is recovered.

The discussion of large-N factorization above and in the 2nd half of section 5.2.2 was

carried out in terms of string tensions, since its more explicit and intuitive and allows for a

qualitative analysis of large-N factorization in terms of the full saddle point as was done in

section 5.2.2. For this analysis, the large area limit had to be taken to isolate the area law

contribution and find the string tensions, as done in the previous paragraph. However one

can show the large-N factorization result in a more general and abstract setting without the

need to refer to any large area limits or expressions for string tensions. Consider eq. (4.40),

which is a general expression for the saddle point at leading order, without reference to

any large area limit:

{Zη
g4
}λ=0

{Zη
g4
}bq=λ=0

= exp

(
− 1

β

{
Λqb

2
q

2

∫∫

A A

d2xd2x′Pq(x− x′) (E.9)

+
b2q
2

∫∫ ′

b(A) b(A)

dxldx′kδlk
(
Pq(x− x′)− 1

4π|x− x′|

)})
,

Using (E.5) and noting that the integrals in (E.9) are finite quantities and a function of

R̂, T̂ and
√

Λq = 2 sin πq
N with x ≡ πq

N , the large N limit of the leading saddle point (s.p.)

result in (E.9) reduces to:

s.p.�⊗�,l.o. =

∫ π/2

0
dx(sin 2ax+sin 2bx)2FR̂,T̂ (sinx)+

∫ π

π/2
dx(cos 2ax+cos 2bx)2FR̂,T̂ (sinx) ,

(E.10)

where FR̂,T̂ (sin πq
N ) is given by:

FR̂,T̂

(
sin

πq

N

)
≡ 4πΛq

∫∫

A A

d2xd2x′Pq(x−x′)+4π

∫∫ ′

b(A) b(A)

dxldx′kδlk
(
Pq(x−x′)− 1

4π|x− x′|

)

(E.11)

The expression corresponding to (E.10) in the fundamental representation of SU(N) is:

s.p.�,l.o. =

∫ π/2

0
dx(sin 2ax)2FR̂,T̂ (sinx) +

∫ π

π/2
dx(cos 2ax)2FR̂,T̂ (sinx) (E.12)
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Making the change of variable x→ π− x in the second integral of (E.10) and (E.12), they

can be simplified to:

s.p.�⊗�,l.o. =2

∫ π/2

0
dxFR̂,T̂ (sinx)+2

∫ π/2

0
dxcos(2ax−2bx)FR̂,T̂ (sinx), (E.13)

s.p.�,l.o. =

∫ π/2

0
dxFR̂,T̂ (sinx). (E.14)

When |a−b| � 1 (and |a−b| � N if the discrete form of (E.10) is considered for a finite but

large N), the second integral in (E.13), due to the rapid oscillations of cos(2ax−2bx), is near

zero therefore O(N2) weights of the product representation give approximately twice the

value of the fundamental representation string tension in the leading saddle point approxi-

mation from (E.14), which has the same value for all weights of the fundamental representa-

tion. Therefore relations (E.13) and (E.14) clearly show the large N factorization result in

dYM theory at leading order of the saddle point without any reference to a large area limit.

Although the calculations in this appendix were done at the leading order saddle point

level the same ideas and methods can be applied to show large N factorization regarding

the corrections (as in (4.42)) to these leading order saddle point results.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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