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1 Introduction

In AdS/CFT, bulk locality is an emergent property of the boundary CFT. While this bulk

locality can be probed directly in boundary correlation functions [1, 2], gauge invariant

bulk operators should also have a representation in terms of boundary operators. Of

particular interest is the study of this mapping for local bulk operators, generally called

reconstruction, which has been the subject of much study [3–6], resulting in the famed

HKLL procedure, after the authors Hamilton, Kabat, Lifschytz and Lowe. The locality

(or microcausality) of these fields should be understood in GN perturbation theory. In

the strict GN = 0 limit, these are just free fields in a curved background, but order by

order in perturbation theory, gauge invariant bulk fields will have corrections arising from
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interactions and fluctuations of the background. We have yet to understand, however, how

this approximate notion of locality is consistent with other sensible properties expected of

a theory of quantum gravity [7, 8].

The notion of approximate locality is even less well understood when considering re-

construction in time dependent states. If the state is pure, we expect bulk operators on any

Cauchy slice to be encoded in the boundary. However, this would appear to be violated

when considering dynamical boundary states which end up creating event horizons in the

bulk. Behind-the-horizon operators should, in principle, be described in terms of their CFT

building blocks, but the naive HKLL procedure breaks down in these situations, since the

region behind the horizon is not in causal contact with the boundary.

Consider a bulk field Φ(X) of dimension ∆ in AdSd+1. The usual HKLL procedure

starts with the extrapolate dictionary, which establishes that near X = (x, z ≈ 0)

lim
z→0

z−∆Φ(x, z) = O(x, t = 0) . (1.1)

Since we are dealing with free fields, the extrapolate dictionary can be extended into the

bulk by inverting the massive free field wave equation in a fixed asymptotically AdS bulk.

Thus, to leading order in GN ,

Φ(x, z) =

∫
dd−1y dtK(x, z|y, t)O(y, t) +O(GN ) , (1.2)

where K(x, z|y) is the boundary-to-bulk Green’s (or smearing) function with support at

spacelike separated points from (x, z).

We would like to understand the boundary-to-bulk map in a certain class of dynamical

states. The basic idea is to use the equivalence between boundary and bulk time evolution

as outlined in [9–11]. Concretely, consider a local operator Φ(X) deep in the bulk of empty

AdS. For simplicity, we can take Φ(X) to lie in a Cauchy slice that intersects the boundary

at t = 0. Since black hole horizons are teleological, this operator could well be behind an

event horizon depending on if the boundary Hamiltonian does or does not include an

injection of energy in the future of the Cauchy slice. The representation of Φ(X) should

be insensitive to the potential future injection of energy, since the bulk operator should

not depend acausally on the future evolution. Hence we are free to represent the operator

in the case where there is no injection of energy in the future, as in (1.2). To get the

representation at later times (and potentially behind the black hole horizon), we simply

evolve this operator using the full boundary Hamiltonian, which includes the injected

shockwave. The reason this is allowed is that we can think of the right hand side of (1.2)

as a linear combination of Heisenberg operators at t = 0. So far, we have been schematic

about the precise definitions of X (in particular z) and K(X|y), as well as their dependence

on the semiclassical gravity background in consideration. This will be a crucial part of our

discussion. As we will see, giving a precise definition of bulk points for a general class of

states is necessary for being able to compare operators evolved by different Hamiltonians.

Furthermore, we have not yet discussed the role of O(GN ) corrections to (1.2), which will

also be crucial for the aforementioned reason.
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In summary, we are going to focus on reconstruction in dynamical backgrounds, specif-

ically the thermal state with shockwave insertions on top of it. We will examine the canon-

ical algebra of local bulk operators generated by {Φ(X),Π(X)|X ∈ Σ} in a precise way

and understand their boundary representation. Since these bulk operators don’t depend on

the data away from their respective Cauchy slice [11], we can think of them as living in an

auxiliary, simpler, spacetime. This will not be enough to reconstruct them, but combining

this fact with possible forwards and backwards evolution using distinct Hamiltonians, one

can reconstruct bulk operators beyond the causal horizon. This procedure will yield an

expression similar to (1.2), where the boundary operator is a combination of single trace

Heisenberg operators, evolved with respect to different Hamiltonians. For simple examples,

we show that this expression is equivalent to modular flow, as argued in [12, 13]. Such ex-

pressions are not unique, and to compare different possible representations of the bulk field,

one has to be careful in keeping track of the O(GN ) corrections. We illustrate some of the

subtleties in simple AdS2 and AdS3 examples. Our procedure is, at its outset, Lorentzian

and doesn’t rely on analytic continuation to Euclidean times as has been discussed before

in [14–17].

We expect our discussion to be the general story about black holes formed by collapse,

at least for times which don’t scale with the number of degrees of freedom (i.e. times that

depend on G−1
N ). The reason is that, given a boundary time, we always have complete

Cauchy slices which cover the spacetime with a well-defined, smooth metric. In this lan-

guage, knowledge of the interior geometry translates to knowledge of how the state was

prepared. If we are given a state without knowing how it was prepared, as is usually

the case for a typical black hole microstate, our discussion herein does not apply with-

out the additional knowledge that the dual state was prepared by a procedure that yields

semiclassical bulk evolution from sufficiently early times.

In section 2, we will review and expand on the ideas necessary for reconstruction

in the dynamical states of interest. In section 3, we define the dynamical states under

consideration and the algebras of operators in those states. In section 4, we explain how

to obtain a boundary expression for operators in any bulk region, as well as how these

expressions are compatible with modular evolution. In section 5, we consider the simple

examples of AdS2 and AdS3, where the subtleties of the previous sections can be explored

and understood explicitly. We conclude with a discussion in section 6.

2 Toolkit for reconstruction

In this section, we will discuss some of the necessary tools needed to deal with the problem

of bulk reconstruction in simple time dependent backgrounds. Parts of this discussion

have appeared in the literature in various places, and we add new observations to this

body of work.

2.1 HMPS reconstruction

Bulk reconstruction using the HKLL prescription can be implemented order by order in

GN and works for arbitrary asymptotically AdS backgrounds, including ones that are time
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dependent. An important refinement of the HKLL story was presented in [11], whereby a

general set of constraints were derived for consistency of the boundary to bulk map (see

also [9, 10] for earlier discussions). We will use these constraints to frame our discussion.

The main takeaways from [11] that we would like to highlight are the following:

1. Operators Φ(X) defined on some Cauchy surface Σt are independent of the semiclas-

sical background metric.

2. The bulk Hamiltonian is a boundary term. This implies that bulk and boundary

time evolution are equivalent. The Heisenberg evolution of the boundary operator in

the r.h.s. of (1.2) should match the bulk evolution of the l.h.s.. Namely, this implies

that the Heisenberg evolution of an operator using the boundary Hamiltonian should

match the representation obtained from applying the HKLL prescription in the time-

dependent background.

3. Operators Φ(X) on Σt (understood as Heisenberg operators at fixed boundary time t)

only depend on the boundary Hamiltonian H(t) in a small neighborhood of the

boundary time t .

Point 3 is a statement about causality. It is the claim that for any time t, Φ(X) defined

in Σt will have the same representation in terms of boundary operators O, independent of

the Hamiltonian at t′ > t. This must be the case if causality in the boundary is to result

in a notion of causality in the bulk.

For the sake of illustration we now consider evolving a state with two different boundary

Hamiltonians H and H(t), with H(t < 0) = H . For the remainder of this paper we will

always take H to be a time independent Hamiltonian whose ground state is dual to empty

AdS, and label time slices in this empty and static AdS by t. A simple example of H(t)

would be the original Hamiltonian H deformed by a source with support localized at t = 0

such that the bulk dual is the Vaidya collapsing black hole. With this in mind points 1

and 2 taken together suggest the following relation:

U †H(t)(t
′, 0)Φ(X)UH(t)(t

′, 0) = U †
H

(t′, 0)Φ′(X)UH (t′, 0) (2.1)

where X is a fixed point in the time-independent vacuum AdS geometry. We will present

a careful definition of the bulk point X in the next section once we discuss gravitational

dressing, such that X can be defined across the families of geometries we are consider-

ing. This equation is a bit mysterious at this point as not all the symbols have been

sufficiently defined.

In order to understand this equation when we expand Φ(X) in terms of boundary

operators, all GN corrections must be to be taken into account. To be precise, the leading

order HKLL expression for Φ(X), as in (1.2), seems to depend heavily on the semiclassical

background, hence the evolution by different Hamiltonians giving rise to the same operators

can only be manifest once the background dependence is removed, e.g. by summing all GN
corrections to the HKLL formula in (1.2). In what follows we will make much use of (2.1)

in defining an algorithm for reconstructing bulk operators in terms of CFT data in time

dependent shockwave geometries.
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We now return to the subtleties in defining the bulk point X in a gauge invariant way

— this is particularly pressing, as we will see, for time-dependent backgrounds. We need

to supplement the local bulk field Φ(X) with a “gravitational dressing” in order to define

it as a gauge invariant operator in the bulk. Treating the gravitational dressing carefully

will lead to important considerations for reconstruction in time dependent backgrounds.

2.2 Gravitational dressing

Physical observables Φ(X) in a theory of gravity must be invariant with respect to bulk

diffeomorphisms. In the presence of a boundary, a bulk operator can’t commute with the

boundary Hamiltonian because of the gravitational Gauss law. These two points imply that

Φ(X) can not be a local operator: X has to be defined in a coordinate invariant manner

and Φ(X) has to include its own gravitational field. However, these operators often still

have compact support in the bulk, which provides a notion of locality:

[Φ(X),Φ(X ′)] ≈ 0 (2.2)

when the non-local operators Φ(X),Φ(X ′) are spacelike separated.1

The operator Φ(X) is not local, but can be constructed out of a non-diffeomorphism

invariant local operator by supplementing it with a “gravitational dressing.” This is similar

to the story in electromagnetism, where one attaches a Wilson line to charged matter fields

to obtain gauge invariant operators. In the context of gravity, we should think of the

dressing as conjugating the matter fields by a unitary (as discussed in [18]): Φ(X) =

eiPvΦ(x0)e−iPv = Φ(x0 + v), where x0 is a point in the bulk geometry and x0 + v provides

a gauge invariant characterization of this point, for example, by shooting geodesics towards

it from the boundary. WΓ = eiPv is thus the gravitational analogue of the Wilson line and

v is a functional of the background metric.

We would like to consider dressing the bulk operators with geodesics. This is a conve-

nient choice of dressing because its support in the bulk is only localized along the geodesic;

but more non-local choices of dressing might be natural from the point of view of the

boundary theory [19]. While it would appear that keeping track of the gravitational dress-

ing makes things technically difficult, it is actually not too hard to do so in practice. As

was explained in [18], a convenient way to take the dressing into account is to fix the right

gauge. Given a choice of geodesic dressing, [18] showed that if one works in coordinates

labeled by the geodesics of the dressing in consideration, the contribution from the dressing

disappears WΓ|Γ−gauge = 1. Of course, the commutation relations stay the same and in or-

der to account for the non-locality of the operators, one has to carefully add the additional

constraints arising from gauge fixing to the proper Dirac bracket calculation. We refer the

readers to [18] for more details.

The simplest example of geodesic dressing is that of perpendicular geodesics. This is

usually done [20, 21] by defining the point X = (x, z) as obtained by shooting a spacelike

geodesic perpendicular to the boundary at x and defining

log z ≡
∫ 1

0
dλ

√
gµν [y(λ)]

dyµ

dλ

dyµ

dλ
, (2.3)

1That is, not only are X,X ′ spacelike separated so are their respective gravitational fields.
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Figure 1. A bulk local operator expressed using a retarded (left)/spacelike (right) Green’s function.

The green line denotes the gravitational dressing of the operator. This operator, along with its

smearing can be represented in terms of initial data for the matter part (red smearing) which itself

is graviationally dressed (blue).

appropriately regulated due to the boundary being at infinite proper distance from points

in the bulk. One can show that this is equivalent to fixing Fefferman-Graham gauge for

the metric. However, as was explained in [22], one can’t always define these operators in

arbitrary background metrics.

In what follows, we will think of dressing and gauge-fixing interchangeably. What we

hope to convey is that, given a choice of geodesic dressing, one can always fix a gauge

where the dressing is invisible.2 And with this gauge choice it is very easy to keep track

of the dressing. For example, if we have a bulk operator at some time t and we write it in

terms of operators at an earlier time using the retarded Green’s function:

Φ(z, x, t) =

∫
Σ0

√
hdx′dz′(Gret(z, x; z′, x′)∂tΦ(z′, x′)− ∂tGret(z, x; z′, x′)Φ(z′, x′)) (2.4)

then the dressing can be easily restored from the operator dependence in the left and

right hand side: the operator dressed to (x, t) in the boundary is written in terms of

operators dressed at other boundary points (x′, 0) (see the left hand side figure 1). In a

similar vein, HKLL reconstruction using a spacelike Green’s function — which maps a bulk

operator at one point to a linear combination of operators along a timelike surface closer

to the boundary — can be understood as mapping a geodesically dressed operator to a

linear combination of operators each of which is dressed to a different point (see the right

hand side figure 1). Of course since this is an operator identity, the linear combination of

operators is equivalent to the geodesically dressed bulk operator.

2.3 Background independence and resummation

Let us further elaborate on point 1. Across the paper, we will focus on the semiclassical

regime, where the metric is treated classically. We will consider quantum scalar fields on

top of this geometry whose backreaction is small. To suppress graviton loops we will work

2This is true so long as the respective labeling of points is non-singular.
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to leading order in GN (but gravitons could still be present as free matter). We also will

not consider the backreaction of matter fields.3 All of this is in order to only consider

boundary states which differ from each other in that their duals have different classical

metrics. Since we are ignoring the backreaction from matter, these different states will

solve the gravitational Einstein equations in the presence of boundary values for the stress

tensor whose expectation value is large, i.e. 〈T 〉 ∼ 1/GN .

Our setup will be that of a scalar field in a classical background. The explicit HKLL

expressions for the bulk operators appear to depend on the state through the kernel. That

is, the kernel is obtained by solving the wave equation in a fixed background:

(∇2
g0 +m2)Φ(X, t) = 0 ↔ Φ(X, t) =

∫
dd−1x dt′Kg0(X, t|x, t′)O(x, t′) . (2.5)

However, as discussed in [11] the bulk operator Φ should be independent of the particular

value of background field g0. This is no different from electromagnetism: turning on a

background electric field changes the wave equation, but this does not imply that the

respective gauge invariant operator Φ(X, t) depends on the background field.

The same should hold in gravity, but it is more subtle, since we are now dealing

with different background geometries and one has to carefully define the location and

meaning of bulk points (as described in the previous subsection). Gauge invariant “local”

operators Φ(X, t) are defined in terms of some affine distance along a geodesic thrown from

a particular point in the boundary. In order to consider the operator Φ(X, t) in different

classical geometries, one has to make sure that the same geodesic is still contained in the

Wheeler-de-Witt patch which corresponds to the boundary time t. In other words, one

has to require that the new geometry has the “same” geodesic, as explained in [22]. These

considerations are enough for defining a particular operator at any given point X, but not

for describing all operators in a Cauchy slice Σt.

However, one might also want to define the algebra of gauge invariant operators in

a Cauchy slice Σt. To do this, one has to make sure that one can label all points in Σt

uniquely by (X, t). This requires, among other things, that these geodesics don’t have

caustics.4 This is a stronger constraint and is equivalent to saying that (X, t) is a well

defined set of coordinates in a certain class of geometries. If a family of geometries {g}
allows for this nice labeling of points, we define the background independent operator

Φ{g}(X) to be the corresponding low energy bulk operator when acting in any member

of {g}. As an example, consider the family of Bañados geometries [24], which can all be

written in Fefferman-Graham gauge. In this gauge, X is defined for all members of the

Bañados geometries as X = (x, z). We expand on this example in the next section.

In our setup the metric can be treated as a background field. We can then think of

the background independent bulk operator as a bulk field that satisfies the wave equations

3The simplest setup in which one can account for backreaction would be to consider a set of scalar fields

with a large number of flavors, NF = αN2 � 1, α = O(1). In this limit, the gravitational loops are still

suppressed and the backreaction will only come from the scalar fields [23].
4Since we only focus on a single Cauchy slice, it would suffice if they have no caustics at time t.
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for an arbitrary metric in a particular the family of metrics ĝ:5(
∇2
ĝ +m2

)
Φ(X, t) = 0 ↔ Φ(X, t) =

∫
dd−1xdt′Kĝ(X, t|x, t′)O(x, t′) ,

〈Kĝ〉g = Kg . (2.6)

The operator Φ(X, t) is background independent, but has a different form when evaluated

in different states.

Given these definitions, we can illustrate what is often called resummation. Consider a

particular background metric, g0 and a one parameter family of metrics gλ, such that gλ ∈
{g}. For any given λ, we can schematically expand Kgλ in λ: Kgλ = Kg0 +λK ′g0∂λg0 + . . . .

(we are suppresing indices). This is often interpreted as solving the wave equation order

by order in the fluctuations of the metric(
∇2
g0 +m2

)
Φλ(X, t) = −∇2

g0+λδg|O(λ)Φλ=0(X, t) +O(λ2) ,

Φλ(X, t) =

∫
dd−1x dt′

{
Kg0(X, t|x, t′) + λK ′g0(X, t|x, t′)∂λg + . . .

}
O(x, t′)

(2.7)

and then resumming all contributions to get the answer at finite λ. Note that when

evaluated in states outside the family {g}, the point X so defined won’t have a simple

meaning. It could be that this point does not even exist in the state in consideration or

that the same physical point could be labeled by two different X. Let us reiterate: in order

for all points X to have a nice interpretation in a family of geometries, one needs to be

able to fix the same gauge for all the metrics in this family.

Before we end this section we would like to make some clarifications. Firstly, in the

literature, resummation and “all orders in GN” are terms often used indistinguishably.

However, in the way that we set it up, we want to make a distinction. When solving

the equations of motion to all orders in GN , one has to account for graviton loops and

backreaction to formally write the bulk operator in terms of the boundary stress tensor T̂

(and other boundary operators). The expansion of the bulk field around a different classical

background is equivalent to a large shift of the stress tensor T̂ → 〈T 〉+T̂ , with 〈T 〉 ∼ O(N2)

in the HKLL expansion to all orders in GN . Only a small subset of the GN corrections

gets enhanced by this shift. Terms stemming from graviton loops or matter backreaction

stay of the same order (as they are not too sensitive to one point functions) and thus, the

diagrams that contribute to resummation are due to the shift in the expectation value of

the metric in the scalar wave equation (2.6). This is why we chose to illustrate the notion

of resummation in terms of a scalar field in a classical background.

Secondly, we note that for the same family of metrics {g}, there might be multiple

operators (for illustration we can think of just two) which live in the same geodesic in

the metric g0, but live along distinct geodesics for some other metric gλ. If we denote

Φη(λ, x) as the gauge invariant operator at some distance λ along a geodesic which has a

5Since everything in our discussion is gauge invariant, we should think of 〈ĝ〉 ∈ {g} as a function of the

stress tensor T̂ .
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boost η with respect to the boundary, we could consider these two characterizations of the

operator: one whose geodesic is always the “same” in each metric: Φ0(λ, x) (perpendicular

to the boundary), and another whose geodesic boost angle depends on the background in

consideration: Φαf(ĝ)(λ, x),such that it has zero boost angle with respect to the boundary

when evaluated in the original background, f(g0) = 0. These two operators, when expanded

around the original background give the same leading in GN correlators, but their difference

can be diagnosed when acting on other states (or in higher order correlators). As we

have explained before, picking a dressing can be easily tracked by fixing a gauge. In our

discussion, our gauge choice needs to be defined for a whole family of geometries. In this

language the gauge will clearly be different for the two operators we just described. These

two operators are clearly state independent and present the usual background dependence

as discussed for example in [25].

2.3.1 Resummation and large diffeomorphisms

Let us elaborate on our previous discussion of resummation in the context of AdS3 Bañados

geometries. The content of this section has been discussed previously in [26], with a few

distinctions.6 Consider the Bañados geometries [24]:

ds2 =
dz2 − dx+dx−

z2
+ T+(x+)dx2

+ + T−(x−)dx2
− − z2 T+T− dx+dx− (2.8)

where Fefferman-Graham gauge has been fixed for all metrics in this family. In this way,

the natural geodesic dressed operators are labeled by X = (z, x+, x−). We can consider

the HKLL operator, expanded around a fixed background:

ΦT+,T−(z, x+, x−) =

∫
dy+dy−KT+T−(z, x+, x−|y+, y−)O(y+, y−) . (2.9)

In this case, resummation can be expressed in simple terms since these geometries are

related to the to the vacuum AdS3 solution:

ds2 =
dz̃2 − dx̃+dx̃−

z̃2
(2.10)

by the following large diffeomorphism [27]:

z̃ = z
(f ′+(x+)f ′−(x−))3/2

f ′+(x+)f ′−(x−)− z2

2 f
′′
+(x+)f ′′−(x−)

, x̃± = f(x±) +
z2

2

(f ′±)2f ′′∓

f ′+f
′
− − z2

4 f
′′
+f
′′
−
, (2.11)

where T± is related to f± via the Schwarzian derivative:

T± = −1

2
{f±, x±} =

3f ′′2± − 2f ′±f
′′′
±

4f ′2±
. (2.12)

Given that we have a gauge invariant bulk operator, the operator will be the same

independent of what coordinates we use to label the point X, so we necessarily have that7

ΦT+,T−(z, x+, x−) = Φ(z̃, x̃+, x̃−) =

∫
dỹ+dỹ−K0(z̃, x̃+, x̃−|ỹ+, ỹ−)O(ỹ+, ỹ−) (2.13)

6v2 of [26] has a mistake to be corrected in v3.
7One can check that even if one has to evolve the spacelike Green’s function up to a different cutoff

y = ε→ ỹ = ε̃ = εf ′+(x+)f ′−(x−), this doesn’t really change the r.h.s..
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We should think of the r.h.s. as a function of f±(T±), with T± an operator which gets

different expectation values (we can equivalently think of effectively promoting f± to an

operator as in [28]). When T± = 0, the tilded coordinates are just the original coordinates

(up to an SL(2,R) transformation) and this is the usual HKLL expression. For finite T±,

the HKLL expression gets corrections from the transformation X̃(X,T±), implying that

we should view the r.h.s. as containing all the corrections due to the shift T± = 0 → T±,

which, in this case these, are just the large diffeormorphisms.

Note that the kernel K0 transforms as a shadow operator of dimension (1 − h, 1 − h)

under conformal transformations of the ỹ argument,8 and thus in the previous expression

we can send ỹ → ỹ(y), since the Jacobian factors from the transformations cancel.

In order to check the extrapolate dictionary, one has to account for the fact that the

surface z = ε correspond to ε̃ = ε(f ′+f
′
−)1/2. In this way, the z → ε limit of the bulk

operator gives

ε2hO(x+, x−) = ΦT+,T−(ε, x+, x−) = Φ(ε̃, x̃+, x̃−) = ε2h(f ′+f
′
−)hO(x̃+, x̃−) (2.14)

So, the extrapolate dictionary is recovered in the x̃ coordinates after accounting for the

transformation of the boundary field under f .

3 Shockwave geometries, geodesically dressed bulk operators and time

evolution

In this section, we describe the class of states to be considered. We will focus on the family

of holographic states generated by acting with unitary deformations on the thermal state

ρβ = e−βH , that is holographic states of the form ρU = Ue−βHU †. These include dynam-

ical processes such as adding sources or more generally evolution with a time dependent

Hamiltonian U(t) = Tei
∫ t dt′H(t′). Note that this includes the case where the “seed” state

is the vacuum, which can be thought as the β →∞ limit of our discussion. While parts of

the discussion will be more general, we will often think of the states ρU as describing the

insertion and absorption of shockwaves from the boundary theory, so we will think of these

states as shockwave states and for simplicity we will restrict to translation invariant9 states.

The original “seed” state ρβ is invariant under time evolution with the Hamiltonian

H . It will be useful to distinguish between the time generated by the underformed time

independent Hamiltonian H , t, and the new time dependent Hamiltonian H(t), t. Cor-

respondingly, operators in the interaction picture (i.e. time evolved with the undeformed

Hamiltonian) will be O(t) = eiHtOe−iHt, while those in the full Heisenberg picture will be

O(t) = U(t)OU †(t).

The class of states generated via conjugation with time dependent Hamiltonians all

have the same Von Neumann, or entanglement, entropy as they are all unitarily related

to one another. The original state ρβ is dual to the exterior of a black hole with inverse

temperature β and whose entropy, to leading order in 1/GN , is just given by the area of the

8For global conformal transformations of linear combinations of HKLL operator this was discussed

in [29, 30]. It can be shown to be true from the expression for the HKLL kernel found in [13].
9Or spherically symmetric if we work with Rt × Sd−1 on the boundary.
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black hole horizon. This bifurcate horizon is the Ryu-Takayanagi (RT) surface of the entire

CFT in the state ρβ . The holographic interpretation of this uniformity of the entropy in

this class of states is that the effect of the deformations is always causally disconnected

from the horizon or RT surface [31, 32]. This uniformity of the geometry near the horizon

for the entire class is a defining feature of this set of states. As we will later show, the RT

surface then serves as an anchor point from which to describe these geometries “inside out.”

In general, the time dependence of these geometries will cause the RT surface (the

bifurcate horizon) to lie behind the new horizon of the now larger black hole. This implies

that only a portion of the bulk geometry dual to ρU will be causally connected to the

boundary. Following the usual terminology from discussions on bulk reconstruction, we

will use the term ‘causal wedge’ to denote the region to the exterior of the event horizon,10

and the term ‘entanglement wedge’ to denote the rest of the geometry that is bounded

by the RT surface and the boundary. The original state has a time translation symmetry

which gives a preferred foliation of spacetime, while the other states in this class do not

enjoy such a symmetry. However, there are certain Cauchy slices which are natural from the

point of view of geodesically dressed bulk operators: slices foliated by spacelike geodesics.

3.1 One gauge to rule them all

Given the translation symmetry of the boundary state, the bulk spacetime will be charac-

terized by a set of points consisting of a time-like coordinate t, a space-like “holographic”

coordinate Z and a boundary space-like coordinate x. In order to talk about gauge invariant

operators in this class of geometries, we would like to define the bulk points (X, t) = (Z, x, t)

in an equivalent way for all states in our family ρU = Ue−βHU † (at fixed β). We will de-

fine X by shooting geodesics from a fixed reference point, and therefore Φ(X, t) will be

a geodesically dressed operator. This can be done by working in so called ‘geodesic ax-

ial’ gauge where the metric perturbation along the geodesic is set to zero (that is we set

δgZZ = δgµZ = 0 where Z labels the proper distance along the geodesic11). This implies

that gravitational dressing of the operator will be ‘invisible’ in this gauge.12

The algebra of scalar field operators is generated by {Φ(X),Π(X)|X ∈ Σt}, where Σt

corresponds to the Cauchy slice dual to the boundary time t (for some foliation). Because

we want to consider gauge invariant operators that are geodesically dressed, given a choice

of dressing, it seems natural to consider Σt’s that contain all the geodesics that define

all X. Given a choice of dressing, this gives a preferred foliation, which we expect to be

possible as long as there are no caustics.

However, there are many possible choices of geodesic dressings and in order to single

out a particular one, we will use the symmetries of the original state ρβ . In the original

state, we can use the Killing vector to parametrize bulk time and think of this foliation

10Defined by the bulk region which is in causal contact with (can send and receive signals to and from)

the boundary.
11We use Z to denote the proper distance along an arbitrary geodesic to distinguish it from the label z

often used to describe the proper distance along a perpendicular geodesic.
12This is like having a Wilson line along, say, the z direction and working in the Az = 0 gauge.

– 11 –



J
H
E
P
0
1
(
2
0
1
8
)
0
2
8

as labeled by throwing constant time geodesics from the RT surface to the boundary.13

For an arbitrary state within the class β, the geometry near the RT surface will have an

approximate Killing symmetry. This gives a local preferred foliation, where points are

defined by throwing constant Rindler time geodesics from the RT surface. Because we

want our operators to be labeled by geodesics, it seems natural to extend the previous

local foliation to the boundary by continuing these (locally constant-in-time) geodesics

from the RT surface to the boundary. In other words, we are going to shoot radial space-

like geodesics from the RT surface, which we are going to call extremal geodesics. This

will give us a foliation of a large part of the space-time14 and, for simplicity, we will only

consider operators in this region. These Cauchy slices will be labeled by t, the original

Killing time near the RT surface, and we will henceforth call them extremal slices. These

Cauchy slices have the properties that we expect: they are constant Killing time slices in

the original state and for general states they coincide with the Cauchy slices of the original

state close to the RT surface. By demanding our operators be geodesically dressed and

focusing on Cauchy slices that fully contain the operator and its dressing, this extremal

gauge has been singled out.

This extremal foliation will strongly depend on the details of the state. Consider for

simplicity the limit where the geometries consist of compactly supported shockwaves on top

of the original state. Away from the shockwaves, the geometry will be that of a static black

hole of some given mass. The geodesic emanating from the RT surface will be deflected

whenever it crosses a shockwave by an amount related to energy of the shockwave. In

this way, a Cauchy slice that corresponds to a particular boundary time, Σt, will depend

strongly on all the details of the interior geometry. Going the other way and viewing this

foliation as starting from the boundary and going in, due to the translational symmetry,

it will be completely characterized by the angle at which it is thrown in. This angle will

depend sensitively on how many shockwaves it crosses, so that when it reaches the horizon

it corresponds to a constant time geodesic. Therefore the statement is that the mapping

t→ t depends sensitively on U used to define the state.

Given this family of geodesically foliated Cauchy slices, the simplest label for bulk

points corresponds to the local boost angle at which they are thrown t and the affine

distance λ from the RT surface. Because of translation symmetry, we can then label the

point from the horizon as (XS , t) = (λ, x, t). This labeling is state independent and thus

gives us state independent operators; the operator Φ(XS) corresponds to the same operator

independent of what state in this family we are considering. The XS label corresponds to

dressing the bulk operator to the RT surface.

While these operators are in principle well defined, we might prefer to dress the oper-

ator to the boundary. As just emphasized, Σt will depend sensitively on the background

metric dual to ρU , as it will hit the boundary at a different boundary time t = tU (t),

depending on the details or U . The affine distance from the RT surface to the boundary

13Or from the boundary to the RT surface. But, as we will discuss, it is clearer to think of them as being

thrown from the RT surface.
14By shooting geodesics from the horizon there will be a maximum boost after which the geodesic no

longer reaches the boundary [33].
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LU (t) will also depend on these details as will the angle of incidence of Σt on the boundary.

We can thus label the bulk point (XS , t) “outside in” via (XB, t) = (z, x, t), where the bulk

point corresponds to following the respective geodesic along Σt for a fixed proper distance

z. The operators Φ(XB) are background dependent: when expanded around a particular

background they will lie on the respective geodesics described above. The angle between

these geodesics and the boundary will depend on the background, as in the example be-

fore section 2.3.1. When expanded around a particular background, the points XS , XB for

z = LU (t)−λ will be the same, but the mapping from Φ(XS)→ Φ(XB) is state dependent,

since, with XS we are labeling the operator by its fixed distance to the RT surface while

with XB the operator is labeled by its fixed distance to the boundary.

In this discussion, we are trying to clarify what the meaning of “the same point” in this

family of geometries should be. This notion of “same point” exists because there is part of

the geometry which is left invariant by the shockwaves. That is, as defined XS and XB will

label the same points if they have the same x as well as the same distance λ = LU (t)−z from

the RT surface. Finally they should land at the same time t = t(t) with respect to the near

horizon Rindler generator. In this way, the geodesic in the time dependent ρU state and

the geodesic in the original geometry, dual to ρβ , respectively labeled by (XB, t), (X
′
B, t),

will have the same endpoint, denoted by ∼ as (XB, t) ∼ (X ′B, t) ∼ (XS , t) if they are at

the same proper distance from the RT surface along the same geodesic. From the boundary

point of view, this “same point” will be labeled by a different geodesic and proper distance

depending on the state. We will use this characterization heavily in later sections and

combine it with time evolution.

There is more than one way to extend the definition of the operators in the original

state to other states in the same family, as explained in section 2.3, they will correspond

to different operators which have the same leading order in GN correlators in the reference

state. These different definitions correspond to different choices of geodesics which all

correspond to the (z, x, t) geodesic in the original state.

We have just discussed the extremal geodesics, but another natural characterization

of the dressed bulk operator would be to always shoot the geodesic from the boundary

with zero boost angle. We denote these operators Φ(XFG, t) because they correspond to

the Fefferman-Graham (FG) geodesic close to the boundary, which we can extend deeper

into the bulk. The point (XFG, t) = (zFG, x, t) is labeled by the affine distance zFG along

a spacelike geodesic from the point (x, t) in the boundary. This definition works very well

when one can fix the Fefferman-Graham gauge in the whole geometry as explained in the

previous section. However, in the time dependent geometries considered herein, the FG

geodesics won’t give a natural foliation of the entanglement wedge, since these geodesics

generically will not go through the horizon. These geodesics will also have caustics. So,

while the Φ(XFG, t) operators can be defined independently of the ρβ family in consider-

ation, they don’t preserve any notion of locality. As we will explain later, the extremal

dressed operators have nicer properties.

3.2 Algebra of gauge invariant operators

Consider the algebra of operators Φ(XB) which are dressed to the boundary by the extremal

geodesics fully contained in the their respective Cauchy slice. The geodesics defining these
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Figure 2. Depiction of our definition of “same point,” (Xt
B , t) ∼ (XH , t). Note that the dress-

ings reach the same point in the old geometry as defined by their destance to the original black

hole horizon or RT surface. By backwards evolving using the respective Hamiltonians should give

equivalent expressions for the operators as described in equation (3.1).

operators can cross multiple shockwaves and therefore, in order to understand them from

the boundary point of view, one has to be careful about their dressing. In order to discuss

the algebra of operators at a fixed time, we will consider operators in the Schrödinger

picture. When expanding the Schrödinger operators Φ(XB) around a given background,

they will depend on the background through the time at which they are evaluated (but the

operator itself is state independent), this we will denote Φ(Xt
B). Thus, the t label is there

to keep track of the background and how are we dressing the operator, but the operator

itself does not depend on t.

For clarity, we will denote the Schrödinger operator expanded around the original

geometry by Φ(XH ), since the background dependent boundary condition on the geodesic

labeling Φ(Xt

B) ends up always being the same in this state. We acknowledge that the

background dependence of the dressing is a drawback of the Φ(XB) operators in contrast

with, for example, Φ(XFG), we still consider the former dressing because it has nicer local

properties.

Taking everything into consideration, we can write a more precise version of equa-

tion (2.1) while taking the dressing into account:

U †H(t, 0)Φ(Xt
B)UH(t, 0) = U †

H
(t, 0)Φ(XH )UH (t, 0), (Xt

B, t) ∼ (XH , t) (3.1)

where (Xt
B, t) ∼ (XH , t) means that the two points are at the same location in the sense

defined in the previous section. While Xt
B will cross some number of shockwaves, XH

will not. Note that the two points Xt
B and XH will be characterized by different proper

distances from the boundary and therefore Φ(Xt
B) and Φ(XH ) are not the same operators.

See figure 2.

What if we had used the FG operators Φ(XFG)? Again the “same point” when com-

paring between the time dependent geometry and the dual of ρβ should be understood in

terms of having the same geodesic distance to the horizon, i.e. (XFG, t) ∼ (XB, t) means

that the two points sit at the same point in the original geometry (and therefore they have

different affine distances from the boundary). However, at this juncture, it is not clear to

us if (3.1) is also true for Φ(XFG), because of the aforementioned issue with caustics. We

explore this further in section 5.2.
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Let us reiterate that, as opposed to the FG gauge, the algebra of extremal dressed

operators satisfies nice local properties. These geodesics associate one operator per bulk

point (since they have no caustics) and [Φ(Xt
B),Π(X ′tB)] ∝ δ (x− x′), where, as we described

before, Xt
B = (z, x). We expect that the tradeoff between locality and state dependence

(on the family of states) is generic.

3.3 Summary of notation

Let us summarize the notation:

• Φ(X) denotes Schrödinger operators, which are defined gauge invariantly since X is

the endpoint of a geodesic.

• (Xt
B, t) = (z, x, t) is an extremal dressed point which sits at a proper distance z

from the boundary along a geodesic which has some boost angle with respect to the

asymptotic boundary but which becomes a constant Rindler time geodesic when it

approaches the horizon.

• (XFG, t) denotes a geodesic with zero boost angle with respect to the boundary. Since

the boost angle is fixed, the operator defined in this way will always be the same (i.e.

background independent as it does not depend on the family of geometries). In time

dependent backgrounds these coordinates don’t give a nice foliation of the spacetime

due to caustics.

• (XH , t) labels a point in the original geometry ρβ . Both definitions XFG and Xt
B

coincide in this state: and correlation functions of these various operators will be the

same in the state ρβ to leading order in GN .

• (XS , t) = (λ, x, t) denotes a geodesic with proper distance λ from the RT surface,

thrown from the point x along the RT surface and at Rindler angle t.

• We denote the “same point” in the bulk across different geometries using ∼, as

in (Xt
B, t) ∼ (XS , t) ∼ (XH , t), where (Xt

B, t) can be thought as reaching (XS , t)

along the same geodesic but charaterized “outside-in” from the boundary. Thus

the Schrödinger operators Φ(Xt
B) will depend on the time that they are evaluated,

since the boost angle will be different (but the dependence of the operators is just

a background effect). One could also try to define some notion “same point” for

(XFG, t), but the identification between (XFG, t) ∼ (XH , t) will be more complicated.

4 Reconstruction of operators behind shockwaves

In this section, we will describe in explicit terms how one can reconstruct operators deep

in the entanglement wedge using the fact that the local operators only depend on the

boundary Hamiltonian at their respective time (see point 3), while being careful about

dressing. We will also compare this with the modular flow considerations of [12, 13] for

reconstructing operators beyond the causal wedge.
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As we mentioned in the introduction, the idea is to use the operators Φ(Xt
B) and the

equality between bulk and boundary evolution. While we will use this set of coordinates,

nothing in this section really depends on this specific choice of dressing: while the extremal

geodesics that define Φ(Xt
B) seem to give a nice foliation of the entanglement wedge, we

could also consider Φ(XFG) (or other dressings), so the reader can make the substitution

without worry, taking into account that when we refer to the “same point” in the old and

new geometry, we mean it in the sense explained in section 3.1. At some points in this

section, we will appear to draw conclusions that depend on the extremal gauge choice.

When this is the case, we will also describe what we expect to happen had we chosen XFG.

Note that because of caustics, it is not always clear how to compare Φ(XFG) at different

times (see figure 14 for an illustration) and that is why we are focusing our analysis around

Φ(Xt
B), which don’t suffer from these problems.

As summarized in point 3, it was suggested in [11] that the bulk dressed operator only

depends on the Hamiltonian at t and we are free to change H elsewhere. By using the

bulk equations of motion and the equality between bulk and boundary evolution, Φ(Xt
B)

can be written in terms of operators at other times:15

Φ(Xt
B) = UH(t, t′)

∫
Σt′

dΣt′

(
GR(Xt

B, Y
t′
B )Π(Y t′

B )− ∂t′GR(Xt
B, Y

t′
B )Φ(Y t′

B )
)
UH(t′, t) ,

(4.1)

where we used the boundary unitaries to write this as an operator at t. As we have been

keen to stress, even if this expression seems rather simple, since these unitaries UH(t, t′) de-

note boundary evolution, one needs resummation to see the equivalence between the l.h.s.

and r.h.s. in terms of boundary fields. The reason is clear, the states ρt′ , ρt are macroscopi-

cally different and when one uses the same HKLL operator in two macroscopically different

states one has to resum all the gravitational corrections. In other words the wave equation

is different in these two states and therefore the zeroth order HKLL kernels reflect this.

With these caveats in mind, we would like to propose the following procedure for

reconstruction in time dependent geometries:

1. The Cauchy slice Σt0 where our operators live will generically cross a subset of all

the shockwaves present in the spacetime. Given this Cauchy slice, the simplest way

to time evolve this state is to consider a Hamiltonian which does not add any new

shockwave, other than those which cross the geodesic. For example, if one of the

shockwaves is reflected along the boundary at a later time, we will choose a time

dependent Hamiltonian which absorbs the shockwave. We will consider evolution by

this Hamiltonian Ht0(t). See figure 3 for an example.

2. Given this new geometry generated by the time dependent Hamiltonian Ht0(t), we

will use (4.1) (or an advanced version of it) to choose a new t1 such that Σt1 crosses

a smaller number of shockwaves than the original surface. This is usually done by

15After fixing the extremal gauge, the dressing is invisible. Thus we can choose to first fix the gauge to

derive this expression using the appropriate wave equation and then write it in a gauge invariant way by

adding the proper explicit dressing.
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Figure 3. Illustration of step 1, whereby we remove all shocks that do not cross Σt0 , the Cauchy

surface our operator lies in.

Figure 4. Illustration of step 2, whereby we simplify the operator by evolving it to a Cauchy slice

that crosses fewer shocks.

evolving past shockwave insertions in the boundary.16 The goal of this is to simplify

the operator. In this procedure, (4.1) can in principle include a contribution from

fields in the boundary. See figure 4.

3. Now, we start again with the operators Φ
(
Y t1
B

)
, constructed by evolving the original

operator using the above steps. Since it does not matter how we prepared the state

at time t1, we can just repeat step 1 for each of these operators independently.

These steps can be repeated until the Cauchy slice where the operator is located does

not cross any shockwave and thus the operator can just be reconstructed in the boundary

in terms of the usual causal reconstruction in the exterior of black holes.

Note: it could be that the operator is in causal contact with the boundary before

eliminating the last shockwaves. We could use HKLL here. The corresponding operator

will of course be equivalent to what we would get by removing all shockwaves. This might

seem surprising at first and to see it explicitly, one should solve the wave equation in the

16One can do this so long as the shockwave we are evolving away from is inserted at a boundary time t

which does not scale with N . In contrast, the shockwaves in the Shenker-Stanford geometries are inserted

far in the past, at a scrambling time t ∼ −N logN , and our procedure can not be applied.
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presence of gravitational corrections and then shift the background. We discuss this in

section 4.1.

It is important to highlight that, in order to remove a shockwave using 1, we need this

shockwave to not cross the entire Cauchy slice Σt0 where our operator lives, at any point.

This means that, even if the operator Φ(Xt0
B ) does not cross the shockwave, but the Cauchy

slice Σt0 does, we can not change the Hamiltonian so that shockwave was not inserted. For

example, if the Hamiltonian adds a shockwave at some time t = 0, when reconstructing

operators at t < 0, we can consider the Hamiltonian where there is no shockwave inserted

at t = 0. However, if we want to reconstruct operators at any t > 0, we can only change

the Hamiltonian so that the shockwave is reflected in the boundary, but we can not really

get rid of this shockwave (see figure 5 for an illustration). This global constraint avoids

possible paradoxes and morally keeps track of the original state ρβ . If possible we could

try to use the retarded Green’s function to move Φ(Xt0
B ) to a Cauchy slice which crosses

no shocks and then use 1.

We can illustrate this rather general procedure for Vaidya and double (time symmet-

ric) Vaidya without finding the explicit kernel. In section 5, we will write some explicit

expressions in simple examples.

HKLL can be understood as using a spacelike Green’s function to write bulk operators

in terms of boundary operators. One could also potentially use the bulk-to-bulk (rather

than the usual bulk-to-boundary Green’s function used in HKLL) spacelike supported

Green’s function to simplify some of the previous steps. The idea behind this simplification

is that for a bulk operator which crosses two shockwaves which intersect, we can use this

bulk-to-bulk evolution to write the bulk operator in terms of bulk operators closer to the

boundary, which only intersect one shockwave. This identity is sometimes helpful deep in

the bulk, where the alternative in the outlined procedure would be to time evolve the bulk

operator until it only crosses one shockwave (see figure 6).

Vaidya. Consider the case of Vaidya:

ds2 =
1

z2

(
−F (z, v)dv2 − 2dvdz + d~x2

)
f(z) = 1− (2πz)d

(
Θ(−v)

βd
+

Θ(v)

β′d

)
The Penrose diagram for Vaidya is shown on the left diagram of figure 7 and the time

slices that we are considering are those in the right diagram. Our discussion thus far has

taken the original state ρβ to be a thermal state with temperature β and the geometry

after the shockwave as that of AdS-Schwarzschild with β′ < β. Pure state Vaidya is a

special case β →∞ of this general discussion. In the finite temperature case, we are only

interested in the entanglement wedge, which is the region outside the original bifurcation

horizon (right side of the thermofield double). In the β →∞ limit, the entanglement wedge

becomes the whole spacetime.

It is natural to split the Penrose diagram into four regions, depending on whether

the points are inside or outside the causal horizon and before or after the shockwave. The

regions are labelled I−IV in figure 7. From the point of view of Cauchy slices and operators,

an alternative important division could split the regions depending on whether the Cauchy
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Figure 5. Operators in Cauchy slices that either cross a shock or do not. If the operator’s dressing

crosses no shocks — but the full Cauchy slice does — we can not use step 1 to remove said shock

without first using step 2 to move the operator to a different Cauchy slice which does not cross the

shock.

Figure 6. We can exploit the spacelike HKLL procedure to write an operator whose dressing crosses

multiple shockwaves as a linear combination of operators whose dressing crosses less shockwaves.

slice crosses the shockwave or not. If the shockwave is sent from t = 0, then the Cauchy

slices Σt>0 will contain operator which cross the shockwave. Reconstruction in the two

regions to the past of the shockwave was discussed using precursors in [11].17

Let us start by discussing the operators in region II with geodesics anchored at bound-

ary times t < 0. We summarized this case in the introduction. These operators live entirely

in the old geometry but they are not in causal contact with the boundary region, so one

can not use HKLL reconstruction. Since the Cauchy slices cross no shocks, we can use

step 1, which instructs us to change the Hamiltonian and get rid of the shockwave. This

17In the absence of dressing most of this discussion appears implicitly in [11]. More recently, [34] discussed

the kernels for reconstruction in terms of those of Schwarzchild/ vacuum.
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Figure 7. Penrose diagram and extremal Cauchy slices for AdS-Vaidya. We label regions of the

penrose diagram I− IV . There is a maximum boost angle after which the extremal geodesics don’t

reach the boundary.

allows us to express the operator in region II in terms of boundary operators evolved with

the original, time independent Hamiltonian, H . These operators are not in the causal

wedge, which implies that they can not be written in terms of simple boundary operators

(operators that satisfy the extrapolate dictionary in the shockwave geometry). They can,

however, be written in terms of operators evolved with the original Hamiltonian. If the

operator in II sits at a time t > 0, then its Cauchy slice will cross the shockwave. Then,

step 2 instructs us to use (4.1) to write the operator in terms of operators whose dressing

does not cross any shockwave and we can apply the previous discussion.

Let us now give an equation for the discussion in the previous paragraph. If we denote

HKLL in the original state (in the Heisenberg picture) by:

U †
H

(t, 0)Φ(XH )UH (t, 0) =

∫
dd−1xdt′KH (XH , t − t′|x)O(x, t′) +O(GN ) , (4.2)

where we wrote the kernel KH in an explicitly time translation invariant form, then we

can apply (3.1) to write:

U †H(t, 0)Φ(Xt
B)UH(t, 0) =

∫
dd−1xdt′KH (XH , t(t)− t′|x)O(x, t′) +O(GN ),

(Xt
B, t) ∼ (XH , t) , (4.3)

where t(t) is the near horizon Rindler time which corresponds to the boundary time t.18

Note that equation (3.1) also has unitaries on the r.h.s. , but since the Hamiltonian is time

independent, this just amounts to shifting the time argument in the kernel.

18Recall that by XH we mean the bulk point in the old geometry which has the same proper distance

along a constant Rindler time geodesic thrown from the RT surface as compared with Xt
B . See 3.1 for a

reminder.
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Reconstruction in region I is quite similar to the discussion for region II and we can

repeat it straightaway. However, since region I is actually in causal contact with the

boundary causal domain, we have the option of using HKLL in the Vaidya geometry. For

simplicity, let us first consider the operators with t < 0, lying in a Cauchy slice that

does not cross the shockwave. It may seem odd, at first, that the full HKLL expression

in the Vaidya background can give the same correlators as the expression given in the

r.h.s. of (4.3). This was one of the main points of [11]. The caveat, again, is that the bulk

operator is background independent and, thus, in order to compare the two expressions one

needs to remember to take resummation into account. That is, one should in principle solve

the wave equation for an arbitrary background and then expand around the background

in consideration. We will discuss this further in section 4.1. In section 5, we illustrate how

this works more explicitly, using the symmetries of 2, 3 bulk dimensions.

Region III is morally equivalent to region I. One can use HKLL directly in the new

background or evolve to the past and write the bulk operator in terms of boundary operators

plus bulk operators in the old geometry. Then one can construct the operators in the old

geometry as in I. In this case, it is much simpler and nicer to simply use HKLL in the

new geometry.

Region IV is the interior of the new black hole. While in the previous cases, we used

step 2 to avoid having the dressing cross the shockwave, we now use 2 to opposite effect:

we write this operator in terms of operators whose dressing now crosses the shockwave

(the region to the past of the shockwave) and operators whose dressing does not cross the

shockwave, but their respective Cauchy slice does. The operators in region IV can thus

be reconstructed in two different but equivalent ways. One can either use the retarded

Green’s function to write the bulk operator in terms of bulk operators in regions I, II, III

and reconstruct the operators in these regions as discussed above (see the left hand side of

figure 8), or one can evolve back to t = 0 (or t < 0) and write the bulk operator in terms of

bulk operators at t = 0 as well as boundary operators (see the right hand side of figure 8).

Note that while the FG dressing is poorly suited to the Vaidya example, it seems that

there is another class of natural dressings for this state, which is to dress the operators

along ingoing null rays (discussed for example in [35]). However, using ingoing null rays

will not work for more generic geometries made out of shockwaves, such as the reflecting

Vaidya geometry discussed in the next section.

Reflecting Vaidya. Consider now a reflecting Vaidya geometry, given by an expanding

null shell of matter in the past which collapses again after it reaches the boundary, as in

figure 9. This example is important, because we will show that it is not sufficient to use

the almost light-like foliation, useful in the Vaidya case as discussed in [35], when there is

a past shockwave. Another crucial difference is that, in this case, all Cauchy slices cross

one shockwave. The state dual to reflecting Vaidya is given by ρW = WρβW
†, where W is

the shockwave creation operator. The boundary Hamiltonian is none other than the time

independent H , but the state is not an eigenstate of the Hamiltonian. We will denote the

boundary time of the extremal geodesics by tW .

The procedure for reconstructing the operators follows the Vaidya discussion closely.

For an operator at tW > 0, step 1 instructs us to consider the time dependent Hamiltonian
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Figure 8. Equivalent reconstructions for operators behind the new black hole horizon and to the

future of the shock (region IV). Left : we can use the retarded Green’s function to write Φ in terms

of bulk operators in regions I, II and III. Right : we can use the retarded Green’s function to evolve

to the t = 0 slice where we can write Φ in terms of operators in regions I and II as well as boundary

operators in the new geometry.

Figure 9. Penrose diagram and examples of extremal Cauchy slices for the reflecting Vaidya

geometry.

of Vaidya and thus we can then repeat the previous story. For operators at tW < 0, the

procedure is a time reflection of the previous.

The limit when tW → 0 is of course continuous, so nothing special happens when

we consider the operators at tW = 0. This tW = 0 Cauchy slice is essentially a Cauchy

slice in the shock-less state ρβ , only differing at the point where it crosses the reflecting

shockwave near the boundary. Because of the presence of a shockwave reflecting at infinity,

the Φ(XtW=0
B ) operators intersect the shockwave and thus these are different operators from

those of the original geometry. Note that (3.1) relates the operator at tW = 0 in this state
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Figure 10. The geometry on these slices is identical implying a natural identification of points

between them. However, the proper distances from these points to the boundary differs across the

two cases because of the shockwave encountered near the boundary.

with the operator in the state ρβ :19

W †Φ(XtW=0
B )W = Φ(XH ), XtW=0

B ∼ XH . (4.4)

The operator in the reflecting Vaidya geometry Φ(XtW=0
B ) is different from the local

operator in the original state and this difference is necessary to ensure the algebra of

operators at ΣtW=0 gives rise to the same bulk correlators:

〈Φ(XtW=0
B ) . . .Φ(Y tW=0

B )〉ρW = 〈Φ(XH ) . . .Φ(YH )〉ρβ , (4.5)

while, of course, if we consider adding boundary operators into the above correlators there

will be no equality. Had we neglected the dressing, we might have concluded that ΣtW=0

is essentially the same slice for ρβ and ρW and thus the correlators of all operators in this

slice should be the same. This certainly can not really be true unless all operators commute

with the shockwave. See figure 10 for an illustration.

Note, while it is trivial that an operator WΦ(XH )W † has the same correlators in the

state WρβW
† as the operators not conjugated by the unitary in the original state, it is non

trivial that the operator conjugated by the unitary corresponds to a (properly dressed)

bulk local operator at ΣtW=0 in the ρW geometry.20 This can be cast in the language

of error correction of [36]: given the bulk Cauchy slice ΣtW=0, which is almost the same

for the two states, ρW , ρβ , the expectation values of the elements in the algebra of low

energy operators AW in our state ρW does not depend on W . That is, we can think of the

GNS subspace created by acting with a small number of operators in ΣtW=0 and, while

19This can be seen by comparing the state ρW at some Σ0+ with the same state but now evolved with a

time dependent Hamiltonian which inserts the shockwave at t = 0.
20For example, if ΣtW=0 crossed the shockwave somewhere inside the bulk, the operator WΦ(XH )W †

won’t have the interpretation of a local operator in the new geometry if the geodesic that connects X with

the boundary does not cross the shockwave, since there is no analogue of this point in the geometry with

no shockwave. In this particular example, since ΣtW=0 crosses the shockwave near the AdS boundary,

WΦ(XH )W † corresponds to a local bulk operator for all X ∈ ΣtW=0
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the mapping from the bulk to the boundary depends on the explicit details of the state in

consideration (and the respective operator dressing), they have the same correlators and

thus span the same subspace. While these are technically different subspaces of the total

Hilbert space, they are isomorphic. We don’t expect backreaction to change any of these

statements significantly.

Furthermore, note that all the operators Φ(XH ) are simple operators, in the sense that

one can use the usual HKLL dictionary. However, not all the operators Φ(XtW=0
B ) are in

causal contact with the boundary causal domain. So, even if the subspaces are technically

the same, in one case the algebra of operators which act in the subspace is made out

of simple operators, while in the other there are some “complicated” operators. This

distinction seems rather arbitrary and it is just a consequence of restricting the definition

of simple operators to Heisenberg operators evolved with a particular Hamiltonian.

In order for this whole story to make sense, it is crucial that Φ(Xtw=0
B ) 6= Φ(XH ). Even

if these operators are background dependent but state independent (within the family of

states), they are different because Xtw=0
B ∼ XH implies that they will be at a different

proper distance to the boundary (because one intersects a shockwave). We expect the

same to be true for the FG dressed operators, even if Φ(XFG) is state independent. Since

XFG ∼ XH are at different affine distances from the boundary, thus Φ(XFG) 6= Φ(XH ) for

XFG ∼ XH .

4.1 Resummation

In this subsection, we want to illustrate a confusing point. Whenever one can follow the

HKLL procedure in two distinct ways for the operators, see figure 11 for an illustration, it

would appear that the two expressions do not match. For operators in region I in Vaidya,

for example, we can map this operator to the boundary using HMPS [11] or using HKLL.

The two distinct expressions are:

eiHtΦHMPS(Xt
B)e−iHt = W

[∫
dd−1x′dt′KH (XH , t(t)− t′|x′)O(x′, t′) +O(GN )

]
W †

eiHtΦHKLL(Xt
B)e−iHt =

∫
dd−1x′dt′KH(Xt

B, t|x′, t′)O(x′, t′) +O(GN ) (4.6)

where we used the fact that, for Vaidya, U(t, 0) = e−iHtW . Note that Φ(X) are Schrodinger

operators and thus the operators on the left hand side are in the interaction picture. One

of the goals of [11] was to argue that these two expressions are equivalent. But it would

naively appear that these two expressions can not be equivalent, given that the right hand

sides of each expression depend on different Hamiltonians and, furthermore, the operators

are dressed differently. The resolution is that the unitaries in the expression for ΦHMPS(Xt
B)

imply that equality does not hold if we truncate to some finite order in GN . This means

that, in principle, one has to resum the O(GN ) corrections in the first term in order to get

the explicit expression of the second line. In the next section, we will consider this explicitly

in d = 1 and d = 2 where this resummation amounts to a boundary diffeomorphism. This

is of course expected from the usual way that we think about resummation. Since the

operator between brackets to leading order in the first expression does not know about
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Figure 11. Two methods of implementing the HKLL perscription for an operator in region I.

One can either implement the usual HKLL directly by finding the spacelike Green’s function in the

Vaidya geometry (left), or by evolving the operator using a retarded Green’s function fitting the

operator entirely in region I (right). The operator can then be obtained by evolving forwards using

H . The equality on the right is equation (3.1).

the shockwave, by conjugating it by the unitary the stress tensors that appear inside the

bracket order by order in the GN expansion must pick up an expectation value after t > 0

and this series resums to the HKLL answer.

Note that the equality between the two expressions can be exploited in different do-

mains. The HKLL expression is useful for computing correlators of bulk operators in the

exterior of the horizon, either before or after the shockwave, whereas the HMPS expression

is useful for computing correlators of bulk operators when the endpoint Xt
B is before the

shockwave:

〈ΦHMPS(Xt
B) . . .ΦHMPS(Y t

B)〉t = 〈Φ(XH ) . . .Φ(YH )〉t (4.7)

where the operators could in principle be inside the horizon and their geodesic could cross

the shockwave, as long as the Xi are in the past of the shockwave. This follows trivially

from the precursor formula in (4.6), which is true in the all orders in GN sense.

4.2 Modular flow

Up until now we have described a procedure to reconstruct operators in the entanglement

wedge by exploiting the ideas of [11]. However, it has recently been argued [12, 13] that

one can reconstruct operators in the entanglement wedge in terms of modular flow. In this

section we are going to explore modular flow in the shockwave states we have considered

so far and make connections with the approach presented in previous sections.

The modular Hamiltonian of a given state ρ is (minus) its logarithm, and modular

flow is the operation of conjugating some operator by an exponential of the modular

Hamiltonian:

Kρ ≡ − log ρ, O(x)→ Os(x) ≡ eiKρsO(x)e−iKρs . (4.8)

For shockwaves inserted in the thermal state ρU = UρβU
†, the modular Hamiltonian

is just the thermal Hamiltonian conjugated by a unitary:21

KρU = βUHU † . (4.9)

21To see that this is true, note that UρnU† =
(
UρU†

)n
.
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We are going to consider modular flow in the Schrödinger picture. Note that, since the

modular Hamiltonian is built out of the state, both the state and modular Hamiltonian

are time dependent in this picture. We will label this time dependence with a subscript t

where appropriate.

In [12, 13], the equivalence between bulk and boundary modular flows was used to

write an expression for the bulk field in terms of boundary modular evolved operators:22

Φ(X, s) =

∫
dd−1x

∫
ds′Ks−s′

t (X|x)ρ−is
′

t O(x)ρis
′

t +O(GN ) . (4.10)

We refer readers looking for a discussion on the intuition behind (4.10) to [12, 13]. Since

we are considering the whole state of the CFT (and not some reduced density matrix), the

field O(x) is therefore integrated over a boundary Cauchy slice ∂Σt. This formula should

be valid for bulk points X in Σt anywhere in the entanglement wedge. Note that (4.10)

has us integrate over s, but not over t.

A very simple illustration of how (4.10) acts can be given for the operator at the RT

surface (bifurcartion horizon). As was shown in [13], we expect:

Φ(XRT ) =

∫
dd−1ke−ikx

∫
ds c−1

k ρ−ist Okρ
is
t , Ok =

∫
dd−1xO(x)eikx , (4.11)

where Ok is the spatial fourier mode and ck is the fourier transform of the bulk-to-boundary

correlator: 〈Φ(XRT )O(x)〉. Equation (4.11) tells us that the bulk operator at the horizon,

for an arbitrary geometry, is given by a linear combination of modular “zero modes.”

Generically, the kernel of (4.10) will be quite complicated as it depends on s and on Kρ.
However for Φ(XRT ) it only depends on the bulk-to-boundary correlator.

4.2.1 Vaidya

Let us now consider a concrete simple example to get an easy visualization of the flow: a

case similar to Vaidya, where the state has been time evolved with a Hamiltonian which

is time dependent after some time t = 0, and introduces shockwaves. As a reminder,

U = UH(t, 0) and we will denote evolution by the old Hamiltonian by UH (t, 0). In this

setting, it is easy to understand how modular evolution acts on the bulk operator Φ(Xt
B).

The modular flow will be:23

Φ(Xt
B, s) = UH(t, 0)eiHsUH(t, 0)†Φ(Xt

B)UH(t, 0)e−iHsUH(t, 0)† . (4.12)

Modular flow of bulk operators. If we stick to the region before the geometry changes

(e.g. regions I and II in Vaidya), we can use equation (3.1) to write (4.12) as:

UH(t, 0)†Φ(Xt
B, s)UH(t, 0) = UH (t + s, 0)†Φ(XH )UH (t + s, 0) , Xt

B ∼ XH . (4.13)

The term inside (4.13) is the Heisenberg evolved operator Φ(XH , t+ s). In this way, even

if the modular flow in the new state is non-local, its action on operators whose endpoint is

22Those papers usually refer to the s = 0 version of this formula, but because modular evolution is time

independent, it is easy to see that this version is also true.
23For simplicity, we are going to rescale s → s/β, so that we can identify s in the original thermal state

with the standard time evolution.
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Figure 12. By modular evolving the operators Φ(Xt
B) by an amount s, we get a non-local operator

in the same Cauchy slice. If we Heiseneberg evolve this operator, it is equivalent to the Heisenberg

operator Φ(XH , t + s) (right). If the point (X ′
B , t+ s) ∼ (XH , t + s) is before the shockwave, this

implies that the modular flow is local. That is, Φ(Xt
B , s) is equivalent to the Heisenberg operator

Φ(X ′t+s
B , t+ s) (bottom).

in the past of the shockwave will be local in the old geometry. That is, if we do modular

flow s of the Heisenberg operator at time t and we write the corresponding operator at

t = 0, we get the Heisenberg evolved operator with respect to H evolved for a time t + s,

as shown in figure 12.

Now, if the endpoint of the geodesic (Xt+s
B , t+s) is also before the shockwave, we can

again use (3.1) and (4.13) to write:

UH(t, 0)†Φ(Xt
B, s)UH(t, 0) = UH(t+s, 0)†Φ(Xt+s

B )UH(t+s, 0) , Xt+s
B ∼ Xt+s

B , (4.14)

where Xt+s
B sits at the same proper distance along the same geodesic thrown from the RT

surface as Xt+s
B . That is, when the points (Xt

B, t) and (Xt+s
B , t + s) are both in the past

of the shockwave, we have shown the modular flow of the bulk operator Φ(Xt
B) (whose

dressing crosses the shockwave) is local! See figure 12. This justifies a posteriori the choice

of this particular dressing, because it is only for this dressing that the modular flow presents

these nice properties: in these coordinates, it is just a shift in the time label.24 If the point

(Xt
B, t) is before the shockwave but (Xt+s

B , t+s) is not, then, the modular evolved operator

won’t be local but rather a precursor (4.13).

When the bulk operators are located after the shockwave but in the exterior of the

horizon (e.g. region III in Vaidya), we expect the modular flow to also be local. This

is because we expect that the action of the modular Hamiltonian on these operators to

24For operators dressed with FG geodesics, we expect the mapping between operators in the old and new

geometry to make the relationship much more complicated.
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be approximately thermal at a larger temperature. Further understanding this seems

complicated, but we expect that one can use the results of [37] to see this explicitly in

AdS3 (at least in perturbation theory).

Modular flow in region IV will be more complicated, but we expect that we can think

of operators located in this region as a linear combination of bulk operators before the

shockwave or outside the black hole. Since we understand how modular flow acts on these

latter operators, this should give a consistency condition on the bulk modular flow for

operators in region IV.

Reconstruction from (4.10). We have tried to stress that resummation is important

when considering the morally equivalent but different ways one can express a bulk operator

(for example a bulk operator in a Cauchy slice Σt which crosses the shockwave in the

exterior of the horizon). Given this consideration, it is clear that an explicit evaluation

of (4.10) will turn out to be complicated.

For operators in region III, we expect that the action of the modular flow in (4.10) to

be roughly local and thus can be understood in terms of the usual HKLL dictionary.

For operators before the shockwave, we can plug the explicit expression of the modular

Hamiltonian in (4.10). This expression includes Ut = UH(t, 0) which is suggestive of a

precursor/ resummed approach. If we plug the modular Hamiltonian in (4.10) for points

Xt
B in regions I or II we get:

U †t Φ(Xt
B, s)Ut =

∫
dd−1x

∫
ds′eiHs

′
U †t

[
Ks−s′
t (XH |x)O(x) +O(GN )

]
Ute
−iHs′ (4.15)

In order to evaluate this expression, which is similar to (4.6), we have to resum. Given the

previous discssions, we expect

U †t Φ(Xt
B, s)Ut =

∫
dd−1x

∫
ds′K̃s−s′

t (XH |x)eiHs
′
Oresum(x, t)e−iHs

′
+O(GN ) (4.16)

where, again, Xt
B is either in regions I or II and Xt

B ∼ XH . Consistency with equa-

tion (4.13) requires:

K̃s−s′
t (XH |x)eiHs

′
Oresum(x, t)e−iHs

′
= KH (XH , s − s′|x)O(x, s′ − t(t)) (4.17)

Where we have used the old HKLL expression for the r.h.s. of (4.13) and have shifted the

t dependence of the kernel to the operator. This implies that the operator Oresum(x, t) is

the Heisenberg operator evolved with the old Hamiltonian:

Oresum(x, t) ≡ e−iHt(t)O(x)eiHt(t), (4.18)

and the kernels are the same

K̃s−s′
t (Xt

B|x) = KH (X, t(t) + s − s′|x′) (4.19)

These expressions might seem odd, but are no different than those in equation (4.6).

In section 5 we will discuss how this resummation works when we can do it explicitly.
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In this way, the modular flow has naturally incorporated the story of the precursors and

resummation. Note that generally, we usually want to keep the formula (4.10) as it is

since the modular evolved operator O(x, s) will be a complicated operator that does not

have a particularly nice description. However, in our particular case, because of (4.6), the

resummed modular HKLL expression is simple when evolved back to t = 0. Note that

this expression makes clear that the modular Hamiltonian acts locally on points in the old

geometry. However, even in Vaidya, it is not clear at the moment how one can use modular

flow to write an explicit expression for the bulk operator after the shockwave.

4.2.2 More general geometries

More generally, we expect the modular flow to be complicated, yet have enough structure

to be able to reconstruct any operator in the entanglement wedge. In other words, we

expect any of the complicated operators that appear when evolving back and forth to be

encoded in O(x, s). We must stress, however, that whenever we want to compare the

modular flow expression with an expression which has boundary unitaries, we will need

resummation. In the cases we have considered, i.e. states built by acting with shockwaves

on the thermal state, the modular Hamiltonian is the original Hamiltonian H conjugated

by unitaries which act geometrically on the state. This makes the analysis simpler (as we

have illustrated for Vaidya). Generically, the modular Hamiltonian is completely non-local,

and we don’t expect the analysis to be so simple.

From the modular flow point of view, it is not necessary to interpret the unitaries

appearing in UρβU
† as time evolution. For example, if we try to reconstruct operators in

a time slice Σt>0 in reflecting Vaidya, we expect the expression in terms of modular flow to

be exactly identical to that in Vaidya (since the modular Hamiltonian and the time slice

are the same) without the need to talk about changing the boundary Hamiltonian.

In this way, modular flow provides a more natural, yet still complicated, way of thinking

about precursors.

5 Explicit examples

In this section we will implement the ideas of the previous sections in the simplified setting

of two and three bulk dimensions. We will show the equivalence of the pull-back/push-

forwards strategy for reconstruction in time dependent states, and furthermore show the

need for resummation due the macroscopic change in the bulk geometry.

5.1 Bulk reconstruction in AdS2

This discussion can be made most explicit in 1+1 bulk dimensions. In order to have non-

trivial bulk states and dynamics, we will consider the dilaton-gravity model of JT [38, 39]

and which has attracted a lot of attention recently [40–43] . The action of this model is

S =
1

16πG2

∫
d2x
√
−g
(
D2R+ C(D2 −D2

0)
)

(5.1)

where D2 is the dilaton and g is the two dimensional metric. The constants C and D2
0

parameterize the space of the theories. This theory has no bulk propagating degrees of
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freedom; there are four degrees of freedom all of which can be removed by two diffeomor-

phisms and two constraints. There is a dynamical boundary degree of freedom [40–43].

As described by the previous references, this boundary degree of freedom can be thought

of as the trajectory of the bulk cut-off surface within an unperturbed AdS2 spacetime.

This theory arises by looking at the near horizon limit of near extremal black holes in any

dimension and truncating to the s-wave sector [44].

We can add a bulk propagating degree of freedom by adding a scalar field term to

the action. The system now describes the interaction between the scalar matter stress

energy and the boundary propagating degree of freedom. For simplicity, we consider the

free scalar action

Sscalar =
1

16πG2

∫
d2x
√
−g
(

Ω(D2)

2
(∇Φ)2

)
(5.2)

where Ω(D2) is determined by the specific uplift of this model to higher dimensions. Again,

for simplicity we will consider the case of Ω(D2) = 1, corresponding to coupling the scalar

field only to two dimensional gravity. Since there is no direct coupling between the dilaton

and the scalar field, their interaction comes completely from the gravitational constraints.

We want to implement the HKLL construction on the analog of the Vaidya geometry

in Poincare AdS2. We will work entirely in conformal gauge. This solution can be obtained

by turning on the stress energy profile Tṽṽ = µ
8πG2

δ(ṽ) and Tũũ = 0 corresponding to an

infalling “shell” of matter, eventually forming a black hole. The gravity solution is given by

ds2 = −4
dũdṽ

(ũ− ṽ)2
(5.3)

D2 = D2
0 +

a− µΘ(ṽ)ũṽ

ũ− ṽ
(5.4)

Where a parametrizes a family of solutions and ũ ≡ t̃ + z̃ and ṽ ≡ t̃ − z̃. In order for the

spacetime to have a spacelike singularity we require that µ > 1/a, which we will assume.

The singularity occurs when D2 = 0. These coordinates cover the entire Poincare patch,

including the region behind the black hole event horizon; we will refer to these as Kruskal

coordinates. This background is shown in figure 13.

The dynamics of the gravitational sector of this model is governed entirely by the

evolution of the boundary mode, or the trajectory of the cut-off surface. As shown in

figure 13 the cut-off trajectory (blue) is perturbed by the insertion of stress energy via the

shockwave (green) which causes it to terminate prematurely on the boundary. As discussed

in [40–43], this evolution of the cut-off surface tracks how the bulk and boundary times

are related.

The Kruskal coordinates (5.3) are the two dimensional analogue to the uniformizing

coordinates of 2.3.1. It will actually be simpler here to consider FG coordinates, unlike

other sections:25

ds2 =
1

z2
(dz2 − f(z, t)dt2), f(z) = Θ(−ṽ) + Θ(ṽ)

(
1− µ

a
z2
)2

D2 = D2
0 +

a+ Θ(ṽ)µz2

2z
(5.5)

25Here we are not going to be too careful about the extremal gauge. The reader should keep in mind

that this bulk time is not the time in extremal gauge.
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Figure 13. AdS2 Vaidya geoemtry. The shockwave (green) is inserted from the boundary and falls

to form a black hole horizon (dashed) and singularity (red). The original AdS2 Poincare slicing

(grey) covers the entire spacetime. This same diagram applies of a shockwave falling into a black

hole where now the Poincare horizon can be thought of as its horizon. The Roman numerals label

the regions defined earlier.

which are related to the previous (5.3) coordinates by:

z =
1

2
(ũ− ṽ), t =

1

2
(ũ+ ṽ) , ṽ < 0

z =

√
a

µ
tanh

[
1

2

√
µ

a

(
g−1[ũ]− g−1[ṽ]

)]
, t =

1

2

(
g−1[ũ] + g−1[ṽ]

)
, ṽ > 0 (5.6)

where we introduced the function g[y]

g[y] ≡
√
a

µ
tanh

(√
µ

a
y

)
, g−1[y] ≡

√
a

µ
tanh−1

(√
µ

a
y

)
(5.7)

These are FG coordinates where the physical boundary sits at z = ε, which we will

henceforth call the ε-surface. Note that this surface is different from the z̃ = ε-surface (ε̃-

surface) in the Kruskal coordinates {ũ, ṽ} = t̃±z̃ of (5.3). The metric in the z̃, t̃ coordinates

is AdS2 in Poincaré coordinates:

ds2 =
dz̃2 − dt̃2

z̃2
(5.8)

and is the 2d analogue of (2.10) of section 2.3.1. Note that these {z̃, t̃} coordinates cover

regions inside the black hole and beyond the singularity.

The physically relevant ε-surface is a complicated function of {z̃, t̃} and coincides with

the ε̃-surface at all times only when µ = 0. The cut-off ε (solid blue) and ε̃ (dashed blue)

surfaces are depicted in figure 13. Although they differ at late times, the ε̃ and ε-surfaces
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coincide before the appearance of the shockwave. In AdS2, the boundary coordinate is one

dimensional and is described by a timelike worldline. Therefore the different surfaces are

given by different time parametrizations. For example, the ε̃-surface gives us the physical

boundary had we not perturbed the geometry with the shockwave, and the respective

boundary time along this surface is the unperturbed t. In keeping with our nomenclature,

we denote the time along the physical ε boundary as t. In this way, evolution using H

will give us a bulk operator in terms of operators smeared on the ε̃ surface instead of the

physical ε surface .

Now let us implement the HKLL prescription in various regions of the bulk. This

was done for regions I and III in AdS2 in [45]. We will illustrate how one can also recon-

struct beyond the causal horizon using the ideas developed in the previous sections. For

convenience, we will consider a massless scalar field. The scalar wave equation is

∂ũ∂ṽΦ = 0, (5.9)

for any coordinate system in conformal gauge. We will focus first on the (5.8) coordinates

which cover the entire the spacetime. In conformal gauge, we can compute the spacelike

Green’s function from (5.9) [45]:

GS =
1

2
Θ(z̃ − z̃′)Θ(z̃ − z̃′ − |t̃− t̃′|), (5.10)

and the smearing function is simple to compute by projecting it onto the various surfaces

of interest. For the ε̃-surface, it is given concisely by:

K(t̃, z̃; t̃′) =
1

2
Θ(z̃ − |t̃− t̃′|) . (5.11)

Therefore, if we project this smearing function onto the ε̃ surface, the bulk operator

is given by

Φ(t̃, z̃) =

∫
dt̃′K(t̃, z̃; t̃′)O(t̃′) =

1

2

∫ t̃+z̃

t̃−z̃
dt̃′O(t̃′) (5.12)

Note that this form is the same for all coordinate systems in conformal gauge, as long as

we keep the ε̃ surface fixed. As previously discussed, the meaning of the time arguments in

the above expression depends on the choice of boundary. The physically relevant boundary

is the ε surface, but we will keep track of the ε̃ surface to illustrate various points. For bulk

operators sufficiently early in region I, the ε̃ and ε surfaces coincide and we can use the

expression (5.12). That is, the time argument of the operator O(t̃′) denotes the physical

boundary time t = t̃ = t.

For operators in region III, the two surfaces are different but since the kernel is a theta

function, we can keep track of the ε-surface by simply integrating the boundary operator

over the corresponding interval:

Φ(t, z) =

∫
dt′K(t, z; t′)O(t′) =

1

2

∫ g[ũ(z,t)]

g[ṽ(z,t)]
dt′O(t′) (5.13)
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where g[ũ(z, t)], given in (5.7), is the point where the future light ray (respectively past for

ṽ) emanating from t, z hits the ε surface. By ũ(z, t) (resp. ṽ(z, t)) we mean the expression

for ũ ( ṽ) in terms (z, t) obtained by inverting (5.6).

We have phrased reconstruction in this scenario as a smearing of boundary operators

where one has to keep track of the appropriate boundary surfaces. Alternatively, one can

equivalently describe the difference between the ε and ε̃-surfaces in terms of the boundary

conformal transformation:

t̃→ t = f(t̃) = Θ(−t̃)t̃+ Θ(t̃)

√
a

µ
tanh

(√
µ

a
t̃

)
(5.14)

From this point of view, as discussed in section 5, (5.13) can be thought as a conformal

transformation

Φ(t, z) =

∫
dt̃′K(t̃, z̃; z̃′)O(t̃′) =

∫
dt′

f ′(t̃)
K
(
t̃(t, z), z̃(t, z); t

)
f ′(t̃′)O(t′) (5.15)

=
1

2

∫ g[ũ(z,t)]

g[ṽ(z,t)]
dt′O(t′) . (5.16)

where we used that O(t) transforms as a primary operator of weight 1 (and the kernel

transforms as an operator of weight 1 − h = 0 as explained before). Note that this is

the same result we would have obtained starting with the wave equation in the black hole

coordinates covering region III. The interpretation of the respective surfaces as different

conformal frames can be checked explicitly by comparing the extrapolate dictionaries for

the two surfaces as in (2.14).

The story continues to be roughly the same for the rest of the operators in region I

whose spacelike smearing extends to the cut-off surface of region III (note that (5.12) only

applied for operators in the past of z = ε, t = 0). As one might expect, the result one

gets is

Φ(t, z) =
1

2

∫ 0−

t−z
dt′O(t′) +

1

2

∫ g[ũ(z,t)]

0+
dt′O(t′) (5.17)

where all time arguments are the physical boundary time. The first term comes from

smearing before the shockwave and, unsurprisingly, the second comes from smearing after

the shockwave. We have split this expression into two terms for illustration purposes, as

the first term can be understood as arising from an integral over the ε or ε̃ surface.

There is an alternative expression for this operator obtained via a pull-back/push-

forward scheme of (3.1): in the current language, the operator Φ(XH ) correspond to the

operator projected onto the ε̃ surface. Equation (3.1) for our state UH(t, 0) = e−iHtW then

implies that

W †e−iHtΦ(z)e−iHtW =
1

2

∫ ũ(t,z)

t−z
dt̃′O(t̃′) =

1

2

∫ 0−

t−z
dt′O(t′) +

1

2

∫ ũ(t,z)

0+
dt̃′O(t̃′) (5.18)

where the first term is the same for the ε, ε̃ surface but the second is different. As we have

explained before, to understand (3.1) and the equivalence between (5.17) and (5.18), we
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have to use the background independent expression for the operator:

W

[∫ ũ(t,z)

0+
dt̃′O(t̃′) + . . .

]
W † =

∫ g[ũ(t,z)]

0+
dt′O(t′) (5.19)

Similar to the discussion of 5, we can think of this “resummation” as implementing the

t > 0 part of the conformal transformation (5.14). From the bulk point of view, it is clear

that (3.1) should be true: these two expressions correspond to using the spacelike Green’s

function to write the bulk operator in terms of the two different ε, ε̃ surfaces.26 This is

no different than when one writes a field in terms of fields at different Cauchy slices in its

past, the expression is independent of what spacelike slice one uses.

Implementing the usual HKLL prescription for regions II and IV and expressing things

in terms of the boundary physical time is more subtle. When projected to the ε̃ surface,

their expression in terms of Kruskal times is given by (5.12). The novel thing about

these operators is that they involve smearing of operators at times t̃ that do not map to

the boundary physical time t; when projecting to the ε̃ surface, the smearing contains

operators at times t̃ >
√

a
µ where t̃ =

√
a
µ corresponds to t = ∞ under the conformal

transformation (5.14). The operators in region II can then be understood in terms of

evolution by H , which is equivalent to projecting the operator to the ε̃ surface

W †eiHtΦ(z)e−iHtW =
1

2

∫ 0−

t−z
dt′O(t′) +

1

2

∫ ũ(t,z)

0+
dt̃′O(t̃′) (5.20)

which is of course the same as (5.18), with the difference is that there is no alternative

description as in (5.17).27

And finally, for region IV, we can implement reconstruction via a bulk pull-back/push-

forward. This involves first writing the bulk operator in IV as operators in regions I, II and

III using a bulk retarded Green’s function. Recall that we can think of the reconstruction

in regions I, and II as projecting onto the ε̃ surface. And reconstruction in region III has

the two equivalent representations in terms of operators in ε/ε̃. Then we can think of

reconstruction in region IV as projecting onto the ε̃ surface, just as in the previous cases.

However, given that the ε̃ surface is very particular to d = 1, we are also going to go

through the procedure explained in 4 for reconstruction in this region.

Working in Kruskal coordinates, this Green’s function is

GR(x, x′) =
1

2
Θ(t̃− t̃′)Θ(t̃− t̃′ − |z̃ − z̃′|), (5.21)

and so the operator is

Φ(t, z) =
1

2

(
Φ(t0,−ṽ(t, z) + t̃0) + Φ(t0, ũ(t, z)− t̃0)

)
+

1

2

∫ ũ(t,z)−t̃0

−ṽ(t,z)+t̃0

dz̃′∂t̃0Φ(t̃0, z̃
′) (5.22)

26As discussed in 2.3.1, the field close to the surface will be Φ = εhO(t) + . . . and the difference between

the ε, ε̃ surfaces accounts for the proper conformal transformation of the boundary operator.
27Perhaps there is a way of first time evolving these operators using H to times t̃ <

√
a
µ

and then

performing the coordinate trasnformation to physical times t.
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where this smearing is along a constant t0 Kruskal slice in the bulk passing through regions

I, II and III. To simplify matters, we are considering an operator early enough in region IV

such that the retarded smearing involves no boundary operators directly. If we choose t̃0 to

go through the intersection between the event horizon and the shockwave, i.e. t̃0 = 1
2

√
a
µ ,

we will only get a contribution from operators in regions II, III.

At this point, we would normally split the integral into two terms: before and after the

shockwave (before and after z̃ = t̃0) and evaluate the time derivatives using the respective

reconstructions. However, given the simplicity of the kernel, it turns out to be even easier

to simply calculate the integral. Notice that the combination
∫ t̃0
−ṽ(t,z)+t̃0

+
∫ ũ(t,z)−t̃0
t̃0

is

almost what we would expect if we had two operators at (ũ, ṽ) = (ũ(t, z), 0) ∈ II and

(ũ, ṽ) = (2t̃0, ṽ(t, z)) ∈ III, respectively, up to Φ[ũ = 2t̃0, ṽ = 0] terms. This means that we

can write:

Φ(t, z) = Φ[ũ(t, z), ṽ(t, z)] = ΦII[ũ(t, z), 0] + ΦIII[2t̃0, ṽ(t, z)]− Φ[2t̃0, 0] (5.23)

where Φ[ũ, ṽ] simply denotes that we write the field in terms of the {ũ(t, z), ṽ(t, z)} vari-

ables. This simplification is certainly only true in the case of a massless field, illustrating

that it is chiral. Because of this, it should be clear that the t̃0 dependence drops out —

the right moving mode contribution in (5.23) should only come from the II operator and

the left moving mode will come from the III operator.28 We have chosen to not work with

chiral fields to be careful about the different coordinates systems.

Resummation. We would like to understand how one might get this formula from re-

summing the HKLL expansion. As we discussed before, in these simple examples, different

background are just equivalent to different boundary choices. Given an operator at some

affine distance from the boundary z and time t, its affine distance to the ε̃ boundary, z̃, t̃

will depend on the details of the geometry (5.6), i.e. z̃[z, t;µ], t̃[z, t;µ]. In this way, we

have that:

Φ(z, t) = Φ
(
z̃[z, t;µ], t̃[z, t;µ]

)
=

∫
dt̃′K

(
z̃[z, t;µ], t̃[z, t;µ]; t̃′

)
O(t̃′) (5.24)

All the dependence on µ just comes from the coordinate transformation. This ex-

pression can be expanded in µ, and basically we can think of the different terms in the

expansion as correcting for the fact that the ε and ε̃ surfaces are different.

5.2 Bulk reconstruction in AdS3

Let us now demonstrate how our discussion works in detail in the case d = 2. For simplicity,

we are going to focus on planar Vaidya, whose metric is most simply written in ingoing

Eddington-Finkelstein coordinates:

ds2 =
1

z2

(
−F (z, v)dv2 − 2dvdz + dx2

)
, F (z, v) ≡ 1−Θ(v)

(
2πz

β

)2

. (5.25)

28Right/left moving refers to the ũ, ṽ Kruskal coordinates and are not t± z.
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These coordinates are convenient for two reasons: firstly it is clear from (5.25) that the CFT

coordinate x does not change across the shock. Secondly the null coordinate v coincides

with the boundary time at z = 0.

If we perform the following piecewise coordinate transformation

v =


t− z , v < 0

t− β

2π
tanh−1

(
2πz

β

)
, v > 0

(5.26)

the geometry in each patch becomes

ds2 =


1

z2

(
−dt2 + dz2 + dx2

)
, v < 0

1

z2

(
−f(z)dt2 +

dz2

f(z)
+ dx2

)
, v > 0

(5.27)

with f(z) = 1−
(

2πz
β

)2
. Note that the times before and after the shockwave are discontin-

uous. The geometries across each patch are related by a coordinate transformation, similar

to the case of the Bañados geometries:

z̃ = ze
2πx
β , x̃± t̃ = e

2π
β

(x±t)

√(
β

2π

)2

− z2 . (5.28)

Our goal in this section is to illustrate how one can think of resummation in similar way

to AdS2, using the fact that the geometries before and after the shock can be related via

a coordinate transformation.

Notice however that the transformation (5.28) mixes the boundary coordinates and

makes the discussion of resummation in d = 2 more difficult than the d = 1 case.

Near z = 0 the coordinate transformation (5.28) coincides with that of (2.11), with

f±(y) = ± β
2π exp

(
±2πy

β

)
after writing the metric in terms of to the proper FG coordi-

nate z → z

1+
(
πz
β

)2 .

As we discussed in the previous section, as well as section 2.3.1, we can obtain the

HKLL kernel in region III of Vaidya by considering the vacuum AdS3 spacelike greens

function and project it onto the respective codimension-1 timelike surface after the shock:

z̃ = εe
2πx
β = ε

2π

β

√
|x̃2 − t̃2| (5.29)

Of course, we can also reconstruct the operator to the past of t = 0, by using the

vacuum reconstruction to the surface z = z̃ = ε. However, unlike the d = 1 case, these

two surfaces can’t be glued smoothly across the shock. This means that we can’t think of

doing vacuum HKLL with a different surface.

Even if we can’t think of the whole geometry as vacuum AdS, we can still see how

resummation works in this case, as it did for d = 1. As per our discussion, resummation is

needed in order to compare the expression obtained using the full HKLL kernel versus using
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the pullback/pushforward expression, as in equation (4.6). To see this, consider an operator

on the shockwave, in the exterior of the horizon. The usual HKLL expression would give

us the reconstruction in the thermal state, which we can understand as projecting the

vacuum kernel onto the z̃ = εe2πx surface. The pullback/pushforward mechanism gives

the vacuum expression for this operator, which is equivalent to projecting into the z̃ = ε

slice. These two expressions just differ by a conformal transformation. This is the d = 2

analogue of (5.19).

5.2.1 Extremal geodesics in Vaidya

We will now give a discussion on the different types of geodesic dressing that we discussed in

the main text, applied to AdS3. Starting from the metric (5.25) we can solve the geodesic

equation for (XFG, t) or (XS , t), which differ by where and how we impose our initial

conditions.

It is straightforward to extend the analysis of [33] for the case of planar-Vaidya

with a shock at t = 0. We will label the components of our spacelike geodesics as

(V (s), Z(s), X(s)), with s the affine parameter along the geodesic. The metric (5.25)

has a Killing vector (∂x)µ with an associated conserved quantity L along the geodesic. The

metric also admits an approximate Killing vector (∂v)
µ whose conserved quantity −E is

constant away from the shock but jumps at the surface v = 0 in order to ensure that V ′(s)

is continuous along the geodesic.

For L = 0 the geodesic equations are:

X ′(s) = 0 , (5.30)

V ′(s) =
E Z − Z ′

F (Z, v)
, (5.31)

Z ′(s)2 = Z2
(
E2Z2 + F (Z, v)

)
. (5.32)

The difference between the (XFG, t) geodesics and the (XS , t) geodesics is that the former

are charaterized by s increasing towards the bulk with initial condition (Z(0) = ε, V (0) =

t, X(0) = x, E = 0) while the latter are characterized by s increasing towards the boundary

and initial condition (Z(0) = z, V (0) = t − z, X(0) = x, E = 0). The jump in E across

the shock at v = 0 is determined by ensuring continuity of V ′.

We can calculate the (renormalized) proper distance to the bulk point (z, t), l(z, t),

along the respective geodesics as well as the relation between boundary and locally Rindler

time t(t). For extremal geodesics these are:

l(z, t) = z(z, t) = log

 z

1−
(
πt
β

)2

 , t(t) =
β

π
tanh

(
πt

β

)
. (5.33)

The expressions for FG geodesics are more involved and we present them here for reference:

l(z, t) = log zFG(z, t) = log

{
2

z

(
β

2π

)2

csch2

(
πt

β

)(√
1 +

(
πz

β

)2

sinh2

(
2πt

β

)
− 1

)}
,

t =
β

2π
csch

(
2πt

β

)(
cosh

(
2πt

β

)
−

√
1 +

(
πz

β

)2

sinh2

(
2πt

β

) )
. (5.34)
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Figure 14. Left : Fefferman Graham geodesics shot with zero boost angle from the boundary. Note

that these geodesics have caustics behind the black hole horizon. Right : extremal geodesics shot

with zero boost angle from the RT surface. The black dotted line corresponding to t = β/π hits

the boundary at t =∞. The orange dotted line is the location of the horizon and the solid red line

gives the location of the shockwave. In both cases we plot (Z(s), V (s) + Z(s)). T

5.3 Bulk reconstruction in general dimensions

To obtain the HKLL kernel more generally in regions causally connected with the bound-

ary, one simply solves the scalar wave equation in the time dependent background. For

the geometries in consideration, this means finding the corresponding spacelike Green’s

function in all patches, i.e. the AdS/Schwarzchild kernels with different temperatures (and

given the symmetries of the problem, one can just focus on the spatial zero mode). One

then has to glue them appropiately along the shockwaves as in [34] for example. The added

technical complication in higher dimensions arises because there are no analytic expressions

for the wave functions in AdS/Schwarzchild.

A similar technical complication arises with the geodesics, which must be solved for

numerically. See [33] for more details.

6 Discussion

We would like to conclude with some comments and open questions.

The notion of simple operators. In the context of bulk reconstruction, one often

talks about simple operators [16, 17, 35]: low energy operators which coincide with the

extrapolate limit of the bulk fields and describe bulk perturbation theory.

In our time dependent context, given a Hamiltonian H(t) and the vacuum state |0〉,
we should think of a given bulk geometry as a series of states |ψ(t)〉 related by time evo-

lution, or, in the Heisenberg picture, as a state |0〉 and an algebra of Heisenberg operators

U †(t)Oi(x)U(t), where Oi(x) are single trace operators with ∆ ∼ O(1). Note that if we

wanted to focus on any other state, we could prepare it via (possibly Euclidean) time

evolution.
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In this way, given a Hamiltonian, simple operators are the Heisenberg operators evolved

with respect to that Hamiltonian. If the dynamics are such that event horizons are formed,

simple operators can’t probe beyond the event horizon because of bulk causality.

This Hamiltonian dependent notion of simple operators seems rather arbitrary and is

entirely a bulk notion: the Heisenberg operator evolved with the time independent Hamil-

tonian, O(x, t) are clearly simpler in the boundary than a Heisenberg operator evolved

with a complicated Hamiltonian, O(x, t). However, it is the latter that are present in the

extrapolate dictionary in the state evolved with H(t). As we have described, the opera-

tors inside the horizon are given by the O(x, t) operators, which don’t appear simple in

the bulk.

The idea of extending the notion of “simple” operators to allow for Heisenberg opera-

tors evolved with distinct Hamiltonians was also discussed in [46], in order to understand

the entropy of marginally trapped horizons. The context is the same as in our paper, since

these generalized “simple” operators naturally probe beyond the causal horizon.

Modular time and gauge invariance. As we have discussed, for the class of states

built by adding shockwaves to simpler states, the locality of the modular flow seems to

single out the extremal foliation, a particular set of bulk Cauchy slices where the modular

flow acts locally (close to the RT surface).29 Because of gauge invariance, we usually don’t

expect a preferred foliation of spacetime in a theory of gravity. However, the combination

of having bulk matter and locality of modular evolution seems to pick a foliation. This

appears to be a generalization of [47] to a situation where the modular Hamiltonian is not

local everywhere but only “deep” in the bulk. Moreover the extremal foliation can only

cover part of the spacetime.

Of course, if the modular Hamiltonian is completely non-local, we don’t expect the

extremal foliation to provide a natural foliation of the spacetime. However, any modular

Hamiltonian will be locally Rindler close to the entangling surface. We thus leave further

exploration of whether one can define a preferred foliation for the entanglement wedge,

starting from this intuition, to future work. It is far from clear if this is possible, because

light rays emanating from the RT surface will generically form caustics.

Dressing choice. Our choice of dressing has the property that it is simplest in the part of

the spacetime which is the closest to the RT surface. This is in contrast with FG geodesics,

which, as discussed in section 5, have worse properties. This extremal slicing is the simplest

geodesic slicing that we could imagine that gives a nice foliation of (part of) the spacetime.

One can certainly consider other dressings, ones whose operators are less state dependent,

but we found that this usually came at the expense of their geodesics having caustics or

not reaching the RT surface.

The main shortcoming of the extremal dressing is that it doesn’t cover the entire

spacetime. We don’t view this as a fundamental limitation, but more as an indication

that the operators not covered by the extremal foliation might be more complicated. It

29It singles out this set of Cauchy slices deep in the bulk, but when thinking of the algebra of operators

in that Cauchy slice, it is natural to extend them towards the boundary using spacelike geodesics.
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would be interesting to understand if there exists any other choice of dressing with similar

nice properties to the extremal foliation, yet covers the regions invisible to the extremal

foliation. The simplest candidate would be the operators dressed to the RT surface, but

it is not entirely clear to us how to give a boundary prescription for them, especially for

points in the region that the extremal foliation doesn’t probe.

Operators dressed to the horizon and state dependence. Let us elaborate a bit

on the last point. While throughout we mainly worked with the operators, Φ(XB, t), we

also discussed the operators dressed to the horizon Φ(XS) in section 3.1. We would like to

better understand the properties of these operators, which would appear to commute with

the boundary Hamiltonian. One way to do this is to consider conjugating Φ(XS) by the

“dressing-changing” operator which measures the geodesic distance from the boundary-

to-horizon spacelike geodesic along a fixed Rindler angle Φ(XV ) = VU,tΦ(XS)V †U,t. This

operator depends on λ, t, x and thus creates a boundary dressed operator at fixed distance

from the RT surface. This operator is different from Φ(Xt
B): even if in a given background

both might be dressed to the boundary along the same geodesic. The reason is that one

creates an operator at a fixed distance from the RT surface (λ) while the other does at

a fixed distance to the boundary (z) . Note that V itself depends strongly on the family

of states ρβ but within this family of states the dependence in the particular geometry

is just a background effect. This is an entanglement wedge gravitational analogue of the

boundary-to-boundary Wilson line of [48, 49]. We leave a more careful analysis of V for

future work.

It would also be nice to elaborate on the differences between defining operators inside-

out as in our extremal foliation (as in XS , X
t
B) versus defining them outside-in from the

boundary (as in XFG). While operators Φ(Xt
B) depend on the family of states {ρβ}, they

have nice local properties. Even if this state dependence is mild, one might want to consider

operators that are completely state independent, such as Φ(XFG). Again, these operators

won’t have nice local properties — in order for them to stay in the entanglement wedge,

one has to limit the allowed proper distances in a state and time dependent way. We expect

this tradeoff between state dependence and locality to be generic.

Entanglement wedge reconstruction and modular flow. We have discussed how

the proposal of [12, 13] for reconstruction in the entanglement wedge using the boundary

modular flow works in our situation. In the case of Vaidya, the precursors of [11] are cap-

tured in terms of modular flow. Furthermore, even if the boundary modular Hamiltonian

is non-local (it is the Hamiltonian conjugated by the shockwave operator), the action of

the modular flow on operators in the “old” part of the geometry is local. This is a bound-

ary argument, since it is only there that we understand what the modular Hamiltonian

is. We would like have a bulk understanding of why the bulk modular Hamiltonian is

approximately local before the shockwave. The confusion stems because, in principle, the

modular Hamiltonian depends on the whole state, whose respective Cauchy slice crosses

the shockwave.

We were able to make progress because the modular Hamiltonian, even if non-local, is

simple. For more general time dependent states (not built out of shockwaves), we expect

it to be more complicated and won’t preserve any notion of locality.
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Consider the related example of a CFT in its vacuum state and consider a spherical

subregion of this state: the modular Hamiltonian will be an integral of the stress tensor,

similar to our Kρβ = βH . Consider acting on this state with a unitary that factorizes

into the spherical subregion and its complement, the modular Hamiltonian will be just

conjugated by a unitary. We could then consider modular flow in this example and we

expect our procedure to apply straightforwardly in this case.

Traversable wormholes. We focused on refining the boundary expression for operators

behind the event horizon. We started by focusing on the Hilbert space, in which evolution

by distinct Hamiltonians appeared naturally. This is in contrast with the way discussions on

reconstruction behind the event horizon are typically framed, where both the Hamiltonian

and the collapsing black hole state are thought of as fixed. In contrast, in our discussion

above on reconstruction behind the horizon, the Hamiltonians which appeared don’t play

any role in the dynamics.

In [50–53], they gave a discussion on how to deform the actual boundary Hamiltonian

to bring the black hole interior into causal contact with the boundary. This effect might

allow us to check our expression for the interior operators. Having a deformation of the

Hamiltonian which causally connects the interior operators with the boundary implies one

can write them in terms of simple boundary operators using a spacelike Green’s function,

i.e. one can then perform the usual HKLL prescription. Since we know ultimately that the

interior operators need to be complicated, perhaps one can think of them in terms of time-

folds of this new deformed Hamiltonian which makes the black hole wormhole traversable.

We would like to elaborate on this point in future work.

The trans-Planckian problem. In order to describe the operators behind the event

horizon, we used consistency of the pull-back/push-forward method of to evolve interior

operators using distinct Hamiltonians and write it in terms of data at earlier times. This

inherently assumes that we can propagate the mode, or it’s data at earlier times, along the

spacetime and through the shell which formed the black hole. In particular, this assumes

that this propagation does not affect the shell nor, vice versa, does the presence of the

shell preclude forward propagation of the mode (except eikonally where the shell/operator

propagates on the background created by the other). As already discussed in [7, 8, 54],

the center of mass energy of this collision becomes Planckian once the modes considered

are a scrambling time deep inside the black hole. This would preclude this method of

reconstruction deep in the black hole interior.

Negative energy. Late Rindler modes just behind black hole horizons carry negative

energy with respect to the apprioximate Killing symmetry of the system at late times. This

property of the modes, that they lower the asymptotic energy of the state, was argued to

lead to paradoxes in [8, 55], precluding them from being state independent operators. Our

operators depend on the family of states in consideration and whether an operator is behind

the horizon will be state dependent (since the proper distance from the boundary to the

horizon depends on the state). It would be interesting to check (assuming we overcome the
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trans-Planckian problem to write late time modes) if some particular linear combinations

of our operators does indeed lower the energy.
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