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Abstract: We consider quantum quenches in models of free scalars and fermions with a

generic time-dependent mass m(t) that goes from m0 to zero. We prove that, as anticipated

in MSS [1], the post-quench dynamics can be described in terms of a state of the generalized

Calabrese-Cardy form |ψ〉= exp[−κ2H−
∑∞

n>2 κnWn]|Bd〉. The Wn (n = 2, 3, . . ., W2 = H)

here represent the conserved W∞ charges and |Bd〉 represents a conformal boundary state.

Our result holds irrespective of whether the pre-quench state is a ground state or a squeezed

state, and is proved without recourse to perturbation expansion in the κn’s as in MSS.

We compute exact time-dependent correlators for some specific quench protocols m(t).

The correlators explicitly show thermalization to a generalized Gibbs ensemble (GGE),

with inverse temperature β = 4κ2, and chemical potentials µn = 4κn. In case the pre-

quench state is a ground state, it is possible to retrieve the exact quench protocol m(t)

from the final GGE, by an application of inverse scattering techniques. Another notable

result, which we interpret as a UV/IR mixing, is that the long distance and long time

(IR) behaviour of some correlators depends crucially on all κn’s, although they are highly

irrelevant couplings in the usual RG parlance. This indicates subtleties in RG arguments

when applied to non-equilibrium dynamics.
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1 Introduction and summary

The dynamics of systems undergoing a quantum quench has been extensively studied in

recent years [2]. In a quantum quench, some parameter of the Hamiltonian changes over

a brief period of time. The initial wavefunction in the pre-quench phase, whether it is a

ground state or otherwise, typically evolves to a non-stationary state, which then evolves

by the post-quench Hamiltonian which is time-independent. An important question in such

dynamics is whether correlators equilibrate at long times, and if so, whether the equilibrium

is described by a thermal ensemble or otherwise [2–4]. With the advent of AdS/CFT, the

issue of thermalization has assumed additional significance as it maps to the subject of

gravitational collapse to a black hole [5, 6]. This has given rise to an extensive literature

on holographic thermalization (see, e.g. [7–9], for some of the early papers on the subject).

This correspondence has a direct bearing on the issue of universality of thermalization since

a collapse to a black hole state is also typically associated with loss of most memory of the

collapsing matter. In this paper, we will find that the final equilibrium state is characterized

by an infinite number of thermodynamic parameters (chemical potentials) which retain

a partial memory of the quench protocol;1 in the holographic dual, this corresponds to

retention of memory by the final black hole of the collapsing matter.

A significant step in proving thermalization in a closed 2D system was taken in a recent

paper (MSS) [1] (similar results have subsequently appeared in [10]). MSS considered

1+1 dimensional quenches,2 ending with a critical post-quench Hamiltonian and made the

following assumptions:

(a) the post-quench wavefunction is of the generalized Calabrese-Cardy (gCC) form3

|ψ〉gCC = |ψ(κ2, {κn})〉 ≡ exp

[
−κ2H −

∑
n>2

κnWn

]
|Bd〉 (1.1)

where Wn are additional conserved charges in the system (the results are valid even

without the additional charges present in the system). It was assumed that the

charges are obtained from local currents. Below, for specificity, we will assume that

the system is integrable, with a W∞ algebra4 and the Wn, n = 2, 3, . . . (W2 = H) are

W∞ charges.

(b) The spectrum of conformal dimensions in the post-quench critical theory has a gap.

1For a quench from a ground state, the final chemical potentials retain a full memory of the quench

process. When the initial state is different, the final chemical potentials retain partial information about

the initial state and the quench protocol.
2Unless otherwise stated, the spatial direction will be regarded as non-compact.
3We will define the boundary state with an energy cut-off, exp[−κ2H]|Bd〉 as the Calabrese-Cardy state

|ψ〉CC . These states were introduced in [11] to describe 2D critical quenches.
4This clearly holds for the theory of free scalars and fermions discussed in this paper.
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(c) The dimensionless parameters κ̃n = κn/κ
n−1
2 , n > 2 are small and can be treated

perturbatively.

(d) The size l of the interval is small compared to κ2.5

With these assumptions in place, MSS proved that the reduced density matrix of an

interval of size l in the state (1.1) asymptotes to that in a GGE,6 defined by

ρGGE =
e−βH−

∑∞
n=3 µnWn

Z
, β = 4κ2, µn = 4κn, n > 2 (1.2)

with a relaxation rate given by7

γ =
2π

β

[
∆ +

∞∑
n=3

µ̃nQn +O(µ̃2
n)

]
, µ̃n ≡

µn
βn−1

, (1.3)

where ∆, Qn are determined by the conformal dimension and other W∞ charges of the

most relevant operator of the CFT (by assumption (b) above, ∆ > 0). A consequence of

this result is that the expectation value of an arbitrary string of local operators, which can

be enclosed in an interval of length l, exponentially thermalizes to its expectation value in

the GGE.

One of the motivations of the present work is to extend the proof of thermalization,

without making the assumptions made in MSS, in theories of free scalars or fermions with a

time-dependent mass m(t) quenched to m = 0. We allow for nontrivial pre-quench states.

We proceed in two ways:

• We consider arbitrary quench protocols m(t) and arbitrary squeezed states as pre-

quench states (including the ground state) and show that the quench leads to a

wavefunction of the gCC form. This proves the main ansatz of MSS (assumption

(a) above). We also show that by judiciously choosing the pre-quench states one can

satisfy the perturbative assumption (c). Thus, for theories satisfying (b) and, for

intervals satisfying (d), thermalization follows from first principles, using the results

of MSS.

• For specific quench protocols, but with arbitrary pre-quench states as above, we

compute exact time-dependent correlators, and explicitly show thermalization of one-

and two-point functions, without making any of the assumptions of MSS.8

5The assumptions (c) and (d) were made for technical reasons, which can, in principle, be obviated in

other methods, e.g. if the higher spin deformations κn>2 can be represented geometrically (like κ2 which

is treated as an imaginary time). Assumption (b) appears to be more essential. In case of the scalar field

model discussed in the present work, this condition implies compactifying the range of φ on a circle.
6GGE refers to a generalized Gibbs ensemble; see, e.g. [12] for a review. Thermalization to a GGE in the

context of an integrable CFT was anticipated earlier in [13, 14], and, for more general integrable models,

in [13, 15–24].
7To be precise the overlap of the square-normalized reduced density matrix in the pure state (1.1) with

that in the mixed state (1.2), behaves like 1− (const)e−2γt. See MSS for more details.
8Of course, as we mentioned above, the assumption (a) about the gCC form of the wavefunction is in

any case true.
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One of the technical advances in this paper is the use of non-trivial pre-quench

states, which we take to be squeezed states. The motivation for considering this class

of states is that besides being technically accessible, these states are experimentally re-

alizable (see, e.g. [25, 26]) and carry non-trivial quantum entanglement encoded by the

squeezing function.

We list below some salient features of our analysis:

1. Memory retention by the equilibrium ensemble. By using inverse scattering

methods applied to the above-mentioned auxiliary potential scattering, we are able

to relate the post-quench wavefunction, in particular κn-parameters of the gCC state,

to the quench protocol m(t). In fact, if we start with the ground state of the pre-

quench Hamiltonian, the κn parameters completely encode m(t), implying that the

equilibrium ensemble specified by µn = 4κn, carries a precise memory of the quench

protocol! In case we start with a squeezed state, the equilibrium ensemble remembers

a combination of the quench protocol and the knowledge of the initial state.

2. UV/IR mixing (IR sensitivity to irrelevant operators). As already found in

MSS, the relaxation rate of various operators (1.3), which govern late time dynamics,

depends on all the chemical potentials µn, equivalently on the κn. Now from (1.1) it

is clear that the κn represent perturbing a given initial state by higher dimensional

(irrelevant) operators. Indeed, our computation of the exact correlators, shows that

for a large class of operators, these correlators at long times and large distances, are

affected by all these chemical potentials, in apparent contradiction to IR universality

(this is elaborated in section 5). This phenomenon is actually related to the memory

retention mentioned above.

3. Holographic correspondence. Our results show that for a given quench protocol,

a GGE with a finite number of specified chemical potentials can be obtained by

taking the pre-quench state to be a suitably chosen squeezed state. By using this

result and the correspondence shown in MSS between thermalization to GGE and

quasinormal decay to a higher spin black hole, we infer that higher spin black holes

with an arbitrary set of chemical potentials get related to thermalization of squeezed

states in the field theory.

Outline. The outline and organization of the paper is as follows:

In section 2 we consider mass quenches in a free scalar in two dimensions. We relate

the dynamics to an equivalent potential scattering problem, details of which are provided

in appendix A. We find that the exact time-dependent wavefunction can be related to a

Bogoliubov transform of the ‘out’ vacuum (the post-quench ground state). Using this fact

we write down the exact form of the scalar propagator. These results hold for a general

mass quench, including quenches from a massless to a massless theory. We find that the

quenched state is always describable in terms of a gCC state (using an application of the

BCH formula, as described in appendix B). In section 2.4 we work all of this out for a specific

quench protocol (i.e. specific time dependence of the mass parameter). In section 2.6 we

– 3 –
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consider cases where the pre-quench state is a squeezed state. We show that this gives us

a large class of initial conditions, by tuning which we can prepare a quench state in the

exact form exp[−
∑

n κnWn]|D〉 which has a finite number of given κn coefficients.

In section 3 we show how to generalize the above results to fermions.

In section 4.1 real time Wightman correlators in a GGE are computed. In sections 4.2

and 4.3 we work out the scalar propagator for the specific quench protocol of section 2.4.

This allows us to compute various exact correlators, starting either from a ground state or

from specific quench states leading to a gCC state with a finite number of κn parameters.

We show that these correlators thermalize exponentially to a GGE; the relaxation rate is

found non-perturbatively, which agrees with (1.3) in the perturbative regime.

In section 5 we show that the IR behaviour of exact correlators is sensitive to all the

chemical potentials even though these represent perturbation by irrelevant operators. We

also show that the equilibrium ensemble remembers the quench protocol.

In section 6 we make concluding remarks and mention some open problems. In appen-

dices C and D we discuss some notations and general results about bosonic and fermionic

theories. In appendix E we elaborate the precise meaning of the sudden limit, taking into

account the UV cut-off of the theory.

2 Critical quench of a scalar field: general strategy

An important example of quantum quench is provided by free scalar field theories with

time-dependent mass (our notations will closely follow [27, 28], which also contain an

extensive reference to the relevant literature).

S = −1

2

∫
d2x(∂µφ ∂

µφ−m2(t)φ2)

=
1

2

∫
dkdt

2π

(
|φ̇(k, t)|2 − (k2 +m2(t))|φ(k, t)|2

)
, φ(−k, t) = φ∗(k, t) (2.1)

We will always be working in the thermodynamic limit of infinite system size. The mo-

mentum integrals will be taken to be
∫∞
−∞ dk/2π, unless otherwise specified.9

In this section we will consider a mass function m(t) (this is referred to as a ‘quench

protocol’) which decreases from an asymptotic value m0 in the past to the asymptotic

value m = 0 in the future (see figure 1). This is called a critical quench since the mass gap

vanishes following the quench. The generalization to other cases like massless to massless

quench as in figure 2 is straightforward and will be touched upon in a later section.

Because of translational symmetry, the equations of motion of various Fourier modes

in (2.1) get decoupled, where each mode satisfies a Schrödinger-type equation:

− d2

dt2
φ(k, t) = (k2 +m2(t))φ(k, t) (2.2)

9We will sometimes use a large system size L, so that the momentum integral is replaced by 1
L

∑∞
n=−∞,

such as later in this section and in appendix C; however, in all these contexts, L will be assumed to

be the largest relevant length scale. In appendix E we will use an explicit UV cut-off, |k| < Λ, on the

momentum integrals.
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m0
2

t

m2(t)

Figure 1. Mass quench from m0 to 0.

From the asymptotic behaviour of the potential, it is clear that (2.2) admits solutions (see,

e.g. [29]) which behave like plane waves at far past and far future. We will call uin(k, t)

the solution of the wave equation which approaches a purely positive frequency solution in

the past and uout(k, t) the solution which approaches a purely positive frequency solution

in the future:10

uin
t→−∞−−−−→ e−iωint

√
2ωin

, uout
t→∞−−−→ e−iωoutt

√
2ωout

(2.3)

The question of existence of the exact solutions uin, uout is essentially identical to

the existence of the so-called Jost functions in the analogous Schrödinger problem, which

is discussed in detail in appendix A. The relevant properties of the Jost functions, and

equivalently of the solutions uin, uout, can be proved under appropriate fall-off conditions

of the mass-function (to the asymptotic values) as discussed in the appendix.

It is easy to see that the pair of solutions uin(k, t) and u∗in(−k, t) are independent

functions (e.g. by computing the Wronskian in the far past), and hence form a basis of

solutions of the second order differential equation (2.2). Similar remarks apply to the pair

of solutions uout, u
∗
out. Thus, we can write any set as a linear combination of the other; e.g.

uin(k) = α(k)uout(k) + β(k)u∗out(−k), uout(k) = α∗(k)uin(k)− β(k)u∗in(−k) (2.4)

The coefficients α, β are called Bogoliubov coefficients (our conventions here are the same

as in [29]), which are determined by the mass-function m2(t).

Indeed, a general solution of the wave equation can be written as a linear combination

of either pair:

φ(k,t) = ain(k)uin(k,t)+a∗in(−k)u∗in(−k,t) = aout(k)uout(k,t)+a∗out(−k)u∗out(−k,t) (2.5)

Here we have explicitly put in the reality condition on the scalar field φ(x, t) which trans-

lates in mixed Fourier space to φ∗(k, t) = φ(−k, t).
Using the two equations above, one can find

ain(k) = α∗(k)aout(k)− β∗(k)a†out(−k), (2.6)

aout(k) = α(k)ain(k) + β∗(k)a†in(−k), (2.7)

10We consider exp(−iωt) and exp(iωt) to be future and past directed respectively, with energy defined

by i∂/∂t.
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Upon quantization, the coefficients ain,out(k) are treated as operators in the Fock space

(with a∗in,out(k) rewritten as a†in,out(k)). The specific normalizations of the u-functions

in (2.3) imply that the Bogoliubov coefficients satisfy the following constraints

|α|2 − |β|2 = 1 (2.8)

The derivation of the above relations can be found in standard textbooks, e.g. [29], or from

the analogous Schrödinger problem as in appendix A.

2.1 General proof of the gCC ansatz [1] for the ground state

The two sets of oscillators ain(k) and aout(k) define two distinct vacua |0, in〉 and |0, out〉,
defined by ain(k)|0, in〉 = 0 and aout(k)|0, out〉 = 0. Let us assume that we start from the

ground state of the original massive theory, i.e. |0, in〉.
Using (2.6), we can express the in-vacuum in terms of the out-vacua as follows11

|0, in〉 = exp

[
1

2

∑
k

γ(k)a†out(k)a†out(−k)

]
|0, out〉, (2.9)

where

γ(k) = β∗(k)/α∗(k) (2.10)

With the above ingredients in place, it’s a simple exercise, using the Baker-Campbell-

Hausdorff formula (see appendix B), to show that the in-vacuum can be written in the

following form12

|0, in〉 = exp

[
1

2

∑
k

γ(k)a†out(k)a†out(−k)

]
|0, out〉 = exp

[
−
∑
k

κ(k)a†out(k)aout(k)

]
|D〉,

(2.11)

κ(k) = −1

2
log(−γ(k)) (2.12)

where |D〉 is a Dirichlet boundary state (C.2), defined in terms of the ‘out’ Fock space:

|D〉 = exp

[
−1

2

∑
k

a†out(k)a†out(−k)

]
|0, out〉. (2.13)

We will identify the right hand side of (2.11) as a gCC (generalized Calabrese-Cardy) state

(cf. (1.1)) in which the charges are expressed as a momentum integral and the boundary

state is identified with a Dirichlet state:

|0, in〉 = |ψ〉gCC
|ψ〉gCC = exp[−

∑
k

κ(k)N(k)]|D〉, N(k) = a†out(k)aout(k) (2.14)

We will explain below (see under ‘Interpretation’) that this shows our desired result, namely

quantum quench in the free scalar theory with mass → zero leads to a gCC state.

11This is proved by simply checking that the right hand side is annihilated by α∗(k)aout(k) −
β∗(k)a†out(−k). Here

∑
k is defined as the sum over discretized values of k, as elaborated in appendix C.

12This result was independently found some time ago, for the quench protocol discussed in section 2.4,

in [30]. We thank Sumit Das for sharing these results with us.
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Expanded form of the gCC state. In appendix A.2 we have shown, by borrowing

results from the analogous Schrodinger problem, that γ(k) admits a small-momentum

expansion of the form

γ(k) = −1 + γ1|k|+ γ2|k|2 + γ3|k|3 + . . . , (2.15)

Using this power series expansion, and the expression for κ(k) in (2.12), we can expand

κ(k) also in a power series around k = 0, as follows:

κ(k) = κ2|k|+ κ3|k|2 + κ4|k|3 − . . . ,

κ2 =
γ1

2
, κ3 =

1

4

(
γ2

1 + 2γ2

)
, κ4 =

1

6

(
γ3

1 + 3γ1γ2 + 3γ3

)
, . . . (2.16)

The radius of convergence of the above expansion is determined by the singularity of γ(k)

in the complex k plane which is nearest to the origin. The location of this is determined

by the parameters with mass dimension that characterize the mass function m2(t). In case

of a single scale m0 we will find that the radius of convergence equals m0 (see remarks

below (2.30)). The expansion above is therefore convergent for small k (smaller than the

parameters of mass dimension characterizing the massive phase).

Below we will find explicit examples of this power series for specific quench protocols

m(t) which interpolate from m0 to m = 0. For quenches involving a single real scalar field,

we will find that the above expansion (2.16) has only odd powers of |k|,13 and, explicitly

κ2 > 0.14 Substituting such an expansion for κ(k) in (2.14), we find

|0, in〉 = exp[−κ2H −
∞∑
n=2

κ2nW2n]|D〉 (2.17)

where W2n, n = 1, 2, . . . ,(W2 = H) are the even W∞ charges [31] of the final massless scalar

field theory, which we define here as follows15,16

H ≡W2 =
∑
k

|k|a†out(k)aout(k), W2n =
∑
k

|k|2n−1a†out(k)aout(k), n = 2, 3, . . . (2.18)

As discussed above, the expansion (2.16) has a finite radius of convergence; putting such a

power series inside the k-integral in (2.14) appears, a priori, to be problematic. However,

the terms in the resulting series, as in (2.17), involve κ2nW2n where W2n are operators and

not numbers. It is important to consider correlators or expectation values and check the

resulting series for convergence. In practical calculations, such as the calculation of corre-

lators in later sections, we will more often use (2.14) directly than the form (2.17) (similar

statements can be made in the context of the GGE ensemble, which can be defined in the

13This is consistent with the fact that a real scalar field provides a representation of the W∞ algebra [31]

where the odd Wn’s vanish. See below.
14For massless→massless quench, κ2 turns out to be purely imaginary (see section 2.5).
15The normalization convention here for the W -charges differs from that of [31].
16If the time-dependence of the Hamiltonian stops after a finite time, the post-quench Hamiltonian

coincides with the W2 charge, and the other W2n charges also represent conserved charges of the post-

quench evolution.
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sense of a momentum-integral; for example of such calculations, see (4.10) and (4.18)).

Furthermore, one can clearly construct overlap of (2.17) with states which have support

only over a finite range of momenta less than m0, in which case there is no problem of

convergence of the series in (2.17). Additionally, we will find in later sections that one

can explicitly construct examples of quenches (starting from squeezed states) where the

series
∑

n κ2nW2n terminates after a finite number of terms; in that case also, the series

clearly makes sense. Henceforth, we will consider the series expression in (2.17) with these

qualifiers in mind.17

Interpretation. To interpret the result (2.14) or (2.17), let us first assume a sudden

quench.

In this case, the state we obtain immediately after the quench is still the initial ground

state |0, in〉. This proves that the post-quench wavefunction is indeed of the gCC form (2.14)

or (1.1) as claimed in the introduction.

Note that the values of the charges are given by

〈W2l〉 =
∑
k

|k|2l−1〈N(k)〉, l = 1, 2, . . . ,where 〈N(k)〉 ≡ 〈0in|a†out(k)aout(k)|0in〉 = |β(k)|2

(2.19)

The last step famously follows by expressing the ‘out’-oscillators in terms of the ‘in’-

oscillators using (2.6).

In case the quench is not sudden, we proceed as follows. Let us consider the Wightman

function

〈0, in|O1(x1, t1)O2(x2, t2) . . . On(xn, tn)|0, in〉 (2.20)

where Oi are some operators built of the field φ(x, t) and its derivatives. The one- and

two-point functions considered in section 4 are examples of this.

Let us first assume that the quench takes place for a finite period of time, up to a

time t0. In case the time instants ti are all in the post-quench period, we can express

all operators in terms of the out Heisenberg oscillators aout, a
†
out with simple exponential

time-dependence. If we express the state |0, in〉 as in (2.17), the result of this exercise will

be a calculation of out Heisenberg oscillators as if the post-quench state is of the gCC

form (1.1). This is the viewpoint adopted in standard textbooks of quantum field theory

in curved space time (e.g. [29]).

In case the quench stops only asymptotically, but sufficiently fast, the above statement

goes through for time instants ti which are late enough.18

Conclusion. Thus, we find that the post-quench wavefunction, starting from the ground

state of the original Hamiltonian, under a quantum quench to zero mass, is represented in

the generalized Calabrese-Cardy (gCC) form, as predicted in [1].

17We thank the referee for raising this point.
18In the explicit examples considered in the paper, the mass function has an exponential tail, of the form

e−ρt; thus the gCC ansatz works to an exponential accuracy, up to terms O(e−ρti) which can be made

arbitrarily small by considering time instants ti � 1/ρ.
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We will find below that the above conclusion also holds when we start from more

general states in the initial massive theory.

2.2 Thermalization to GGE

In this subsection, we briefly recall results from MSS [1] on “subsystem thermalization”

and their implications in the present case.

MSS considered the time evolution of a subsystem A (which remains finite in the

thermodynamic limit) in a quantum quench. For post-quench gCC-type states (1.1) and

for a perturbative domain in the κn parameters, it was shown that the reduced density

matrix (RDM) of the region A (obtained after tracing out Ac, the complement of A)

asymptotically approaches the RDM of A in a GGE (1.2):

TrAc
[
e−iHt|ψ(κ2,{κn})〉〈ψ(κ2,{κn})|eiHt

] t→∞−−−→TrAc [ρGGE(β,{µn})] β= 4κ2,µn = 4κn
(2.21)

More explicitly,

TrAc
[
e−iHte−

∑
k κ(k)N̂(k)|D〉〈D|e−

∑
k κ(k)N̂(k)eiHt

]
t→∞−−−→ TrAc

[
1

Z
e−
∑
k µ(k)N̂(k)

]
(2.22)

The above statement is called subsystem thermalization. Below we will calculate time-

dependent Wightman functions to explicitly verify this.

The energy and W -charges (as well as the number operator) are conserved in the

post-quench CFT dynamics. The above statement implies that

〈H〉gCC = 〈H〉GGE , 〈Wn〉gCC = 〈Wn〉GGE , 〈N(k)〉gCC = 〈N(k)〉GGE (2.23)

Thus, the charges (2.19) measured for the post-quench (gCC) state are the same as those

of the GGE. In particular, using (2.8), (2.10) and (2.12), it is easy to see that

〈N(k)〉 = |β(k)|2 =
|γ(k)|2

1− |γ(k)|2
=

1

e4κ(k) − 1
=

1

eµ(k) − 1
, µ(k) ≡ 4κ(k). (2.24)

The last expression gives a Bose distribution for each k, as appropriate for a GGE [17].

2.3 The propagator

Using the defining property of the in-vacuum |0, in〉, and the mode expansion of φ(x, t) in

terms of the in-modes, it is easy to derive the following basic two-point function

〈0, in|φ(x1, t1)φ(x2, t2)|0, in〉 =

∫
dk

2π
uin(k, t1)u∗in(k, t2) eik(x1−x2)

=

∫
dk

2π

[
|α(k)|2uout(k, t1)u∗out(k, t2) + α(k)β∗(k)uout(k, t1)uout(−k, t2)

+α∗(k)β(k)u∗out(−k, t1)u∗out(k, t2) + |β(k)|2u∗out(−k, t1)uout(−k, t2)
]
eik(x1−x2) (2.25)
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In the second step we have used the relation (2.4) between the ‘in’ and ‘out’ modes. In-

terestingly the particular combination of Bogoliubov coefficients appearing above can be

written entirely in terms of γ(k) (by using (2.10) and (2.8)):

|α(k)|2 =
1

1− |γ(k)|2
, |β(k)|2 =

|γ(k)|2

1− |γ(k)|2
,

α(k)β∗(k) =
γ(k)

1− |γ(k)|2
, α∗(k)β(k) =

γ∗(k)

1− |γ(k)|2
(2.26)

The propagator (2.25) has recently appeared in [32] where it is used to study the relation

between smooth fast quenches and instantaneous quenches. Related expressions, in a

somewhat different form, have appeared in [33].

In section 4.2 we will determine this propagator exactly for a specific quench protocol.

2.4 A specific quench protocol

We will now work out some of the above ideas for the specific mass function

m2(t) = m2
0(1− tanh(ρt))/2 (2.27)

The equation of motion (2.2) with the above mass profile can be exactly solved (see, e.g. [29],

chapter 3, where this model appears in a simple model of cosmological particle creation).

Using this fact, we can find the following explicit solutions for uin(k, t) and uout(k, t):

uin(k, t) =
e−iωint

√
2ωin

2F1

(
iω−
ρ
,− iω+

ρ
; 1− iωin

ρ
;−e2ρt

)
(2.28)

uout(k, t) =
e−iωoutt

√
2ωout

2F1

(
iω−
ρ
,
iω+

ρ
;
iωout

ρ
+ 1;−e−2ρt

)
(2.29)

where 2F1 is a hypergeometric function and

ωin =
√
k2 +m2

0, ωout = |k|, ω± =
1

2
(ωout ± ωin)

Using (2.4) and properties of hypergeometric functions [34] for large arguments, we find

the following Bogoliubov coefficients

α(k) =

√
ωout

ωin

Γ
(
− iωout

ρ

)
Γ
(

1− iωin
ρ

)
Γ
(
− iω+

2ρ

)
Γ
(

1− iω+

2ρ

) , β(k) =

√
ωout

ωin

Γ
(
iωout
ρ

)
Γ
(

1− iωin
ρ

)
Γ
(
iω−
2ρ

)
Γ
(

1 + iω−
2ρ

)
which gives

γ =
β∗

α∗
=− 1 + 2

(
k

m0

)(
−1 +

2im0

ρ

(
γ + ψ(0)(− im

2ρ
)

))
+ 2

(
k

m0

)2(m0

ρ

[
γ + ψ(0)(− im

2ρ
)

]
+ i

)2

+O

(
k

m0

)3

(2.30)

The power series expansion here is consistent with the general form (2.15). Indeed, from

the explicit expression of the Bogoliubov coefficients, γ(k) can be seen to be analytic in

the complex k plane near the origin, with the nearest singularity given by k = ±im0.
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Applying the general method of section 2.1 to this case, we find that the ground state

is explicitly of the gCC form (2.17),

|0, in〉 = exp[−κ2H −
∞∑
n=2

κ2nW2n]|D〉

where the κn’s are found by using (2.12). In an expansion in m0/ρ (to be interpreted in

the sense of appendix E), these coefficients read as follows

κ2 =
1

m0

(
1 +

π2

12

(
m0

ρ

)2

− iζ(3)

4

(
m0

ρ

)3

− π4

720m0

(
m0

ρ

)4

+O

(
m0

ρ

)5
)
,

κ4 =
1

m3
0

(
−1

6
+
π2

24

(
m0

ρ

)2

− π4

288

(
m0

ρ

)4

+O

(
m0

ρ

)5
)
, . . . (2.31)

The coefficients κn (2.31) are functions of both the scales m0 and ρ; note that the knowledge

of these coefficients (in this case the first two, κ2 and κ4) encode the quench protocol (2.27)

completely. Since the κn’s are related in a one-to-one fashion to equilibrium chemical

potentials µn = 4κn (1.2), it follows that from the equilibrium state one can retrieve the

quench history (see section 5.2 for more details).

For later reference, the “out”-number operator (2.19) turns out to be

〈N(k)〉 = csch

(
πk

ρ

)
sinh2

π
(
k −

√
k2 +m2

0

)
2ρ

 csch

(
π
√
k2 +m2

0

ρ

)
(2.32)

We thus explicitly verify here that the post-quench state is of the form (1.1).19

2.4.1 Sudden limit

We will be especially interested in the sudden limit

ρ→∞ (2.33)

which gives the simple quench protocol

m2(t) = m2
0Θ(−t), (2.34)

where Θ(t) is the Heaviside step function. In this limit the Bogoliubov coefficients become20

α(k) =
1

2

|k|+ ωin√
|k|ωin

, β(k) =
1

2

|k| − ωin√
|k|ωin

, (2.35)

and the in- and out- waves reduce to

uin(k, t) =
e−iωint

√
2ωin

, uout(k, t) =
e−iωoutt

√
2ωout

(2.36)

19In the sense of the comments following (2.20).
20These can be compared with the corresponding quantities of an analogous Schrödinger problem is

discussed in section A.1.2, example 1.
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m0
2

m2(t)

t

Figure 2. A mass-profile describing quantum quench from a critical Hamiltonian back to the

critical Hamiltonian. Here m2(t)
t→±∞−−−−→ 0.

The κn coefficients in the sudden limit are given by taking the ρ→∞ limit of (2.31):

κ2 =
1

m0
, κ4 = − 1

6m3
0

, . . . (2.37)

Thus,

|0, in〉 = exp

[
− H

m0
+

5W4

160m3
0

+ · · ·
]
|D〉 (2.38)

which is a gCC state.21 In the sudden limit, the number operator (2.32) becomes

〈N(k)〉 =

(√
k2 +m2

0 − |k|
)2

4
√
k2 +m2

0|k|
(2.39)

Strictly speaking, the sudden limit, as defined by (2.33), is somewhat naive, and needs to

be refined, keeping the UV cut-off of the theory in mind. A precise and careful version is

presented in appendix E. One result of that analysis is that the naive sudden limit (2.33)

gives the correct results for most considerations in this paper (appendix E describes some

cases where more care is needed).

2.5 Quenching from critical to critical

In this subsection, we will consider a quantum quench for the scalar field where both

the initial and final masses vanish (i.e. a quench from a critical Hamiltonian to a critical

Hamiltonian).

A typical mass function which follows this property is [28] (see figure 2):

m2(t) = m2
0 sech2(ρt). (2.40)

Using the coordinate transformation y = e2ρt. The equation of motion, analogous to (2.2),

becomes

φ′′(k, y) +
φ′(k, y)

y
+

(
k2

4ρ2y
+

m2
0

ρ2(1 + y)2

)
φ(k, y) = 0 (2.41)

21One might be alarmed by the positive sign of the W4-coefficient in this state. This would mean that if

all the higher κn>3 were absent, κ(k) would have grown as +k3, hence implying a divergent norm of the gCC

state e−
∑

k κ(k)N(k)|D〉. However, such catastrophes are avoided by higher κn coefficients, as they must,

since the gCC state is equal, as a Heisenberg state, to the initial ground state, which has a finite norm. We

will have more to say in appendix E on other possible divergences associated with the sudden limit.
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With α = 1/2 + 1
ρ

√
4m2

0 + ρ2, this equation can be solved to give

u(k, t) = e−ikt(1 + e2ρt)α
[
C1 e

2ikt
2F1

(
α,
ik

ρ
+ α, 1 +

ik

ρ
,−e2ρt

)
+ C2 2F1

(
α,− ik

ρ
+ α, 1− ik

ρ
,−e2ρt

)]
(2.42)

C1 = 1 and C2 = 0 gives the incoming solution uin(k) which satisfies the property (2.3).

On taking the t → +∞ limit of uin(k) we can express uin(k) in the form α(k)uout(k) +

β(k)u∗out(k) as in (2.4), where

α(k) =
Γ
(
ik
ρ + 1

)
Γ
(
ik
ρ

)
Γ
(
ik
ρ − α+ 1

)
Γ
(
ik
ρ + α

) (2.43)

β(k) = i sin(πα)cosech

(
πk

ρ

)
(2.44)

Using (2.10) and (2.12), we can express the in-vacuum in a gCC form (1.1) with

κ(k) =
ikρ

2m2
0

− k2ρ2

4m4
0

− ik3ρ3

6m6
0

+
k4ρ4

8m8
0

+
ik5ρ5

10m10
0

+ . . . , (2.45)

which leads to

κ2 =
iρ

2m2
0

, κ3 =
−ρ2

4m4
0

.

Note that κ2 is imaginary. By contrast, in a massive → massless quench, κ2 is real and

positive (see e.g. (2.37)), and is identified with β/4 where β is the inverse temperature of the

associated thermal state. With imaginary κ2, such an identification is clearly problematic.

We will find in the next subsection that starting with an appropriate squeezed state in

a massless theory and using the above quench protocol, one can manufacture a CC state

with positive κ2.

2.6 Quenching squeezed states

In this subsection, we will show that gCC states can result even from excited states of the

initial Hamiltonian. In particular, we will find that specific choice of such initial states can

lead to CC states where κ2 6= 0, but all other κn = 0.

Suppose, instead of the ground state we start with an arbitrary squeezed state22 of the

pre-quench Hamiltonian:23

|ψ, in〉 = |f〉 ≡ exp

[
1

2

∑
k

f(k)a†in(k)a†in(−k)

]
|0, in〉 (2.46)

22These states have importance in diverse contexts [25, 35] including quantum entanglement [26]. Time-

development of these states can address the issue of dynamical evolution of quantum entanglement, among

other things.
23We assume that the norm of the squeezed state is finite, which is ensured by the finiteness of the integral∫
dk/(2π) log(1− |f(k)|2).
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This is clearly a Bogoliubov transformation of |0, in〉. To see this, note that |f〉 is annihi-

lated by ain(k)− f(k)a†in(−k),

0 =
[
ain(k)− f(k)a†in(−k)

]
|f〉

=
[
α∗(k)aout(k)− β∗(k)a†out(−k)− f(k)

{
α(k)a†out(−k)− β(k)aout(k)

}]
|f〉

=
[
{α∗(k) + f(k)β(k)} aout(k)− {β∗(k) + f(k)α(k)} a†out(−k)

]
|f〉 (2.47)

Thus, it follows that the squeezed pre-quench state is also expressible as a generalized

CC state

|f〉 = exp

[
1

2

∑
k

γ
eff

(k)a†out(k)a†out(−k)

]
|0, out〉 (2.48)

where the effective γ
eff

(k) is

γ
eff

(k) =
β∗(k) + f(k)α(k)

α∗(k) + f(k)β(k)
= eiδ(k) γ(k) + f(k)eiδ(k)

1 + eiδ(k)f(k)γ∗(k)
, eiδ(k) =

α(k)

α∗(k)
(2.49)

Using the result (2.48) and the method leading to (2.12), we can again show

|f〉 = exp[
∑
k

−κ
eff

(k)a†out(k)aout(−k)]|B〉,

κ
eff

(k) ≡ −1

2
log

(
γ

eff
(k)

γ0

)
(2.50)

where, as defined in (B.3), for γ0 = −1, |B〉 is the Dirichlet state |D〉 and for γ0 = 1, |B〉
is the Neumann state |N〉. Using the Taylor expansion (2.15), and assuming analyticity of

δ(k) at k = 0, we can easily show that κeff(k) has an expansion of the form (2.16) (with

the possible addition of a constant term if δ(0) 6= 0; this will have the interpretation of

adding a chemical potential corresponding to the total number operator).

Explicit examples. Let us fix the quench protocol to be the sudden limit of the ‘tanh’

function (2.34). We will determine the κeff explicitly by using (2.50) and the expressions

for the Bogoliubov coefficients (2.35).

• Gaussian. For a Gaussian squeezing function with variance proportional to m2
0, ie.

f(k) = exp[−k2/(a2m2
0)], we get

κeff(k) =
|k|
a2m0

+

(
6a4 + 1

)
|k|3

12a6m0
3
−
(
30a8 − 10a4 − 3

)
|k|5

240a10m0
5

+O(|k|7) (2.51)

with Neumann boundary state |B〉 = |N〉.

• Preparing CC states and gCC states with specified parameters. It is clear

from (2.50) that given specific Bogoliubov coefficients, e.g. (2.35), we can obtain any
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desired expression for κeff(k) by tailoring the choice of the squeezing function f(k).

Thus, e.g.

f(k) = f4(k) = 1− 2|k|√
k2 +m0

2 tanh (κ2,0|k|+ κ4,0|k|3) + |k|
(2.52)

yields a function κeff(k) = κ2,0|k| + κ4,0|k|3 with specified parameters κ2 = κ2,0,

κ4 = κ4,0 and κn = 0 for n > 4. This identifies the squeezed state with a gCC state

with these κ-parameters:24

|ψ, in〉 = |f4〉 = exp[− (κ2,0H + κ4,0W4) |D〉 (2.53)

In the next subsection, we will specialize to κ4,0 = 0 in (2.52) to prepare a CC state.

Note that the squeezing functions are localized in k which ensures the normalizability

of the squeezed state.

2.6.1 The propagator in a squeezed state

The propagator in a squeezed state |ψ, in〉 = |f〉 is obtained by replacing α→ αeff , β → βeff

in (2.25):

〈ψ, in|φ(x1, t1)φ(x2, t2)|ψ, in〉 (2.54)

=

∫
dk

2π

[
|αeff(k)|2uout(k, t1)u∗out(k, t2) + αeff(k)β∗eff(k)uout(k, t1)uout(−k, t2)

+α∗eff(k)βeff(k)u∗out(−k, t1)u∗out(k, t2) + |βeff(k)|2u∗out(−k, t1)uout(−k, t2)
]
eik(x1−x2)

Here the bilinears in Bogoliubov coefficients are given by equations analogous to (2.26)

|αeff(k)|2 =
1

1− |γeff(k)|2
, |βeff(k)|2 =

|γeff(k)|2

1− |γeff(k)|2
,

αeff(k)β∗eff(k) =
γeff(k)

1− |γeff(k)|2
, α∗eff(k)βeff(k) =

γ∗eff(k)

1− |γeff(k)|2
(2.55)

where γeff is given by the equation (2.49).

2.7 Preparing an exact CC state

We show here that although ground states of a massive theory under a critical quench are

given by a gCC state (1.1), with an infinite number of κn parameters (equivalently, an

infinite number of chemical potentials), by using the device we can explicitly prepare an

exact CC state.

We have seen that the squeezing function (2.52) ensures that κn = 0, n > 4. Special-

izing to κ4,0 = 0, κ2,0 = κ2 leads to an exact CC state.

|ψ, in〉 = |CC〉 ≡ e−κ2H |D〉 (2.56)

24Note that we choose here κ2,0, κ4,0 to be positive to ensure that the gCC state is of finite norm; see

footnote 23.
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With the specific choice κ2 = 1/m0, the squeezing function and the CC state reduce to

fm0(k) = 1− 2|k|√
k2 +m0

2 tanh (|k|/m0) + |k|
(2.57)

|ψ, in〉 = e−H/m0 |D〉 (2.58)

We note that the squeezing function is a localized function which vanishes at both k → 0

and k → ∞ limits and hence the resultant squeezed state is normalizable. Note that the

functions f(k) are even functions, and hence are actually functions of |k|.
We can manufacture a CC state using an appropriate squeezing function even when

we consider a critical → critical quench. Applying the squeezing method to the quench

protocol discussed in section 2.5, we find that the following choice of the squeezing function

f(k) =
a
(
−e2|k|(κ2,0+κ4,0k2)

)
+ a− i|k|

−a+ (a+ i|k|)e2|k|(κ2,0+κ4,0k2)

leads to a gCC state e−κ2,0H−κ4,0W4 |D〉. Specializing to

f(k) =
a
(
−e2κ2,0|k|

)
+ a− i|k|

−a+ (a+ i|k|)e2κ2,0|k|

leads to a CC state e−κ2,0H |D〉.

3 Fermion theories with time-dependent mass

We will now consider fermion field theories with a time-dependent mass:

S = −
∫
d2x(iΨ̄γµ∂µΨ−m(t)Ψ̄Ψ)

Once again, a general analysis of an auxiliary Schrödinger problem can be performed [36],

to infer the emergence of the general Calabrese-Cardy (gCC) state. However, we present

below the analysis for a specific mass quench protocol, involving a tanh function, which

describes quantum quench from a non-critical to a critical Hamiltonian.

We start with the Dirac equation with the following time-dependent mass:[28, 36]

m(t) =
m0

2
(1− tanh (ρt))

The Dirac equation is

(iγµ∂µ −m(t)) Ψ = 0. (3.1)

The ansatz for a solution of this equation is

Ψ(k;x, t) =
(
γ0∂t − γ1∂x − im(t)

)
e±ikxΦ(k, t) (3.2)

where Φ(k, t) is a two-component spinor that satisfies the following equation.(
∂2
t + k2 +m2(t)− iγ0ṁ(t)

)
Φ(k, t) = 0 (3.3)

– 16 –



J
H
E
P
0
1
(
2
0
1
8
)
0
2
7

Defining Φ = (φ+, φ−)T , the equations decouple in the eigenbasis of γ0 in the Dirac basis,(
∂2
t + k2 +m2(t)∓ iṁ(t)

)
φ±(k, t) = 0 (3.4)

where φ+(t) is the solution corresponding to γ0 eigenvalue 1 and its part with asymp-

totic positive energy eigenvalues appears with the spinor u(0) in the mode expansion of

Ψ(x, t). Similarly, φ−(t) is the solution corresponding to γ0 eigenvalue −1 and its part

with asymptotic negative energy eigenvalues appears with the spinor v(0) in the mode ex-

pansion of Ψ(x, t). The conventions and the explicit solutions are described in appendix D.

The explicit solutions lead to the following expressions of Bogoliubov coefficients α±(k)

and β±(k).

α±(k) =
Γ
(
− i|k|

ρ

)
Γ
(

1− iωin
ρ

)
Γ
(

1− i(|k|∓m0+ωin)
2ρ

)
Γ
(
− i(|k|±m0+ωin)

2ρ

) (3.5)

β±(k) =
Γ
(
i|k|
ρ

)
Γ
(

1− iωin
ρ

)
Γ
(
− i(−|k|±m0+ωin)

2ρ

)
Γ
(

1− i(−|k|∓m0+ωin)
2ρ

) (3.6)

In terms of the ‘out’ oscillators, the ‘in’ ground state is

|ψ〉 = exp

[ ∞∑
k=−∞

γ(k)a†k,outb
†
−k,out

]
|0, out〉

where γ(k) = χ(k) β+(k)∗

α+(k)∗ (D.7). Using a similar BCH formula to (2.12) for fermionic

creation and annihilation operators, we get

|Ψ〉 = e−κ2H+κ4W4−κ6W6−...|D〉 (3.7)

where κ2 =
1

2m
+
π2m

12ρ2
+

1

m
O(m/ρ)3, κ4 =

1

12m3
− π2

24mρ2
+

1

m3
O(m/ρ)3,

κ6 =
3

80m5
− π2

96m3ρ2
+

1

m5
O(m/ρ)3

and |D〉 is the Dirichlet state of the fermionic theory. Using the chiral mode expansion (D.3)

and (D.4),

|D〉 = e
∑
k sign(k)a†kb

†
−k |0〉. (3.8)

In writing the W∞ charges for the fermions, we have used the currents mentioned in the

appendix D.25

4 Correlators

The purpose of this section is to explicitly compute Wightman functions of the kind (2.20)

to study their exact time evolution.

25We choose the overall normalization of the W2n(z)-currents so that the W2n charges are given by

W2n =
∑
k |k|

2n−1
[
a†(k)a(k) + b†(k)b(k)

]
.
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We first review the calculation of correlation functions in a purely thermal ensemble

and GGE in section 4.1. Next in section 4.2, we calculate the same correlation functions

in the ground state quench and show that it cannot be approximated by a CC state (or

thermal ensemble in the long time limit) because of its infinite number of conversed charges.

In section 4.3, we repeat the same exercise for a precisely prepared CC state and gCC state

with W4 charge (as in section 2.6). In these cases, we explicitly see thermalization of a CC

state and gCC state to a thermal ensemble and GGE respectively as expected from MSS.

4.1 Correlators in thermal ensemble and GGE

Real time propagator in a thermal ensemble. Consider the real-time, thermal

Wightman propagator (see, e.g. [37] for the various definitions of propagators).

G+(x1, t1;x2, t2;β) ≡ 1

Z
Tr
(
e−βHφ(x1, t1)φ(x2, t2)

)
=

1

Z

∑
{Nn}

〈{Nn}|φ(x1)e−itHφ(x2)e−itHe−βH |{Nn}〉 (4.1)

By using the occupation number representation of the Hamiltonian, it is easy to derive the

following result (r = x1 − x2, t = t1 − t2):

G+(x1, t1;x2, t2;β) =
1

2

∫
dk

2π

[
G+(k;β)eikr−i|k|t +G−(k;β)e−ikr+i|k|t

]
,

G±(k, β) =
1

|k|(±e±β|k| ∓ 1)
(4.2)

For t1 = t2, we have,

G+(x1, t1;x2, t2;β) =

∫
dk

2π

1

4k

(
eikreβ|k|/2 + e−ikre−β|k|/2

2

)
cosech

(
βk

2

)
= − 1

2π
log

[
sinh

(
πr

β

)]
(4.3)

The two-point function of ∂φ is,26 therefore,

1

Z
Tr
(
e−βH∂φ(x1, t1)∂φ(x2, t2)

)
=

∫
dk

2π

eik(r−t)k

4

(
coth

(
βk

2

)
+ 1

)
= − π

4β2

1

sinh2(π(r − t)/β)
(4.4)

which is the well-known result obtained from CFT techniques [1].

From the propagator expression (4.3), it is also easy to compute the thermal two-point

function of exponential vertex operators.

〈exp[iqφ(0, t)] exp[−iqφ(r, t)]〉β =

[
cosech

(
πr

β

)]q2/(2π)
r�β−−−→ 1

2
e−q

2r/(2β) (4.5)

26We define ∂ = 1
2
(∂x − ∂t), ∂̄ = 1

2
(∂x + ∂t).
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Note that this result agrees with the expected result [1] from CFT, exp[−2π∆r/β] with

∆ = q2/4π (see appendix C).

The energy density in a thermal ensemble is

E

L
=

π

6β2
. (4.6)

We will now define the Wightman function in a GGE in an analogous fashion (for

simplicity first we consider only one chemical potential µ4):

G+(x1, t1;x2, t2;β, µ4) ≡ 1

Z
Tr
(
e−βH−µ4W4φ(x1, t1)φ(x2, t2)

)
≡ 1

Z

∑
{Nn}

〈{Nn}|φ(x1)e−itHφ(x2)e−itHe−βH−µ4W4 |{Nn}〉 (4.7)

By a simple evaluation, this turns out to be

G+(x1, t1;x2, t2;β, µ4) =
1

2

∫
dk

2π

[
G+(k;β, µ4)eikx−i|k|t +G−(k;β, µ4)e−ikx+i|k|t

]
,

G±(k;β, µ4) =
1

|k|(±e±(β|k|+µ4|k|3) ∓ 1)
(4.8)

The holomorphic two-point function is now given by

1

Z
Tr
(
e−βH∂φ(x2, t2)∂φ(x1, t1)

)
=

∫
dk

2π

eik(r−t)k

4

(
coth

(
βk

2
+
µ4k

3

2

)
+ 1

)
(4.9)

Generalizing (4.9), the holomorphic two-point function in a GGE with arbitrary number

of W charges is

1

Z
Tr
(
e−βH−

∑
n µnWn∂φ(r, t)∂φ(0, t)

)
=

1

Z
Tr
(
e−
∑
k µ(k)N(k)∂φ(r, t)∂φ(0, t)

)
=

∫
dk

2π

eikr

4

(
|k| coth

(
µ(k)

2

)
+ k

)
, µ(k) ≡ β|k|+

∑
n even

µn|k|n−1 (4.10)

4.2 Exact time-dependent correlators in quantum quench: starting from

ground state

In this section, we will consider the specific quench protocol discussed in section 2.4.1.27

Using the general computation (2.25) of the propagator and the specific values (2.35)

and (2.36), we find

Gq,0(x1, t1;x2, t2)≡〈0, in|φ(x1, t1)φ(x2, t2)|0, in〉=∫
dk

2π

[
Gq,0(k){

(
2k2+m2

0

)
cos(k(t1−t2))−m2

0 cos(k(t1+t2))}− 1

4k

(
eikx−e−ikx

)]
eik(x1−x2)

(4.11)

27Note that the quantities defined in section 2.4.1 are obtained by a naive definition of the sudden

limit (2.33). As explained in appendix E, although for W4 and higher charges, this definition has be

refined as in (E.1), for correlator calculations we can continue to use the naive definition.
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Note that first term involves the combinations t1 + t2, which reflect the fact that time-

translation invariance is lost due to the time-dependent perturbation. In the above expres-

sion

Gq,0(k) =
1

4|k|2
√
k2 +m2

0

(4.12)

is the significant part of the propagator. Singularities of this quantity in the k-plane are

explained figure 3: these consist of a double pole at k = 0 and two branch points on the

imaginary axis, at k = ±im0.

After performing the Fourier transforms, the propagator is given by:

Gq,0(x1, t1;x2, t2) (4.13)

=
1

16π

[
G2,1

1,3

(
m2

0

4

(
x+

2 −x
+
1

)
2

∣∣∣∣∣ 3
2

0,1, 1
2

)
+G2,1

1,3

(
m2

0

4

(
x−2 −x

−
1

)
2

∣∣∣∣∣ 3
2

0,1, 1
2

)

−G2,1
1,3

(
m2

0

4

(
x−2 −x

+
1

)
2

∣∣∣∣∣ 3
2

0,1, 1
2

)
−G2,1

1,3

(
1

4
m2

0

(
x+

2 −x
−
1

)
2

∣∣∣∣∣ 3
2

0,1, 1
2

)

+4K0

(
m0

∣∣x−2 −x−1 ∣∣)+4K0

(
m0

∣∣x+
2 −x

+
1

∣∣)+2iπ
(
sgn
(
x−2 −x

−
1

)
−sgn

(
x+

2 −x
+
1

))]

where we have defined x±i = xi ± ti, i = 1, 2. In the asymptotic limit, for x1 − x2 = r and

t1 = t2 = t, this becomes

Gq,0(0, t;r, t) =
1

8
(m0(2t−r))+

1

8
√

2πm0

(
e−m0(2t−r)
√

2t−r
+
e−m0(r+2t)

√
r+2t

+
2e−m0r

√
r

)
+. . . r < 2t

=
1

8
√

2πm0

(
e−m0(r−2t)

√
r−2t

+
e−m0(r+2t)

√
r+2t

+
2e−m0r

√
r

)
+. . . r > 2t

(4.14)

The linear terms are dictated by the double pole at the origin of the k-plane. These agree

with the expressions obtained by [33] in the so-called deep quench limit (see section 5 for

more details). The ellipsis represent higher transients.

Correlators.

• Two-point functions of vertex operators Oq = eiqφ: the dominant behaviour in the IR

limit is given by exponentiating the linear part in the above 〈φφ〉 propagator (after

subtracting the coincident part). We get

〈0, in|eiqφ(0,t)e−iqφ(r,t)|0, in〉 = e−
q2

8
m0r, t > r/2 (4.15)

This agrees with the result in [33]. The dominant exponential is, again, given by

the double pole at the origin of the k-plane. As remarked in figure 3, the thermal

correlator is also dominated by this double pole at the origin. It is no surprise

therefore that the above result (4.15) exactly agrees with the thermal result (4.5),

with the identification β = 4κ2 = 4/m0.
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• Two-point functions of the holomorphic operator: O = ∂φ

〈0, in|∂φ(x1, t)∂φ(x2, t)|0, in〉

=

∫
dkeikr

2π

[
2k2+m2

0

8
√
k2+m2

0

+
k

4

]
(4.16)

=−m
2
0

8π
K2(m0r)

r→∞−−−→−e−m0r

+
m

3/2
0

√
1
r

8
√

2π
+

15
√
m0

(
1
r

)3/2
64
√

2π
+O

[
1

r

]5/2
 (4.17)

where we have chosen r = x1 − x2 > 0 (note that there is no time-dependence for

equal times in this case, as we expect for holomorphic operators since these do not

‘see’ the boundary that represents the quench).

Note that the derivatives annihilate the double pole at the origin of the k-plane, hence

the two-point function is dictated solely by the distant singularity. Consequently, the

rate of fall-off is NOT universal (see section 5 for further details).

Comparison with GGE. It is easy to see that the expression (4.16) matches

exactly with the GGE value (4.10) with the following identification of the chemical

potentials given by (2.24) 4κ(k) = µ(k), where κ(k) = κ2|k| + κ4|k|3 + . . . (with

specific values as in (2.37)) and µ(k) ≡ β|k| + µ4|k|3 + . . . .. This follows from the

fact that

|k| coth
µ(k)

2
= |k| coth (2κ(k)) = |k| 1 + γ(k)2

1− γ(k)2
= |k| α(k)2 + β(k)2

α(k)2 − β(k)2
=

2k2 +m2
0

2
√
k2 +m2

0

(4.18)

where we have used (2.10) and (2.12), with α(k) and β(k) real and given by (2.35)

(this manipulation is similar to that in (2.24)).

• Two-point functions 〈∂φ(x1, t)∂̄φ(x2, t)〉:

〈0, in|∂φ(x1, t)∂̄φ(x2, t)|0, in〉 = −
∫
dk

2π

m2
0 e

ik(r−2t)

8(k2 +m2
0)1/2

= −m
2
0

8π
K0(m0(|r − 2t|))

(4.19)

• One-point function 〈∂φ ∂̄φ(x, t)〉

〈0, in|∂φ ∂̄φ(x, t)|0, in〉 = −
∫
dk

2π

m2
0 e
−i2kt

8(k2 +m2
0)1/2

= −m
2
0

8π
K0(2m0t)

t→∞−−−→ −e−2m0t

m3/2
0

√
1
t

16
√
π
−
√
m0

(
1
t

)3/2
256
√
π

+O

(
1

t

)5/2
 (4.20)

• We also present a calculation of the energy density. In the t→∞ limit,

E

L
= m2

0/(8π) (4.21)

Note that it does not agree with (4.6) with β = 4/m0. In other words, the higher

chemical potentials affect the asymptotic energy density.
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4.3 Squeezed state quench leading to correlators in CC states and simple gCC

states

In this subsection we will compute the exact quench evolution starting from the precise

squeezed states (2.53). As argued before, the calculations in this way reduce to simple gCC

states and CC states.

The expression for the 〈f |φ(x1, t1)φ(x2, t2)|f〉 propagator in a general squeezed state

is given in (2.54), (2.55) and (2.49). In this subsection we will apply this to compute

correlators in the particular squeezed state |f4〉 of (2.53). Recall that this state was tailored

to produce a given real value of κ2 > 0 and κ4 6= 0 (with all other κn = 0). For brevity, we

will use the notation κ2 and κ4 instead of κ2,0 and κ4,0 which are the specific values used

in (2.53). We find

〈f4|φ(r, t)φ(0, t)|f4〉=
∫
dk

2π

eikr

2k

(
coth

(
2k
(
κ2+κ4k

2
))
−cos(2kt)cosech

(
2k
(
κ2+κ4k

2
)))

〈f4|∂φ(r, t)∂φ(0, t)|f4〉=
∫
dk

2π

eikrk

4

(
coth

(
2kκ2+2k3κ4

)
+1
)

(4.22)

〈f4|∂φ∂̄φ(x,t)|f4〉=−
∫
dk

2π

e−2iktk

4
cosech

(
2κ2k+2k3κ4

)
(4.23)

The first two equations describe two-point functions with (x1, t1) = (r, t), (x2, t2) = (0, t),

whereas the third equation is a one-point function at a point (x, t) (which is independent

of x by translational invariance).

κ4 = 0. With κ4 = 0, i.e., for the CC state (2.56), the integrals can be done exactly and

energy density can also be calculated in closed form,

〈CC|φ(0, t)φ(r, t)|CC〉 =
log
(

1
2csch2

(
πr
4κ2

)(
cosh

(
πr
2κ2

)
+ cosh

(
πt
κ2

)))
8π

(4.24)

〈CC|∂φ(0, t)∂φ(r, t)|CC〉 = −
πcosech2

(
πr
4κ2

)
64κ2

2

(4.25)

〈CC|∂φ∂̄φ(x, t)|CC〉 = − π

64κ2
2

sech2

(
2πt

4κ2

)
(4.26)

Note that

1. The above results verify those that have been obtained using the Calabrese-Cardy

ansatz, applying the techniques of boundary CFT [11]. We have derived these results

here in the context of an actual quantum quench starting from an appropriate initial

state (which ensures a CC post-quench state (2.56), as argued before).

2. The two-point function of the ‘holomorphic’ derivative operator ∂φ, computed in the

second line, is independent of the time t. It shows instant thermalization to the

thermal value (4.4) (to match the two expressions, we need to identify β = 4κ2 and

put x = r, t = 0).28

28The generalization to non-zero time difference between the two ∂φ’s is straightforward and it continues

to agree with (4.4).
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3. The energy density is

E

L
=

π

96κ2
2

(4.27)

which also agrees with the thermal energy density in (4.6) with β = 4κ2.

κ4 6= 0. With non-zero κ4, we go back to the formulae (4.22) and (4.23) for general

|f4〉 state.

We first take up ∂φ∂̄φ. The one-point function (4.23) can be evaluated using contour

integration. Note that the cosech function has simple poles in the k-plane at

2κ2k + 2κ4k
3 = iπn. (4.28)

Thus, there are three simple poles for each integer n (see figure 3), given by

k1 =
−2 62/3κ2 + 3

√
6
(√

48κ3
2 − 81π2κ4n2 + 9iπ

√
κ4n

)2/3

6 3

√
√

3
√
κ3

4

(
16κ3

2 − 27π2κ4n2
)

+ 9iπκ2
4n

k2 =
4 3
√
−6κ2 + i

(√
3 + i

) (√
48κ3

2 − 81π2κ4n2 + 9iπ
√
κ4n

)2/3

2 62/3 3

√
√

3
√
κ3

4

(
16κ3

2 − 27π2κ4n2
)

+ 9iπκ2
4n

k3 = −

3
√
−1

(
2 3
√
−6κ2 +

(√
48κ3

2 − 81π2κ4n2 + 9iπ
√
κ4n

)2/3
)

62/3√κ4
3

√√
48κ3

2 − 81π2κ4n2 + 9iπ
√
κ4n

(4.29)

For positive t, only the poles in the lower half plane will contribute to the contour integral.

In an expansion in small κ̃4 ≡ κ4/κ
3
2, we get

k1 =
iπ

2κ2

(
n+

π2n3

4
κ̃4 + o(κ̃2

4)

)
(4.30)

k2 =
i

κ2

(
1√
κ̃4
− πn

4
− 3π2n2

32

√
κ̃4 + o(κ̃4)

)
k3 = − i

κ2

(
1√
κ̃4

+
πn

4
− 3π2n2

32

√
κ̃4 + o(κ̃4)

)
Note that for n = 0, k1 = 0 (this is, in fact, exactly true, as can be seen from (4.29)).

Thus, there is a pole at k = 0 which cancels the k in the numerator in (4.23). The poles

corresponding to k3 are in the upper half plane, hence they are irrelevant. The poles

k2 are in the lower half plane, but, in the perturbative regime κ̃4 � 1, have very large

negative imaginary parts for any value of n (note the leading 1/
√
κ̃4). Hence after the

contour integration they lead to very fast transients (∼ exp[−2 t
κ2
√
κ̃4

]). At long times, the

dominant contribution to the contour integral comes from the pole nearest to the origin,

i.e. from the pole k1 for n = −1.
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From the expansion of cosech (2κ4 (k − k1) (k − k2) (k − k3) + iπn) around k1, we find

the residue of the cosech at this pole to be

− 1

2κ4 (k1 − k2) (k1 − k3)
(4.31)

This leads to the following expression at long times

〈f4|∂φ∂̄φ(x, t)|f4〉 = (4.32)

− π

16κ2
2

(
1 +

π2

4
κ̃4 +

3π4

16
κ̃2

4 + o(κ̃3
4)

)
exp

(
−t π
κ2

(
1 +

π2

4
κ̃4 +

3π4

16
κ̃2

4 + o(κ̃3
4)

))
Let us now take up the two-point function of ∂φ. Note that (4.22), is independent of

time, indicating instant thermalization (as was the case for the CC state) and the integral

is exactly equal to that found in the GGE (4.9) where β = 4κ2 and µ4 = 4κ4.

The actual computation of the integral follows along similar lines as above. Here, the

poles are the same as in (4.23). The relevant residue, from coth at k1, is

1

2κ4 (k1 − k2) (k1 − k3)
(4.33)

Thus the total residue is similar to the earlier case. The final result is

〈f4|∂φ∂̄φ(x, t)|f4〉 = (4.34)

− π

16κ2
2

(
1 +

π2

4
κ̃4 +

3π4

16
κ̃2

4 + o(κ̃3
4)

)
exp

(
−r π

2κ2

(
1 +

π2

4
κ̃4 +

3π4

16
κ̃2

4 + o(κ̃3
4)

))
which shows an exponent which is half of the thermalization exponent found above. This

is in accordance with MSS. We now make a detailed comparison.

Comparison with MSS. We will now compare (4.32) and (4.34) with corresponding

results in MSS. Using the W4-charge of the operator ∂φ∂̄φ, namely q4 = 3, along with the

values β = 4κ2 and κ̃4 = µ̃4, we find that the result (4.32) matches that of MSS exactly.

Note the higher order terms such as µ̃2
4t in the exponent. That there is an exponentiation of

a power series in µ̃4 was anticipated in MSS on the basis of perturbative Feynman diagrams

and we verify this here explicitly.

The result (4.34) for the two-point function of ∂φ also exactly matches MSS result.

Note that we resorted to perturbative expansion in small κ̃4 to evaluate the integrals

and compare with MSS. There is no non-perturbative calculation of the above correlators

in gCC states using CFT technique or other tools. The best result available is the MSS

result which we have reproduced here for the case of free scalar theory with mass quench.

5 Thermalization

In the previous two sections, we found that the exact correlators show thermalization at

late times. Here’s a brief summary for some specific observables.
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Ground state |0, in〉 CC state e−H0/m0 |D〉 Thermal state

〈∂φ(0, t)∂φ(r, t)〉 ∼ e−m0r/
√
r ∼ e−πm0r/2 ∼ e−πm0r/2

〈eiqφ(0,t)e−iqφ(r,t)〉 ∼ e−q2m0r/8 ∼ e−q2m0r/8 ∼ e−q2m0r/8

energy density 〈H〉 m2
0/(16π) πm2

0/96 πm2
0/96

〈∂φ∂̄φ(0, t)〉 ∼ e−2m0t/
√
t ∼ e−πm0t 0

Table 1. The 2nd and 3rd columns give equal time correlators at late times for a mass

quench (2.34); the 4th column gives the same correlator (time-independent) in a thermal state

with β = 4/m0. In the 2nd-column the initial state is the ground state |0, in〉; in the 3rd column,

the initial state is a special squeezed state (2.58) which is of the Calabrese-Cardy form e−H/m0 |D〉.
In the first two rows, we list two-point functions at separated points. In the 3rd row we list the

asymptotic energy density. In the 4th row, we list the late time behaviour of a one-point function;

the vanishing asymptotic value agrees with the thermal state — but we compare here the exponen-

tial decay in time between the second and third columns. Note that the asymptotic values always

agree between the CC state and the thermal state, but barring the case of the exponential vertex

operator, the late time behaviour differs from the CC state, signifying non-trivial modification of

the behaviour by the higher chemical potentials.

Besides this, we also find an exact agreement between t → ∞ correlators in the gCC

state (2.52) and in the corresponding GGE (cf. equations (4.23) and (4.9)) with chemical

potentials µn = 4κn. The relaxation rate of one-point functions is seen to exactly exponen-

tiate (see (4.32)), and its perturbation expansion in the higher κn coefficients agrees with

the MSS value (1.3). We also found in the previous two sections that generically GGE

correlators (equivalently, late time correlators in a gCC state) and thermal correlators

(equivalently late time correlators in a CC state), characterized by the same tempera-

ture (equivalently same κ2) are different, even at large distances (e.g. κ4 appears in the

correlation length in (4.34)).

It is clear from the above discussion and table 1 that while the fact of thermalization

is true, the late time exponents depend nontrivially on the higher chemical potentials (or

higher κn’s), even though these correspond to perturbation by irrelevant operators in an

RG sense. In the next subsection we address this issue of sensitivity to irrelevant operators

in some detail. In the following subsection we will discuss a second (related) issue of

memory retention by the equilibrium ensemble through the higher chemical potentials.

5.1 UV/IR mixing

In this section we will discuss the issue of large distance/time universality (or the lack

thereof) in a critical quench. A useful guide in this turns out to be the pole structure of

the propagator 〈φ(k)φ(−k)〉, which is explained in figure 3.

First look at universality. Let us first discuss the naive argument for universality in

the present context. Note that in case of the sudden quench we found (2.38)

|0, in〉 = exp

[
− H

m0
− 5W4

160m3
0

+ . . .

]
|D〉
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(a) (b)

k

(c)

Figure 3. Singularities governing the two-point function in the complex k-plane: (a) of the

quantity Gq,0(k) for the ground state quench propagator (4.11), (b) of the quantity G±(k;β) in

the thermal propagator (4.4), (c) of the quantity G±(k;β, µ4) in the GGE propagator (4.8) with

β = 2, µ4 = 0.2; we have shown 30 leading poles. In each case the pole at the origin is a double pole,

and yields the universal linear large distance behaviour of 〈φφ〉. Due to the equivalence between

the quenched state and the gCC state (2.17), the branch cut in (a) can be seen as a limiting case of

an accumulation of single poles in a generalized version of (c) with an infinite number of chemical

potentials determined by (2.21), (2.37). In two-point functions such as 〈∂φ∂φ〉, the double poles

disappear and the large distance behaviour is sensitive to the sub-leading singularities, which are

clearly different. This shows different types of large distance behaviour which are sensitive to the

presence of higher dimensional operators.

which would appear to imply that, in the limit when the scale of the quench is very high:

m0 → ∞, the contribution of the Hamiltonian is the most dominant and those of the

higher dimensional operators W2n, n > 1, are subdominant. This argument, of course,

is flawed, since m0 is dimensionful, and the important issue is the relative magnitude of

W4/m
3
0 versus H/m0 in a particular state.

There are, of course, more refined arguments for universality which define an IR limit

in terms of dimensionless distances and times

m0r,m0t� 1 (5.1)

which is called the deep quench limit in [33]. Ref. [33] argues that in this limit, the

propagator in (4.11) is dominated by the leading expansion of the integrand in |k|/m0,

which is given by a double pole. From (4.14), we find that the leading behaviour of this

propagator is indeed given by the linear term which is solely determined by this double

pole. We find that this double pole and the consequent leading behaviour exactly coincides

with that of the thermal propagator (4.4). Indeed, all three forms of the 〈φφ〉 propagators,

the quenched one (4.11), the thermal one (4.4) and the GGE one (4.8), coincide in the
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leading behaviour. Thus, the higher order chemical potentials do not modify the leading

behaviour. Note, however, that the subleading behaviours are rather different in the three

cases: the exponents are different; furthermore, in the quenched propagator there is a

prefactor involving a square root.

Lack of universality. The long-distance/time leading behaviour of the 〈φφ〉 propagator

is, of course, a rather limited part of the story. Does the above universality hold for

correlators involving other operators, in particular, various primary fields (recall that φ is

not a primary field)?

To address this issue, we consider one-point functions of primary fields of the kind

O(z, z̄) = ϕ(z)ϕ∗(z̄) which have a decay rate given by (1.2), (1.3). For the sudden quench

discussed in section 2.4.1, using (2.37), we find that the fractional contribution of W2n to

the relaxation rate (1.3) is determined by the dimensionless quantity

µ̃n = µn/β
n−1 ∼ 1

mn−1
0

/

(
1

m0

)n−1

which is of order one! What has happened is that, since the quench is characterized by a

single scale, the chemical potentials due to the higher dimensional operators are determined

by the same mass scale as the temperature, thus the dimensionless contribution due to

Wn>2 is necessarily of order one. In fact, we would expect this kind of behaviour in any

single-scale quench (we will make comments about multi-scale quench shortly).

Indeed, we find in (4.19) that the leading behaviour of the one-point function of ∂φ∂̄φ

is not given by the thermal value (nor with any finite number of chemical potentials). This

is best understood by looking at the figure 3. The derivatives ∂, ∂̄ kill off the double pole

at the origin in all three diagrams, leaving singularities away from the origin. These in

figure (a) differ from those in figure (b) or in figure (c). Figure (c), if redone with infinite

number of chemical potentials as given by (2.37), reproduce the singularities of figure (a).

Thus, we find that all higher dimensional operators are equally important in determin-

ing the long time behaviour of this operator. This is also what we anticipated from the MSS

expression for the relaxation rate, as explained above.

The same story holds for two-point functions 〈O(x1, t1)O(x2, t2)〉. The exact quench

computation, even in the deep quench limit (5.1) is not reproduced by the thermal result

or any finite number of chemical potentials. This can be explicitly seen for O = ∂φ in the

previous two sections. We have also verified this lack of universality for operators which

are a composite of ‘derivative’ operators and exponential vertex operators, e.g. O = ∂φeiqφ.

Once again, the reason is the annihilation of the double pole at the origin by these generic

operators.

It is only the pure exponential vertex operators O = eiqφ whose two-point func-

tions (4.15) respect universality in the deep quench limit, that is they are reproduced

by the thermal behaviour (these operators do not annihilate the pole at the origin).

Multi-scale quench. The discussion above was mainly centered on a sudden quench

from the ground state of a massive theory with mass m0. By starting from squeezed states,

we can introduce multiple scales in the problem. Thus, as discussed in section 4.3, it is
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possible to construct a quantum quench resulting in two parameters κ2 and κ4 which are

independent (in terms of the asymptotic GGE, the chemical potential µ4 is not determined

by β). The argument about contribution of all higher charges being of the same order,

therefore, does not immediately hold. The question then is: suppose we hold κ4 fixed

and small; can we recover thermal behaviour (or, behaviour as in a CC) more or more

accurately for sufficiently large times or distances?

To answer this, let us analyze the pole location given by (4.28)

2κ2k + 2κ4k
3 = iπn

It would be tempting to argue that for sufficiently small k the cubic term can be ignored

to any order of accuracy. However, once we consider correlators which cancel the pole

arising from n = 0, the correlators in section 4.3 do not receive any contribution at all

from small k region. Hence the κ4 modifies the solution of this equation by 1 + o(κ4/κ
3
2)

(more precisely, the pole is given by k1 from (4.30) for n = −1). Hence the exponent itself

changes depending on κ4, and there is no sense in which the contribution of κ4 can be

made less significant at larger times!

Conclusion. Generically universality, as defined above, is violated. Long time/distance

behaviour is affected by perturbing the initial state by higher dimensional operators. The

discussions in this subsection suggest that single scale quenches may generically show such

a lack of universality; the same appears to be true of multiple scale quenches where the

correlators are dominated by poles at a finite distance from the origin.

5.2 Memory retention

In this section we will discuss the issue of non-standard thermalization in the models studied

where the equilibrium chemical potentials allow a reconstruction of the quench protocol

(completely or partially depending on the situation).

Quench from a ground state. Let us first consider the case of quenches from a ground

state. As is clear from (2.10) and (2.12), the κn-coefficients of the gCC state (2.17) have

a one-to-one relation to the reflection amplitude r(k) of the analogous potential scat-

tering problem discussed in appendix A. Now, it is well-known that the potential of a

one-dimensional Schrödinger problem [38–40]29 can be reconstructed from the reflection

amplitude r(k). As explained above, the potential of the scattering problem is specified

by m(t). Hence it follows that m(t) can be reconstructed from κ(k). This, in turn, means

that the µn’s, which are just 4κn (2.21) (µ2 ≡ β), carry complete knowledge of the quench

protocol m(t). Thus, the equilibrium ensemble remembers the quench protocol! As an

example, the coefficients κn in (2.31) can be used to determine the parameters m0 and ρ

which specify the quench protocol m(t) completely.

29We thank Basudeb Dasgupta for pointing out the reference [38] to us.
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Quench from excited states. In case we consider a squeezed pre-quench state, there

is additional data in the pre-quench state and the GGE is characterized by the function

κeff(k) (2.50) which is given by a combination of the knowledge of the squeezing function

f(k) and the quench protocol m(t) (see (2.49)). For a known initial state, the quench

protocol m(t) can be reconstructed from the GGE parameters µn like above. Similarly,

for a given quench protocol, the initial state, characterized by f(k) can be completely

determined by the κn-parameters (see, e.g. (2.52)). In case the pre-quench initial state

as well as the quench protocol are unknown, the GGE allows reconstruction of a certain

combination of the data.

One might wonder whether, for a known quench protocol, any initial state can be

reconstructed from the final equilibrium ensemble. The answer is no, as can be easily

seen by considering a linear combination of several squeezed states. In general, the final

equilibrium ensemble has only partial memory of the initial state. Full reconstruction of

the initial state happens only for special states like the squeezed states considered in this

paper. Of course, besides the choice of the initial state, the integrability of the model is

another crucial ingredient for this result. We would comment on the possible holographic

interpretation of this result in the next section.

6 Discussion

In this paper, we explicitly verify for actual critical quenches the ansatz made in MSS for

the generalized Calabrese-Cardy form (gCC) (1.1) of the initial state. We show that for

an arbitrary mass quench in a theory of free scalars as well as in a theory of free fermions,

a large choice of pre-quench initial states (ground state or squeezed states) leads to a gCC

state. We find that our results hold even when the quantum quench begins and ends in

a massless theory, although in this case, the putative temperature sometimes turns out to

be imaginary and the issue of thermalization in these cases is subtle.

We find that while the ground state and generic squeezed states lead to gCC states

with all infinite number of κn parameters present, one can choose special squeezed states

to prepare gCC states with specific values of any given number of the κn-parameters; in

particular we can prepare a CC state of the form e−κ2H |D〉 from special squeezed states.

We compute the exact propagator in these quenches and hence the exact time-

dependence of correlators. We find that the correlators thermalize at long times and the

results verify those of MSS wherever a comparison is possible. We have a simple under-

standing of the identification (1.2) of the κn’s with the chemical potentials µn in terms

of poles of the propagator. In specially prepared gCC states with non-zero values of κ2

and κ4, we show that the exponential decay given by the relaxation rate (1.3) persists

non-perturbatively in κ4.

We point out that the presence of the extra charges in the gCC state, which are higher

dimensional operators, non-trivially modify the long distance and long time behaviour of

correlators, in apparent contradiction to Wilsonian universality. This is an example of

a UV/IR mixing; operators which are expected to be relevant in the UV by usual RG

arguments are found here to affect the IR behaviour of various correlators. We present an
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understanding of this in terms of poles of the propagator in the complex momentum plane.

We find that while exponential vertex operators do not suffer from these ‘non-universal’

corrections, all other operators (derivatives and composites of derivatives and exponentials)

do show this non-universal behaviour.

We also find another atypical behaviour, related to the above: the equilibrium ensemble

remembers about the quench protocol. In case we start from the ground state of the pre-

quench Hamiltonian, the chemical potentials of the GGE encode a complete knowledge of

the quench protocol m(t). With pre-quench squeezed state, the chemical potentials encode

a combination of information about the initial state and the quench protocol.

6.1 Higher spin black holes

In MSS [1] we established a relation between (a) relaxation of perturbations to a GGE in a

CFT and, in the holographic dual, (b) quasinormal decay to a higher spin (hs) black hole.

In particular, we found that the relaxation rate in (a) is equal to the imaginary part of the

quasinormal frequency [41] in (b).

We also found in MSS that the rate in (a) is the same as the asymptotic rate of ther-

malization to a GGE after a quantum quench. This last result depended on an ansatz

that the initial state is given by a gCC state. In the present paper we have justified this

ansatz; in particular (see, e.g. (2.53)) we have shown explicitly that a quantum quench

from an appropriate squeezed state indeed leads to such gCC states. In section 4.3 we

have shown (see (4.32)) that the exact formula for the relaxation rate supports the per-

turbative formula (1.3). Note that we now have the relaxation rate non-perturbatively,

including the two non-perturbative branches (4.29). It would be interesting to compare

these two branches with the corresponding non-perturbative branches of the hs black hole’s

quasinormal frequency [41].

The above results prove the relation between quantum quench dynamics in the field

theory and quasinormal decay to higher spin black holes. The specific hs black holes

relevant to the present paper pertain to the λ → 1 and λ → 0 limits of the Gaberdiel-

Gopakumar correspondence [42] in which the dual conformal field theories describe free

massless scalars and free massless fermions respectively. The integrable structure of the

conformal field theories is reflected in the infinite number of conserved charges of the hs

black hole solutions.

One may wonder if we can extend the above analysis to include gravitational collapse to

a hs black hole. Note that a massive to massless quench does not have a direct holographic

dual since the theory in the past is not conformal. In this paper we have included a

brief discussion of quenches from a critical Hamiltonian to a critical Hamiltonian, starting

from ground states/excited states. This can potentially describe a collapse geometry. The

relevant CFT calculation indicates that the quench history is determined in a one-to-one

fashion by the chemical potentials, or equivalently by the conserved charges. This makes it

plausible that in the process of gravitational collapse to a hs black hole, the time-dependent

history of the ‘source’ can be reconstructed from the final black hole configuration, in a

manner analogous to the dual CFT result on ‘memory retention’ (see subsection 5.2); the
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parameters specifying the time-dependence are encoded in the infinite number of conserved

charges of the black hole.

Other open problems. Some of the obviously important extensions of the above work

are to the case of (i) massive to massive quenches, (ii) higher dimensions, (iii) interacting

theories. In particular, it would be interesting if the phenomena of IR non-universality

persists in higher dimensions. The calculation of Bogoliubov coefficients and the exact

propagator for the tanh protocol appears to go through [28] in higher dimensions in a

straightforward manner. However, the analysis of the poles requires more care. We hope

to come back to this issue shortly.

Acknowledgments

We would like to thank Mustansir Barma, Basudeb Dasgupta, Kedar Damle, Deepak Dhar,

Samir Mathur, Rob Myers, Pranjal Nayak, Sreerup Raychaudhuri, Rajdeep Sensharma,

Ritam Sinha, Spenta Wadia and especially Sumit Das and Shiraz Minwalla for numerous

useful discussions. We would also like to thank the JHEP referee for useful suggestions

regarding reorganization of the sections and improvement of clarity in the presentation.

This work was partly supported by Infosys Endowment for the study of the Quantum

Structure of Space Time.

A The analogous scattering problem in quantum mechanics

In the text, we encountered the Klein-Gordon equation (2.2) expressed in the form

− d2

dt2
φ(k, t) + (k2 −m2(t))φ(k, t) = 0 (A.1)

We will explain below an analogous Schrödinger problem and inferences for the solution of

the above problem.

A.1 Details of the quantum mechanics problem

The equation above is analogous (see table 2) to the Schrödinger equation for a particle in

a potential (we will use the convention ~ = 1, 2m = 1)30

− d2

dx2
ψ(E, x) + (V (x)− E)ψ(E, x) = 0 (A.2)

The dictionary is given by It is understood that φ(k, t) satisfies the reality condition

φ∗(k, t) = φ(−k, t).
We will first discuss the quantum mechanical scattering problem. For a mass-function

m2(t) which drops from m2
0 to zero, the potential V (x) asymptotes to −U0 ≡ −m2

0 as

30We denote the spatial coordinate of the analogous Schrodinger problem by x to distinguish it from the

spatial coordinate x of the original field theory problem.
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Particle QFT

x t

E k2

V (x) −m2(t)

ψ(E, x) φ(k, t)

Table 2. Analogy.

-U0

0 x

Figure 4. Scattering of a particle in a potential V (x). V (x) → −U0 as x → −∞ and → 0 as

x→∞.

x→ −∞ and to zero as x→∞ (see figure 4). As is well-known (see, e.g., [43], section 25),

the wavefunction for such a problem takes the asymptotic forms

ψ(x)
x→−∞−−−−→ A1e

ik1x +B1e
−ik1x, k1 =

√
(E + U0),

x→∞−−−→ A2e
ikx +B2e

−ikx, k =
√
E. (A.3)

The exact solution which matches the above asymptotic form with A2 = 1, B2 = 0 is

called the right-moving Jost function f+(k, x). There is another exact solution which

matches (A.3) with B1 = 1, A1 = 0 which is called the left-moving Jost function ψ(k, x) =

f−(k, x). It can be shown that (for generic momenta) f+(k, x) and f∗+(k, x) are independent,

and so are f−(k, x), f∗−(k, x). Clearly f− must be a linear combination of f+, f
∗
+ and vice

versa, expressed in terms of Bogoliubov coefficients αq, βq,
31

f−(k, x) = αq(k)f+(k, x) + β∗q (k)f∗+(k, x) (A.4)

The existence of the Jost functions and properties relevant to the present discussion can be

proved under appropriate fall-off conditions of the potential, see, e.g. [38–40]). In particular

a sufficient condition used in [39] is∫ ∞
−∞

dx |V (x)− U0θ(x)|(1 + |x|2) <∞ (A.5)

The general solution of the Schrodinger equation, which has the asymptotic form (A.3),

can be written in two alternative forms

ψ(k, x) = A1(k)f−(k, x) +B1(k)f∗−(k, x) = A2(k)f+(k, x) +B2(k)f∗+(k, x) (A.6)

31The label ‘q’, for ‘quantum mechanics’, distinguishes these Bogoliubov coefficients from the analogous

Bogoliubov coefficients α, β that occur in the field theory discussion later on.
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By using (A.4) we find the following relations between the (Ai, Bi) coefficients (called

Bogoliubov relations) [43]: (
A2(k)

B2(k)

)
=

(
αq βq
β∗q α

∗
q

)(
A1

B1

)
(A.7)

The conservation of particle current along the positive x-direction implies

k1(|A1|2 − |B1|2) = k(|A2|2 − |B2|2), (A.8)

By applying (A.7), we get

|αq|2 − |βq|2 = k1/k (A.9)

Let us now consider a wave travelling from the left. This is characterized by B2 = 0 (i.e.

as x → ∞, ψ becomes purely right-moving). The reflection and transmission amplitudes

r ≡ B1/A1 and t ≡ A2/A1 for such a wave can be easily computed using (A.7). We get

r = −β∗q/α∗q , t = αq + βqB1/A1 = αq − |βq|2/α∗q

Note that for a wave of this kind the continuity equation (A.8) can be rewritten as

k1(1− |r|2) = k|t|2 (A.10)

Similarly, for a wave travelling from the right, we must have A1 = 0. The corresponding

reflection and transmission amplitudes r′ = A2/B2, t′ = B1/B2 can be computed by

using (A.7):

r′ = βq/α
∗
q , t
′ = 1/α∗q (A.11)

It is clear that the two reflection amplitudes have the same magnitude:

|r′| = |r|

A.1.1 Power series expansion of the reflection amplitude

It has been shown in [38–40], under conditions of sufficiently fast fall-off of the potential

function at x = ±∞ ([39] uses (A.5)) that the right reflection amplitude r′ has a Taylor

expansion around k = 0, with the leading term = −1, thus:

r′ = −1 + r1k + r2k
2 + . . . , (A.12)

Below we will demonstrate some explicit examples of such an expansion.
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A.1.2 Examples of 1D scattering in QM

1. Consider a step potential V (x) = −U0 Θ(−x), with U0 > 0. For such a potential, the

asymptotic forms (A.3) become exact:

ψ(x) = A1e
ik1x +B1e

−ik1x, x < 0, k1 =
√

(E + U0),

= A2e
ikx +B2e

−ikx, x > 0, k =
√
E. (A.13)

Demanding continuity of the wavefunction and of its first derivative at x = 0, we get(
A2

B2

)
=

1

2

(
1 + k1

k 1− k1
k

1− k1
k 1 + k1

k

)(
A1

B1

)

Using (A.7) and (A.11) we can read off the following Bogoliubov coefficients and

reflection amplitudes

αq =
1

2

(
1 +

k1

k

)
, βq =

1

2

(
1− k1

k

)
, r′ =

β

α∗
=

1− k1
k

1 + k1
k

,

r = −β
∗

α∗
= −

1− k1
k

1 + k1
k

, k1 =
√
k2 + U0

The reflection amplitude r′(k) has a Taylor expansion around k = 0:

r′(k) = −1 +
2k

k1
− 2k2

k2
1

+O
(
k3
)

which has the advertised form (A.12).

2. Let us consider a piecewise continuous potential

V (x) =


−U0, x ≤ 0

v, 0 < x ≤ a
0, x > a

where a > 0 and the constant v can have any real value. The wavefunction has

a piecewise form similar to (A.13), now in three regions (with possibly complex

momenta). By demanding continuity of the wavefunction and of its derivative at

x = 0 and x = a, it is straightforward to find

r′(k)

=
e−2iak

((
k
√
−k2+v−

√
−(k2+U0)(k2+v)

)
cosh

(
a
√
−k2+v

)
+i
(
−k
√
k2+U0+k2−v

)
sinh

(
a
√
−k2+v

))
(
k
√
−k2−U0+v+

√
−(k2+U0)(k2−v)

)
cosh

(
a
√
−k2+v

)
−i
(
k
(√

k2+U0+k
)
−v
)

sinh
(
a
√
−k2+v

)
=−1+k

[
2
(
−av−i

√
U0

)
sinh(a

√
v)+2

(√
v+ia

√
U0v

)
cosh(a

√
v)

√
U0v cosh(a

√
v)+iv sinh(a

√
v)

]
+O

(
k2
)
.

Note that the Taylor expansion of r′(k) in the last line again matches the form (A.12).
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3. For the potential V (x) = −1
2m

2
0 (1− tanh(ρx)), we find the following Bogoliubov

coefficients

αq(k) =
Γ
(
− ik

ρ

)
Γ
(

1− ik1
ρ

)
Γ
(
− i(k+k1)

2ρ

)
Γ
(

1− i(k+k1)
2ρ

) , βq(k) =

√
k

k1

Γ
(
−ik
ρ

)
Γ
(

1−−ik1
ρ

)
Γ
(
−i(k−k1)

2ρ

)
Γ
(

1+−i(k−k1)
2ρ

)
We can compute these expressions by directly solving the Schrodinger equation; here

we have simply borrowed from section 2.4 and used the dictionary (A.18). This leads

to a reflection amplitude r′(k) = βq/α
∗
q with the following Taylor series expansion:

r′(k) = −1 + k

− 2

m0
+
−2i

(
γ + ψ(0)

(
−−im0

2ρ

))
ρ

+O
(
k2
)

which, again, agrees with the form (A.12).

A.2 Implication for the field theory problem

The Klein-Gordon equation for a massive scalar field φ(k, t) in mixed Fourier space can be

written as follows

− d2φ(k, t)

dt2
= (k2 +m2)φ(k, t)

The classical solutions are well-known:

φ(k, t) = a(k)
e−iω(k)t√

2ω(k)
+ b(k)

eiω(k)t√
2ω(k)

, ω(k) = +
√
k2 +m2

If the scalar field is real, we have φ∗(k, t) = φ(−k, t), implying b(k) = a∗(−k).

In the field theory problem, defined by (A.1), we have a mass function m2(t) which

asymptotes to m2
0 and zero at t → ∓∞. In analogy with the Jost function f−(k, x)

introduced above in the analogous Schrödinger problem, we must have an exact solution

φ(k, t) = uin(k, t) which, in the infinite past, asymptotes to

uin(k, t)
t→−∞−−−−→ e−iωint

√
2ωin

, ωin =
√
k2 +m2

0

and an exact solution uout(k, t) (analogous to f∗+(k, x)) which asymptotes in the far future to

uout(k, t)
t→∞−−−→ e−iωoutt

√
2ωout

, ωout =
√
k2

The normalization of the asymptotic wavefunctions are according to standard conventions.

Just like (A.6), we have two alternative forms of the solution for φ(k, t):

φ(k, t) = ain(k)uin(k, t) + bin(k)u∗in(k, t) = aout(k)uout(k, t) + bout(k)u∗out(k, t)

t→−∞−−−−→ ain√
2ωin

e−iωint +
bin√
2ωin

eiωint

t→∞−−−→ aout√
2ωout

e−iωoutt +
bout√
2ωout

eiωoutt (A.14)
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This can be compared with (A.3) using table 2. Further, using the reality properties

b(k) = a∗(−k) discussed above, we get

A1(k) =
a∗in(−k)√

2ωin
, B1(k) =

ain(k)√
2ωin

, A2(k) =
a∗out(−k)√

2ωout
, B2(k) =

aout(k)√
2ωout

(A.15)

Just like in the quantum mechanics problem, uin is a linear combination of uout and u∗out [29]

uin(k) = α(k)uout(k) + β(k)u∗out(−k) (A.16)

which leads to

ain(k) = α∗(k)aout(k) + β∗(k)a∗out(−k) (A.17)

Comparing with (A.4) and noting the extra normalization factors 1/
√

2ω, we get

α(k) =
√
ωout/ωin αq(k), β(k) =

√
ωout/ωin β

∗
q (k) (A.18)

Here we have used the fact that functions of ω do not distinguish between k and −k.

This proves for us the important relation:

γ ≡ β∗/α∗ = βq/α
∗
q = r′ (A.19)

Using the above result and (A.12), we get a Taylor series expansion

γ = −1 + γ1k + γ2k
2 + γ3k

3 + . . . (A.20)

where the expansion coefficients are the same as in (A.12), i.e. γi = ri.

Another important relation, obtained from (A.9) and (A.18) is

|α|2 − |β|2 = 1 (A.21)

B Baker-Campbell-Hausdorff calculation

We will show that

|ψ〉 ≡ exp

(
1

2

∑
k

γ(k)a†(k)a†(−k)

)
|0〉 = exp

(
−
∑
k

κ(k)a†(k)a(k)

)
|Bd〉 (B.1)

where32

κ(k) = −1

2
log(γ(k)/γ0) (B.2)

and

|Bd〉 ≡ exp

(
1

2

∑
k

γ0a
†(k)a†(−k)

)
|0〉, (B.3)

32We thank Samir Mathur for drawing our attention to [44] where a relation of the form (B.2) was

derived earlier in a somewhat different context for a single oscillator.
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The choice γ0 = −1 corresponds to the Dirichlet state (C.2) (similarly, γ0 = 1 corresponds

to Neumann boundary condition). To derive (B.1), we note that the right hand side can

be written as

exp

[∑
k

B(k)

]
exp

[∑
k

A(k)

]
|0〉 = exp

[∑
k

B(k)

]
exp

[∑
k

A(k)

]
exp

[
−
∑
k

B(k)

]
|0〉

where we have defined B(k) = −κ(k)a†(k)a(k) and A(k) = γ0a
†(k)a†(−k). The iden-

tity (B.1) follows by noting that [B(l), A(k)] = −κ(k)A(k) (δk,l + δk,−l), and by using the

following form of the Baker-Campbell-Hausdorff (BCH) formula

eXeY e−X = eexp(s)Y (B.4)

where [X,Y ] = sY .

In the context of this paper, we will be interested in evaluating κ(k) from (B.2) in a

power series in k, using (A.20). Since the leading term in γ(k) is −1, with the choice of

the Dirichlet boundary state γ0 = −1, we get the equation (2.12) in the text.

C Bosons

The action for a free massless scalar is

S =
1

2

∫
dxdt

[
(∂tφ)2 − (∂xφ)2

]
= −1

2

∫
dxdt ∂µφ∂

µφ

The normal mode expansion is (we use “box normalization” k = 2πn/L,
∫
dk
2π = 1

L

∑
n

)33

φ(x, t) =

∫
dk

2π

[
a(k)√

2|k|
exp (ikx− i|k|t) +

a†(k)√
2|k|

exp (−ikx+ i|k|t)

]

=
∑
n 6=0

1√
4πL|n|

an exp

(
2π

L
(inx− i|n|t)

)
+ h.c

≡
∑
k 6=0

[
a(k)√

2|k|
exp (ikx− i|k|t) +

a†(k)√
2|k|

exp (−ikx+ i|k|t)

]
(C.1)

We will often use an ≡ a(k), with a slight abuse of notation. The commutation relations

are [a(k), a†(l)] = δkl.

Boundary states. In terms of standard CFT oscillators αn, α̃n, the Dirichlet boundary

state is given by (see, e.g. [46] eq. (4.1.13))

|D〉 = exp

[ ∞∑
n=1

1

n
α−nα̃−n

]
|0〉

33We use the conventions of [45].
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In terms of our oscillators an ≡ ak

α−n = i
√
na†−n, α̃−n = i

√
na†n (C.2)

|D〉 = exp

[
−
∑
n>0

a†na
†
−n

]
|0〉 = exp

−1

2

∑
n 6=0

a†na
†
−n

 |0〉 = exp

−1

2

∑
k 6=0

a†(k)a†(−k)

 |0〉
In the first step we used the relation between our oscillators here and the standard CFT

conventions (see [45], chapter 6).

Euclidean CFT. We define w = x+ iτ , w̄ = x− iτ , τ = it. The Euclidean Propagator is

〈φ(0, 0)φ(x, τ)〉 = 〈φ(0, 0)φ(w, w̄)〉 = − 1

4π
(lnw + ln w̄)

Vertex operators. Consider the exponential vertex operator O(w, w̄) = exp[iqφ(w, w̄)].

〈exp[iqφ(0, 0)] exp[−iqφ(w, w̄)]〉 = w−q
2/4πw̄−q

2/4π

Hence h = h̄ = q2/8π, ∆ = q2/4π.

Boson W-currents. We have used the following definitions of the W∞ currents [31]

(normal ordering is implicit),

T (z) = ∂φ(z)∂φ(z) (C.3)

W4(z) = 2∂3φ∂φ− 3∂2φ∂2φ (C.4)

D Fermions

We have used the following conventions in the text.

ηµν =

[
1 0

0 −1

]
, ∂µ = (∂t,∂x), γµ∂µ = γ0∂t−γ1∂x,

γ0
d =

[
1 0

0 −1

]
, γ1

d =

[
0 1

−1 0

]
, in Dirac basis.

S=
1√
2

[
1 −1

1 1

]
, γ0

c =Sγ0
dS
−1 =

[
0 1

1 0

]
, γ1

c =Sγ1
dS
−1 =

[
0 1

−1 0

]
, in chiral basis.

u(0) =

(
1

0

)
, v(0) =

(
0

1

)
are the spinors in the rest frame.

The spinors in a general frame are

u(k,m) =
1√

(ω +m)

[
(ω +m)

−k

]
, v(k,m) =

1√
(ω +m)

[
k

−(ω +m)

]
ū(k,m) =

1√
(ω +m)

[
(ω +m) k

]
, v̄(k,m) =

1√
(ω +m)

[
k (ω +m)

]
(D.1)
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where we have used the normalization ū(k,m)u(k,m) = −v̄(k,m)v(k,m) = 2m. In the

chiral basis, the mode expansion in the massless limit is

Ψc(x, t) = S ·Ψ(x, t) =
1√
2

[
1 −1

1 1

]
·
∫
dk

2π

1√
2

[
ake
−ik·x + sgn(k)b†ke

ik·x

−sgn(k)ake
−ik·x − b†ke

ik·x

]

=

∫ ∞
−∞

dk

2π

1

2

[
(1 + sgn(k))(ake

−ik·x + b†ke
ik·x)

(1− sgn(k))(ake
−ik·x − b†ke

ik·x)

]
(D.2)

Writing as ψ(x, t) and ψ̄(x, t),

ψ(x, t) =

∫ ∞
0

dk

2π

(
ake
−ik·x + b†ke

ik·x
)

(D.3)

ψ̄(x, t) =

∫ 0

−∞

dk

2π

(
ake
−ik·x − b†ke

ik·x
)

(D.4)

Solution of Dirac equation and Bogoliubov coefficients. Using the coordinate

transformation y = e−ρt and the ansatz, we get the following equation:

φ′′±(y) +
φ′±(y)

y
+ φ±(y)

(
k2

ρ2y2
+
m2

0y
2 ± 2im0ρ

ρ2 (y2 + 1)2

)
= 0 (D.5)

The ‘in’ solutions are solutions which become plane waves in far past and the ‘out’

solutions are solutions which become plane waves in far future. Due to the explicit i in

the equation of φ±, the positive energy solutions φ±,in/out,p(k, t) and the negative energy

solutions φ±,in/out,p(k, t)
∗ are related as

φ+,in/out,m(k, t) = φ−,in/out,p(k, t)
∗, φ−,in/out,m(k, t) = φ+,in/out,p(k, t)

∗

So, the solutions can be written as

φ+,in/out(k, t) = φ+,in/out,p(k, t) + φ−,in/out,p(k, t)
∗

φ−,in/out(k, t) = φ−,in/out,p(k, t) + φ+,in/out,p(k, t)
∗

The explicit solutions are

φ+,in(k,t) =
(
e−2ρt+1

)− im0

2ρ eit(ωin+m0)
2F1

(
i(k−m0−ωin)

2ρ
,
i(−k−m0−ωin)

2ρ
;1− iωin

ρ
;e2ρt

)
φ−,in(k,t) =

(
e−2ρt+1

) im0

2ρ e−it(ωin−m0)
2F1

(
i(k+m0−ωin)

2ρ
,
i(−k+m0−ωin)

2ρ
;1− iωin

ρ
;e2ρt

)
φ+,out(k,t) = e−ikt

(
e−2ρt+1

)− im0

2ρ
2F1

(
i(k−m0+ωin)

2ρ
,
i(k−m0−ωin)

2ρ
;1+

ik

ρ
;−e−2ρt

)
φ−,out(k,t) = e−ikt

(
e−2ρt+1

) im0

2ρ
2F1

(
i(k+m0−ωin)

2ρ
,
i(k+m0+ωin)

2ρ
;1+

ik

ρ
;−e−2ρt

)
(D.6)

Defining the Dirac spinors as

Uin/out(k, x, t) = Kin/out

(
γ0∂t − ikγ1 − im(t)

)
eikxφ+,in/out,p(k, t)u(0)

Vin/out(k, x, t) = −Kin/out

(
γ0∂t + ikγ1 − im(t)

)
e−ikxφ+,in/out,p(k, t)

∗v(0)
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where Kin/out = i
(

1
ωin/out+min/out

)1/2
. For constant mass, U(k, x, t) = u(k,m)e−ik·x and

V (k, x, t) = v(k,m)eik·x where u(k,m) and v(k,m) have been defined in (D.1). The mode

expansion of Ψ(x, t) in terms of in/out modes are

Ψ(x, t) =

∫ ∞
−∞

dk√
2ωin/out

[
ak,in/outUin/out(k, x, t) + b†k,in/outVin/out(k, x, t)

]
Using properties of hypergeometric functions [34], the Bogoliubov transformations between

‘in’ and ‘out’ solutions are

φ+,in,p(k, t) = α+(k)φ+,out,p(k, t) + β+(k)φ−,out,p(k, t)
∗

φ−,in,p(k, t) = α−(k)φ−,out,p(k, t) + β+(k)φ+,out,p(k, t)
∗

Hence, the Bogoliubov transformations between the ‘in’ and ‘out’ operators are

ak,in =

(
ωin

ωout

)1/2 Kout

Kin

(
α+(k)∗ak,out − χ(k)β+(k)∗b†−k,out

)
bk,in =

(
ωin

ωout

)1/2 Kout

Kin

(
α+(k)∗bk,out + χ̃(k)β−(k)∗a†−k,out

)
(D.7)

where χ(k) = χ̃(k) = sgn(k). It is straightforward now to find the expressions for the

Bogoliubov coefficients which are reproduced in the text (3.6).

Fermion W-currents. We have used the following definitions of the super-W∞ cur-

rents [47] (normal ordering is implicit),

T (z) = − i
2

(ψ∗∂ψ(z)− ∂ψ∗ψ(z))

W4(z) =
4

5
q2
(
∂3ψ∗ψ(z)− 9∂2ψ∗∂ψ(z) + 9∂ψ∗∂2ψ(z)− ψ∗∂3ψ(z)

)
E Subtleties of the sudden limit

In section 2.4 we analyzed the behaviour of the quench under the “tanh” protocol for large

ρ in a power series in m0/ρ. In particular, in section 2.4.1, we defined the sudden limit as

the limit (2.33). In this section we will give a more precise definition of this limit. In certain

quantities, like the number operator (2.32) in section 2.4 and the propagator in section 4.2

etc. the distinction is not essential, but in general the naive limit entails UV divergences.

E.g. all W -charges, including the energy density, under a naive m0/ρ expansion introduced

in section 2.4 appear to have progressively higher UV divergences as one goes down the

order. To treat these divergences properly, let us first analyze these. Later on, we will

find that terms in this expansion can be resummed to yield finite expressions, provided we

define the sudden limit by the equation (E.1).
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The energy density is

E/L =
1

2π

∫ Λ

−Λ
dk|k|Nk = m2

0

(
1

8π
− m2

0

32πΛ2
+O

(m0

Λ

)4
− m2

0

ρ2

[
1

48
π log

(
Λ

m0

)

+
1

96
π log(4) +

πm2
0

192Λ2
+O

(m0

Λ

)4
]

+O

(
m0

ρ

)4
)

where we have used the asymptotic number density (2.32), in an m0/ρ expansion:

Nk =

(
k −

√
k2 +m2

0

)2

4k
√
k2 +m2

0

−
(
m0

ρ

)2 π2m2
0

48
(
k
√
k2 +m2

) +O

(
m0

ρ

)4

The W4 density is

W4/L=

∫ Λ

−Λ

dk

2π
|k|3Nk =m4

0

[
4log(Λ/m0)−3+log(16)

64π
+

m2
0

32πΛ2 +O
(
m0

Λ

)4

+
(
m0

ρ

)2
(
− πΛ2

96m2
0

+
1

192
π(2 log(Λ/m0)−1+log(4))+

πm2
0

256Λ2 +O
(
m0

Λ

)4
)

+O
(
m0

ρ

)4
]

The W6 density is

W6/L =

∫ Λ

−Λ

dk

2π
|k|5Nk

= m6
0

[(
Λ2

32πm2
0

+

(
log
(
m0
Λ

)
16π

+
1

24π
− log(4)

32π

)
− 15m2

0

512πΛ2
+O

(m0

Λ

)4
)

+
m2

0

ρ2

(
− πΛ4

192m4
0

+
πΛ2

192m2
0

+
1

128
π log

(m0

Λ

)
− 1

256
π log(4) +

7π

1536
− 5πm2

0

1536Λ2
+O

(m0

Λ

)4
)

+O

(
m0

ρ

)4
]

E.1 Resumming the divergences

It turns out that the terms with growing UV-divergences with growing powers of m0/ρ can

be resummed to the following form.

Introduce the scaling functions

E/L = m2
0E(x, y), W4/L = m4

0F (x, y), W6/L = m6
0G(x, y), x = m2

0/ρ
2, y = m2

0/Λ
2
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y=(m0/ )2

x=(m0/ρ)
2

Figure 5. The sudden limit.

The leading singularities in the above expressions for the charges are captured by

E(x,y) =
1

8π
+

(
5π2x

8 +y
)

log
(
π2x+y

)
60π

+· · ·= 1

8π
+· · ·

F (x,y) =−

(
log
(

2π4x2

5 +y2
)

+log
(
π2x+y

))(
40(5y+3)+π4x2+20π2x

)
11520π

+· · ·

G(x,y) =
1

1536π

(
π4x2

120
+

1

32
π2x(9y+4)+y2+y+1

)

×

8

 25√
26π4x2

3 +25y2
+

1

π2x+y

+19log

(
74π4x2

285
+y2

)
+10log

(
π2x+y

)+· · ·

The correct version of the “sudden” limit, therefore, is to take the limit Λ → ∞ first, for

finite, large ρ/m0 (see figure 5), i.e.

y =
m2

0

Λ2
→ 0, x =

m2
0

ρ2
= small, fixed (E.1)

In this limit, as we can see from the above expressions:

E(x,0) =
1

8π
+
π

96
x log(x)+· · ·= 1

8π
+· · · , F (x,0)∝ log(x)+· · · , G(x,0)∝ log(x)/x+· · · ,

which implies

E/L = m2
0

(
1

8π
− π

48

m2
0

ρ2
log(

ρ

m0
)

)
+ · · · = m2

0

1

8π
+ · · ·

W4/L ∝ m4
0 log(

ρ

m0
) + · · ·

W6/L ∝ m6
0

ρ2

m2
0

log(
ρ

m0
) + · · · (E.2)
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