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1 Introduction

Non-local objects such as loop and surface operators are ubiquitous in quantum field theo-

ries, and provide invaluable knowledge about the status of the theories that are inaccessible

by other means. Defects collectively mean non-local operators of various (co)dimensions.

They are less understood than local operators except when they are given explicit repre-

sentations by fundamental local fields, especially because they are often characterized as

boundary conditions on their supports as most exemplified by ’t Hooft loops.1 Among

1There are several ways defining and constructing defects. See e.g. [1] for a review.
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them a particularly important class is conformal defects preserving a part of the confor-

mal symmetry in CFT and allowing better control of determining correlation functions

by the residual symmetry. For instance, boundary and interface CFTs are examples of

codimension-one conformal defects [2, 3]. Twist operators associated to entanglement en-

tropy are an intriguing example of codimension-two defects living on an entangling surface

in CFT [4–7].

In recent years there has been an increasing interest in defect CFTs mainly due to the

development of the conformal bootstrap program that aims to constrain the dynamics of

CFT by a set of data defining defects [8–10]. Systematic studies for conformal defects of

arbitrary codimension have been undertaken in [11, 12] where the embedding space formal-

ism [13–16] was extended to deal with the correlation functions of local operators in the

presence of defects. In this formalism, the position of a conformal defect of codimension-m

in CFTd is given by the intersection of a codimension-m hypersurface and the null projec-

tive cone in the embedding space Rd+1,1, preserving the SO(m)×SO(d+1−m, 1) subgroup

of the entire conformal symmetry SO(d+ 1, 1). While there are bulk local operators O in

the bulk CFT, the conformal defect can also accommodate defect local operators Ô that

transform under the conformal group SO(d+ 1−m, 1) on the codimension-m hypersurface

with “flavor” symmetry SO(m). Defect primary operators Ôn, which span a basis of the

defect local operators, are classified by the irreducible representations (which we denote n

in the subscript of Ô) of the subgroup SO(m)× SO(d−m)× SO(1, 1), i.e., two irreducible

representations of SO(m) and SO(d − m), and the conformal dimension ∆̂, as the bulk

primary fields On are labeled by the irreducible representation of SO(d) and the conformal

dimension ∆.

The bulk and defect local operators are not independent of each other. To inspect their

relation, it is tempting to expand a bulk local operator O(xa, xi) by the defect primary

operators Ôn(xa) and their descendants,

O(xa, xi) =
∑
n

bO Ôn |x
i|∆̂n−∆ Ôn(xa) + (descendants) , (1.1)

where xa and xi are the coordinates parallel and orthogonal to the defect, respectively.

This type of Operator Product Expansion (OPE) is called the bulk-to-defect OPE. The

OPE coefficients bO Ôn fix the relation between the bulk and the defect local operators,

and further provide the information about and the constraints on the OPE coefficients of

the bulk operators [3, 8, 11]. In applying the bulk-to-defect OPE, the bulk operator O is

supposed to be close to the defect. Hence we can find a (quantization) sphere surrounding

O and intersecting the defect, and associate to the sphere a state specified by the bulk

operator O and the defect. The bulk-to-defect OPE (1.1) states that the state is described

in the radial quantization by a set of the defect local operators when the sphere is shrunk

to a point on the defect by the scale transformation. On the other hand, when the bulk

field is far from the defect, it is more convenient, if it is spherical, to adopt a quantization

surface enclosing both O and the defect. In this case, the state is rather expanded by a

set of the bulk operators on a point where the quantization surface shrinks by the scale

transformation. For example, consider a spherical defect of radius R located on the origin,
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and choose the identity operator as the bulk operator. Then the aforementioned argument

amounts to the expansion of the defect D itself by the bulk operators,

D =
∑
n

cOn R
∆n On(0) + (descendants) . (1.2)

The OPE for defects of this type was applied for studying loop and surface operators

in [17–20] and entanglement entropy in [5], and has been revisited recently from a more

abstract viewpoint in [12]. In this paper we mean by the defect OPE the expansion (1.2) of

conformal defects.2 Now we have two complimentary ways, using either the bulk-to-defect

OPE (1.1) or the defect OPE (1.2), to evaluate the one-point function 〈O(x)〉D of a bulk

operator in the presence of a conformal defect. Comparison between the two results shows

that the defect OPE coefficients cO are proportional to bO1̂ [12].3 Hence the defect OPE

contains the same amount of information about the defect as the bulk-to-defect OPE does

while the former has been less explored than the latter so far.

The objective of the present paper is twofold. First, we want to investigate the universal

structure of the defect OPE for conformal defects that can be determined by the conformal

symmetry. To this end, it is neat to collect the contribution from a conformal multiplet

of a primary operator On in the defect OPE (1.2) into a non-local function B[On], which

we call the defect OPE block of On, that transforms in the same way as On under the

conformal group,

D =
∑
n

B[On] . (1.4)

In principle, the descendant terms in the block can be fixed term by term so that correlation

functions of the bulk operators with the defect are invariant under the residual conformal

symmetry. This approach has been often adopted in literature though, it obscures some

fundamental structures of the defect OPE blocks. We would rather employ the shadow

formalism developed by [21–26] and implemented in the embedding space by [27], which

enables us to decompose the defect OPE into the blocks B[On] by the projector |On| onto

the conformal multiplet of On. The projector is schematically given by the dimensionless

integral of the form, ∫
ddx |On(x)〉 〈Õn(x)| , (1.5)

where Õn(x) is the shadow operator defined by a non-local function of On(x) with dimen-

sion d − ∆ when On(x) has dimension ∆ in CFTd. Armed with the projectors and the

2The expansion (1.2) is named the defect expansion in [12] to distinguish from the bulk-to-defect OPE

that is sometimes called the defect OPE in literature.
3More generally, a defect local operator Ô would allow the expansion,

Ô(ya) =
∑
j

cOjÔ f(ya, za, zi, ∂za , ∂zi)Oj(z
a, zi) . (1.3)

The OPE coefficients bO Ô and cO Ô in the two OPEs are related through the three-point function

〈O(xa, xi) Ô(ya)〉, while the position (za, zi) and the unknown function f(ya, za, zi, ∂za , ∂zi) should be

fixed so that they give the same result.
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X = AdSd+1 Ξ =M(d,m)

Figure 1. The Radon transform between the AdS space and the moduli spaceM(d,m) of conformal

defects

spectral decomposition of the identity operator 1 =
∑

n |On|, we derive the defect OPE

block in the integral representation,

B[On] =

∫
ddx 〈On(x)〉D Õn(x) , (1.6)

where the one-point function 〈On(x)〉D does not necessarily vanish in contrast to the case

of CFT without defects. We will focus on the blocks for spinning operators and examine a

set of constraints imposed on them by the conformal symmetry.

The second objective is leveraging the implications of the defect OPE blocks for the

AdS/CFT correspondence. Our starting point is to view B[On] as a scalar field propagat-

ing on the moduli space M(d,m) of codimension-m conformal defects. Having in mind the

AdS/CFT correspondence, we identify M(d,m) with the moduli space of totally geodesic

codimension-m hypersurfaces in the AdSd+1 space, both having the same coset space struc-

ture, SO(d+ 1, 1)/SO(m)× SO(d+ 1−m, 1). Under this identification we are able to map

a scalar function φ(x) on the AdSd+1 space to a scalar function φ̂(ξ) on the moduli space

by the Radon transform that smears φ(x) on a hypersurface ξ̂ corresponding to a point

ξ ∈ M(d,m) (see figure 1). The original function φ(x) can be reconstructed from φ̂(ξ) by

the inversion formula of the Radon transform,4 which roughly speaking integrates φ̂(ξ)

over the set of all hypersurfaces ξ̂ at some distance p from the point x and then smears

it over p with some weight. Thus the inversion formula provides us a concrete procedure

to build an AdS scalar field from the set of the defect OPE blocks in CFT by designating

φ̂ = B[On]. Moreover, the intertwining property of the Radon transform plays an impor-

tant role in translating the constraints on the blocks into the equation of motion in the

AdS space. Combined with the integral representation of the block (1.6), we argue the

resulting expression of the AdS scalar field agrees with the Euclidean version of the HKLL

formula [29].

Some of the methods and ideas used in this paper are not completely new, and owe to

the earlier works [30, 31] that present a dictionary connecting the AdS scalar field with the

4The inversion formula was applied in [28] to extract the energy density in an asymptotically AdS space

from the relative entropy between the ground state in CFT and an excited state dual to the bulk space.
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entanglement entropy across a sphere in CFT through the Ryu-Takayanagi formula [32,

33].5 In particular they associate the OPE of local operators at two timelike separated

points to an integration over the causal diamond of a codimension-two surface located at

the intersection of the light cones passing through the two points. The integral, termed by

the OPE block, is a bilocal function containing contributions from a conformal multiplet

to the OPE. We show the OPE block is a special case of the defect OPE block for a

codimension-two defect, and reproduce the known properties from scratch. We also clarify

the interplay between the codimension-two defect and the pair of points on the tips of the

causal diamond by introducing a duality between two conformal defects of codimension-m

and codimension-(d+ 2−m).

For the sake of simplicity, we will consider only scalar defects throughout this paper,

though our derivation for the defect OPE block should apply equally to spinning defects.

We will also ignore conformal anomalies in the presence of defects, which have attracted

rising attention in the recent studies of boundary and defect anomalies [35, 37–41]. Some

of them are related to Graham-Witten anomaly that can appear in defect CFT when the

dimension of defects is even [42], and are important to understand the universal part of

entanglement entropy in CFT [43–45]. These will be left as interesting future problems.

This paper is organized as follows. Section 2 contains a review of conformal defects in

the embedding space formalism and a discussion on the duality between defects of different

codimensions. The codimension-two case is treated separately for later use to make contact

with the OPE block of local operators. In section 3, we define the defect OPE blocks and

determine their forms by exploiting the shadow formalism. A monodromy condition is

imposed on the block to remove the contribution of the shadow operators as in the case of

the conformal block. We examine the structure of and constraints on the defect OPE blocks

in detail, which are compared with the OPE blocks when codimension is two. Section 4

elucidates the relation of the physics between the AdS space and conformal defects in CFT.

The Radon transform between the AdS space and the moduli space of conformal defects fits

for this purpose. Using the inversion formula of the Radon transform, we derive a formula

constructing an AdS scalar field from the defect OPE blocks in the scalar representation.

The equivalence of our formula to the HKLL formula is argued by adopting the integral

representation of the block. In section 5, we discuss possible applications of our results and

several open issues left for further investigation.

2 Conformal defects

The conformal symmetry SO(d + 1, 1), acting non-linearly on fields in d dimensions, can

be realized linearly in the embedding space Rd+1,1 [13, 14, 46], which makes it easy to

determine the correlators of higher spin fields [15, 16]. This formalism has been employed

and expanded to describing conformal defects of any codimension and their correlators

with local operators in [11, 12]. In this section, we summarize basic tools necessary for

proceeding to the main part of this paper in the later sections. Section 2.5 introduces a

5The dictionary was extended to boundary CFT by [34] where the structure of the bulk-to-defect

OPE (1.1) was investigated. See also [35, 36].
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new duality between conformal defects of different codimensions, which will play a key role

in relating our defect OPE block and the OPE block in section 3.3.

2.1 Embedding space formalism

We consider CFT in a Euclidean space Rd for simplicity, but the discussion below can be

extended straightforwardly to a Lorentzian CFT as well. The Euclidean conformal group

is SO(d + 1, 1) and the generators of this group act on a primary operator O(x) in a flat

d-dimensional space Rd as follows:

M̂µν O(x) = (xµ∂ν − xν∂µ + Sµν)O(x) ,

P̂µO(x) = ∂µO(x) ,

K̂µO(x) = (2∆xµ + 2xνSνµ − x2∂µ + 2xµx
ν∂ν)O(x) ,

D̂O(x) = (xµ∂µ + ∆)O(x) ,

(2.1)

where M̂µν are the generators of the rotation group SO(d), P̂µ the translation, K̂µ the

special conformal transformation, and D the dilatation. ∆ and Sµν are the conformal

dimension and the spin matrix associated with O(x), respectively.

While these actions of the conformal group are non-linear we can realize them linearly

by enlarging a space to the embedding space Rd+1,1 and restricting a point X in the

embedding space to the projective null cone, X2 = 0, with an identification X ∼ λX,

λ ∈ R. The last condition means there is a gauge redundancy of the rescaling in the

embedding space.

Using the light cone coordinates XA = (X+, X−, X i), (i = 1, · · · , d), the SO(d+ 1, 1)

invariant inner product in the embedding space is defined by

X · Y = −1

2
(X+Y − +X−Y +) +

d∑
i=1

XiY i . (2.2)

The null cone condition X2 = 0 is satisfied by choosing the point as XA = (α, x2/α, xi)

where α is an arbitrary constant. We can use the gauge redundancy X ∼ λX to set α = 1,

which is called the Poincaré section. Then the coordinates of the physical space Rd are

given by xi (i = 1, · · · , d) in the Poincaré section, X = (1, x2, xi).

The conformal algebra (2.1) can be packed in the embedding space into the generators

ĴAB (A,B = 1, · · · , d+ 2) obeying the commutation relations,

[ĴAB , ĴCD] = ηAD ĴBC + ηBC ĴAD − ηAD ĴBC − ηBD ĴAC , (2.3)

with the metric ηAB ≡ diag(1, 1, · · · , 1,−1), which is used when the indices of a vector

is raised and lowered such that XA ≡ ηABX
B. It will be convenient to decompose the

generator into the orbital part L̂AB and the spin part ŜAB commuting with each other,

ĴAB = L̂AB + ŜAB . (2.4)

– 6 –
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When acted on a local operator at a position X in the embedding space the orbital part

L̂AB is realized as a derivative operator,6

LAB(X) = XA
∂

∂XB
−XB

∂

∂XA
. (2.5)

The spin part ŜAB is the uplift of the spin matrix Sµν into the embedding space [15].

2.2 Correlators in embedding space

The embedding space formalism manifests the conformal invariance of correlation functions,

and is particularly useful to investigate correlation functions of spinning operators [16]. The

extended approach for treating operators in general tensor representations was developed

in [47, 48], but we will not use it in this paper.

First, let us consider the two-point function of a scalar field φ(x) with dimension ∆.

We uplift φ(x) to a scalar field Φ(X) in the embedding space. The two-point function

〈Φ(X1)Φ(X2)〉 should be a scalar, but we can construct only one scalar invariant X1 ·X2

from the vectors X1 and X2. The two-point function should be a function of both X1 and

X2 with degree −∆, and it ends up with the following unique form,

〈Φ(X1)Φ(X2)〉 =
1

(X12)∆
, (2.6)

where we introduced the shorthand notation Xij ≡ −2Xi ·Xj that reduces to the distance

squared between the two points (xi − xj)
2 in the Poincaré section. The normalization

constant is chosen so as to reproduce the conventional form 1/(x1 − x2)2∆.

In order to deal with a traceless symmetric tensor fa1···al(x) of dimension ∆, we consider

a tensor field FA1···Al(X) in the embedding space satisfying the following conditions:

• Homogeneous of degree −∆: FA1···Al(λX) = λ−∆FA1···Al(X) ,

• Symmetric and traceless,

• Transverse: XAFAA2···Al = 0 .

These conditions are automatically imposed in the index-free notation that introduces an

auxiliary vector ZA and turns the symmetric tensor into the polynomial,

F (X,Z) ≡ FA1···Al(X)ZA1 · · ·ZAl . (2.7)

Imposing the traceless and transverse conditions is equivalent to restricting the polynomials

on the subspace satisfying Z2 = 0 and Z · X = 0, which leaves the gauge redundancy

F (X,Z + λX) = F (X,Z) , λ ∈ R for the choice of the tensor field in the embedding space.

The index-free notation allows us to construct a gauge invariant for the symmetric

traceless tensor F (X,Z),

CABZX ≡ ZAXB − ZBXA , (2.8)

6We use the hatted notation for the conformal generators L̂AB to distinguish from their representations

as differential operators LAB . In our convention the generators are anti-hermitian, L̂†AB = −L̂AB .
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from which the two- and three-point functions are built out just by taking into account

the conformal invariance. For example, consider the two-point function of primary fields,

O∆,l(Xi, Zi) (i = 1, 2), of spin l and dimension ∆. It should be a degree l gauge invariant

function of both Z1 and Z2, but we can construct only one gauge invariant of degree one

in Z’s,

CABZ1X1
CZ2X2 AB = 2[(Z1 · Z2)(X1 ·X2)− (Z1 ·X2)(Z2 ·X1)] . (2.9)

Hence the two-point function is determined by the homogeneity,

〈O∆,l(X1, Z1)O∆,l(X2, Z2)〉 =
1

(X12)∆

[
(Z1 · Z2)(X1 ·X2)− (Z1 ·X2)(Z2 ·X1)

X12

]l
.

(2.10)

Similarly, for the three-point function of two scalar primaries O∆i(Xi) (i = 1, 2) and a spin

l primary O∆3,l(X3, Z3), we have only one gauge invariant,

X1 · CZ3X3 ·X2 = (Z3 ·X1)(X2 ·X3)− (Z3 ·X2)(X1 ·X3) , (2.11)

and the correlator is uniquely fixed by the conformal symmetry [16],

〈O∆1(X1)O∆2(X2)O∆3,l(X3, Z3)〉

= a3
[(Z3 ·X1)X23 − (Z3 ·X2)X13]l

(X12)(∆1+∆2−∆3+l)/2 (X23)(∆2+∆3−∆1+l)/2 (X31)(∆3+∆1−∆2+l)/2
,

(2.12)

up to a normalization factor a3.

The index structure of correlators in the index-free notation can be recovered by acting

the Todorov differential operators DA on F (X,Z) [49]:

DA =

(
d− 2

2
+ Z · ∂

∂Z

)
∂

∂ZA
− 1

2
ZA

∂2

∂Z · ∂Z
, (2.13)

FA1···Al(X) =
1

l!(d/2− 1)l
DA1 · · ·DAlF (X,Z) , (2.14)

where (a)l = Γ(a+ l)/Γ(a) is the Pochhammer symbol. A spin l symmetric traceless tensor

field in the physical space fa1···al(x) is obtained by pulling back the embedding tensor

FA1···Al(X) on the Poincaré section,

fa1···al(x) =
∂XA1

∂xa1
· · · ∂X

Al

∂xal
FA1···Al(X)

∣∣∣∣
XA=(1,x2,xi)

. (2.15)

The contraction of two symmetric traceless tensors fa1···al(x) and ga1···al(x) are given by

the product of their encoding polynomials F (X,Z) and G(X,Z), replacing an auxiliary

vector Z with the Todorov operator D for F (X,Z) [16],

fa1···al(x) ga1···al(x) =
1

l!(d/2− 1)l
F (X,D)G(X,Z) . (2.16)

– 8 –
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2.3 Conformal defects in embedding space

The full conformal symmetry SO(d + 1, 1) is broken in the presence of a codimension-m

defect of a sphere or a planar type to the subgroup SO(m)× SO(d+ 1−m, 1) that is the

rotation group around and the conformal group on the defect. To our best knowledge,

conformal defects remain to be classified based on the residual symmetry unlike local

operators living on them. There appear to be, at least, conformal defects in non-trivial

representations under the SO(m) symmetry, though we are not aware of any example. In

this paper, we restrict our attention to a scalar defect that has a simple realization in the

embedding space [11, 12]. The embedding space formalism for conformal defects in non-

trivial representations may be formulated in the same way as local operators in general

tensor representations [11, 47, 48, 50], but we postpone a detailed study to future work.

To specify the position of a codimension-m conformal defect, we choose m spacelike

frame vectors Pα (α = 1, · · · ,m) and draw a hyperplane transverse to the vectors Pα and

intersecting with the projective null cone,

X2 = 0 , Pα ·X = 0 . (2.17)

This configuration preserves the SO(m) × SO(d + 1 − m, 1) symmetry that acts as the

stabilizer subgroup of the (d + 2 −m)-dimensional hyperplane transverse to the m frame

vectors, and hence can be identified with the uplift of a codimension-m defect into the

embedding space.

Since there is a GL(m) gauge-redundancy for the choice of the set of the frame vectors

Pα, we can gauge-fix them so that they are an orthonormal basis, Pα · Pβ = δαβ . In this

gauge, a defect of codimension-m is fully characterized by the m-dimensional orthonormal

frame and we denote it by D(m)(Pα).

Given a spherical or planer defect of codimension-m in the physical space, one can

uplift it to the embedding space by picking up any (d+ 2−m) points on the defect, lifting

them to the Poincaré section Xk (k = 1, · · · , d+ 2−m) and then solving (d+ 2−m)×m
equations Xk · Pα = 0 for each k and α to get a set of the frame vectors Pα [12]. To

illustrate how this procedure works, consider a codimension-m spherical defect of radius

R centered at the origin and lying in a (d + 1 − m)-dimensional hyperplane spanned by

the orthonormal basis ~ej (j = 1, · · · d+ 1−m), each pointing to the jth coordinate in the

physical space. We can pick up (d+ 2−m) points at ~xj = R~ej (j = 1, · · · , d+ 1−m) and

~xd+2−m = −R~e1 whose uplifts are at Xj = (1, R2, R~ej) and Xd+2−m = (1, R2,−R~e1) in

the embedding space. Solving the set of equations Xk · Pα = 0 leads to a solution for the

frame vectors,

Pα = (0, 0, ~ed+1−m+α) (α = 1, · · · ,m− 1) ,

Pm =

(
1

R
,−R,~0

)
.

(2.18)

When the center is shifted by r in the x1-direction, we can pick (d + 2 − m) points at

Xj =
(
1, (R~ej + r ~e1)2, R~ej + r ~e1

)
and Xd+2−m =

(
1, (R− r)2, (r −R)~e1

)
on the defect
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in the embedding space. In this case, the frame vectors are given by

Pα = (0, 0, ~ed+1−m+α) (α = 1, · · · ,m− 1) ,

Pm =

(
r

R
,−R+

r2

R
,
r

R
~e1

)
.

(2.19)

When acted on a codimension-m defect described by the frame vectors, the generators

of the conformal symmetry are represented by

LAB(Pα) ≡
m∑
α=1

(
PAα

∂

∂PBα
− PBα

∂

∂PAα

)
. (2.20)

The summation over α is taken to respect the SO(m) symmetry under which the frame

vectors Pα rotate in the subspace they span and thus the defect is invariant.

The center and radius of a spherical defect are read off from the frame vectors in the

following way [12]. We pick up a reference point Ω ≡ (0, 1, 0i) at infinity and construct a

GL(m) invariant null vector C out of Pα,

C =
Ω− 2(Pα · Ω)Pα
4(P β · Ω)(Pβ · Ω)

. (2.21)

Here the indices α of the frame vectors are raised and lowered with respect to the metric

δαβ . This vector points to the center, and the radius R is measured by the distance between

the center and a point X on the sphere, namely,

R2 = −2C ·X =
1

4(P β · Ω)(Pβ · Ω)
. (2.22)

It is easy to verify that the center (2.21) and the radius (2.22) reproduce the correct values,

C = (1, r2, r ~e1) and R, for the spherical defect specified by the frame vectors (2.19).

2.4 Correlators in defect CFT

In a defect CFT, the correlation functions of local operators are calculated in the presence

of a defect operator,

〈O(X1) · · · O(Xk)〉D =
1

〈D(m)(Pα)〉
〈D(m)(Pα)O(X1) · · · O(Xk)〉 . (2.23)

These types of correlators can be fixed in the embedding space by the symmetry and homo-

geneity in parallel with the correlators of local operators. We will proceed our discussion

with the normalization 〈D(m)(Pα)〉 = 1 in the following.

We consider as a simplest example the correlation function of a scalar defect and a

spin l operator,

〈D(m)(Pα)O∆,l(X,Z)〉 . (2.24)

This correlator should be a scalar function with correct dimensions in the index-free nota-

tion. The scalar invariants we can construct out of the vectors Pα, X and Z are Pα ·X and
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Pα ·Z (note Z ·X = 0), and we must contract the index α to respect the SO(m) symmetry.

Therefore the following three invariants are allowed to show up in the correlator,

(Pα ·X)(Pα ·X) , (Pα · Z)(Pα · Z) , (Pα ·X)(Pα · Z) . (2.25)

We further use the invariance under the shift Z → Z + cX that fixes the form of the

correlator uniquely up to a factor [11, 16, 27]:

〈D(m)(Pα)O∆,l(X,Z)〉 =
a∆,l

[(Pα ·X)(Pα ·X)](∆+l)/2

[
(P β · CZX · P γ)(Pβ · CZX · Pγ)

]l/2
,

=
a∆,l

[(Pα ·X)(Pα ·X)](∆+l)/2

[
(Z · CPβP γ ·X)(Z · CPβPγ ·X)

]l/2
,

(2.26)

where we used the relation P β · CZX · P γ = Z · CPβP γ · X in going from the first line to

the second. The correlators with non-zero spin l > 0 vanish for m = 1 as there is only one

frame vector P1 giving CP1P1 = 0, which is consistent with the result in boundary CFT

(see e.g. [8]). Note also that this correlator is parity invariant and makes sense only for

even l [11]. Hence there are no non-vanishing parity invariant correlator for odd l.

One has to use the SO(d + 1, 1)-invariant ε-tensor to get a non-vanishing parity odd

correlator [16]. Scalar invariants involving the ε-tensor are build out by contracting the

indices with the vectors X, Z and the frame vectors Pα (α = 1, · · · ,m) (or the dual frame

vectors P̃α̃ (α̃ = 1, · · · , d + 2 −m) introduced in the next subsection). Since each vector

appears at most once due to the antisymmetry of the ε-tensor parity odd invariants are

possible to construct only for m ≤ 2. There is one such an invariant for a codimension-

two defect,

εA1···AdBC P̃
A1
1 · · · P̃Add XBZC , (2.27)

and are (d+ 1) invariants for a codimension-one defect,

εA1···AdBC P̃
A1
α̃1
· · · P̃Adα̃d X

BZC . (2.28)

These are invariant under the shift Z → Z + cX, and all parity odd correlators for odd l

can be constructed by multiplying the parity odd invariants to the correlator (2.26) with

a spin l − 1 primary operator.

The one-point functions of defect local operators Ô in symmetric traceless representa-

tions of both SO(m) and SO(d −m) are determined in a similar way to (2.26) by intro-

ducing two auxiliary null vectors transverse and orthogonal to the defect that contract the

SO(d−m) and SO(m) indices respectively [11].

2.5 Dual frame and dual defect

We have seen a codimension-m defect D(m)(Pα) is completely characterized by a set of

the frame vectors Pα as a hypersurface satisfying Pα · X = 0 (α = 1, · · · ,m) in the

embedding space. Instead of specifying the normal vectors one can fix the position of the
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same hypersurface in the dual frame spanned by the vectors P̃α̃ (α̃ = 1, · · · , d + 2 − m)

tangent to the hypersurface or equivalently transverse to the original frame [12],

Pα · P̃α̃ = 0 . (2.29)

In Euclidean CFT, the frame vectors are orthonormal, Pα · Pβ = δαβ , with respect to the

flat metric δαβ = diag(1, 1, · · · , 1), while the dual vectors are orthonormal, P̃α̃ · P̃β̃ = ηα̃β̃ ,

with respect to the Lorentzian metric ηα̃β̃ = diag(1, · · · , 1,−1).

By exchanging the roles of the frame and dual frame vectors, we can define a

codimension-(d+ 2−m) defect D(d+2−m)(P̃α̃) as a hypersurface normal to the dual frame

vectors P̃α̃ of D(m)(Pα). We call this object D(d+2−m)(P̃α̃) a dual defect of D(m)(Pα). It

is clear from this definition that the dual of the dual defect D(d+2−m)(P̃α̃) returns to the

original defect D(m)(Pα). Hence we obtain an intriguing duality between a codimension-m

defect and a codimension-(d+ 2−m) defect:

codimension : m ←→ d+ 2−m . (2.30)

See figure 2 for the illustration. A correlator involving a defect D(m)(Pα) is a function

of the frame vectors Pα, but it can be equally described as a function of the dual frame

vectors P̃α̃. To fix the normalization of the dual defect we further require the invariance of

the defect correlator under the duality,

〈D(m)(Pα) · · · 〉 = 〈D(d+2−m)(P̃α̃) · · · 〉 . (2.31)

Then we can freely replace a defect with its dual defect inside any correlator.

Now we want to determine the position of the dual defect D(d+2−m)(P̃α̃) from the data

of the original defect D(m)(Pα). Namely we will represent the center C̃ and radius R̃ of

the dual defect defined by

C̃ =
Ω− 2(P̃ α̃ · Ω)P̃α̃

4(P̃ β̃ · Ω)(P̃β̃ · Ω)
, R̃2 =

1

4(P̃ β̃ · Ω)(P̃β̃ · Ω)
, (2.32)

in terms of the original ones C and R. To this end, we first calculate the distance r between

the two centers C and C̃, both of which are null vectors,

r2 = −2C · C̃ ,

=
(Pα · Ω)(Pα · Ω) + (P̃ α̃ · Ω)(P̃α̃ · Ω)

4(P β · Ω)(Pβ · Ω)(P̃ β̃ · Ω)(P̃β̃ · Ω)
,

= R2 + R̃2 .

(2.33)

The distance r looks non-vanishing at first sight, but one can show the two centers coincide,

r = 0, as follow. Recall the frame and dual frame vectors span the orthonormal basis in

the embedding space,

P αA PBα + P̃ α̃A P̃Bα̃ = ηAB . (2.34)
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Lorentzian time

D(m)

D(d+2−m)

Figure 2. A codimension-m spherical defect and its dual defect

Multiplying the reference vector Ω twice to contract the indices of this expression, one ends

up with the identity,

(Pα · Ω)(Pα · Ω) + (P̃ α̃ · Ω)(P̃α̃ · Ω) = 0 , (2.35)

proving our statement. This result implies R̃2 = −R2 from (2.33), and one may wonder

how it is possible to draw a hypersphere of an imaginary radius in the embedding space.

This is simply due to the fact that one of the dual frame vectors is not spacelike. Thus the

defining equations X̃ · P̃α̃ = 0 for the dual defect do not have any solution in Euclidean

CFT. Instead they are able to have a unique solution in Lorentzian CFT.

The following example illustrates how the duality works in practice. Consider the dual

of a codimension-m spherical defect whose frame vectors are given by (2.19). In the dual

frame, the frame vectors are chosen to be

P̃α̃ = (0, 0, ~eα) (α = 1, · · · , d+ 1−m) ,

P̃d+2−m = (1/R,R,~0) .
(2.36)

Note that these vectors are spacelike except the last one. Let us see the configuration of

the dual defect by regarding P̃α̃ as the frame vector of a codimension-(d + 2 −m) defect

. In the embedding space, the coordinate is given by the null vector X̃ = (1, x̃2, ~̃x). The

position of the dual defect is fixed by specifying m points X̃k=1,··· ,m satisfying the conditions

X̃k · P̃α̃ = 0. Namely we must solve the following set of equations,

~̃x · ~eα = 0 (α = 1, · · · , d+ 1−m) , x̃2 = −R2 . (2.37)
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As a particular solution, we can find

X̃
(±)
j = (1,−R2, ` ~ed+1−m+j ± i`′ ~ed) (j = 1, · · · ,m− 1) , X̃(±)

m = (1,−R2,±iR~ed) ,
(2.38)

where ` is a non-negative parameter and we define `′ by

`′ =
√
`2 +R2 . (2.39)

All of these points lie on the imaginary Euclidean time, or equivalently on the real

Lorentzian time x̃0 ≡ ix̃d. In the Lorentzian signature, the dual defect is a (m − 2)-

dimensional hyperbolic surface given by

−x̃2
0 +

d−1∑
i=1

x̃2
i = −R2 , x̃i = 0 (i = 1, · · · d+ 1−m) , (2.40)

in Rd−1,1, and the two sets of points X̃
(+)
k and X̃

(−)
k are located on one of the two branches

of the hyperbolic surface (see figure 2).

2.6 Codimension-two defects

We treat a codimension-two defect separately as a special case of the dual defect being local

(= codimension-d). In this case, the position of the dual defect given by the condition (2.40)

consists of a pair of points in Lorentzian signature,

x̃i = 0 (i = 1, · · · , d− 1) , x̃0 = ±R . (2.41)

These are actually at the tips of the causal diamond of the original spherical defect. Thus

we can associate a pair of local operators to a given codimension-two defect (see figure 3).

For a more general configuration, we can determine the position X̃ of the dual defect

as follows. We can expand the coordinates X̃ by the frame vectors Pα as

X̃ = aP1 + bP2 , (2.42)

as the dual defect lives in the normal plane to the defect. This vector automatically satisfies

the condition X̃ · P̃α̃ = 0. For being a null vector in the embedding space, X̃2 = 0, the

position vector has to take the form,

X̃1 = a1(P1 + iP2) , X̃2 = a2(P1 − iP2) , (2.43)

with undetermined constants a1 and a2 that can be fixed by the condition (X̃)+ = 1. As a

result, the position X of the codimension-two defect has to be transverse to the dual defect

due to the relation X · Pα = 0:

X · X̃k = 0 (k = 1, 2) . (2.44)

This relation was observed by [30, 31] in analyzing the kinematic space of a spherical

entangling surface, where they characterized a spherical defect by the two points at the tips
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Figure 3. The defect duality between a codimension-two defect and a codimension-d defect when

d = 3

of the causal diamond. Namely for a given pair of timelike separated points x̃µ1 and x̃µ2 in

flat Lorentzian space, one can define a codimension-two spherical surface as the intersection

of the past and future light cones. Denoting the coordinates of the spacetime by xµ, the

position of the spherical surface is given by

(x− x̃1)2 = 0 , (x− x̃2)2 = 0 . (2.45)

In the embedding space, these conditions lift to

X · X̃1 = 0 , X · X̃2 = 0 . (2.46)

These are the same as (2.44) and we have shown the equivalence of our construction of the

dual defects for m = 2 and the causal diamond construction of a codimension-two spherical

surface by [30, 31].

We can rewrite the codimension-two defect correlator as a function of the dual positions

X̃1, X̃2 through the relation (2.43). Since the index α is always contracted inside correlators,

we find it convenient to employ the following relation,∑
α=1,2

PAα P
B
α = −2

X̃A
1 X̃

B
2 + X̃B

1 X̃
A
2

X̃12

. (2.47)

Note that the left hand side is the projection operator to the hyperplane normal to the

defect. Given this relation, the defect one-point function (2.26) of a spin l operator becomes

〈D(2)(Pα)O∆,l(X3, Z3)〉

= a∆,l (−1)∆/2 2l/2

[
X̃12

(X̃1 ·X3)(X̃2 ·X3)

](∆+l)/2

×

[
(Z3 · X̃2)(X̃1 ·X3)− (Z3 · X̃1)(X̃2 ·X3)

X̃12

]l
.

(2.48)
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D(m)

=
∑

n c
(m)
On

R∆n

On
+ · · ·

Figure 4. A schematic picture of the OPE for conformal defects

The right hand side is, up to the normalization, precisely the scalar-scalar-spin l three-

point function (2.12) with conformal dimensions ∆1 = ∆2 = 0 and ∆3 = ∆. This result is

consistent with our proposal of the duality (2.30) and we can identify the codimension-d

dual defect with a pair local operators sitting on the dual positions X̃1 and X̃2,

D(d)(P̃α̃) = Φ(X̃1) Φ(X̃2) . (2.49)

After introducing the defect OPE blocks in the next section, we revisit the codimension-

two case in section 3.3 where the duality of defects connects our results of codimension-two

with the OPE blocks of local operators examined by [30, 31].

3 Defect OPE blocks

A defect operator is characterized by specifying a corresponding state on a surface large

enough to enclose the defect. Invoking the state-operator correspondence, any defect admits

the OPE by a set of bulk local operators located at the center [12, 17, 20] (see figure 4),

D(m)(Pα) = 〈D(m)(Pα)〉

[∑
n

c
(m)
On R

∆n On(C) + (descendants)

]
, (3.1)

where On(C) are a set of primary operators at the center C of the spherical defect of

radius R fixed by the normal vectors Pα as in (2.22). The coefficients c
(m)
On compensate the

tensorial structure to make the term in the square bracket be a scalar. We will present the

structure of the defect OPE in a compact form by employing the shadow formalism that

allows to collect the contributions from a primary operator On and its descendants into a

block, a non-local function of On.

3.1 Integral representation and monodromy prescription

The descendant terms in the defect OPE (3.1) are, in principle, fully determined by the

conformal symmetry so as to reproduce the correlation function of the defect and a local

operator. The defect OPE can be decomposed into the contributions from each primary

operator On and their descendant terms that transform in the same way as On under the

conformal group, thus it will be convenient to introduce the defect OPE block B(m)[Pα,On]
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that packages the contribution from the conformal multiplet of On, and represent the defect

OPE in the block decomposed form,

D(m)(Pα) =
∑
n

B(m)[Pα,On] . (3.2)

The defect OPE block B(m)[Pα,On] has to transform in the same way as the defect operator

under the conformal transformation, and should be fixed by requiring it reproduces the

same correlator with any local operator as the defect does,

〈B(m)[Pα,On]On(X)〉 = 〈D(m)(Pα)On(X)〉 . (3.3)

In order to calculate the defect OPE block, one may assume the block is given by the form,

B(m)[Pα,On] = f∆(Pα, C, ∂C)On(C) , (3.4)

with a polynomial f∆n(Pα, C, ∂C) of a differential operator, and fix the polynomial order

by order by comparing the both hand sides of the defining relation (3.3). This approach is

systematic enough to solve f∆n(Pα, C, ∂C) perturbatively, but not so efficient to work out

if one wants a closed expression of the defect OPE block.

Instead of solving the relation (3.3) directly, we present a transparent derivation of

an integral representation of the block using the spectral decomposition of the identity

operator 1 by the irreducible representations of the conformal group [21–26, 51],

1 =
∑
n

|On| . (3.5)

The projector |On| is the projection operator onto the conformal multiplet of the primary

operator On. For bosonic operators, On are labeled by the conformal dimension ∆ and

the Young diagram Y specifying the irreducible representation n = (∆,Y) of the rotation

group SO(d). Hereafter, we focus on the spin l case for the sake of simplicity where the

projector takes the following form [27],

|O∆,l| =
1

N∆,l

∫
DdX |O∆,l(X,DZ)〉 〈Õd−∆,l(X,Z)| . (3.6)

The shadow field Õd−∆,l in the integrand is a non-local operator build from the primary

field O∆,l by the integral shadow transform,

Õd−∆,l(X,Z) ≡ 1

Nd−∆,l

∫
DdY

1

(−2X · Y )d−∆+l
O∆,l(Y,−2CZX · Y ) . (3.7)

The normalization constant N∆,l is fixed to be

N∆,l = πd/2 (d−∆− 1)l
Γ(d/2−∆)

Γ(∆ + l)
, (3.8)

which assures performing the shadow transformation twice gets back to the original field,
˜̃O∆,l = O∆,l [52, 53]. The shadow field transforms in the same representation of the con-

formal group as a primary field Od−∆,l, which guarantees the projector (3.6) is a conformal
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scalar of dimension zero. The shadow primaries Õd−∆,l also span the complete basis, but

they are orthogonal to the original primary basis [24],

〈Õd−∆,l(X,Z)O∆,l(X
′, Z ′)〉 =

N∆,l

l!(d/2− 1)l
δd+2(X −X ′) (Z · Z ′)l . (3.9)

Here we defined the delta function in the embedding space such that∫
DdX f(X) δd+2(X − Y ) = f(Y ) , (3.10)

and the normalization constant in (3.9) is fixed by requiring the projector being trivial in

the correlator, 〈|O∆,l| O∆,l(X,Z) · · · 〉 = 〈O∆,l(X,Z) · · · 〉.
The projectors in representations other than the symmetric traceless ones are con-

structed for general tensors in any dimensions [47, 48, 50] and for spinors in d = 4 dimen-

sions [27]. While we can determine the blocks in any representation explicitly with a slight

complication, we will focus on the contributions from spin l primary operators to make

things clear.

Inserting the spectral decomposition of the identity (3.5) into a correlator, we can

expand the defect operator into a sum of the irreducible representations of the confor-

mal group,

〈D(m)(Pα) · · · 〉

=
∑
∆,l

〈D(m)(Pα)|O∆,l| · · · 〉+ (other irrep.) ,

=
∑
∆,l

1

N∆,l

∫
DdX 〈D(m)(Pα)O∆,l(X,DZ)〉 〈Õd−∆,l(X,Z) · · · 〉+ (other irrep.) ,

=
∑
∆,l

1

N∆,l

∫
DdX 〈Õd−∆,l(X,DZ) · · · 〉 〈D(m)(Pα)O∆,l(X,Z)〉+ (other irrep.) ,

(3.11)

where we switched the order of the two correlators in the integrand with the exchange

of the Todorov operator DZ and the auxiliary vector Z in the third equality. Since this

relation has to hold for any correlator we conclude that the defect OPE block in the spin

l representation takes the following form:

B(m)[Pα,O∆,l] =
1

N∆,l

∫
DdX Õd−∆,l(X,DZ) 〈D(m)(Pα)O∆,l(X,Z)〉 . (3.12)

The blocks in the other irreducible representations are given in a similar manner by using

the shadow formalism as well. Substituting the correlator (2.26) into (3.12) provides us

the concrete integral form of the defect OPE block.

This is almost what we want, but not exactly the true defect OPE block. The ex-

pression (3.12) is invariant under flipping the roles of O and Õ and contains the shadow

block in addition to the true one. To illustrate it consider the following function of a scalar
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primary O∆,7

F [Pα] =

∫
DdXDdY 〈D(m)(Pα)O∆(X)〉 1

(−2X · Y )d−∆
O∆(Y ) . (3.13)

If we integrate over Y first, we recover, up to a normalization constant, the candidate

block (3.12) with l = 0 as a result of the definition of the shadow operator (3.7). Alterna-

tively we can integrate over X first and arrive at the different form,

F [Pα] =

∫
DdY O∆(Y ) 〈D(m)(Pα) Õd−∆(Y )〉 , (3.14)

Hence we have shown that the function F [Pα] is invariant under the flip of the primary

O∆ and its shadow Õd−∆. Repeating the same argument for higher spin fields yields the

flipped representation of the candidate block (3.12),

B(m)[Pα,O∆,l] =
1

Nd−∆,l

∫
DdX O∆,l(X,DZ) 〈D(m)(Pα) Õd−∆,l(X,Z)〉 , (3.15)

The equivalence between the two expressions (3.12) and (3.15) originates from the fact

that the identity operator (3.5) also has the spectral decomposition by the shadow projec-

tor |Õ∆,l| as well. Denoting the true and shadow blocks by gO and gÕ respectively, the

candidate defect OPE block (3.12) must be their linear combination,

B(m)[Pα,O∆] = gO +K gÕ , (3.16)

where K is some constant we are not interested in.

To pick up from (3.12) the true block gO that behaves desirably in small radius limit,

we have to remove the shadow contribution gÕ. Here we adopt the monodromy prescription

that was originally developed by [27] for extracting the conformal block of local operators

in the shadow formalism. In our case, we consider the monodromy M : Pα → e−2πiPα
rotating the phases of all the frame vectors simultaneously. Such a monodromy operator

M is generated by M = exp (−2πi
∑

α Pα · ∂/∂Pα) for the frame vector Pα. We argue this

operator acts on gO and gÕ as follows:

gO → e2πi∆ gO ,

gÕ → e2πi(d−∆) gÕ .
(3.17)

Hence projecting (3.12) to the appropriate eigenspace of M gets rid of the shadow block gÕ,

B(m)[Pα,O∆,l] =
1

N∆,l

∫
DdX Õd−∆,l(X,DZ) 〈D(m)(Pα)O∆,l(X,Z)〉

∣∣∣∣
M=e2πi∆

. (3.18)

This is one of our main results advocated in Introduction, and we will discuss the implica-

tions of this expression for the rest of this paper.

Now we show the monodromy prescription reproduces the correct limiting behav-

ior (3.1) in the small radius limit, R → 0. We first represent the limit using the frame

7In this paper, all symbols labeled by only conformal dimension ∆ are defined for scalar operators.
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vectors with the relation (2.22). Without loss of generality, we can choose the frame vectors

so that only one of them has the + components

Pα = (0, 0, P iα) (α = 1, · · · ,m− 1) ,

Pm = (p+, p−, pi) (p+ > 0) .
(3.19)

With these choices, the center (2.21) and radius (2.22) of the spherical defect are determined

by the last vector Pm:

C =
Ω + p+ Pm

(p+)2
, R =

1

p+
. (3.20)

Thus the small radius limit is equivalent to the large p+ limit,

R→ 0 ←→ p+ →∞ , (3.21)

while keeping the other frame vectors finite. In taking the large p+ limit, it will be conve-

nient to introduce a rescaled vector Q ≡ Pm/p+ with the norm Q2 = 1/(p+)2. This vector

approaches to the center in the limit,

Q = C +O(R2) , R→ 0 . (3.22)

Next we proceed to take the small radius limit of the integral (3.12). To simplify the

presentation, we concentrate on the scalar case (l = 0). Recall that the correlator of the

defect and local operator inside the integrand takes the form (2.26). It is a function of the

invariant (Pα ·X)(Pα ·X) for l = 0 in which the α = m term of order O
(
(p+)2

)
dominates

while the others are of order O(1). Ignoring an overall factor and keeping track of the R

and coordinate dependences, the leading part of the correlator is

〈D(m)(Pα)O∆(X)〉 ∼ R∆

(Q ·X)∆
+ · · · , (3.23)

in the small radius limit. The relation (3.22) allows us to replace Q with the center C

in R → 0. Finally substituting the expansion (3.23) into the integral expression (3.12)

leads to

B(m)[Pα,O∆] ∼ R∆

∫
DdX

1

(C ·X)∆
Õd−∆(X) + · · · ,

∼ R∆O∆(C) + · · · .
(3.24)

This is what we want in the small radius limit. Naively we do not need the mon-

odromy prescription to project out the shadow block. If, however, we started with

the flipped form (3.15) we would have ended up with the different boundary condition

B(m) ∼ Rd−∆ Õd−∆ in the small R limit. It implies that the limiting behavior of the

candidate block has two leading terms,

B(m)[Pα,O∆] ∼ R∆O∆(C) + · · ·
+Rd−∆ Õd−∆(C) + · · · ,

(3.25)
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which is manifestly invariant under the exchanges ∆ ↔ d −∆ and O ↔ Õ. We therefore

must impose the monodromy prescription on the block (3.18) to obtain the correct limiting

behavior in the small radius expansion.

A similar argument for the l > 0 case fixes the asymptotic behavior of the defect OPE

as well (see appendix A for details). We will show our defect OPE block (3.18) reproduces

the OPE block defined by [30, 31] when m = 2 in section 3.3, which also supports the

validity of our prescription.

3.2 Constraint equations

We have given the integral representation of the defect OPE blocks (3.18) in the pre-

vious section, and here we show they obey a set of constraint equations characterizing

their features.

The first constraint is the conformal Casimir equation that follows from the fact that

the blocks are in the irreducible representation of the conformal group,(
L2(Pα) + C∆,l

)
B(m)[Pα,O∆,l] = 0 , C∆,l = ∆(∆− d) + l(l + d− 2) , (3.26)

where L2(Pα) is the quadratic Casimir operator represented in the frame vectors

L2(Pα) =
1

2
LAB(Pα)LAB(Pα) . (3.27)

Our defect OPE block (3.18) is easily seen to satisfy the equation as the integrand depend-

ing on the frame vectors itself is the solution to the quadratic Casimir equation(
L2(Pα) + C∆,l

)
〈D(m)(Pα)O∆,l(X,Z)〉 = 0 . (3.28)

This relation can be verified by using the expression (2.26), or the repeated use of the

conformal invariance of the correlator,

ĴAB 〈D(m)(Pα)O∆,l(X,Z)〉 = (LAB(Pα) + JAB(X)) 〈D(m)(Pα)O∆,l(X,Z)〉
= 0 .

(3.29)

The conformal Casimir equation (3.26) can be interpreted as a Klein-Gordon equation when

the block is regarded as a scalar field on the moduli space as we will discuss in section 3.4.

In addition to the conformal Casimir equation (3.26) there are a set of constraint

equations that follow from the invariance of the correlator (3.29) under the conformal

group. Let us define operators quadratic in the conformal generators by

ĈABCD ≡ ĴABĴCD − ĴAC ĴBD + ĴADĴBC , (3.30)

for 1 ≤ A < B < C < D ≤ d + 2. When acted on a scalar function of the coordinate

vector X the spin part ŜAB vanishes while the orbital part L̂AB takes the differential

form (2.5), resulting in the operators ĈABCD being trivially zero. Thus we obtain the

following constraints for the scalar primary fields [31],

CABCD(X)O∆(X) = 0 . (3.31)
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Acting on the defect OPE blocks for l = 0 and applying the relation (3.29) twice, we obtain

CABCD(Pα)B(m)[Pα,O∆] =
1

N∆

∫
DdX Õd−∆(X)CABCD(X) 〈D(m)(Pα)O∆(X)〉 ,

=
1

N∆

∫
DdX

(
CABCD(X) Õd−∆(X)

)
〈D(m)(Pα)O∆(X)〉 ,

= 0 . (3.32)

Note that the blocks with non-zero spins, l 6= 0, do not necessarily vanish when acted by

the operator CABCD as the spin part makes a non-vanishing contribution.

Dual description. It is worth commenting on the dual representations of the defect

OPE blocks (3.18) with the dual defects. They are simply build by replacing the defect

D(m)(Pα) with its dual D(d+2−m)(P̃α) in (3.18):

B(m)[P̃α̃,O∆,l] =
1

N∆,l

∫
DdX Õd−∆,l(X,DZ) 〈D(d+2−m)(P̃α̃)O∆,l(X,Z)〉

∣∣
M=e2πi∆

.

(3.33)

The dual representation is equivalent to the original one and is also a solution to the

conformal Casimir equation (3.26) and constraint equations (3.32), where the conformal

generator should be written in the dual frames,

LAB(P̃α̃) =

d+2−m∑
α̃=1

(
P̃Aα̃

∂

∂P̃Bα̃
− P̃Bα̃

∂

∂P̃Aα̃

)
. (3.34)

We will find it useful to move to the dual description when making a precise relation of

our defect OPE block for a codimension-two defect to the OPE block defined by [30, 31]

in the next subsection.

3.3 Codimension-two defect

In the case of m = 2, the defect OPE block was originally introduced as the OPE block

by [30, 31] in analyzing the causal structure of entanglement in CFT. Their integral

representation of the block includes the correlation function of the shadow operator and two

virtual operators located on the tips of the causal diamond of a spherical entangling surface

in Lorentzian signature. In this subsection, we will reproduce their result from our defect

OPE blocks by identifying their virtual operators with the dual defect of codimension-d

for the given codimension-two defect in the Euclidean signature.

As seen in section 2.6 the dual of a codimension-two defect is of codimension-d and

consists of a pair of local operators located at timelike separated points X1 and X2.8 The

defect OPE block in the dual frame (3.33) is the integral involving a three-point function

in the integrand:

B(2)[Pα,O∆,l] =
1

N∆,l

∫
DdX3 Õd−∆,l(X3, D3) 〈Φ(X1) Φ(X2)O∆,l(X3, Z3)〉

∣∣∣∣
M=e2πi∆

.

(3.35)

8These are denoted with tildes, X̃1 and X̃2, in (2.49).
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Assuming the codimension-two defect has vanishing conformal dimension, the dual defect

Φ(X) does so, and the three-point function (2.12) becomes

〈Φ(X1) Φ(X2)O∆,l(X3, Z3)〉 = a3

(
X12

X23X31

)(∆+l)/2 [(Z3 ·X1)X23 − (Z3 ·X2)X13

X12

]l
,

(3.36)

with a normalization factor a3.

To simplify the expression and make contact with the OPE block given by [30, 31], we

introduce a vector KA(X3) as a function of X3 in the embedding space,

KA(X3) ≡ XA
1 X23 −XA

2 X13

X12
, (3.37)

whose norm is given by

K2 =
X23X31

X12
. (3.38)

With this vector, we can recast the defect OPE block in a neat form:

B(2)[Pα,O∆,l] =
a3

N∆,l

∫
DdX3 Õd−∆,l(X3, D3) |K|−∆−l (Z3 ·K)l

∣∣∣∣
M=e2πi∆

. (3.39)

We further use the formula (2.16) to pull back the block from the embedding space

to the coordinate space by substituting F (X3, D3) = Õd−∆,l(X3, D3) and G(X3, Z3) =

(Z3 ·K)l. The integral measure DdX3 in the embedding space is reduced to the canonical

measure on flat space in the Poincaré section X = (1, x2, xi), hence we have

B(2)[Pα,O∆,l] = a′3

∫
ddξ |k|−∆−lka1 · · · kal (Õd−∆)a1···al(ξ)

∣∣∣∣
M=e2πi∆

, (3.40)

where we redefined the integration variable to ξ ≡ x3 and absorbed a numerical factor

arising in the pull back into a constant a′3. The coordinate space vector ka in the integrand

is pulled back from the embedding space vector KA. Indeed ka is the conformal Killing

vector for the codimension-two defect. One way to see this is to represent ka in the Poincaré

section,

ka(ξ) =
1

(x1 − x2)2

[
(x1 − ξ)a(x2 − ξ)2 − (x2 − ξ)a(x1 − ξ)2

]
,

which fixes the positions of the two operators at ξ = x1 and ξ = x2 where ka vanishes. It

is an easy task to check whether it is a conformal Killing vector.

Comparison to the OPE block. Our defect OPE block (3.40) resembles to the OPE

block given by [30, 31] and they are actually related by the following replacements,

O∆ ↔ Õd−∆ , ∆ ↔ d−∆ . (3.41)

In other word, the OPE block of [30, 31] is equivalent to our defect OPE block of a

codimension-two operator in the dual description (3.33).
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For establishing the complete equivalence between ours and theirs, it remains to show

the conformal generator LAB acted on the coordinates X1 and X2 takes the form,

LAB(Pα) =
∑
α=1,2

(
XA
α

∂

∂XB
α

−XB
α

∂

∂XA
α

)
. (3.42)

One can check it explicitly using the relation

X1 = P1 + iP2 , X2 = P1 − iP2 , (3.43)

between the frame vector specifying a codimension-two defect and the coordinates of the

two dual local operators, which has been derived already in (2.43). The monodromy

prescription on the frame vectors acts on X1,2 as X1,2 → e2πi∆X1,2, which is precisely the

condition proposed by [27] for the conformal block of four local operators.

3.4 Moduli space of conformal defects

A codimension-m defect has a moduli space in CFTd, denoted by M(d,m), parametrized

by its size and the position of the center. The moduli space has a coset space structure,

M(d,m) =
SO(d+ 1, 1)

SO(m)× SO(d+ 1−m, 1)
, (3.44)

as the full conformal group SO(d+ 1, 1) acts on the defect while the subgroups SO(m) and

SO(d+ 1−m, 1) are the stabilizer group acting as the rotation around and the conformal

transformation along the defect. The dimension of the moduli space,

dimM(d,m) = m(d+ 2−m) , (3.45)

is invariant under the exchange m ↔ d + 2 − m. This invariance is also manifest in

Lorentzian signature, and suggests a duality relation between defects of codimension-m

and (d+ 2−m) as detailed in section 2.5.

Our defect OPE block B(m) is a function on the moduli spaceM(d,m) and satisfies the

conformal Casimir equation (3.26), which can be viewed as the Klein-Gordon equation on

the moduli space in the following way.

The moduli space M(d,m) is an example of a symmetric coset space G/H where H is

a subgroup of a Lie group G whose Lie algebra g is a direct sum of the Lie algebra h of H

and a subspace m,

g = h ⊕ m , (3.46)

satisfying the relations,

[h, h] ⊂ h , [h,m] ⊂ m , [m,m] ⊂ h . (3.47)

A (pseudo-)Riemannian connection of the G-invariant metric on G/H is descended from

the invariant Cartan-Killing metric on G. The G-invariant Laplacian �G/H can be de-

fined on G/H with the (pseudo-)Riemannian connection, for which the following formula

holds [54, 55]:

�G/Hf = [CG − CH ] f . (3.48)
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Here CG and CH are the eigenvalues of the quadratic Casimir operators of the Lie group

G and H for a harmonic function f on G/H. Hence, for a function invariant under H, the

quadratic Casimir operator ĈG on G can be identified with the Laplacian �G/H on the

coset space.

The defect moduli space M(d,m) with the coset structure (3.44) is indeed a symmetric

coset space with G = SO(d + 1, 1) and H = SO(m) × SO(d + 1 − m, 1). Applying the

relation (3.48) to the present case, the Casimir element L2 of the conformal group can be

considered as the Laplacian �M(d,m) on the defect moduli space:

−L2 ←→ �M(d,m) . (3.49)

The minus sign in the left hand side is due to the anti-hermicity of the generator in

our convention. This is the key relation to generalize the argument of [30] to higher-

codimensional defects. It allows an interpretation such that the equation (3.26) is the

Klein-Gordon equation for the defect OPE block B(m) when viewed as a scalar field on the

moduli space M(d,m).

4 Constructing local AdS operators from conformal defects

In this section, we construct an AdS scalar field from the defect OPE blocks by exploiting

the Radon transform between the AdS space and the moduli space M(d,m) of conformal

defects. We begin with commenting on the isomorphism between M(d,m) and the moduli

space of totally geodesic submanifolds in AdS, followed by a brief review of the mathemat-

ical structure of the Radon transform in the group theoretical language [56]. We examine

the constraint equations for a Radon transformed field, which allows a natural identification

of the defect OPE block in the scalar representation with an AdS scalar field. Finally we

employ the inversion formula of the Radon transform to derive a formula of reconstructing

an AdS scalar field from the defect OPE block, and discuss the equivalence to the Euclidean

version of the HKLL formula [29] in the AdS/CFT correspondence.

4.1 Conformal defects and totally geodesic submanifolds in hyperbolic space

Associated to a codimension-m defect in CFTd is a unique submanifold γ(m) of the same

codimension that is anchored on the defect D(m) at the boundary of the AdSd+1 space (see

figure 5). This is most easily seen by recognizing that the conformal group SO(d+1, 1) is the

isometry group Isom(AdSd+1) of the (Euclidean) AdSd+1 space and SO(m)×SO(d+1−m, 1)

is the stabilizer group Stab(γ(m) ∈ AdSd+1) of a totally geodesic submanifold γ(m) of

codimension-m. The moduli space of the submanifold γ(m) is therefore isomorphic to the

defect moduli space:

M(d,m) =
Isom(AdSd+1)

Stab(γ(m) ∈ AdSd+1)
. (4.1)

Another way to see their relation is to show that the position of a submanifold γ(m) is

fixed by the frame vector Pα of the corresponding conformal defect. The embedding space
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formalism is suitable for this purpose as the AdSd+1 space can be realized as a hypersurface

satisfying the relation,

Y 2 = −`2AdS , (4.2)

where Y is a vector in the embedding space and `AdS is the radius of the AdS space. The

bulk coordinate Y can be given an explicit parametrization in several patches. For example

in the Poincaré patch, it takes the form,

Y = (Y +, Y −, Y i) =

(
`2AdS

z
,
z2 + x2

z
, `AdS

xi
z

)
, (4.3)

where z is the holographic coordinates with the range 0 ≤ z ≤ ∞ and xi (i = 1, · · · , d)

are the flat space coordinates on the boundary Rd at z = 0. A defect is characterized by

the m frame vectors Pα (α = 1, · · · ,m) as a codimension-m hypersurface satisfying (2.17).

Similarly, we can specify a totally geodesic submanifold of codimension-m in the AdSd+1

by the conditions,

Pα · Y = 0 . (4.4)

This realization manifests the fact that the stabilizer group Stab(γ(m) ∈ AdSd+1) of the

submanifold is SO(m) × SO(d + 1 −m, 1). We can approach to the boundary of the AdS

space by rescaling the bulk coordinate Y as

Y = λX , λ→∞ . (4.5)

Then the AdS space (4.2) approaches to the null cone X2 = 0 and the conditions (4.4)

reduce to the definition of a codimension-m defect (2.17). In the case of the Poincaré

patch, we can choose λ = `2AdS/z and take the z → 0 limit to reach to the boundary point

X = (1, x2/`2AdS, xi/`AdS) in the Poincaré section of the null cone. The submanifold γ(m) is

a hyperbolic space whose boundary is a sphere as illustrated in figure 5. This construction

guarantees the uniqueness of the submanifold γ(m) for a given conformal defect and explains

why they have the same moduli space.

The isomorphism (4.1) lets us identify a totally geodesic manifold γ(m) with a conformal

defect living on its boundary. It will be used in conjugation with the Radon transform to

translate the characteristics of the defect OPE blocks in CFTd to the physics in the AdSd+1

space in the following subsections.

4.2 Radon transform

The AdSd+1 spacetime is equal to the (d + 1)-dimensional hyperbolic space Hd+1 in the

Euclidean signature. We use these terms interchangeably from now on.

We first define the Radon transform on a coset space. Let G be a locally compact

group, and K,H be the subgroups of G. We also define L = K ∩H to be the intersection

of them. A double fibration is the structure with two projections p, π, of the following form:

G/L
p

yy

π

%%
X ≡ G/K Ξ ≡ G/H

(4.6)
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R

Hd+1

γ(m)

D(m)

Rd

Figure 5. A totally geodesic submanifold in Hd+1 that is anchored on a conformal defect in Rd

A map from X to Ξ is given by π ◦ p−1 such that x ∈ X 7→ x̌ ⊂ Ξ, and similarly from Ξ

to X by p ◦ π−1 such that ξ ∈ Ξ 7→ ξ̂ ⊂ X. More concretely, associated to a point x = g K

on X is the subspace given by

x̌ = {g kH | k ∈ K} , (4.7)

and similarly for ξ = g H, ξ̂ = {g hK |h ∈ H}.
Under these assumptions, we consider the Radon transform that is an integral trans-

form from a function on X (Ξ) to a function on Ξ (X).9 In order to define the integral on

the coset spaces, we need measures on K/L and H/L. The existence of such measures is,

in general, guaranteed when L is compact and the transversality condition

K ∩H = KH = HK , with KH ≡
{
k ∈ K | kH ∪ k−1H ⊂ HK

}
,

is satisfied. In what follows, we consider the case where the space X and Ξ are the

Riemannian manifold with the Riemannian measures. We denote the measure on K/L

(H/L) by dkL (dhL). In this case, for arbitrary γ ∈ G, the Radon transform is defined by

φ̂(γ H) =

∫
H/L

dhL φ(γ hK) , (4.8)

for a continuous function φ on X. The dual Radon transform is similarly defined by

f̌(g K) =

∫
K/L

dkL f(g kH) , (4.9)

for a continuous function f on Ξ and g ∈ G.

9The class of functions we will consider is analytic functions converging sufficiently rapidly to zero as

the variable goes to infinity. We have two reasons for this assumption. One is to make the Radon (or its

dual) transform well-defined, and the other is to apply the result of [57] to the arguments in subsection 4.3,

where we will discuss the range characterization of the Radon transform. For example, when X = AdSd+1,

we consider functions decreasing more rapidly than (cosh(r))−d/2 with r the radial coordinate in the global

section. Since (cosh(r))−d/2 has the same convergence property as (sinh(r))−d/2 in r → ∞, this class of

functions are the normalizable modes in the AdS space. The precise definition of this class of the analytic

functions can be found in section 3 of [57].
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Note that the Radon transform of a function φ followed by the dual Radon transform

does not necessarily return the original function,
ˇ̂
φ 6= φ, while one can recover φ from φ̂

using an inversion formula in certain cases including ours. We will give an explicit inversion

formula and apply it to reconstruct a bulk scalar field propagating on the AdSd+1 space

from the defect OPE blocks in section 4.4.

We now turn to a specific case where X is the Euclidean AdSd+1 space and Ξ the

moduli space M(d,m) of codimension-m conformal defects in CFTd. In this setting, the

space X is equivalent to a hyperbolic space Hd+1 whose coset representation is

Hd+1 ' SO(d+ 1, 1)

SO(d+ 1)
. (4.10)

On the other hand, the moduli spaceM(d,m) is the coset space defined by (3.44). In setting

the groups appearing in (4.6) to be

G = SO(d+ 1, 1) , K = SO(d+ 1) , H = SO(m)× SO(d+ 1−m, 1) , (4.11)

the AdSd+1 space and the moduli spaceM(d,m) form a double fibration with L = SO(m)×
SO(d+1−m). In the matrix realization, each subgroup is embedded into G = SO(d+1, 1)

as follows,

a11

a22

ad+1,d+1

ad+2,d+2





SO(m) 3

∈ SO(d+ 1−m, 1)

SO(d+ 1) 3 ∈ SO(d+ 1, 1) .

The Radon transform defined by (4.8) in the present case is written as an integration

over a (d+ 1−m)-dimensional hyperbolic space as we have a coset space isomorphism,

H/L =
SO(m)× SO(d+ 1−m, 1)

SO(m)× SO(d+ 1−m)
,

' SO(d+ 1−m, 1)

SO(d+ 1−m)
' Hd+1−m. (4.12)

Note that the integration range H/L = Hd+1−m of the Radon transform from X = Hd+1

to Ξ = M(d,m) is a submanifold of the Euclidean AdS space Hd+1. Hence we are able to

construct a scalar function φ̂(ξ) on the moduli space by smearing a scalar field φ(x) on the

AdS space over a submanifold ξ̂ isomorphic to Hd+1−m,

φ̂(ξ) =

∫
x∈ξ̂

dd+1−mh
√
hφ(x) , (4.13)
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where the volume element
√
h dd+1−mh is induced from Hd+1 onto Hd+1−m. Note that ξ̂

is a totally geodesic submanifold corresponding to the point ξ in M(d,m). Performing the

integrals for a function φ(x) in the Euclidean AdSd+1 space over all such submanifolds

results in a scalar function φ̂(ξ) on the moduli space.

Similarly we can build a function f̌(x) on the AdS space by smearing a function f(ξ)

on the moduli space M(d,m),

f̌(x) =

∫
ξ∈x̌

dµ(ξ) f(ξ) , (4.14)

over a submanifold x̌ isomorphic to an oriented Grassmannian,

K/L =
SO(d+ 1)

SO(m)× SO(d+ 1−m)
, (4.15)

with the Riemannian measure dµ(ξ). This formula provides us a practical method for

reconstructing a scalar field on the AdSd+1 space from a set of data of conformal defects

in CFTd. This construction was undertaken by [30] to realize a scalar field propagating on

the AdSd+1 space from the OPE block of a scalar primary field in CFTd. We will extend

this idea to the defect OPE block of a scalar primary and construct an AdS scalar field

upon the identification φ̂ = B(m)[O∆] for any codimension-m below.

4.3 Intertwining property and constraint equations

One of the salient features of the Radon transform is the intertwining property that gives

a natural relation between a certain type of differential operators on X and Ξ. As we will

see shortly, this property motivates us to identify a scalar field on the moduli space M(d,m)

with the defect OPE block.

To begin with, we observe that the Radon transform commutes with the Lie

group action,

(φ̂)τ(g) = (̂φτ(g)) for g ∈ G , (4.16)

where the G action on a function φ is defined by

φτ(g)(x) ≡ φ(g−1x) . (4.17)

Combined with the homomorphism from the Lie algebra to the differential operator,

Y · φ(x) ≡ d

dt
φ
(
e−tY · x

) ∣∣∣
t=0

, (4.18)

we verify the Radon transform intertwines the differential operators between X and Ξ.

We now turn to apply the intertwining property in translating the constraint equations

on X to those on Ξ. First, let us begin with the equation of motion of a scalar field on the

AdS background,

(�AdS −m2)φ = 0 . (4.19)
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Since the Laplacian on the AdS space is the Laplace-Beltrami operator on the coset space

X = SO(d + 1, 1)/SO(d + 1), the equation of motion is mapped by the Radon transform

to the constraint equation on the moduli space Ξ =M(d,m),

(�M(d,m) −m2) φ̂ = 0 . (4.20)

As seen from the relation (3.49), the Laplacian onM(d,m) is equal to (minus) the quadratic

Casimir operator, thus the equation (4.20) turns out to be the quadratic Casimir equa-

tion (3.26) for the defect OPE block if we identify the Radon transformed field with

the block,

φ̂ = B(m)[O∆] , (4.21)

and the mass squared with the Casimir eigenvalue C∆,0,

m2 = ∆(∆− d) . (4.22)

This is the well-known relation between the mass of the AdS scalar field and the conformal

dimension of the corresponding primary operator in the AdS/CFT correspondence.

When a function φ is annihilated by a differential operator generated by g ∈ g, the

Radon transform φ̂ is also annihilated by the action of the operator corresponding to

the same g. Such an annihilation operator is important to characterize the range of the

Radon transform.

The Radon transform intertwines functions on manifolds with different dimensions. In

our case, the moduli space M(d,m) is m(d+ 2−m)-dimensional, which is equal or greater

than the dimension of the AdSd+1 space,

dimM(d,m) − dim AdSd+1 = (m− 1)(d+ 1−m) , (4.23)

for 1 ≤ m ≤ d. Hence a function on M(d,m) obtained by the Radon transform from

the AdSd+1 has to obey (m − 1)(d + 1 − m) constraint equations. Such constraints are

given by differential equations and are known as the range characterization of the totally

geodesic Radon transform on the hyperbolic space (Corollary 11.4 in [57]). Defining the

range characterization operators by (3.30) a Radon transformed function φ̂ on the moduli

space Ξ =M(d,m) satisfies the set of equations,10

CABCD φ̂ = 0 , (1 ≤ A < B < C < D ≤ d+ 2) . (4.25)

These are d(d2−1)(d+2)/24 second order differential equations that appear to overconstrain

the range of a function on M(d,m) as only (m − 1)(d + 1 −m) equations out of them are

expected to be independent [31]. We are not aware of a systematic method to reduce the

range characterization equations (4.25) to a minimal set of equations.

10Another characterization for the Radon transform is given by a fourth-order differential equation

C2 φ̂ = 0 , C2 ≡ CABCD CABCD , (4.24)

whose solution has the same range as (4.25) [57].
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The identification (4.21) is consistent with the fact that the range characterization

condition (4.25) for φ̂ takes exactly the same form as the constraint equation (3.32) for

B(m)[Pα,O∆]. This is the key observation made by [30] that allows us to reconstruct a bulk

scalar field by smearing a boundary primary scalar operator, which we will turn into next

in section 4.4.

4.4 Inversion formula and HKLL construction

The Radon transform φ→ φ̂ and its dual f → f̌ are not inverse to each other, and we need

an inversion formula to recover φ from φ̂. We will see that an explicit inversion formula is

available in our setup. Applying the formula to a function φ on the AdSd+1 space together

with the identification (4.21) between φ̂ and the defect OPE block B(m), we will show a

bulk scalar field can be reconstructed from a primary scalar in CFT, which turns out to

be the HKLL formula proposed by [29] in the AdS/CFT correspondence.

Before stating our main claim, we revisit the double fibration structure of the Radon

transform from a slightly different viewpoint to make the geometric meaning clearer. We

view X = G/K ' Hd+1 as a Riemannian manifold, and pick up a point o (or K in G/K)

as the origin of X. Let Ξ be the space of k-dimensional totally geodesic submanifolds in

Hd+1, which can be represented as a coset Ξp = G/Hp with Hp(= H) being the isotropy

group fixing an element ξp ∈ Ξp at distance d(o, ξp) = p from the origin o. The subscript

p indicates the geodesics are at distance p from the origin. Note that, in this notation,

we naturally identify ξ̂p with ξp through the geometric realization. x̌ can also be seen as

the set of all geodesics at distance p form x. Adapting the double fibration construction

to this coset gives the same definition of the Radon and dual Radon transforms as in the

previous subsection.

G/(L = K ∩Hp)

vv ((
X ≡ G/K Ξp ≡ G/Hp

(4.26)

In this setup, we can rewrite the Radon and dual Radon transforms as

φ̂(ξp) =

∫
x∈ξp

dm(x)φ(x) , f̌(x) =

∫
x̌
dµ(ξ) f(ξ) , (4.27)

where we used the measures induced by the Riemannian metrics. The original defini-

tions (4.8) can be recovered by using the relation (4.7) and the identification between

ξp and ξ̂p.

The inversion formula of the Radon transform reconstructs a function φ(x) on Hd+1

from the Radon transformed field φ̂(ξp) [56, 58],

φ(x) = −ck
[

dk

d(r2)k

∫ ∞
r

dt (t2 − r2)k/2−1tk(M s(t)φ̂)(x)

]
r=1

, (4.28)

where ck = 2/(πk/2Γ(k/2)), s(t) = arccosh(t). M s(t) is the mean-value operator defined by(
Mpφ̂

)
(x = g · o) ≡

∫
K
φ̂(gkg−1 · g ξp) dk , (4.29)
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p

ξp

k · ξp

k ∈ SO(d+ 1)Hd+1

Figure 6. k ∈ SO(d+ 1) action on ξp in the mean-value operator Mp

where we pick a “reference” geodesic ξp, while the right hand side is independent of the

choice of ξp after the integration over K as the K action on the reference geodesic generates

the other geodesics at distance p from the origin. We relegate the proof of the inversion

formula to appendix B.

Having stated the inversion formula (4.28) for the Radon transform, we are now in

position to apply it to reconstruct an AdS scalar field from the defect OPE block under

the identification (4.21).

To simplify discussion, we start with the case when g is the identity, g = id, in the

formula (4.29). Namely we consider the bulk operator φ at the center x = o. See figure 6

for the illustration. In this case, M s(t) averages the function φ̂
(
ξs(t)

)
over a family of

geodesics whose nearest distances from the origin are s(t).

The distance s(t) from the origin to a geodesics is determined only by the radius R of

the defect on its boundary through the relation,

t =
1

sin(R)
. (4.30)

This is easily obtained in the global section, but it does not depend on the choice of sections

as the radius R defined by (2.22) is written in the embedding space formalism. Putting all

together, we obtain the following identity,

φ(o) = −cd+1−m

[
dd+1−m

d(r2)d+1−m

∫ ∞
r

dt (t2 − r2)(d−1−m)/2td+1−m

·
∫

SO(d+1)
dk B(m)[k · Pα,O∆]

]
r=1

,

= −a∆ cd+1−m
N∆

∫
DdX

[
dd+1−m

d(r2)d+1−m

∫ ∞
r

dt (t2 − r2)(d−1−m)/2td+1−m

·
∫

SO(d+1)
dk

1

[((k · P )α ·X)((k · P )α ·X)]∆/2

]
r=1

Õd−∆(X) .

(4.31)
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Here, the action of k ∈ K = SO(d + 1) on Pα is induced by the natural restriction of the

fundamental representation of SO(d+ 1, 1) to its subgroup K.11

We act an element g ∈ G = SO(d+1, 1) on the origin o to derive the following formula

for constructing an AdS local field φ at a general position,

φ(Y ) = − cd+1−m

[
dd+1−m

d(r2)d+1−m

∫ ∞
r

dt (t2 − r2)(d−1−m)/2td+1−m

·
∫

SO(d+1)
dk B(m)[g k · Pα,O∆]

]
r=1

. (4.32)

The embedding space vector Y corresponds to a point x = g · o of the AdSd+1 space. The

action of g ∈ G on Pα is also given by the fundamental representation. This formula (4.32),

which may look abstract at first, consists of a few simple steps as follows:

1. Fix a bulk point Y = g · o where we want to construct an AdS scalar field.

2. Pick one geodesic ξ out of a family of (d+ 1−m)-dimensional totally geodesic sub-

manifolds whose nearest distances from Y are arccosh(1/ sinR). Then a spherical

defect of radius R anchors the geodesic ξ on the boundary of Hd+1.

3. Find the frame vectors Pα corresponding to the submanifold ξ.

4. Substitute the frame vectors Pα into the formula (4.32), and evaluate the integration.

This prescription is what we announced in Introduction for reconstructing an AdS scalar

field from the defect OPE blocks of a scalar primary field in CFT.

We can rewrite the formula (4.32) in a more insightful way in combination with the

integral representation of the defect OPE block (3.18). One can exchange the order of

integrations and pull out the spatial integration to recast (4.32) into the form,

φ(Y ) =

∫
DdX K̃d−∆(Y |X) Õd−∆(X) , (4.33)

where K̃d−∆(Y |X) is the “shadow” kernel defined by

K̃d−∆(Y |X) ≡ −a∆ cd+1−m
N∆

[
dd+1−m

d(r2)d+1−m

∫ ∞
r

dt (t2 − r2)(d−1−m)/2td+1−m

·
∫

SO(d+1)
dk

1

[((gk · P )α ·X)((gk · P )α ·X)]∆/2

]
r=1

.

(4.34)

Carrying out this calculation on the right hand side appears to be difficult, but we can

resort to the symmetry consideration to fix the form. It is a scalar function of the two

embedding vectors X and Y , thus it can only depend on their inner product X · Y . The

11This action does not change the distance t and the radius R, thus the reference point Ω must be in the

fundamental representation of SO(d+ 1, 1).
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kernel must have a weight −∆ in X to make the right hand side of (4.33) be a conformal

integral. Therefore the kernel results in the following unique form up to a factor,12

K̃d−∆(Y |X) = (−2X · Y )−∆ . (4.35)

This is equivalent to the Euclidean version of the HKLL formula [29] if we replace ∆

and Õd−∆ with d − ∆ and O∆, respectively. Indeed we can switch them using the dual

representation (3.15) of the defect OPE block B(m)[Pα,O∆], and arrive at the familiar form,

φ(Y ) =

∫
DdXK∆(Y |X)O∆(X) , (4.36)

with the kernel,

K∆(Y |X) = (−2X · Y )∆−d . (4.37)

Equivalently one can go more directly from one to the other expression by performing the

shadow transformation,∫
DdX

1

(−2X · Y )∆
Õd−∆(X) ∝

∫
DdZ

∫
DdX

1

(−2X · Y )∆

1

(−2X · Z)d−∆
O∆(Z) ,

∝
∫
DdZ

1

(−2Z · Y )d−∆
O∆(Z) , (4.38)

where we used the formula for the conformal integral [27],∫
DdX

1

(−2X · Y )∆

1

(−2X · Z)d−∆
=
πd/2Γ(∆− d/2)

Γ(∆)

(−Y 2)d/2−∆

(−2Z · Y )d−∆
. (4.39)

with the relation for the AdS vector, Y 2 = −`2AdS.

The above argument shows the equivalence of (4.33) and (4.36) arises from the two

equivalent descriptions of the defect OPE block discussed in section (3.1), where we im-

posed the monodromy condition to remove the shadow block with an undesirable behav-

ior in the small radius limit. Here we also want to pick up in the reconstruction for-

mula (4.32) an appropriate contribution with the expected asymptotics near the boundary

in the Poincaré section,

φ(Y )→ z∆O(X) , z → 0 . (4.40)

As prescribed in section 4.1, the bulk point Y approaches to the boundary point X by

rescaling Y = λX in the λ→∞ limit, where the expression (4.33) reproduces the asymp-

totics (4.40),

φ(Y ) = λ−∆

∫
DdX0

1

(−2X0 ·X)∆
Õd−∆(X0) ,

= λ−∆O∆(X) ,

−−−→
λ→∞

z∆O∆(X) . (4.41)

12In Lorentzian signature, one has to multiply Θ(−X · Y ) to the integrand of the kernel to respect the

causality in the bulk space [59], which is absent after the Wick rotation.
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Here X approaches to a null vector in the last line and we use the identification between

the scaling parameter λ and the inverse of the AdS coordinate 1/z made below (4.5). On

the other hand, repeating the same argument shows the formula (4.36) has the different

asymptotics,

φ(Y ) ∼ zd−∆ Õd−∆(X) . (4.42)

The difference between the two asymptotic behaviors can be distinguished by the mon-

odromy M : Y → e−2πiY just like the defect OPE block. Reassuringly, the monodromy

condition we imposed on the defect OPE block in (3.18) guarantees the correct asymp-

totics (4.40) of the AdS scalar field in the light of the AdS/CFT correspondence.

The scalar function φ(Y ) satisfies the Klein-Gordon equation because of the ker-

nel K∆(Y |X) (and the shadow kernel K̃d−∆(Y |X)) being the propagator of the Klein-

Gordon field in the AdS space, which can be seen from the explicit form (4.37) (and its

shadow (4.35)). Instead, we can argue that φ(Y ) is a scalar field propagating on the AdS

space by reminding the fact that the Radon transform intertwines the quadratic Casimir

equation for the defect OPE block with the Klein-Gordan equation as we have discussed

in section 4.3.

Before concluding this section, we want to contrast our reconstruction formula (4.32)

with the one presented in [30]. We used the inversion formula of the Radon transform

from M(d,m) to Hd+1 in order to make manifest the covariance of the reconstructed scalar

field in the AdSd+1 space. If we would just need the value of the scalar field on a specified

point, we could have chosen a time slice Hd including the point, and adopted the inversion

formula on the slice for the reconstruction. In other words, we could have assumed defects

were constrained on a constant Lorentzian time slice by fixing one of the frame vector P1

to be parallel to the time direction, and applied the inversion formula from M(d−1,m−1) to

Hd to derive another formula,

φ(o) = − cd+1−m

[
dd+1−m

d(r2)d+1−m

∫ ∞
r

dt (t2 − r2)(d−1−m)/2td+1−m

·
∫

SO(d)
dk B(m−1)[k · Pα,O∆]

]
r=1

. (4.43)

Regarding the block B(m−1) as an element inM(d,m) by the restriction B(m−1) ∝ B(m)|P1:fix,

we might allow ourselves to think of φ as a scalar function not on the time slice Hd but on

the whole space Hd+1. This type of reconstruction was employed in [30] and exemplified

for d = m = 2, which is reproduced in appendix C for comparison to our results. The

covariance of the reconstructed scalar field on the AdS space in their approach appears to

be not a consequence but rather an assumption, while it is manifest in our approach.

5 Discussion

In this paper, we initiated the detailed studies of the OPE structure for conformal defects

with a view toward a better understanding of their universal aspects characterized by the
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conformal symmetry and enhancing the holographic dictionary for non-local objects in the

AdS/CFT correspondence. In this section we list open problems and possible applications

of the defect OPE blocks, which we hope to address in future work.

Analytic continuation to Lorentzian signature. Most of our analyses were carried

out in Euclidean CFTs to take full advantage of the embedding space and the shadow

formalism. A price to pay is the contamination of the shadow contribution in the defect

OPE block and the ambiguity of the analytic continuation to Lorentzian signature. To

overcome the former issue, we imposed the monodromy condition on the defect OPE block

in Euclidean signature, whose implication was not clear at all after the Wick rotation.

Comparing our prescription for the codimension-two case with the OPE block [30, 31],

we speculate imposing the monodromy condition corresponds to restricting the integration

range of the block to the interior of the causal domain D(D(m)) for the defect operator in

Lorentzian signature.

More precisely, we propose that the Lorentzian version of the defect OPE block is given

by the Wick rotation of the Euclidean block (3.18) with the integration range restricted

to D(D(m)),

B(m)[Pα,O∆,l]Lorentzian =
1

N∆,l

∫
D(D(m))

DdX Õd−∆,l(X,DZ) 〈D(m)(Pα)O∆,l(X,Z)〉 .

(5.1)

The restriction of the integration range amounts to guarantee the causality of the

HKLL formula in the Lorentzian AdS space when m = 2. While the causal domain of a

codimension-two defect is well understood as a causal diamond, the meaning of the causal

domain of a higher-codimensional defect is less clear. We leave the question open whether

the Lorentzian defect OPE block (5.1) will lead to the correct HKLL formula maintaining

the causality in the AdS space.

Radon transform of higher spin fields. Formally nothing prevents us from defining

the defect OPE block of a spinning defect. It would satisfy a quadratic Casimir equation

whose Radon transform may be interpreted as an equation of motion for a higher spin field.

The Radon transform of a bundle valued field is defined in [60], but only for a codimension-

one totally geodesic hyperplane in AdS. We are not aware of any generalization of the

Radon transform to a general case except the work [61] concerned with the spin two case.

While we have nothing concrete to say about the Radon transform for higher spin

fields, we note the following observation that motivates us to consider spinning defects as

the counterparts of higher spin fields if such a Radon transform exists. In section 3.4, we

associated the Laplacian on the coset space G/H to the quadratic Casimir operators of the

groups G and H via the identity (3.48). A similar formula is known for the Lichnerowicz

operator 4G/H applied to a tensor harmonic f on a (compact) coset space [54, 62]:

4G/Hf = CG f . (5.2)
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Note that the Lichnerowicz operator differs from the Laplacian when acted on a symmetric

traceless tensor fµ1···µl ,

4G/Hfµ1···µl = �G/Hfµ1···µl +
l∑

i=1

Rαµi fµ1···α···µl +
l∑

i,j=1,i 6=j
Rα β

µi µj fµ1···α···β···µl , (5.3)

where Rαβγδ is the Riemann curvature tensor on the coset space G/H. This is a spinning

wave equation for the tensor field f of spin l on the coset space G/H. If we could find a

Radon transform from the moduli space of conformal defectsM(d,m) to the AdS space, the

identity (5.2) would be intertwined to the equation of motion for higher spin field on the

AdS space. Hence it is tempting to examine the defect OPE blocks for spinning defects

and extend the bulk reconstruction program for higher spin fields.

Twist and anti-twist operators for entanglement entropy. The calculation of en-

tanglement entropy amounts to performing the path integral on a Euclidean manifold sin-

gular at a codimension-two entangling surface. Such a computation can be reformulated

as the path integral on a manifold without singularity, but with the insertion of a twist

operator specifying an appropriate boundary condition on the entangling surface [4–7]. For

a spherical or planar entangling surface in CFT, the twist operator is a particular example

of codimension-two conformal defects, whose dual defect becomes a pair of local operators

located at the future and past tips X± of the causal diamond for the entangling surface

(see also [31, 63]).

There are two types of codimension-two defects for a given spherical entangling surface,

twist and anti-twist operators, depending on their orientations. For example, if we associate

twist operators to the entanglement entropy inside the sphere, anti-twist operators are to

the entropy of the complementary region, namely the outside of the sphere. This distinction

does not matter as long as we are concerned with the entanglement entropy of a single

spherical region, but a care must be taken when we deal with the entropy across two disjoint

regions. On the one hand the entanglement entropy can be represented as the correlation

function of two twist operators, but on the other hand the entropy can be given, after an

appropriate conformal transformation, by the correlator of twist and anti-twist operators

associated to the complement of the spherical shell that is conformally equivalent to the

two disjoint spherical regions.

In order to incorporate the difference between twist and anti-twist operators for en-

tanglement entropy in our framework of conformal defects, we exploit the duality between

a codimension-two defect and a pair of local operators and propose to introduce two types

of local operators Φ(X+) and Φ̃(X−) describing the dual defect of a twist operator,

D(2)
twist(Pα) ↔ D(d)

twist(P̃α̃) = Φ(X+) Φ̃(X−) . (5.4)

With this refinement, the anti-twist operator can be distinguished from the twist operator

by exchanging Φ↔ Φ̃,

D(2)
anti-twist(Pα) ↔ D(d)

anti-twist(P̃α̃) = Φ̃(X+) Φ(X−) . (5.5)
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In other words we assign to Φ and Φ̃ different Z2 charges with which we can determine the

orientation of entangling regions. This rule is consistent with the inversion map that flips

the roles of twist and anti-twist operators. It is intriguing to implement our proposal in

the calculation of the entanglement entropy for a spherical shell as the correlation function

of the four local operators by taking into account the Z2 charges.

More general OPE blocks in defect CFT. The method we used to derive the defect

OPE blocks can be generalized similarly to the bulk-to-defect OPE and the OPE of defect

local operators. For the latter, we employ the spectral decomposition of the identity

operator in the bulk CFT to deduce

Ôi(Y ) =
∑
n

∫
DdX 〈Ôi(Y ) Õn(X)〉On(X) , (5.6)

which reproduces the defect OPE when we choose the defect local operator to be the iden-

tity operator on the defect, Ôi = 1̂. To achieve the bulk-to-defect OPE, we would rather

use the spectral decomposition of the defect identity 1̂ in the defect theory, resulting in

Oi(Y )|D =
∑
n

∫
D
DdX 〈Oi(Y )

˜̂On(X)〉 Ôn(X) , (5.7)

where the integration range is restricted on the support of the defect D. These integral

forms would shed light on new aspects of the OPEs in defect CFT and be worth fur-

ther studies.

Codimension-one defect. There is no dual object for a codimension-one defect, but

one can still find a solution by extending the null cone X2 = 0 to the whole embedding

space. The latter is regarded as the bulk AdS space and the dual defect is likely to sit on

the tip of the causal diamond in the AdS space. It is tempting to expect that the defect

OPE block for m = 1 measures the complexity of the vacuum state in CFT as both of

them are calculated by integrating over the volume in the bulk [64, 65].13
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A Defect OPE block of spinning primaries in the small radius limit

Generalizing the argument in section 3.1 to the l > 0 case is parallel to the l = 0 case with

a slight modification due to the tensor structure. To this end, we introduce new vectors,

Kαβ(X) ≡ CPαPβ ·X , (A.1)

whose norm for given indices (α, β) is

Kαβ(X) ·Kαβ(X) = (Pα ·X)2 + (P β ·X)2 . (A.2)

The contraction of the indices gives

Kαβ(X) ·Kαβ(X) = 2(Pα ·X)(Pα ·X) , (A.3)

with which we rewrite the correlator (2.26) in the form,

〈D(m)(Pα)O∆,l(X,Z)〉 =
2(∆+l)/2 a∆,l

[Kαβ(X) ·Kαβ(X)]
(∆+l)/2

[
(Z ·Kγδ(X))(Z ·Kγδ(X))

]l/2
.

(A.4)

The vectors with α = m component dominate in taking the small radius limit:

Kαm(X) −→ 1

R
CPαC ·X +O(1) , for α 6= m,

Kαβ(X) −→ O(1) , for α, β 6= m .
(A.5)

Substituting the correlator (A.4) into (3.18) and taking the small radius limit yields the

asymptotic behavior of the defect OPE block,

B(m)[Pα,O∆,l] ∼ R∆
∑
α

∫
DdX

1

(C ·X)∆+l
Õd−∆,l(X,CPαC ·X) + · · · ,

∼ R∆
∑
α

O∆,l(C,Pα) + · · · .
(A.6)

Note that the α = m term vanishes in the first line, but we take the summation for α over

α = 1, · · · ,m so that the final form is invariant under the SO(m) symmetry rotating the

frame vectors.

B Proof of the inversion formula

The inversion formula (4.28), which played the central role in section 4.4, can be proven

as follows [56]. We fix a point x in Hd+1 on which we want to reconstruct the value of a

function φ. Let x0 be the nearest point in a k-dimensional geodesic submanifold ξp from x,

r be the distance between x0 and a point y on the ξp, and q be the distance between x and

y as shown in figure 7. The distances between these points satisfy the triangle relation,

cosh q = cosh p cosh r . (B.1)
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Figure 7. Trigonometry for a triangle in a hyperbolic space

We rewrite the mean-value operator (Mpφ̂)(x) as,

(Mpφ̂)(x) =

∫
K
φ̂(gk · ξp) dk =

∫
K

∫
y∈ξp

φ(gk · y) dm(y) dk ,

=

∫
y∈ξp

(M qφ)(x) dm(y) ,

(B.2)

with q = d(x, y) and (M qφ)(x) appeared in the last equality that is defined as a mean-value

operator on a surface at distance q from a point x,

(M q=d(x,y)φ)(x = g · o) ≡
∫
K
φ(gk · y) dk . (B.3)

Recall that (Mpφ̂)(x) only depends on the radial direction, and it enables us to see Mpφ̂

as a function of r. In the global coordinate of Hd+1, the integral over the points in ξp can

be represented in the polar coordinate, and thus we have

(Mpφ̂)(x) = Ωk

∫ ∞
0

(M qφ)(x) sinhk−1 r dr , (B.4)

with Ωk is the area of the surface at distance r from x0, restricted to the k-dimensional

geodesic submanifold. In order to indicate that (M qφ)(x) is the only function of the

distance q and (Mpφ̂)(x) is a function of p, we denote them by

F (cosh q) = (M qφ)(x) , F̂ (cosh p) = (Mpφ̂)(x) . (B.5)

By changing variables as cosh p→ t, cosh r → s, (B.4) is written as

F̂ (t) = Ωk

∫ ∞
1

F (ts)(s2 − 1)(k−2)/2 ds . (B.6)
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Inverting this equation leads to

r−1F (r) = −ck
(
d

dr2

)k ∫ ∞
r

tk(t2 − r2)(k−2)/2F̂ (t) dt . (B.7)

The left hand size reduces to φ(x) when r = 1 as it becomes the average over a surface

of zero radius: F (1) = (Md(x,y)=0φ)(x). Thus the inversion formula (4.28) is obtained by

letting r = 1.

C Construction of a bulk scalar operator in d = 2

In this section, we reproduce the result of [30], that is the HKLL formula in the AdS3 space.

This corresponds to the d = 2, m = 2 case. For this purpose, we begin with introducing

the global section in the embedding space formalism.

A vector in the global section, constrained on the null cone, is in general, given by [66],

X = (et, e−t, cos θ, sin θ) . (C.1)

Let us briefly explain why this is so. We choose the global coordinates of AdSd+1 (with

the defining relation −Y +Y − +
∑

i(Y
i)2 = −1) as

(Y +, Y −, Y i) = (eτ/ cos ρ, e−τ/ cos ρ, tan ρΩi) , (C.2)

where Ωi’s are the vectors on the d-dimensional sphere. In these coordinates, the bound-

ary corresponds to the ρ → π/2 limit. That is, we use the infinitesimal parameter ε, and

substitute approximation ρ = π/2− εf(τ,Ω) for some function f(τ,Ω). In order to repro-

duce (C.1), we choose f(τ,Ω) = e−τ . By rescaling X ≡ ε Y , we obtain X = (e2τ , 1, eτΩi).

Dividing by eτ gives us the result (C.1) as the null vector dose not depend on the over

all rescaling.

In order to construct an AdS scalar field at the origin of H2, we pick up a horocycle

ξ and read off the position of the corresponding defect following the steps 1 and 2 in

section 4.4. We assume horocycle and codimension-two defect are constrained on the time

slice, t = 0. As clear from figure 8, it is enough to specify two points X1,2 on the circle

parameterized by θ for fixing a horocycle in the time slice H2. Thus we choose the two

points as follows:

X1 = (1, 1, cos(θc − α), sin(θc − α)) , X2 = (1, 1, cos(θc + α), sin(θc + α)) . (C.3)

Here θc and α are the center and the radius of the defect respectively.

Since the defects are constrained on the time slice, one of the frame vector P1 has to

be parallel to the time direction at t = 0,

P1 = (1,−1, 0, 0) . (C.4)

Note that this reduces the defect moduli space to the subspace M(1,1). It follows that the

other frame vector P2 is determined to be

P2 = (cotα, cotα, cot θc cscα, sin θc cscα) . (C.5)
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Figure 8. A pair of points at X1 and X2 as a codimension-two defect on a circle at a time slice,

and the horocycle ξ in H2 ending on them at the boundary

This achieves the step 3. Now we turn to the step 4. To compare with the result in [30],

we use the defect OPE block of the form (3.15), which reduces in the present case to

B(2)[Pα,O∆]

=
a2−∆

N2−∆

∫ ∞
−∞
dt

∫ 2π

0
dθ

[
2

(cosh t−cos(θ−θc−α)) (cosh t−cos(θ−θc+α))

1− cos(2α)

]∆−2
2

O∆(t, θ) .

(C.6)

It is notable that the inversion formula (4.32) simplifies for d = m = 2,

φ(x) = −c1

[
d

d(r2)

∫ ∞
r

dt (t2 − r2)−1/2t (M s(t)φ̂)(x)

]
r=1

,

= c1

[
d

d(r2)

∫ ∞
r

dt (t2 − r2)1/2 d

dt
(M s(t)φ̂)(x)

]
r=1

,

= −c1/2

∫ ∞
1

dt (t2 − 1)−1/2 d

dt
(M s(t)φ̂)(x) ,

= − 1

π

∫ ∞
0

dp
1

sinh p

d

dp
(Mpφ̂)(x) .

(C.7)

From the first to second line, the integration by parts was carried out for (t2 − r2)−1/2t =

∂t(t
2 − r2)1/2, and from the third to forth line, we introduced the new variable p by

t = cosh p. Putting all things together, we arrive at the final form,

φ(0) = − a2−∆

πN2−∆

∫ ∞
−∞

dt

∫ 2π

0
dθ K∆(t)O∆(t, θ) , (C.8)

with the kernel given by

K∆(t) =

∫ π/2

0
dα tanα

d

dα

∫ π/2

−π/2
dθc

[
2

(cosh t−cos(θ−θc−α)) (cosh t−cos(θ−θc+α))

1− cos(2α)

]∆−2
2

.

(C.9)
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Note that the integration over θc comes from the group integration on SO(2), and we

used the relation p = arccosh(1/ sinα), derived from (4.30). This agrees with the kernel

given by [30], up to the Wick rotation t → −it. The double integrations in the kernel

were carried out there, which in our case results in the Euclidean version of the HKLL

formula [29] as expected,

K∆(t) =
2∆−2(∆− 1)

π2
(cosh t)∆−2 log cosh t . (C.10)
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