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1 Introduction

The discovery at the LHC in 2012 of a spin-0 particle of mass around 125GeV [1, 2]

with properties closely matching that of the Standard Model (SM) Higgs boson is a major

vindication of our understanding of the elementary particle properties. This colour neutral

particle arises from a multiplet which transforms under the SU(2)L symmetry as a doublet.

This is precisely what is required to generate masses for quarks and leptons and the gauge

bosons while keeping MW /MZ = cos θW in agreement with observations.

In spite of this success, the scalar sector of the Standard Model still retains several

directions which merit investigation. A much discussed issue is that of naturalness, namely,

there is no obvious reason for the protection of a light Higgs scalar mass. Different direc-

tions of addressing this impasse such as supersymmetry, compositeness, extra dimensions,

clockwork, etc. have been under examination and experimental tests for these alternatives

are being pursued with vigour.1

1There are other shortcomings of the Standard Model such as massless neutrinos and the lack of a dark

matter candidate. Our focus in this work will be restricted to the scalar sector.
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Besides naturalness there is also the question of minimality of the scalar field content.

Is there only one scalar doublet as postulated in the Standard Model? Even though one

scalar doublet serves most purposes rather well could there be in addition further scalar

multiplets transforming under SU(2)L either as doublets or as other representations? The

simplest extension could be the addition of SU(2)L singlet scalars.2 Alternatively, seesaw

models of neutrino mass of the Type-II variety rely on the introduction of an SU(2)L triplet

scalar multiplet [4]. But by far the most attention has been devoted to multi-doublet

models among which justifiably the simplest two-Higgs-doublet model has been covered

most extensively [5]. A specially important sub-class of these are the supersymmetric

models which necessitate two SU(2)L doublets with rather specific couplings. Models with

n-Higgs doublets with n > 2 have also been under study [6–8].

In this work we consider a model in which there are three scalar doublets which trans-

form as a triplet under the discrete symmetry A4. Models with three Higgs doublets have

been of interest in their own right and have been examined from various angles [9–11].

The scalar spectrum of such models with possible discrete and continuous symmetries have

been investigated in [12] while the potential minima and CP-violation options have been

examined in [13, 14]. For a three-Higgs-doublet model with S3 symmetry novel scalar

decays [15], the spectrum of the scalar sector and its consequences [16], and the high en-

ergy behaviour of the potential [17] have been explored. A4 as a flavour symmetry for

lepton and quark masses was first considered in [18] who introduced three scalar doublets

transforming as a triplet of the A4 group and wrote down the most general potential con-

sistent with the symmetry. They showed that a choice of the symmetry breaking where

the vacuum expectation value (vev) for the three doublets were equal led to a lepton mass

model with attractive features. Closer to the spirit of this work, the authors in [19] also

consider the same model with three scalar doublets transforming as an A4 triplet. They ex-

tract the scalar mass spectra for different vacuum expectation value patterns, to which our

calculations agree, and examine their implications on gauge boson decays and on oblique

corrections. Our primary focus in this work is different; it is to establish the “alignment”

feature as discussed below. Another work with the same particle content but with soft

symmetry breaking terms has been the subject of [20]. A model with several A4-triplet

scalars and additional discrete symmetries has also been studied [21].

We consider a model with one A4-triplet consisting of SU(2)L-doublet scalars. We do

not allow any soft A4 breaking terms. Demanding that the scalar potential respects A4

symmetry imposes restrictions on the allowed terms and relates them. We find that for

all global minima of the potential these relations automatically imply vacuum alignment

without any fine-tuning whatsoever. In every case in the mass eigenstate basis of the

scalar fields, the so-called ‘Higgs basis’, the vacuum expectation value is restricted to only

one of the three multiplets [22]. This multiplet has a massive neutral scalar, i.e., the SM

Higgs boson analogue, and a massless neutral and a massless charged scalar, the Goldstone

modes.3 The other mass eigenstate scalars, all of non-zero mass, are superpositions of the

2There are a large number of recent papers on this subject. For an early view see, for example, ref. [3].
3Fermion masses, which are beyond the scope of this paper, also arise from their coupling to this

multiplet.
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remaining two scalar SU(2)L doublets, with their exact composition varying case by case.

We discuss the consequences on the model from requiring positivity of the potential and

also demanding that tree-level s-wave unitarity be satisfied.

We stress here that this is at best only a toy model. Since the magnitude of the

effective vev, v, is controlled by the gauge boson masses and it is the only mass parameter

in the model, all scalars end up with either vanishing mass (the Goldstone states) or have

mass O(v). Realistic models which incorporate quark and lepton masses usually have a

richer scalar sector [18, 23–25].

In the next section we briefly review the A4 symmetry group. In the following section

we write down the A4-symmetric scalar potential of the three-doublet model. The physics

consequences of this model are presented in the two next sections where we discuss the

scalar masses and alignment and the bounds arising from positivity and unitarity. We end

with our conclusions and discussions.

2 The A4 group

The discrete group A4 comprises of twelve elements corresponding to the even permutations

of four objects. Two basic permutations S and T which satisfy S2 = T 3 = (ST )3 = I and

their nontrivial products generate A4. The inequivalent irreducible representations are four

in number; one of 3 dimension and three of 1 dimension which we denote by 1, 1′ and 1′′.

The latter are singlets under S and transform under T as 1, ω, and ω2 respectively, where

ω is a complex cube root of unity. The one-dimensional representations satisfy

1′ × 1′′ = 1 . (2.1)

For the remaining representation of dimension 3 one has

S =









1 0 0

0 −1 0

0 0 −1









and T =









0 1 0

0 0 1

1 0 0









. (2.2)

As is seen from the above, in this basis the generator S is diagonal. We will use this

basis. It is noteworthy that in the literature a basis in which the generator T is diagonal

(with eigenvalues 1, ω, ω2) has also been used. The two bases are related by a unitary

transformation by:

U3 =
1√
3









1 1 1

1 ω2 ω

1 ω ω2









. (2.3)

This matrix will reappear in our discussions later.

For the 3-dimensional representation the product rule is

3⊗ 3 = 1⊕ 1′ ⊕ 1′′ ⊕ 3⊕ 3 . (2.4)

– 3 –
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The triplets 3c, 3d arising from the product of two triplets 3a ≡ ai and 3b ≡ bi, where

i = 1, 2, 3, can be represented as

ci = (a2b3, a3b1, a1b2) and di = (a3b2, a1b3, a2b1) . (2.5)

In the same notation the other representations in the 3a ⊗ 3b product are:

1 = a1b1+ a2b2+ a3b3 , 1′ = a1b1+ω2a2b2+ωa3b3 , 1′′ = a1b1+ωa2b2+ω2a3b3 . (2.6)

More details of the A4 group can be found in [18, 23, 24].

Models of quarks and leptons based on A4 as a flavour symmetry group have been

widely examined. Typical examples of such applications for the issue of neutrino masses

can be found in [18, 23–25]4 and those for quark masses in [27–31].

3 The A4-symmetric scalar sector

We consider here a model where there is one scalar multiplet which transforms as an A4

triplet. The components of this muliplet are colour neutral and under the electroweak

symmetry transform as three SU(2)L doublets each with hypercharge Y = 1. We represent

this collection of scalars as:

Φ ≡









Φ1

Φ2

Φ3









≡









φ+
1 φ0

1

φ+
2 φ0

2

φ+
3 φ0

3









, (3.1)

where the SU(2)L symmetry acts horizontally while the A4 transformations do so vertically.

We decompose the neutral fields into the scalar and pseudoscalar components: φ0
i = φi+iχi.

Our objective is to explicitly show that alignment holds for the vev which have been

identified as the global minima of the potential. This implies [22] that there exists a unitary

transformation U such that if

U









Φ1

Φ2

Φ3









= Ψ ≡









Ψ1

Ψ2

Ψ3









≡









ψ+
1 ψ0

1

ψ+
2 ψ0

2

ψ+
3 ψ0

3









, (3.2)

then in the Ψ basis the vev is restricted to only one component, 〈ψ0
i 〉 6= 0 and 〈ψ0

j 〉 = 0

for j 6= i. At the same time, the members of Ψi, namely, ψ+
i and ψ0

i ≡ η0i + iξ0i , are

mass eigenstates with a massive neutral state and one massless neutral state along with

a massless charged state. The other mass eigenstates are superpositions of the remaining

states Ψj (j 6= i). For most purposes Ψi mimics the Standard Model Higgs scalar doublet.

4For a review see for example ref. [26].
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3.1 The scalar potential

We will express the potential in terms of the components Φi, each of which is an SU(2)L
doublet scalar multiplet. A4-symmetry obviously implies a unique quadratic term, i.e., the

same mass term for all components. No cubic terms are permitted by the electroweak sym-

metry. Turning now to the quartics it is useful to consider first the product of the triplet

with itself and then the product of two such combinations. According to eq. (2.4) the prod-

uct of two A4 triplets can give rise to two triplets (3c and 3d in eq. (2.5)) besides a 1, a 1′,

and a 1′′. Out of these, in the quartic term the two singlets together form a singlet as do the

1′ with the 1′′ — see eq. (2.1). Two triplets can form a singlet but out of the four possibili-

ties arising from 3c and 3d only two are independent. These are all the quartic terms allowed

by the gauge and discrete symmetry. The potential in terms of components is then [18]:

V (Φi) = m2

(

3
∑

i=1

Φ†
iΦi

)

+
λ1

2

(

3
∑

i=1

Φ†
iΦi

)2

(3.3)

+
λ2

2

(

Φ†
1Φ1 + ω2Φ†

2Φ2 + ωΦ†
3Φ3

)(

Φ†
1Φ1 + ωΦ†

2Φ2 + ω2Φ†
3Φ3

)

+
λ3

2

[(

Φ†
1Φ2

)(

Φ†
2Φ1

)

+
(

Φ†
2Φ3

)(

Φ†
3Φ2

)

+
(

Φ†
3Φ1

)(

Φ†
1Φ3

)]

+λ4

[

(

Φ†
1Φ2

)2

+
(

Φ†
2Φ1

)2

+
(

Φ†
2Φ3

)2

+
(

Φ†
3Φ2

)2

+
(

Φ†
3Φ1

)2

+
(

Φ†
1Φ3

)2
]

.

We take all λi (i = 1, . . . 4) to be real. In general, only λ4 can be complex. We comment,

in passing, on the impact of this option.

We can rewrite the second term by using the property 1 + ω + ω2 = 0 to get:

V (Φi) = m2

(

3
∑

i=1

Φ†
iΦi

)

+
λ1 + λ2

2

(

3
∑

i=1

Φ†
iΦi

)2

(3.4)

−3λ2

2

[(

Φ†
1Φ1

)(

Φ†
2Φ2

)

+
(

Φ†
2Φ2

)(

Φ†
3Φ3

)

+
(

Φ†
3Φ3

)(

Φ†
1Φ1

)]

+
λ3

2

[(

Φ†
1Φ2

)(

Φ†
2Φ1

)

+
(

Φ†
2Φ3

)(

Φ†
3Φ2

)

+
(

Φ†
3Φ1

)(

Φ†
1Φ3

)]

+λ4

[

(

Φ†
1Φ2

)2

+
(

Φ†
2Φ1

)2

+
(

Φ†
2Φ3

)2

+
(

Φ†
3Φ2

)2

+
(

Φ†
3Φ1

)2

+
(

Φ†
1Φ3

)2
]

.

We will be using this form in the subsequent calculations.

4 The four alternative global minima

For spontaneous symmetry breaking the neutral scalar fields in Φ develop vacuum expec-

tation values. The following alternatives have been shown to be the only possible global
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minima of the potential [32, 33] and have commonly appeared in the literature:5

〈Φ〉1 =
v√
2









0 1

0 0

0 0









, 〈Φ〉2 =
v

2









0 1

0 1

0 0









, 〈Φ〉3 =
v√
6









0 1

0 1

0 1









, 〈Φ〉4 =
v√
6









0 1

0 ω

0 ω2









. (4.1)

Here v = vSM ∼ 246GeV. We examine each of these options in turn. We determine the

condition under which any particular minimum arises from eq. (3.4) and then work out the

mass matrices of the physical scalars that emerge. For this we use the following notation:

Lmass =
1

2
(χ1 χ2 χ3)M

2
χiχj









χ1

χ2

χ3









+
1

2
(φ1 φ2 φ3)M

2
φiφj









φ1

φ2

φ3









+(φ−
1 φ−

2 φ−
3 )M

2

φ∓
i φ±

j









φ+
1

φ+
2

φ+
3









.

(4.2)

In every case we verify that alignment is a consequence.

4.1 Case 1: 〈φ0

i
〉 = v

√

2
(1, 0, 0)

We begin with the case where 〈φ0
1〉 = v√

2
and 〈φ0

2〉 = 〈φ0
3〉 = 0, i.e.,

〈Φ〉1 =
v√
2









0 1

0 0

0 0









. (4.3)

In this case alignment will be true if the components of Φ1 be mass eigenstates, of which

the charged and a neutral scalar become Goldstone modes of zero mass. We show that this

is indeed the case.

From eq. (3.4) we find that the minimisation condition that must be satisfied for the

vev in eq. (4.3) is:

m2 +
v2

2
[λ1 + λ2] = 0 . (4.4)

Using this condtion and the full scalar potential in eq. (3.4) we can find the mass

matrices for the charged scalars (φ±
i ) and the neutral scalars (φi) and pseudoscalars (χi).

The ij-th off-diagonal entry of any mass matrix depends on the combination vivj and since

in this case v2 = v3 = 0 the mass matrices are all diagonal.

For the charged scalar sector the mass-squared matrix is:

M2

φ∓
i φ±

j

= diag(0 , r+ , r+) where r+ =
v2

4
(−3λ2) . (4.5)

5If λ4 is complex then a more general form 〈Φ〉2 = v

2









0 1

0 eiα

0 0









is possible, where sin 2α ∝ Im(λ4) as

discussed in the appendix.
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The Goldstone state φ±
1 becomes the longitudinal mode of the charged gauge boson. The

mass-squareds of the two remaining degenerate states will be positive if λ2 < 0. We show in

the next section that such a choice is consistent with the positivity of the potential and in

agreement with unitarity bounds. Since the couplings |λi| ≤ O(16π) from perturbativity,

the massive charged scalars can be in the 100GeV to a TeV range.

The vev and the λi being real the neutral scalar (φi) and pseudoscalar (χi) sectors

remain independent. We get for the neutral pseudoscalars:

M2
χiχj

= diag(0 , p , p) where p =
v2

4
(−3λ2 + λ3 − 4λ4) . (4.6)

We can readily identify the zero mass Goldstone mode, χ1, while χ2,3 are massive degenerate

states. We show in the following section that positivity and unitarity constraints do allow

positive mass-squareds for these scalars.

Finally, for the neutral real scalars we have:

M2
φiφj

= diag(q , r0 , r0) where q = v2 (λ1 + λ2) , r0 =
v2

4
(−3λ2 + λ3 + 4λ4) . (4.7)

Positivity of the scalar potential requires (λ1 + λ2) to be positive. So, φ1 has a positive

mass-squared. Further, r0 = m2
φ2,φ3

is also positive. In other words, alignment is manifest

and the unitary transformation in eq. (3.2) for this case is the unit matrix. The defining

basis is also the Higgs basis.

If we had taken λ4 to be complex, then the charged sector would be unaffected as

would be φ1 and χ1. The other mass eigenstates would be orthogonal superpositions of φ2

with χ2 and φ3 with χ3, the mixing angle being proportional to Im(λ4).

4.2 Case 2: 〈φ0

i
〉 = v

2
(1, 1, 0)

This is the global minimum for which 〈φ0
1〉 = 〈φ0

2〉 = v
2
and 〈φ0

3〉 = 0, i.e.,

〈Φ〉2 =
v

2









0 1

0 1

0 0









. (4.8)

One can get this minimum if the potential satisfies:

m2 +
v2

4

[

λ1 +
1

4
λ2 +

1

4
λ3 + λ4

]

= 0 . (4.9)

As in the previous case we can obtain the mass matrices for the scalar fields starting

from the potential in eq. (3.4). For example, using eq. (4.9) one obtains for the neutral

pseudoscalars (χ1 χ2 χ3):

M2
χiχj

=

(

v2

4

)









−2λ4 2λ4 0

2λ4 −2λ4 0

0 0 −3λ2/4 + λ3/4− 3λ4









. (4.10)
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Similarly, for the real scalars (φ1 φ2 φ3) one has:

M2
φiφj

=

(

v2

4

)









λ1 + λ2 λ1 − λ2/2 + λ3/2 + 2λ4 0

λ1 − λ2/2 + λ3/2 + 2λ4 λ1 + λ2 0

0 0 −3λ2/4 + λ3/4 + λ4









.

(4.11)

The charged scalar mass matrix is found to be:

M2

φ∓
i φ±

j

=

(

v2

4

)









−λ3/4− λ4 λ3/4 + λ4 0

λ3/4 + λ4 −λ3/4− λ4 0

0 0 −3λ2/4− λ3/4− λ4









. (4.12)

To go to the Higgs basis using eq. (3.2) one must use a unitary transformation by:

U2 =









1/
√
2 1/

√
2 0

−1/
√
2 1/

√
2 0

0 0 1









. (4.13)

The mass matrices in eqs. (4.10)–(4.12) are all diagonalised by the same unitary transfor-

mation U2M
2U †

2 = D2 where D is diagonal. We find:

D2
χiχj

=

(

v2

4

)

diag(0,−4λ4,−3λ2/4+λ3/4−3λ4) , (4.14)

D2
φiφj

=

(

v2

4

)

diag(2λ1+λ2/2+λ3/2+2λ4,3λ2/2−λ3/2−2λ4,−3λ2/4+λ3/4+λ4) , (4.15)

and

D2

φ∓
i φ±

j

=

(

v2

4

)

diag(0, − λ3/2− 2λ4, − 3λ2/4− λ3/4− λ4) . (4.16)

It is important to note that we are defining the Higgs basis through:

Ψ = U2Φ , (4.17)

where Φ is given in eq. (3.1) and Ψ is defined in eq. (3.2).

In this Higgs basis the scalars are mass eigenstates as expected, where ψ+
1 and ξ1 are

massless Goldstones and η1 is massive. Further, the vev is:

〈Ψ〉2 =
v√
2









0 1

0 0

0 0









, (4.18)

which makes the alignment obvious.

Notice that the second and third eigenvalues of eq. (4.15) are proportional but with

opposite sign. So, both cannot be made positive by any choice of the λi. This is an

inadequacy which can be removed by choosing λ4 to be complex, where alignment still

continues to be valid. We demonstrate this in an appendix.
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4.3 Case 3: 〈φ0

i
〉 = v

√

6
(1, 1, 1)

Next we consider 〈φ0
1〉 = 〈φ0

2〉 = 〈φ0
3〉 = v√

6
, i.e.,

〈Φ〉3 =
v√
6









0 1

0 1

0 1









. (4.19)

In this case the minimisation of the potential implies:

m2 +
v2

12
[3λ1 + λ3 + 4λ4] = 0 . (4.20)

Using the above one can calculate the mass matrices of the scalar fields. For example, for

the neutral pseudoscalars (χ1 χ2 χ3) one gets:

M2
χiχj

= 2λ4

(

v2

6

)









−2 1 1

1 −2 1

1 1 −2









. (4.21)

The real scalar (φ1 φ2 φ3) mass matrix in this case is:

M2
φiφj

=

(

v2

6

)









y z z

z y z

z z y









, (4.22)

where y = (λ1 + λ2) and z = (λ1 − λ2/2 + λ3/2 + 2λ4).

Finally, for the charged sector

M2

φ∓
i
φ±
j

=

(

v2

6

)(

λ4 +
λ3

4

)









−2 1 1

1 −2 1

1 1 −2









. (4.23)

The above mass matrices are all diagonalised by a unitary transformation by the matrix

U3 defined in eq. (2.3). Thus, U3 rotates the defining basis to the Higgs basis.6

The diagonal forms of the mass matrices are:

D2
χiχj

= λ4 v2diag(0, − 1, − 1) , (4.24)

D2

φ∓
i
φ±
j

=

(

λ4 +
λ3

4

)(

v2

2

)

diag(0, − 1, − 1) , (4.25)

6Notice that in all three scalar sectors there is double degeneracy and consequently the Higgs basis is

non-unique. For example, in place of U3 of eq. (2.3) one could just as well use the popular tribimaximal

mixing matrix: UTBM =









1√
3

1√
3

1√
3

−
√

2√
3

1√
6

1√
6

0 − 1√
2

1√
2









.
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and

D2
φiφj

=

(

v2

6

)

diag(y + 2z, y − z, y − z) , (4.26)

where y + 2z = 3λ1 + λ3 + 4λ4 and y − z = 3λ2/2− λ3/2− 2λ4. Both these combinations

can be positive while remaining consistent with positivity and unitarity. Similarly, λ4 and

λ4 + λ3/4, which appear in eqs. (4.24) and (4.25) respectively, can both be negative.

The fields in the Higgs basis are:

Ψ = U3Φ , (4.27)

where Φ is given in eq. (3.1). As before, we use ψ0
i = ηi + iξi.

Further, in this basis in which the scalars are mass eigenstates, with ψ+
1 and ξ1 massless,

the vev becomes

〈Ψ〉3 =
v√
2









0 1

0 0

0 0









. (4.28)

Thus, alignment is again manifest.

4.4 Case 4: 〈φ0

i
〉 = v

√

6
(1, ω, ω2)

The last alternative that we consider involves complex vacuum expectation values, namely,

〈φ0
1〉 = (v/

√
6), 〈φ0

2〉 = (v/
√
6)ω, and 〈φ0

3〉 = (v/
√
6)ω2, i.e.,

〈Φ〉4 =
v√
6









0 1

0 ω

0 ω2









. (4.29)

The vev is in this direction if

m2 +
v2

12
[3λ1 + λ3 − 2λ4] = 0 . (4.30)

Since the vev are complex there will be mixing terms involving neutral scalars and

pseudoscalars. The (6× 6) mass matrix in the (χ1, χ2, χ3, φ1, φ2, φ3) basis is:

M2
Φ0

i
Φ0

j
=

v2

6

























2λ4 −λ4 −λ4 0
√
3λ4 −

√
3λ4

−λ4 f2 f1 g1 g2 g3

−λ4 f1 f2 −g1 −g3 −g2

0 g1 −g1 (λ1 + λ2) h1 h1√
3λ4 g2 −g3 h1 h3 h2

−
√
3λ4 g3 −g2 h1 h2 h3

























, (4.31)
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where

f1 = −3

4
[λ1 − λ2/2 + λ3/2]− λ4 , f2 =

3

4
(λ1 + λ2) +

1

2
λ4 ,

g1 =

√
3

4
{2λ1 − λ2 + λ3 − 4λ4} , g2 = −

√
3

4
{λ1 + λ2 − 2λ4} ,

g3 = −
√
3

4
{λ1 − λ2/2 + λ3/2− 4λ4} ,

h1 = −1

4
{2λ1 − λ2 + λ3 + 4λ4} , h2 =

1

8
{2λ1 − λ2 + λ3 − 8λ4} ,

h3 =
1

4
{λ1 + λ2 + 6λ4} . (4.32)

The matrix in eq. (4.31) has an eigenstate with zero eigenvalue. This state can be readily

identified by changing the basis through a (6× 6) unitary transformation by

U6r =
1√
3

























1 1 1 0 0 0

1 −1/2 −1/2 0 −
√
3/2

√
3/2

1 −1/2 −1/2 0
√
3/2 −

√
3/2

0 0 0 1 1 1

0
√
3/2 −

√
3/2 1 −1/2 −1/2

0 −
√
3/2

√
3/2 1 −1/2 −1/2

























. (4.33)

The new basis thus obtained is:
























ξ1

ξ2

ξ3

η1

η2

η3

























=
1√
3

























χ1 + χ2 + χ3

χ1 − (χ2 + χ3)/2−
√
3(φ2 − φ3)/2

χ1 − (χ2 + χ3)/2 +
√
3(φ2 − φ3)/2

φ1 + φ2 + φ3√
3(χ2 − χ3)/2 + φ1 − (φ2 + φ3)/2

−
√
3(χ2 − χ3)/2 + φ1 − (φ2 + φ3)/2

























. (4.34)

It turns out that ξ2 and η2 are mass eigenstates with ξ2 being the mass-zero mode. The

rest of the mass matrix separates into two block diagonal forms, a (2× 2) block for (ξ1, ξ3)

and another for (η1, η3) which are:

M2
ξ1,ξ3

=
v2

6

(

λA −λA

−λA λA + 18λ4

)

, M2
η1,η3

=
v2

6

(

λA λA

λA λA + 18λ4

)

, (4.35)

where λA = 9
4
λ2 − 3

4
λ3 − 3λ4. m

2
ξ2

= 0 and m2
η2

= v2 (3λ1/2+λ3/2−λ4). The eigenvalues

and eigenvectors of the two matrices in eq. (4.35) are:

m2
1 =

v2

6

[

λA+9λ4+
√

λ2
A+81λ2

4

]

, ξ1=χ1cosα−χ3sinα, η1=φ1cosα+φ3sinα

m2
3 =

v2

6

[

λA+9λ4−
√

λ2
A+81λ2

4

]

, ξ3=χ1sinα+χ3cosα, η3=−φ1sinα+φ3cosα, (4.36)
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where

tan 2α =
λA

9λ4

. (4.37)

At this stage we draw attention to the fact that the (6 × 6) unitary matrix, U6r in

eq. (4.33), acting on real fields (χi, φi) is nothing but a unitary transformation by U3 of

eq. (2.3) on the complex fields, φ0
i = φi + iχi.

For the charged sector (after eliminating λ1,2 using eq. (4.30)):

M2

φ∓
i φ±

j

=
v2

6









a b b∗

b∗ a b

b b∗ a









, (4.38)

where a = (2λ4 − λ3)/2 and b = (ω2λ3 + 4ωλ4)/4. This matrix is also diagonalised by

going to the Ψ basis using eq. (3.2) with U3 from eq. (2.3) and one has the eigenvalues

(a + 2Re(b)) = −v2

6
(3λ3/4), (a − Re(b) −

√
3Im(b)) = 0, and (a − Re(b) +

√
3Im(b)) =

−v2

6
(3λ3/4− 3λ4). The corresponding eigenstates are precisely:

ψ±
1 = (φ±

1 +φ±
2 +φ±

3 )/
√
3 , ψ±

2 = (φ±
1 +ωφ±

2 +ω2φ±
3 )/

√
3 , ψ±

3 = (φ±
1 +ω2φ±

2 +ωφ±
3 )/

√
3 .

(4.39)

Thus (Ψ1, Ψ2, Ψ3) constitute the Higgs basis for this case with Ψ2 mimicing the Standard

Model scalar doublet in this case.

Note, that in this Higgs basis the vev becomes:

〈Ψ〉4 =
v√
2









0 0

0 1

0 0









. (4.40)

The fact that in the Ψ-basis the vev takes the form in eq. (4.40) and that the compo-

nents of Ψ2, namely (ψ+
2 , ψ

0
2), are both mass eigenstates with massless charged and neutral

modes and a massive neutral scalar exemplifies alignment in this case.

5 Positivity, Unitarity

The scalar potential in eq. (3.4) must be bounded from below. This gives rise to ‘positivity’

bounds on the couplings appearing in it. Further, tree-level unitarity of scalar-scalar scat-

tering also gives rise to bounds on combinations of the same couplings. In the following we

show that these constraints still do permit the λi to be chosen such that the mass-squareds

of all scalars are either positive or vanishing.

5.1 Positivity limits

It is well-known that if the scalar potential of any model depends only on the squares of the

fields then one has to consider the ‘copositivity’ constraints on the couplings. For a general

model with three scalar doublets such constraints are available in the literature [34, 35].

We adopt these to the model with A4 symmetry.
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Because of the A4 symmetry, the scalar quartic couplings are few and related. If all

vacuum expectation values are real one has to look for the copositivity of the matrix

Mcop =









λP λQ λQ

λQ λP λQ

λQ λQ λP









, (5.1)

where the combinations

λP = (λ1 + λ2)/2 , λQ = (2λ1 − λ2 + λ3 + 4λ4)/4 . (5.2)

The conditions to be satisfied are:

λP ≥ 0 , λP + λQ ≥ 0 , and
√

λ3
P + (3λQ)

√

λP +
√

2(λP + λQ)3 ≥ 0 . (5.3)

To satisfy these conditions it is enough to demand λP ≥ 0 and λQ ≥ −1
2
λP which translate

to:

λ1 + λ2 ≥ 0 , 3λ1 + λ3 + 4λ4 ≥ 0 . (5.4)

For complex vev, in general, one has to look at the positivity of the matrix. However,

in the simpler situation in the Case 4 discussed earlier, where the phases of 〈Φ1〉, 〈Φ2〉 and
〈Φ3〉 are (0, 2π/3, 4π/3), the copositivity criteria continue to apply. The matrix Mcop is

the same as in eq. (5.1) except for

λQ → λR = (2λ1 − λ2 + λ3 − 2λ4)/4 . (5.5)

In this case, one must satisfy

λ1 + λ2 ≥ 0 , 3λ1 + λ3 − 2λ4 ≥ 0 . (5.6)

5.2 s-wave unitarity

The potential in eq. (3.4) involves SU(2)L doublet scalar fields (I = 1/2) with Y = 1 and

their hermitian conjugates. The quartic terms in the potential can give rise to tree-level

scalar-scalar scattering processes. At high energies one can classify the scattering states by

their SU(2)L and Y quantum numbers. The two-particle states can be in SU(2)L singlet

(I = 0) or SU(2)L triplet (I = 1) channels and for both cases with Y = 2 (e.g., φ+
i φ

+
j

initial/final states, i, j = 1, 2, 3) or 0 (e.g., φ+
i φ

∗0
j initial/final states, i, j = 1, 2, 3). The

scattering processes in every channel must respect limits arising from probabilitiy conserva-

tion, i.e., unitarity. This implies bounds on the amplitudes for each partial wave. Here we

restrict ourselves to the bounds from s-wave scattering for the different channels [36, 37].

A discussion of the unitarity bounds for the two-scalar-doublet model along these lines

can be found in [36]. It can be readily generalised to the three-scalar-doublet case under

consideration here.

The results we obtained are displayed in table 1. Besides I and Y an initial or final

state will carry two indices (i, j) when the two scalars are from Φi and Φj . We treat two

cases separately. ‘Diagonal’ corresponds to states with i = j while ‘Off-diagonal’ is for
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Quantum numbers Type Matrix Eigenvalues

SU(2)L Y size

1 2 Diagonal 3× 3 |(λ1 − 2λ4)| , |(λ1 + 4λ4)|
1 2 Off-diagonal 3× 3 |(λ3 − 3λ2)/2|
0 2 Off-diagonal 3× 3 |(λ3 + 3λ2)/2|
1 0 Diagonal 3× 3 |(λ1 − λ3/2)| , |(λ1 + λ3)|
1 0 Off-diagonal 6× 6 |(3λ2 + 4λ4)/2| , |(3λ2 − 4λ4)/2|
0 0 Diagonal 3× 3 |(6λ1 + 6λ2 − λ3)/2| , |(3λ1 − 6λ2 + λ3)|
0 0 Off-diagonal 6× 6 |(−3λ2 + 2λ3 − 12λ4)/2| , |(−3λ2 + 2λ3 + 12λ4)/2|

Table 1. The dimensionalities and eigenvalues of the tree-level scattering matrices for the different

SU(2)L and Y sectors. ‘Diagonal’ (‘Off-diagonal’) corresponds to i = j (i 6= j) with i, j = 1, 2, 3.

From unitarity the magnitude of each eigenvalue must be bounded by 1/8π.

i 6= j. Since in all terms in the potential in eq. (3.4) any field, Φi, appears an even number

of times, a ‘Diagonal’ initial state cannot scatter into an ‘Off-diagonal’ state and vice versa.

So, the two sectors are completely decoupled for the A4-symmetric potential. Note that

for the ‘Diagonal’ case there is no SU(2)L singlet state with Y = 2 due to Bose statistics.

We denote the s-wave scattering amplitude by S(I, Y ). For each choice of I, I3, and

Y quantum numbers there are a fixed set of states determined by the available options

for i and j. A scattering matrix can be obtained for an initial state from this set going

over to a final state also from this set. s-wave unitarity requires every eigenvalue of the

matrix to be bounded by 1/8π. For example, for the S(0, 2) ‘Off-diagonal’ case the states

are Γ12(0, 2) ≡ (φ+
1 φ

0
2 − φ0

1φ
+
2 )/

√
2, Γ23(0, 2) ≡ (φ+

2 φ
0
3 − φ0

2φ
+
3 )/

√
2, Γ31(0, 2) ≡ (φ+

3 φ
0
1 −

φ0
3φ

+
1 )/

√
2. Scattering between these states7 gives rise to a (3× 3) matrix. The matrix is

diagonal because no term in the potential in eq. (3.4) can cause an off-diagonal transition

in this sector, e.g., Γ12(0, 2) 6↔ Γ23(0, 2), which involves an odd number of Φ1 and Φ3 fields.

Also, the matrix is proportional to the identity due to the A4 symmetry. On the other

hand, for the S(0, 0) ‘Off-diagonal’ case for any i and j (i 6= j) the initial and final states

can be any one of (φ+
i φ

−
j + φ0

iφ
∗0
j )/

√
2 or (φ−

i φ
+
j + φ∗0

i φ0
j )/

√
2. This results in a (6 × 6)

matrix which turns out to be of block diagonal form with three identical (2× 2) blocks.

In table 1 we have listed the different channels, the corresponding scattering matrix

dimensions, and their eigenvalues. We present below two typical examples of the matrices,

corresponding to the first and fifth rows of table 1.

8πS(1, 2)diag =









λ1 2λ4 2λ4

2λ4 λ1 2λ4

2λ4 2λ4 λ1









,

7Notice that Γij(0, 2) = −Γji(0, 2).
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8πS(1, 0)off−diag =









X 0 0

0 X 0

0 0 X









, X =

(

−3λ2/2 2λ4

2λ4 −3λ2/2

)

. (5.7)

For all cases at least one (or more) of the eigenvalues is degenerate due to the A4 symmetry

requirement on the potential.

Note that the above discussion of tree-level unitarity has been in terms of the defining

scalar fields Φ1,2,3. An alternate approach which also appears in the literature is to consider

the unitarity bounds following from the scattering of physical mass eigenstate scalars. The

results are equivalent.

5.3 Scalar mass-squareds

In section 4 we have obtained the mass eigenvalues of the charged and neutral scalars for

the four alternate choices of the vevs. We find from the limits on the quartic couplings

from positivity and from unitarity (table 1) that there is ample room to choose the λi such

that all scalar mass-squareds are positive, i.e., all masses are real.

In particular, positivity of the mass-squared for all the physical fields requires:

Case 1 : λ1 + λ2 > 0 , λ2 < 0 , 3λ2 − λ3 + 4λ4 < 0 , 3λ2 − λ3 − 4λ4 < 0 .

Of the above conditions, the first is a requirement that must be met, see eq. (5.4), for the po-

tential to be positive. Besides, one must make the choices λ2 < 0 and (3λ2−λ3+4|λ4|) < 0.

Case 2 : as noted in section 4.2, for real λ4 this case is inadmissible.

In the appendix we show that this issue is removed if λ4 is taken complex.

Case 3 : λ4 < 0 , λ3 + 4λ4 < 0 , 3λ1 + λ3 + 4λ4 > 0 , 3λ2 − λ3 − 4λ4 > 0 .

The third inequality in the above is again a consequence of the positivity of the potential,

eq. (5.4). Along with this, the imposition of the first and second conditions imply the fourth.

Case 4 : 3λ1 + λ3 − 2λ4 > 0 , λ3 < 0 , λ3 − 4λ4 < 0 , λ4 (3λ2 − λ3 − 4λ4) > 0 .

The first condition is anyway satisfied for the positivity of the potential, see eq. (5.6). Fur-

ther, this soultion is viable in the parameter region defined by the remaining conditions.

The constraints from unitarity in table 1 set bounds on the magnitude of some combi-

nations of these couplings. Barring unnatural cancellations, this implies that none of the

λi can be arbitrarily large in magnitude.

6 Conclusions

In this paper we have considered a three-Higgs doublet model with A4 symmetry. We have

examined the vevs which have been identified as the only possible global minima of this

potential. These choices have been used in realistic physics models. Here we have shown
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that in all these cases alignment is automatic due to the A4 symmetry. We demonstrate

that the bounds on the quartic couplings from positivity and unitarity can be satisfied

while keeping all scalar mass-squareds positive.

The attractive feature of A4 symmetry is that the terms that are allowed in the po-

tential ensure distinctive textures for the scalar mass matrices. Alignment for the global

minima vevs is a result of this. Another consequence is that the mixing matrices in the

scalar sector are of a few standard forms.

Needless to say, since alignment is valid, with the minimal scalar content considered in

this work, in the Higgs basis fermion masses will arise from the coupling to the analogue of

the SM Higgs boson in this model. Usually, however, realistic models involve the inclusion

of more scalar fields. Such a model based on A4 symmetry incorporating fermions and

reproducing their observed mass and mixing patterns through Yukawa couplings is beyond

the scope of this work.

In conclusion, this model exhibits several features which make it of interest for further

exploration.
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A Case 2 generalisation

It was shown in section 4.2 that though alignment is valid for the vev 〈Φ0〉 = (v/2)(1, 1, 0)

the physical scalar mass-squareds cannot all be made simultaneously positive when the cou-

pling λ4 is real. We show in this appendix that this issue is addressed when λ4 is complex.

We take λ4 = |λ4|eiδ and the vev of the neutral scalars as (v/2)(1, eiα, 0). In this

case, the minimisation condition becomes:

m2 +
v2

4

[

λ1 +
1

4
λ2 +

1

4
λ3 − |λ4|

]

= 0 and δ + 2α = π (A.1)

Note that the phase of λ4 is related to that of the vev.

If λ4 is complex then the charged scalar sector (φ±
1 , φ±

2 , φ
±
3 ) mass-squared matrix is:

M2

φ∓
i φ±

j

=

(

v2

4

)









−λ3/4 + |λ4| e−iα(λ3/4− |λ4|) 0

eiα(λ3/4− |λ4|) −λ3/4 + |λ4| 0

0 0 −3λ2/4− λ3/4 + |λ4|









. (A.2)

This matrix is diagonalised by a unitary transformation of the fields:








Ψ1

Ψ2

Ψ3









= U2c









Φ1

Φ2

Φ3









with U2c =
1√
2









1 e−iα 0

eiα −1 0

0 0 1









. (A.3)
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As before, we write Ψ0
i = ηi + iξi. Notice that in this basis the vev is of the form 〈Ψ0〉 =

(v/
√
2)(1, 0, 0).

The charged states (ψ±
1 , ψ

±
2 , ψ

±
3 ) have masses 0, (v/2)

√

−λ3/2 + 2|λ4|,
(v/2)

√

−3λ2/4− λ3/4 + |λ4| respectively. That ψ±
1 is massless is indicative that

the Ψi constitute the Higgs basis. To establish alignment we need to check that ξ1 is

massless and η1 has a positive mass-squared.

Because the vev and λ4 are now complex there is scalar-pseudoscalar mixing in the

neutral sector. The neutral sector mass-squared matrix splits up into a (2 × 2) block for

(χ3, φ3) which remains decoupled from the remaining (4× 4) block. For the other neutral

fields, i.e., (χ1, χ2, φ1, φ2) states:

M2
χ1,χ2,φ1,φ2

=
v2

4
2|λ4|















I +















0 − cosα 0 sinα

− cosα K sin2 α J sinα K sinα cosα

0 J sinα K J cosα

sinα K sinα cosα J cosα K cos2 α





























. (A.4)

Here K = (λ1 + λ2 − 2|λ4|)/2|λ4| and J = (λ1 − λ2/2 + λ3/2− 2|λ4|)/2|λ4|.
This matrix is diagonalised by a (4×4) unitary matrix which is the upper (2×2) block

of U2c in eq. (A.3) expressed in this (χ1,2, φ1,2) basis, i.e.,:

U4r =
1√
2















1 cosα 0 − sinα

cosα −1 sinα 0

0 sinα 1 cosα

− sinα 0 cosα −1















. (A.5)

We find

U †
4r [M2

χ1,χ2,φ1,φ2
] U4r =

v2

4
2|λ4| (A.6)

×















0 0 0 0

0 2 + (−1 +K − J) sin2 α 0 (−1 +K − J) sinα cosα

0 0 (1 +K + J) 0

0 (−1 +K − J) sinα cosα 0 2 + (−1 +K − J) cos2 α















.

Thus, as required for alignment, the masses of ξ1 and η1 are:

mξ1 = 0 , mη1 =
v

2

√

2λ1 + λ2/2 + λ3/2− 2|λ4| (A.7)

The latter plays the role of the SM Higgs boson.

The remaining mass eigenstates (ξ′2 and η′2), which can also be read off from eq. (A.6),

are superpositions of ξ2 and η2 defined through a rotation by the angle α with masses

mξ′
2
, η′

2
= v

√

|λ4| ,
v

2

√

3λ2/2− λ3/2 + 2|λ4| . (A.8)
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The other neutral scalars, namely (χ3, φ3) ≡ (ξ3, η3), are decoupled from the rest and

have the mass matrix:

M2
χ3, φ3

=
v2

4

[

(

−3

4
λ2 +

1

4
λ3 + |λ4|

)

I + 2|λ4| cos(3α)
(

cosα − sinα

− sinα − cosα

)]

. (A.9)

The eigenvalues of this matrix are:

mξ′
3
, η′

3
=

v

2

√

−3λ2/4 + λ3/4 + |λ4|{1∓ 2 cos(3α)} , (A.10)

where ξ′3 and η′3 are obtained from ξ3 and η3 by a rotation through an angle α/2.

A bound on the phase α is readily obtained from eqs. (A.8) and (A.10). One has:

m2
ξ′
3
, η′

3

=
1

2
m2

ξ′
2

[

m2
ξ′
2

−m2
η′
2

m2
ξ′
2

∓ cos(3α)

]

. (A.11)

One can immediately conclude that:

| cos(3α)| ≤
m2

ξ′
2

−m2
η′
2

m2
ξ′
2

. (A.12)

Thus one must have

m2
ξ′
2

> m2
η′
2

⇒ 2|λ4| >
3

2
λ2 −

1

2
λ3 . (A.13)

In addition, one has the sum-rule:

m2
η′
2

+m2
ξ′
3

+m2
η′
3

= m2
ξ′
2

. (A.14)

It is worth bearing in mind that the choices α = 0 and α = π, which correspond to the

real limit, are inadmissible. In both cases mη′
2
has to vanish, which is ruled out on physics

grounds.

It is not difficult to ensure the reality of all the scalar masses at the same time by a

suitable choice of the λi while satisfying the requirements of positivity of the potential.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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