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1 Introduction and summary

There has recently been considerable interest in the SYK [1–3] and related models — see

for example [4–16]. The SYK model of one-dimensional fermions is a model that is solvable

in the large N limit and captures features of black holes including a large ground state

entropy and a Lyapunov exponent saturating the chaos bound proposed in [17].

The natural conjecture for a holographic dual to SYK is a background involving an

asymptotically AdS2 factor. As discussed in [18], one would not expect the geometry to be

precisely AdS2, but “nearly” AdS2, with the bulk involving a running scalar. One of the
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aims of this work is to discuss this “nearly” conformal invariance further, from the perspec-

tive of the underlying Ward identities defining both sides of the holographic correspondence.

Symmetries of additional compact directions in the bulk are associated with global sym-

metries of the field theory. The SYK model has no such global symmetries, suggesting that

either the holographic dual is non-critical or that the compact directions have no isometries.

Support for the former possibility follows from an analysis of the SYK spectrum, obtained

by extracting the OPE from four point functions. The spectrum contains many low di-

mension operators [19, 20], indicating that the bulk dual may involve low tension strings.

Nevertheless one should be able to bootstrap a bulk description for SYK from knowledge

of the SYK correlation functions, and it is this perspective that will be taken in this paper.

The “nearly” conformal two-dimensional gravity/dilaton theories are particular exam-

ples of holographic theories with generalized conformal structure. Generalized conformal

structure [21–23] is perhaps most easily defined in a field theory. A theory with conformal

invariance has a traceless stress energy tensor up to conformal anomalies: 〈T ii 〉 ∼ 0. In a

theory with generalized conformal structure the scale invariance is broken at the quantum

level only by a source for a scalar operator OΦ:

〈T ii 〉+ (d−∆Φ)Φs〈OΦ〉 ∼ 0, (1.1)

with d the spacetime dimension and ∆Φ the dimension of the operator. It is therefore the

(dimensionful) coupling Φs that drives the renormalization group flow; Φs is the only scale

in the theory. (Later on in this paper we will generalize this concept to allow for a finite

number of operators driving the flow.)

Generalized conformal structure underlies a number of holographic dualities, the most

prominent of which are the Dp-branes (with p 6= 3) and the fundamental string [24]. In

all such cases, in the regime where the supergravity description is valid the dynamics is

controlled by the dimensionful running of the coupling. The holographic dictionary for

such non-conformal brane backgrounds was developed in detail in [25] and will be reviewed

in section 4. As we discuss later, a particular feature of the holographic dictionary is that

dilaton/gravity models with generalized conformal structure can be understood in terms of

dimensional reductions of AdS gravity on tori [26]. These tori are not in general of integer

dimension — the dimension is related to the running of the dilaton and the thermodynamic

behaviour of the theory.

In a theory with generalized conformal structure, operator correlation functions depend

on the dimensionful coupling Φs as well as on the operator separation. For example, the

Euclidean two point function for a generic scalar operator O of dimension ∆ behaves as

〈O(x)O(0)〉 =
f(Φs|x|d−∆Φ)

|x|2∆
(1.2)

where f is a function of the dimensionless coupling Φs|x|d−∆Φ . For a theory in which the

driving operator is irrelevant, the correlator would admit an IR expansion

〈O(x)O(0)〉 =
1

|x|2∆

(
f0 + f1

Φs

|x|∆Φ−d
+ · · ·

)
(1.3)
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i.e. a Laurent series in Φs/|x|∆Φ−d with (f0, f1, · · · ) dimensionless coefficients. In the deep

IR limit |x|∆Φ−d � Φs this two point function looks conformal; it is the existence of the

series of corrections that distinguishes conformal behaviour from generalized conformal

structure. Precisely this structure is found in the SYK two point function — see for

example [2, 3, 20, 27].

The generalized conformal structure underlying two dimensional dilaton/gravity mod-

els and the relation to AdS3 gravity was discussed previously in [28], where the holographic

dictionary between the bulk metric, gauge field and dilaton and the dual Hamiltonian H,

global current J and OΦ was derived. Further discussion of the relation between SYK and

AdS3 can be found in the recent work [29].

In this paper we point out an implication of the holographic dictionary: the two point

functions of these operators vanish (up to contact terms). This result follows directly from

the Ward identities and can also be understood by reducing the two point function of the

stress energy tensor of a 2d CFT on a circle. The Hamiltonian, global current and OΦ can

however acquire (time independent) expectation values, as they indeed do in the thermal

state. Both properties indicate that these particular operators cannot be used to probe

chaotic behaviour in the theory via out of time correlators: according to [17] one needs

to probe chaos using operators that have non-vanishing correlators and vanishing thermal

expectation values. Holographically, this implies that one will need to include additional

scalar fields with appropriate couplings to the running scalar to explore chaos.

In the SYK model (before Gaussian averaging) the flow is not driven by a single

operator but by multiple four fermion operators ψiψjψkψl, each with a coupling λijkl.

This prompts the question of how to realise generalised conformal structure with multiple

scalars holographically. In section 5 we construct two dimensional models with multiple

running scalars and show that these can again always be interpreted in terms of AdS gravity

theories compactified on (non-integer) dimension tori.

The uplifted dimension (2σ + 1) is determined by the thermodynamics of the theory

e.g. the entropy scales with temperature as T 2σ−1. Hence (even for multiple dilatons)

linear scaling of the entropy with temperature picks out a parent AdS3 structure in the

bulk realization of SYK.

The SYK model after Gaussian averaging has equal sources J 2 for bilocal operators

i.e. the trace Ward identity is

H =
1

4
J 2O

∫
dtO(t) =

∫
dt
∑
A

OA(t) ≡
∫
dt1dt2

∑
A

ÕA(t1)ÕA(t2) (1.4)

where the operators ÕA denote collectively ψiψjψkψl i.e. the sum over A is equivalent to

summing the indices (i, j, k, l) over N .

Here the driving term can either be thought of as a single operator O, dual to a single

bulk scalar φ, or as a set of operators OA (with identical sources) dual to a set of scalars

φA . The required Ward identities can be realised holographically using

I = −NJ
∫
d2x
√
ge

∑
A γAφA (R+ 2) = −NJ

∫
d2x
√
geφ (R+ 2) . (1.5)
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As we show in section 5, both possibilities for the action result in a bulk geometry that ad-

mits an uplift to AdS3. The two possibilities cannot be distinguished if one is interested in

questions involving only the metric/scalar sector. If however one includes additional bulk

fields, corresponding to other operators in the SYK theory, then one needs to take into ac-

count that these bulk fields will in general have different couplings to each of the scalars φA.

These couplings are determined by the OPEs of the operators ÕA with the operator

under consideration. We argue in section 7 that the requirement of preserving the gener-

alized conformal structure constrains the interactions between generic bulk fields and the

metric/running scalars in the holographic action. These constraints are such that there is

always a parent AdS3 description of the theory.

Next we proceed to discuss the characterisation of chaos via out of time four point

functions in a holographic realisation of a non-conformal theory with generalized conformal

structure. We consider holographic non-conformal theories in general dimensions, thus

including not just putative duals to SYK but also non-conformal Dp-branes, fundamental

strings etc.

The bulk action is then of the generic form [25]

I = −NaLb
∫
dd+1x

√
geγφ

(
R+ β(∂φ)2 + C

)
(1.6)

where (γ, β, C) are related in such a way that the equations admit AdSd+1 solutions with

the scalar running as α log(ρ) and (a, b) are constants. This action can be uplifted to an

AdS action in (2σ + 1) dimensions where 2σ = d− αγ:

I = −Na

∫
d2σ+1x

√
G (R(G) + 2σ(2σ + 1)) . (1.7)

Here Lb is interpreted in terms of the volume of the (2σ−d)-dimensional torus on which the

theory is compactified and L can be interpreted as the length scale set by the dimensionful

coupling i.e. the length scale associated with the coupling Φs appearing in (1.1).

The parameter N is related to the number of degrees of freedom in the dual theory.

In top down realizations, all terms originating from supergravity will have the same N

scaling, with loop and α′ corrections subleading in N . The constants (a, b) relevant for

non-conformal Dp-branes and fundamental strings can be found in [25]. For the conformal

cases (β = γ = 0) of M5-branes, D3-branes and M2-branes, the constant a is 3, 2 and 3/2

respectively.

As we discussed above, probing chaos requires scalar operators that do not acquire

thermal expectation values i.e. we need to include additional fields to the graviton and

running scalars. Let V and W be such generic scalar operators that do not acquire thermal

expectation values, with corresponding bulk scalar realisations ϕV and ϕW respectively.

We can then characterize chaos in terms of the normalized out of time four point function

f(t) =
Tr (yV (0)yW (t)yV (0)yW (t))

Tr (y2V (0)y2V (0)) Tr (y2W (t)y2W (t))
(1.8)

where y moves an operator a quarter of the way around the thermal circle.
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In a holographic realization of a conformal theory, it was argued in [17] that

f(t) = 1− c G exp

(
2πt

β

)
+ · · · (1.9)

where c is a dimensionless order one constant, G is the (dimensionless) Newton constant and

β is the inverse temperature. The ellipses denote subleading contributions to the four point

function. The first term is associated with the disconnected contribution to the four point

function whereas the second term is associated with connected contributions. The latter

are dominated by exchanges in which particles pass very close to the black hole horizon and

so have large boosted energy [30–32]: if the energy of the exchanged particle is of order one

asymptotically, the energy is boosted by a factor of exp
(

2πt
β

)
close to the horizon. This

boosted energy is comparable to the black hole energy when exp
(

2πt
β

)
∼ 1/G.

The Newton constant G scales with N as 1/Na; note that a is not in general two as was

stated in [17]. In fact, a straightforward way of understanding the N scaling of the terms

in (1.9) is via the N scaling of the correlators. In a large N CFT we usually normalise

two point functions to one, with all higher point functions scaling as negative powers of

N . In the holographic (supergravity) normalization all connected correlation functions

are normalized as Na. Therefore the disconnected contribution (which behaves as the

square of a two point function) behaves as N2a, and the ratio of connected to disconnected

contributions goes as 1/Na.

In a holographic theory with generalized conformal structure, one might expect that

the normalized four-point function (1.8) would depend on the dimensionful scale L as well

as N . However, we argue in this paper that the result (1.9) still holds, although subleading

terms in (1.9) would depend explicitly on L. There are several ways to show this. Firstly,

we explained above that such holographic theories can always be uplifted to AdS gravity

theories, for which the arguments of [17] apply. Note that the dimension of the uplifted

spacetime appears in (1.9) only indirectly through the temperature.

Another way to understand why (1.9) applies to holographic theories with action (1.6)

is via scattering in the d-dimensional black hole geometry. In the dual frame the black

hole geometries are asymptotically AdS and so again the energy is boosted by a factor of

exp
(

2πt
β

)
close to the horizon. The holographic dictionary implies that the energy of the

exchanged particle is of order Lb asymptotically while the energy of the black hole itself

goes as LbNa. Therefore the boosted energy is comparable to the black hole energy when

exp
(

2πt
β

)
∼ Na i.e. the dimensionful factors cancel.

Note that the shock wave arguments of [30–32] imply that the Lyapunov exponent takes

the values of 2π/β for black holes with Rindler horizons in Einstein gravity. In the case at

hand, the running scalars (which indeed are related to the existence of additional dimension-

ful scales L) imply that the scalars run at the black holes horizons; the black holes only have

strictly Rindler horizons in one specific conformal frame. It is a priori far from obvious that

the L dependence does indeed drop out of the normalized correlation function at leading

order and it is the existence of generalized conformal structure that leads to the result (1.9).
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The plan of this paper is as follows. In section 2 we briefly review relevant features of

the SYK model. In section 3 we define generalized conformal structure and explain how

this structure underlies non-conformal brane theories (maximally supersymmetric Yang-

Mills) and SYK. We discuss the holographic realization of generalized conformal structure

in section 4 and show that the operators dual to 2d dilaton gravity have trivial correlation

functions. In section 5 we discuss 2d dilaton gravity models with multiple scalars and show

that any such model admitting generalized conformal structure has a parent AdS theory.

We show how such models arise from reductions of conformal field theories in section 6,

using the example of N = 4 SYM reduced on a torus. In section 7 we discuss interaction

terms and chaos in holographic realizations of theories with generalized conformal structure

and in section 8 we conclude.

2 Review of relevant features of SYK model

The SYK model [1–3] consists of N fermions ψi in one dimension, with Lagrangian given by

L =
∑
i

ψi∂tψi +
∑
ijkl

λijklψiψjψkψl. (2.1)

Here the couplings λijkl are drawn randomly from a Gaussian ensemble and have zero av-

erage, with the width of the Gaussian being J /N3/2. The parameter J sets the scale for

the theory and has dimension one, since the fermions are dimension zero. Generalisations

to interactions involving q interactions (with q even) are discussed in [20]; in what follows

we will be interested in the case of q > 2. The q = 2 case was also discussed in [20] but the

behaviour is qualitatively different in this case. More details about the properties of SYK

can be found in [1–3, 20, 27, 33–36].

The Hamiltonian H can be expressed as

H =
∑
ijkl

λijklψiψjψkψl ≡
∑
ijkl

λijklOijkl (2.2)

where for future use we denote by Oijkl the four fermion (composite) operators. The

Hamiltonian satisfies

∂tH =
∑
ijkl

(∂tλijkl)Oijkl (2.3)

i.e. the Hamiltonian is conserved when the couplings are time independent.

In the large N limit the theory is solvable with the bilocal field

G(τ1, τ2) =
1

N

∑
i

ψi(τ1)ψi(τ2) (2.4)

becoming classical in this limit. (Note that throughout this paper we use t to denote

Lorentzian time and τ to denote imaginary time.) For large values of J (τ1 − τ2) ≡ J τ

G(τ1, τ2) ∝ τ−2∆ (2.5)

– 6 –



J
H
E
P
0
1
(
2
0
1
8
)
0
1
0

where ∆ = 1/q and q is (as above) the number of fermions in each interaction. We will

discuss this behaviour further in the next section.

Using the reparameterization

τ → f(τ) = tan

(
τπ

β

)
(2.6)

we can also obtain the finite temperature two point function

G(τ1, τ2) ∝

 π

β sin
(
πτ
β

)
2∆

(2.7)

with β the inverse temperature.

The SYK model has the feature that the entropy is of order N at zero temperature. (It

is this feature that first suggested a connection with AdS2 black holes in string theory [37,

38]). More precisely, the partition function behaves as

logZ = −βE0 + S0 +
c

2β
(2.8)

where the ground state energy E0 and the zero temperature entropy S0 scale with N . The

specific heat c can be shown to be proportional to N/J by analysing reparameterizations.

Chaotic behaviour may be explored by computing (appropriately time ordered) four

point functions ∑
ij

〈ψi(τ1)ψi(τ2)ψj(τ3)ψj(τ4) (2.9)

averaged over i, j. As a 1/N expansion such four point functions have the form

G(τ12)G(τ34) +
1

N
F (τ1, τ2, τ3, τ4) + · · · (2.10)

i.e. the leading in N contribution is the disconnected contribution. The first subleading

contribution can be expressed in terms of a function F(χ) of a single cross ratio χ, see [20].

The out of time correlator used to explore chaos is

Tr
(
yψi(t)ψi(0)yψj(t)yψj(0)

)
(2.11)

where the operator y separates the fermions by a quarter of the thermal circle [17]. (Here we

again use t to denote real time, with τ reserved for Euclidean time.) The 1/N contribution

to this correlator grows in time with a Lyapunov exponent

λL =
2π

β
, (2.12)

in agreement with black holes, thus saturating the proposed chaos bound.

In addition to the contributions growing exponentially with time, there are finite (con-

nected) contributions to the four point function that contain information about composite

operators in the OPE of G(τ). These composite operators form a tower of states with

approximately integer spacing, suggesting that any holographic dual would need a large

number of light states; see [19, 20] for further discussion of the spectrum.
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3 Conformal symmetry versus generalized conformal structure

Consider a conformally invariant quantum field theory. A scalar operator O of scaling

dimension ∆ in a CFT has a two point function

〈O(x)O(0)〉 =
f(gi, N, · · · )
|x|2∆

(3.1)

where f is a function of the dimensionless couplings of the theory gi and of other dimension-

less parameters such as the rank N of a gauge group. In practice it is usually convenient to

normalise the two point function such that f = 1 over the entire moduli space of the CFT.

For later use, it is useful to note that this is not the natural holographic normalization: the

holographic normalization is proportional to the supergravity action normalization. For

example, for AdS5 × S5 the two point functions are normalized as N2 and the interaction

terms in supergravity give the leading N terms in higher point functions as order N2 also.

Now let us reverse the logic: suppose that a two point function of a scalar operator

behaves as

〈O(x)O(0)〉 ∼ 1

|x|2∆
(3.2)

in a specific limit e.g. large separations x. This does not in itself imply that the theory is

scale invariant in this limit, even if all scalar operator two point functions exhibit scaling

behaviour.

The particular context that we have in mind in this work is the presence of underlying

generalized conformal structure, introduced in [21–23] in the context of non-conformal D-

branes. Let us suppose that conformal invariance is broken by a source Φs for a scalar

operator OΦ of dimension ∆Φ, and that this structure is respected at the quantum level

(up to possible quantum anomalies, analogous to the Weyl anomaly of a conformal field

theory). Then the dilatation Ward identity for the theory is

〈T ii 〉+ (d−∆Φ)Φs〈OΦ〉 = A (3.3)

where Tij is the stress energy tensor, d is the spacetime dimension and A is the anomaly.

Similarly the diffeomorphism Ward identity is

∇i〈Tij〉+ ∂jΦs〈OΦ〉 = 0, (3.4)

where ∇i is the covariant derivative and we assume that there is no diffeomorphism

anomaly.

Such a theory is not conformally invariant, but there is a symmetry under scaling

transformations provided that we also allow the coupling to transform i.e. there is invariance

under Weyl rescaling of the metric and other fields

gij → e2σgij · · · (3.5)

provided that we also scale the coupling as

Φs → e−(d−∆φ)σΦs. (3.6)

– 8 –
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It is this generalized conformal structure that is captured by the Ward identities, which im-

ply an infinite set of relations for correlation functions. Associated with the (dimensionful)

coupling φs is a dimensionless effective coupling

g2
eff(x) = |x|∆Φ−dΦ−1

s (3.7)

which controls the strength of interactions.

When OΦ is a relevant operator, the effective coupling becomes large in the IR and

conversely the effective coupling becomes large in the UV when OΦ is an irrelevant operator.

Typically the generalized conformal structure controls the dynamics over a range of energies

but an alternative description is required when the effective coupling becomes too large.

Now let us consider correlation functions of scalar operators in a theory with generalised

conformal structure. A general scalar operator O has two point functions

〈O(x)O(0)〉 =
f(g2

eff(x), N, · · · )
|x|2∆

(3.8)

where any function f of the dimensionless quantities is consistent with generalized confor-

mal structure. Generically, this function will be expressed as an analytic function of the

dimensionless quantities but it can happen in certain limits that a single monomial in the

analytic series dominates i.e.

f(g2
eff(x), N, · · · ) ∼ |x|2α (3.9)

where α is a particular (not necessarily integral) power.

The above structure may seem contrived and unlikely to be preserved at the quantum

level. However, there are a number of concrete examples of theories exhibiting generalized

complex structure.

3.1 Example 1: maximal SYM theories

The Euclidean action for maximal SYM in d dimensions contains the following bosonic

terms:

I = −
∫
ddx

(
−ΦsTr(FijF

ij) + Tr(DiXD
iX) +

1

Φs
Tr[X,X]2 + · · ·

)
(3.10)

where Fij are the SU(N) gauge fields and X are the (10− d) scalars.

In this case the scalar operator OΦ associated with the generalized conformal structure

is given by

OΦ = Tr(FijF
ij) +

1

Φ2
s

Tr[X,X]2 (3.11)

i.e. it is the gluon operator.

In these theories the generalized conformal structure is believed to be respected at the

quantum level, due to maximal supersymmetry. This can be shown directly in perturbation

theory and also by showing that the holographic duals at strong ’t Hooft coupling respect

the generalized conformal structure. As discussed above, the dimensionally running cou-

pling implies that an alternative description is required either in the deep IR or UV. For

– 9 –
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the maximally SYM theories, the range of validity of the regime governed by generalized

conformal structure is well understood in terms of decoupling limits of Dp-branes [24] and

the IR/UV completions within string theory are also known. For example, the 5d SYM

associated with D4-branes is completed in the UV by the 6d M5-brane CFT.

One can calculate the two point function of the gluon operator both at weak coupling,

using a two loop calculation, and at strong coupling, using holography. For g2
effN → 0 the

two loop calculation gives [25]

〈OΦ(x)OΦ(0)〉 ∼ g4
eff(x)N2

|x|8 (3.12)

while for g2
effN →∞

〈OΦ(x)OΦ(0)〉 ∼ g
2 d−4

6−d
eff (x)N2

|x|8 (3.13)

from holography. Using the definition of the effective coupling (3.7) and rescaling the

operator by appropriate factors of Φs both results can be expressed as

〈Õ(x)Õ(0)〉 ∼ |x|−2α (3.14)

for different values of α. Thus if one only knows the correlator to leading order at weak or

strong coupling one might assume that the scaling behaviour is indicative of an underlying

scale invariance — but away from these limits the function defined in (3.8) is a series,

rather than a single term, reflecting the underlying generalized conformal structure.

3.2 Example 2: SYK

From the relations written down earlier, it is clear that the SYK classical Lagrangian is

associated with generalized conformal structure. We can write the (Euclidean) Lagrangian

in a covariant manner as

I = −
∫
dτ
√
g

−∑
i

ψiγτ∂τψ
i +
∑
ijkl

λijklψ
iψjψkψl

 (3.15)

and from here derive as dilatation and diffeomorphism Ward identities the relations given

earlier:

H+
∑
ijkl

λijklψ
iψjψkψl = 0 ∂τH+

∑
ijkl

(∂τλijjkl)ψ
iψjψkψl = 0. (3.16)

These relations display generalized conformal structure, with many scalar operators rather

than a single operator. For later use, it is convenient to denote the set of scalar operators

and associated couplings as

OA ≡ {ψiψjψkψl} λA ≡ {λijkl}. (3.17)

with the range of A being of order N4 in the large N limit.

Associated with each of these dimensionful couplings is a dimensionless coupling

(λ̃eff)ijkl(τ) = |τ |λijkl. (3.18)

– 10 –



J
H
E
P
0
1
(
2
0
1
8
)
0
1
0

ω

ω − ω1 − ω2

ω1

ω2

Figure 1. Two loop contributions to the fermion two point function.

(It is convenient to define the dimensionless coupling as the inverse of the relation used for

the gauge theories in the previous subsection.)

Now consider the two point function of a fermion ψi, calculated perturbatively in λijkl.

Due to the low dimensionality, infrared divergences arise in perturbative compuations and

it is therefore useful to regulate by working in d = 1 + ε dimensions. Then the fermion two

point function is given perturbatively by

〈ψi(τ)ψi(0)〉 ∼ 1

τ ε

1 + c
∑
jkl

(λ̃eff)2
ijkl(τ) + · · ·

 (3.19)

where c is a numerical constant (of order N3) that can be calculated explicitly via two loop

calculation of the diagrams shown in figure 1.

The perturbative result is valid provided that∑
jkl

λ2
ijklτ

2 � 1. (3.20)

In the SYK model, the Gaussian governing the random couplings has width J /N3/2 and

hence ∑
jkl

λ2
ijkl ∼ J 2 (3.21)

and thus the expression

〈G(τ, 0)〉 ≡ 1

N

∑
i

〈ψi(τ)ψi(0)〉 ∼ 1

|τ |ε
(
1 + c̃J 2|τ |2 + · · ·

)
(3.22)

(where c̃ is of order one) is valid for small separations such that J τ � 1. This is the

opposite limit to the results summarised in the previous section.
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Now let us review the behaviour of this model in the large N and large J limit.

Implementing the Gaussian averaging over the couplings gives an effective action of the form

Ieff = −
∫

dτψi∂τψi −
J 2

4q

∫
dτ1dτ2|ψi(τ1)ψi(τ2)|q (3.23)

where implicitly we sum over the repeated indices.

To solve the model in the large J limit, it is convenient to work in terms of the bilocal

field G(τ1, τ2) defined in (2.4), for which the action is

Ibilocal = −
∫
dτ∂τG(τ, τ ′)τ=τ ′ − Tr (logG)− J

2

4

∫
dτ1dτ2|G(τ1, τ2)|q. (3.24)

One can then rescale the bilocal field by appropriate factors of J such that only the first

term in the action contains a dimensionful factor:

Ibilocal = −
∫
dτ

1

J
2
q

∂τ G̃(τ, τ ′)τ=τ ′ − Tr
(

log G̃
)
− 1

4

∫
dτ1dτ2|G̃(τ1, τ2)|q. (3.25)

The latter two terms are manifestly scale invariant, with scale invariance broken explicitly

by the scale dependence in the first term.

This realisation of the action allows the correlation functions to be determined pertur-

batively for J |τ | � 1. In particular, as advertised earlier

〈G̃(τ, 0)〉 =
1

|τ |2/q +
b

J |τ |2/q+1
+ · · · (3.26)

where the constant b can be found in [20]. This expression can clearly be written in a way

to display generalized conformal structure as

〈G̃(t, 0)〉 =
f(J |τ |)
|τ |2/q , (3.27)

where f admits an expansion in J |τ |. Note that the dimension for G̃(τ, 0) is as expected

given the factors of J in the operator definition.

Returning to (3.23), this effective action clearly demonstrates generalised conformal

structure with the following dilatation Ward identity:

H =
1

4q
O (3.28)

where ∫
O(τ)dτ =

∫
dτ1dτ2|G̃(τ1, τ2))|q (3.29)

Thus, the effect of the random averaging is that a single effective operator controls the

dimensionally driven flow. We will discuss this interpretation further later.
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4 Holographic realization of generalized conformal structure

Consider the following Euclidean dilaton gravity action in (d+ 1) dimensions:

I = −N
∫
dd+1x

√
geγφ

(
R+ β(∂φ)2 + C

)
. (4.1)

Such actions arise in the context of non-conformal brane holography. In AdS holography,

Einstein gravity with negative cosmological constant describes the energy momentum ten-

sor of the dual theory; it arises as a consistent truncation of the top down supergravity

theory compactified on a sphere. In non-conformal brane holography, Einstein gravity

with a dilaton captures the dual energy momentum tensor as well as the scalar operator

driving the flow; dilaton gravity again arises as a consistent truncation of the top down

supergravity theory compactified on a sphere [39].

We will discuss the normalization of the action N in section 7. The action is expressed

in the dual frame, which was first introduced in [40]; in this frame the equations of motion

admit solutions in which the metric is anti-de Sitter. The dual frame is the natural frame

in which to set up the holographic dictionary [25].

The equations of motion following from (4.1) admit AdSd+1 solutions with running

dilaton:

ds2 =
1

ρ2

(
dρ2 + dx · dxd

)
(4.2)

eφ = ρ2α

where

α = − γ

2(γ2 − β)
(4.3)

C =
(d(γ2 − β) + γ2)(d(γ2 − β) + β)

(γ2 − β)2
.

To understand how the dual field theory data is encoded in the bulk asymptotics, we

consider generally asymptotically locally AdS solutions of the form

ds2 =
1

ρ2

(
dρ2 + gij(x, ρ)dxidxj

)
(4.4)

φ = 2α log(ρ) + κ(x, ρ)

where

gij(x, ρ) = g(0)ij(x) + g(2)ij(x)ρ2 + · · · (4.5)

κ(x, ρ) = φs(x) + κ(2)ρ
2 + · · ·

Here g(0)ij is the background metric for the dual theory and φs(x) is the coupling in the

field theory. One can show using holographic renormalization [25] that the operators Tij
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and Oφ dual to the metric and scalar take expectation values that can be expressed as

terms in the asymptotic expansion:

〈Tij〉 = (d− 2αγ)N eφsg(2σ)ττ + · · · (4.6)

〈Oφ〉 = 2(d− 2αγ)N eφs
κ(2σ)

α
+ · · ·

where the ellipses denote additional contributions that arise when (d − 2αγ) is an even

integer.

These operator expectation values satisfy the following dilatation and diffeomorphism

Ward identities:

〈T ii 〉+ 2α〈Oφ〉 = A, (4.7)

∇i〈Tij〉 − ∂jφs〈Oφ〉 = 0,

where the anomalies A that arise when (d− 2αγ) is an even integer are discussed in detail

in [25].

Let us now consider the specific case of non-conformal Dp-branes for which one can

show that

α = −(p− 7)(p− 3)

4(p− 5)
γ =

2(p− 3)

(7− p) . (4.8)

The bulk scalar field is related to the operator defined in the previous section as follows.

Let Φ be the bulk field coupling to this operator. This field is related to the field φ as

Φ(x, ρ) = exp (χφ(x, ρ)) (4.9)

where

χ =
2(p− 5)

(p− 7)
. (4.10)

(Note that the above expressions do not apply for p = 5, 7; in any case a decoupling

regime for which the dynamics is governed by generalized conformal structure exists only

for p < 5.) The asymptotic expansion of Φ is

Φ(x, ρ) = ρ−(p−3) (Φs(x) + · · · ) (4.11)

where Φs(x) is given by

Φs(x) = exp

(
2(p− 5)

(p− 7)
φs(x)

)
(4.12)

i.e. Φs(x) = 1 when φs(x) = 0. Using the relation 〈Oφ〉 = χΦs〈OΦ〉 we can then write the

Ward identities as

〈T ii 〉+ (p− 3)Φs〈OΦ〉 = A, (4.13)

∇i〈Tij〉+ ∂jΦs〈OΦ〉 = 0,

i.e. the same identities as discussed in the previous section.
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It is known [26] that the dilaton gravity action can always be interpreted as the reduc-

tion of an AdS gravity theory in (2σ + 1) dimensions where

2σ = d− 2αγ (4.14)

(where 2σ is not necessarily an integer) and the reduction ansatz is over a (2σ − d)-

dimensional torus

ds2 = ds2
d+1 + exp(2γφ)dz · dz(2σ−d). (4.15)

As we will discuss later, the parameter σ controls the thermodynamics and structure of

the correlation functions for the theory, e.g. the powers of |x| appearing in the operator

two point functions. Thus, while we can always rescale the dual operator (by dimensional

factors) as in (4.9), the parameters appearing in the holographic realization have important

physical consequences.

4.1 AdS3 reduction

A particular case of interest in the context of nearly AdS2 (NAdS2) is β = 0, so that

2αγ = −1 C = d(d+ 1). (4.16)

In the NAdS2 case, the reduction is over a circle from AdS3. Since the scalar kinetic term

vanishes, the scalar can always be rescaled; it is convenient to choose this rescaling such

that γ = 1.

There is an immediate generalization [41] to a reduction including a Kaluza-Klein

gauge field Aµ:

ds2 = ds2
d+1 + exp(2γφ)(dy +Aµdx

µ)2 (4.17)

with the resulting reduced action being

I = −N
∫
dd+1x

√
geγφ

(
R+ d(d+ 1)− 1

4
e2γφFµνF

µν

)
. (4.18)

Again the vanishing of the scalar kinetic term implies that we can set γ = 1. For d = 1,

note that we cannot reach an Einstein frame by rescaling the metric by conformal factors

as these factors cancel in the first term of the action. The AdS3 parent theory to SYK was

discussed [28] and the holographic dictionary was derived in detail in this work.

The holographic dictionary of the dilaton gravity theory follows immediately from the

standard holographic dictionary for AdS3. In the latter case, the bulk Einstein theory cap-

tures the dual stress energy tensor Tij . As usual, the expectation value of the latter follows

from expanding the asymptotically locally AdS3 metric near the conformal boundary as

ds2 =
dρ2

ρ2
+

1

ρ2

(
g(0)ij + ρ2(g(2)ij + ln ρh(2)ij + · · ·

)
dxidxj (4.19)

Here g(0)ij is the background metric for the dual theory and

〈Tij〉 =
c

24π

(
g(2)ij +

1

2
Rg(0)ij

)
(4.20)
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where R is the scalar curvature of g(0)ij and the central charge c is related to the normali-

sation of the bulk action as c = 24πN .

The Ward identities for the stress energy tensor are

〈T ii 〉 =
c

6
R ∇i〈Tij〉 = 0, (4.21)

where the covariant derivative is constructed from the metric g(0)ij .

On dimensional reduction, we decompose the stress energy tensor in Fourier modes as

Tij(τ, y) =
∑
n≥0

T (n)
ij (τ)einy (4.22)

and we denote T (0)
ττ ≡ H, T (0)

yy ≡ O and T (0)
τy ≡ J . Then (in Euclidean Signature) the

n = 0 component of the Ward identities gives

〈H〉+ 〈O〉 = A; ∇τ 〈H〉 = ∇τ 〈J 〉 = 0. (4.23)

If we express the background metric for the field theory as

ds2 = exp(2a(τ))dt2 + exp(2b(τ)) (dy +A(τ)dt)2 (4.24)

then the scalar curvature is

R = 2 exp(−2a(τ))
(
∂τ b(∂τa− ∂τ b)− ∂2

τ b
)
, (4.25)

and the reduced anomaly A = cR/6. (Since the off-diagonal term is locally pure gauge, one

would not expect A(t) to appear in the scalar curvature.) The inverse metric components

gττ(0) = exp(−2a(τ)) gτy(0) = − exp(−2a(τ))A(τ) (4.26)

gyy(0) = exp(−2b(τ)) + exp(−2a(τ))A(τ)2

gives the sources for the operators (H,J ,O) respectively.

Let us next consider the behaviour of a test scalar field ϕ in AdS3 dual to an operator

Oϕ. As usual if the bulk field has mass m2 then the corresponding conformal dimension ∆

is such that m2 = ∆(∆− 2) and the (Euclidean) two point function of the operator in the

conformal vacuum is

〈Oϕ(τ, y),Oϕ(0, 0)〉 =
cϕ

(τ2 + y2)∆
, (4.27)

where we assume that the correlator is at separated points and cϕ is the normalisation.

Now let us Fourier transform along the y direction (assuming that y is infinite and τ is

always finite). Thus, we write

Oϕ(τ, k) =

∫
dyeikyOϕ(τ, y) (4.28)

and the correlator in this mixed representation is (for k ≥ 0)

〈Oϕ(τ, k)Oϕ(0,−k)〉 ∼ |τ |1−2∆e−k|τ |, (4.29)

i.e. there is an exponential fall-off for non-zero momenta.
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This is precisely the same behaviour captured by the dynamics of the bulk scalar field.

The field equation in pure AdS3 is

ρ3∂ρ

(
∂ρϕ

ρ

)
+ ρ2(∂2

τ + ∂2
y)ϕ = m2ϕ. (4.30)

Fourier transforming along the y direction gives

ρ3∂ρ

(
∂ρϕ

ρ

)
+ ρ2∂2

τϕ = (m2 + k2ρ2)ϕ. (4.31)

The momentum along the y direction translates into a position dependent contribution

to the mass: this contribution vanishes near the conformal boundary ρ → 0 (UV of field

theory) but increases in the bulk interior and diverges as ρ→∞ (IR of field theory). This

concurs with the UV limit of the correlator being power law while at larger time separations

the fall-off is exponential.

Now let us take the length of the y direction to be 2π, so that the momentum is

quantised in integral units. The corresponding modes of the scalar operator are expressed as

Oϕ(t, y) =

∞∑
n≥0

O(n)
ϕ (τ)einy (4.32)

and only the n = 0 operator exhibits scaling behaviour in its two-point function:

〈O(0)
ϕ (τ)O(0)

ϕ (0)〉 ∼ |τ |1−2∆ (4.33)

From the bulk respective, the reduction over the circle (setting the KK gauge field to zero)

gives the following actions for the scalar field modes ϕ(n)(ρ, τ) dual to O(n):

I =
1

2

∫
d2x
√
geγφ

(
(∂ϕ(n))2 + (m2 + n2e−2γφ)(ϕ(n))2

)
. (4.34)

Note that even the zero mode is not minimally coupled, due to the coupling to the running

scalar φ.

As in AdS, such a field in NAdS2 is dual to an operator that exhibits scaling behaviour

but the relation between mass and scaling dimension is inherited from the upstairs picture

rather than following the usual AdS2 relation i.e. m2 = ∆(∆− 2) in NAdS2 as opposed to

m2 = ∆(∆− 1) in AdS2.

Now let us move from the test scalar example to the case of the energy momentum

tensor. Two point functions of the energy momentum tensor in a two-dimensional CFT

are more conventionally expressed in chiral and anti-chiral components. It is however

straightforward to write these (Euclidean) correlators in Cartesian coordinates as

〈Tττ (τ, y)Tττ (0)〉 = 〈Tyy(τ, y)Tyy(0)〉 =
c

(2π)2

(τ4 − 6τ2y2 + y4)

(τ2 + y2)4
(4.35)

〈Tτy(t, y)Tττ (0)〉 = 〈Tyy(τ, y)Tyy(0)〉 =
4c

(2π)2

τy(τ2 − y2)

(τ2 + y2)4

〈Tττ (τ, y)Tyy(0)〉 = 〈Tτy(τ, y)Tτy(0)〉 = − c

(2π)2

(τ4 − 6τ2y2 + y4)

(τ2 + y2)4
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where we have suppressed scheme dependent local terms. We can now Fourier transform

the correlation functions along the y direction to determine the correlation functions of the

Fourier modes of the operators. Using the standard integrals∫ ∞
−∞

dy

(τ2 + y2)4
=

5π

16
(4.36)∫ ∞

−∞

y2dy

(τ2 + y2)4
=

∫ ∞
−∞

y4dy

(τ2 + y2)4
=

π

16

we can then show that all of the two point functions between (H,O,J ) actually vanish,

up to local terms. As in the scalar operator example above, higher Fourier modes of the

upstairs operators have exponentially decaying correlators:

〈T (n)(t)T (−n)(0)〉 ∼ e−n|τ |

|τ |3 , (4.37)

and so on.

This result follows directly from the diffeomorphism Ward identities. In 2d the corre-

lators of the energy momentum tensor are calculating by integrating the Ward identities.

Reducing to one dimension, we noted in (4.23) that the diffeomorphism Ward identities

imply that the operators are independent of time and this in turn implies that the two

point functions are trivial.

One can understand the results above using the more standard expressions of 2d CFT

two-point functions in chiral coordinates. An operator of Op,q with scaling weights (p, q)

has a two-point function

〈Op,q(z, z̄)Op,q(0, 0)〉 =
co

z2pz̄2q
(4.38)

where z = τ + iy. Fourier transforming with respect to the y direction thus requires the

integrals ∫ ∞
−∞

dy

(τ + iy)2p(τ − iy)2q
e−iny (4.39)

with the relevant modes for the reduced theory being the n = 0 terms. In the latter case

the integral can be calculated to give

〈O(0)
p,q(t)O(0)

p,q(0)〉 =
π(2q + 2p− 2)!

22(p+q−1)(2p− 1)!(2q − 1)!

co
τ2p+2q−1

(4.40)

where for simplicity we restrict to (p, q) integral and as above we decompose the operator as

Op,q(z, z̄) =
∑
n

O(n)
p,q (τ)einy. (4.41)

The expression (4.40) vanishes if either p = 0 with q 6= 0 or q = 0 with p 6= 0. For marginal

(1, 1) operators

〈O(0)
1,1(t)O(0)

1,1(0)〉 =
πco
4τ3

(4.42)

However for the stress energy tensor expressed in the usual chiral coordinates the correlators

〈Tzz(z)Tzz(0)〉 =
cL
2z4

〈Tz̄z̄(z̄)Tz̄z̄(0)〉 =
cR
2z̄4

(4.43)
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reduced to the n = 0 modes give zero as they correspond to (2, 0) and (0, 2) operators.

Since the operators (H,J ,O) defined above can be expressed as linear combinations of

these operators, this explains why their correlators were also zero.

For general dimensions d > 1, the parameter σ controls the scaling behavior of the two

point functions of the energy momentum tensor and scalar operator. When the dual theory

is one dimensional these correlators are forced by the Ward identities to vanish. The pa-

rameter σ however still has physical relevance as it controls the thermodynamic properties.

4.2 Finite temperature behaviour

We now briefly review the reduction of black hole solutions of the 3d theory, see [28] for

more details. It is convenient to write the rotating BTZ black hole in Fefferman-Graham

coordinates as

ds2 =
dρ2

ρ2
−
(

1

ρ2
− 1

2
(r2
− + r2

+) +
1

4
(r2

+ − r2
−)2ρ2

)
dt2 (4.44)

+

(
1

ρ2
+

1

2
(r2

+ + r2
−) +

1

4
(r2

+ − r2
−)2ρ2

)
dy2 + 2r+r−dtdy

Here we work in Lorentzian signature and correspondingly use the coordinate t for the

Lorentzian time.

Upon dimensional reduction, the two-dimensional fields are:

ds2 = −(r2 − r2
+)(r2 − r2

−)

r2
dt2 +

r2dr2

(r2 − r2
+)(r2 − r2

−)
(4.45)

At =
r+r−
r2

eφ = r

Evaluating the one-point function of the dual 2d energy momentum tensor gives

〈Ttt〉 = 〈Tyy〉 = N (r2
+ + r2

−) (4.46)

〈Tty〉 = N (r+r−).

Dimensionally reducing, only the zero mode components of the operators (w.r.t. the y

circle) have non-vanishing expectation values, i.e.

〈H〉 = 〈O〉 = N (r2
+ + r2

−) (4.47)

〈J 〉 = N (r+r−).

These satisfy the required Lorentzian Ward identities.

Redefining the radial coordinate as

r2 =
1

ρ2
+

1

2
(r2

+ + r2
−) +

1

4
(r2

+ − r2
−)2ρ2 (4.48)

the metric can be written in the more familiar form

ds2 = −(r2 − r2
+ − r2

−)dt2 + r2dy2 + 2r+r−dtdy +
r2dr2

(r2 − r2
+)(r2 − r2

−)
(4.49)
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which makes manifest that the horizons are located at r = r±. The temperature is given by

TH =
r2

+ − r2
−

2πr+
. (4.50)

and the entropy is

S = 4πN r+. (4.51)

In the extremal limit r+ → r− and TH → 0 with S finite. Thus the operators acquire ex-

pectation values in the thermal state and the thermodynamic properties agree with those

of SYK.

5 Holographic realization of generalized conformal structure with mul-

tiple scalar fields

In this section we will consider the holographic realization of generalized conformal struc-

ture for flows driven by multiple scalar operators. The constructions we present in this

section are generally applicable to holographic realizations of generalized conformal struc-

ture involving multiple scalar operators using Einstein gravity. For brevity we analyze the

case of two bulk dimensions but analogous constructions could be made in all dimensions.

In the previous sections of this paper, we have argued that SYK is one example of

a theory with generalized conformal structure in which the flow driven by multiple scalar

operators. Thus one motivation for exploring holographic realizations of generalized con-

formal structure in which multiple scalar operators are involved is SYK. As we reviewed in

the introduction, there are however a number of arguments why SYK itself would not be

expected to be describable via Einstein gravity. Nonetheless the construction we discuss

here could be relevant to bootstrapping a bulk description of SYK; we return to this point

in the conclusions.

Consider a 2d bulk gravity action with scalar fields φA:

I = −N
∫
d2x
√
g e

∑
A γAφA

R+
∑
B,C

βBC(∂φB)(∂φC) + C

 . (5.1)

The scalar field equations of motion are

γA

R+
∑
B,C

βBC(∂φB)(∂φC) + C

 =
∑
C

βAC

(
∇2φC + ∂µφC

∑
B

γB(∂µφB)

)
. (5.2)

The Einstein equations are

−Rµν −
∑
A,B

βAB∂µφA∂νφB +
1

2
gµν

R+
∑
A,B

βAB(∂φA)(∂φB) + C

+
∑
A

γA∇µ∂νφA

+
∑
A,B

γAγB∂µφA∂νφB − gµν

∑
A,B

γAγB(∂ρφA)(∂ρφB) +
∑
A

γA∇2φA

 = 0. (5.3)
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For βAB = 0 the equations admit a solution

ds2 =
dρ2

ρ2
+
dτ2

ρ2
eφA = ραA (5.4)

provided that
∑

A αA = −1. (We can trivially rescale the scalar fields so that γA = 1.) In

this case we could simply define a single scalar φ ≡ ∑A αAφA, if we restrict to only the

gravity/dilaton sector, but this would not be possible if the full theory has additional fields

(such as gauge fields) that couple to the individual scalars differently.

Solutions of the form (5.4) can be found for general values of αA provided that βAB
and C are chosen appropriately. We can always rescale the scalars such that γA = 1 and

then the scalar field equations are satisfied providedC − 2 +
∑
B,C

βBCαBαC

 = 2
∑
C

βACαC

(∑
B

αB − 1

)
. (5.5)

The Einstein equations then imposes

C +
∑
B,C

βBCαBαC = 2

(∑
A

αA

)2

(5.6)

and

C =
∑
B,C

βBCαBαC − 2
∑
α

αA (5.7)

Note that these equations are not linearly independent, as they are related by the Bianchi

identity. Combining the latter two equations gives

C =
∑
A

αA

(∑
B

αB − 1

)
. (5.8)

All equations are then satisfied if∑
B

βABαB =
∑
C

αC + 1 (5.9)

which can be solved by the diagonal matrix:

βAB =
1

αA

(∑
C

αC + 1

)
δAB. (5.10)

We could have chosen βAB to be a diagonal matrix from the start, but again if the full

theory has additional fields such as gauge fields with fixed couplings to the scalars it is

then not always possible to diagonalize the scalar kinetic terms; see discussions in [41].

To understand how the dual field theory data is encoded in the bulk asymptotics, we

now consider asymptotically locally AdS2 solutions in radial gauge i.e.

ds2 =
1

ρ2

(
dρ2 + gττ (τ, ρ)dτ2

)
(5.11)

φA = αA log(ρ) + κA(τ, ρ)
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where

gττ (τ, ρ) = g(0)ττ (τ) + · · ·+ g(2σ)ρ
2σ + · · · (5.12)

κA(τ, ρ) = κA(τ) + · · ·+ κ(2σ)Aρ
2σ + · · ·

and the powers arising in the expansion are determined by solving the field equations

near the conformal boundary. In particular, in analogy to the single scalar case discussed

previously, the undetermined (normalizable) terms in the expansion arise at powers

2σ =

(
1−

∑
A

αA

)
(5.13)

which implies that the asymptotic expansion makes sense only if
∑

A αA < 1 so that σ > 0.

Here g(0)ττ is the source for the Hamiltonian H and κA(x) are the couplings for the

operators OφA in the dual theory. Following the same steps as in [25] one can show that

the operator expectation values can be expressed as terms in the asymptotic expansion:

〈H〉 = 2σN e
∑
A κAg(2σ)ττ + · · · (5.14)

〈OφA〉 = 4σN e
∑
A κA

κ(2σ)A

αA
+ · · ·

where the ellipses denote additional contributions when σ is an integer.

The operators manifestly satisfy the following dilatation and diffeomorphism Ward

identities:

〈H〉+
∑
A

αA〈OφA〉 = A, (5.15)

∂τ 〈H〉 −
∑
A

∂τκA〈OφA〉 = 0.

Here again anomalous terms can arise when σ is an integer.

As for the non-conformal Dp-brane discussion, we can rescale the dual operator: let

ΦA(τ, ρ) = exp(χAφA(τ, ρ)) (5.16)

so that the asymptotic expansion of ΦA is

ΦA(τ, ρ) = ραAχA (λA(τ) + · · · ) λA(τ) = eχAκA(τ). (5.17)

In terms of these rescaled operators the Ward identities become

〈H〉+
∑
A

αAχAλA〈OΦA〉 = A, (5.18)

∂τ 〈H〉 −
∑
A

∂τλA〈OΦA〉 = 0.

This identity can be interpreted as generalized conformal structure where

αAχA = (1−∆A) (5.19)

where ∆A is the dimension of the operator OΦA .
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In [26] it was shown that holographic non-conformal theories can be described in terms

of AdS gravity theories in (2σ + 1) dimensions. The arguments of [26] can be extended

to the case discussed above: the action (5.1) can be obtained as the (formal) reduction of

AdS gravity in (2σ + 1) dimensions

I ∝ −
∫
d2σ+1x

√
G (R+ 2σ(2σ + 1)) (5.20)

using the reduction ansatz

ds2 = gµνdx
µdxν +

∑
A

e2ΦAdy2
A. (5.21)

Here the dimension of each direction yA is −αA, i.e. non-integral in general, so the total

dimension of the compactification torus is −∑A αA.

5.1 Black hole solutions

The equations of motion following from the action (5.1) admit the following (neutral) black

hole solutions

ds2 =
dr2

r2
(
1− m

r2σ

) − r2
(

1− m

r2σ

)
dt2 (5.22)

eφA =
1

rαA
.

These solutions follow immediately from the standard AdS black hole solutions in (2σ+ 1)

dimensions, i.e. black hole solutions to the equations of motion following from (5.20).

The temperature of the black hole is

TH =
σm

1
2σ

2π
. (5.23)

The operator expectation values are

〈H〉 = N (2σ − 1)m 〈OφA〉 = −Nm (5.24)

which indeed satisfy the (Lorentzian) Ward identity 〈H〉 −∑A αA〈OφA〉 ∼ 0 using (5.13).

The associated black hole entropy follows from the first law of thermodynamics as

S = 4πNm1− 1
2σ . (5.25)

Thus

IE = −2πNm1− 1
2σ (5.26)

This expression can be rewritten in terms of the temperature as

IE ∝ T 2σ−1
H (5.27)

i.e. as we stated earlier the parameter σ controls the thermodynamic properties of the

theory: the thermodynamics is that of a conformal field theory in 2σ dimensions.

Thus, if one requires that the partition function scale linearly with the temperature, the

parameter σ must be equal to one. However, this case corresponds to βAB = 0, i.e. vanishing

kinetic terms for the scalars, for which the effect of all of the scalars on the background

can be captured by a single scalar φ =
∑

A φA. We will return to this point below.
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5.2 Example: AdS5 reduced on T 3

To illustrate the general discussions, let us consider the case of asymptotically AdS5 solu-

tions reduced on T 3. The five-dimensional action is

I = −N5

∫
d4x
√
G (R(G) + 20) (5.28)

where N5 ∝ N2 for AdS5 solutions dual to N = 4 SYM, and variants thereof. The

reduction ansatz is

ds2 = ds2
2 + e2φ1dy2

1 + e2φ2dy2
2 + e2φ3dy2

3 (5.29)

(where for simplicity we set the KK gauge fields to zero). The equations of motion for the

reduced 2d theory then follow from the action

I = −N
∫
d2x
√
geφ1+φ2+φ3

(
R+ 2(∂φ1)2 + 2(∂φ2)2 + 2(∂φ3)2 + 12

)
(5.30)

where N = N5Ly1Ly2Ly3 with Lyi the length of the yi circles. The planar AdS5 black hole

ds2 =
dr2

r2
(
1− m

r4

) − r2
(

1− m

r4

)
dt2 + r2(dy2

1 + dy2
2 + dy2

3), (5.31)

then reduces to the asymptotically AdS2/scalar solution given in the previous section, with

α1 = α2 = α3 = −1. The thermodynamics is inherited from that of the 4d CFT, i.e. the

onshell action scales as T 3
H .

The action (5.30) admits a consistent truncation: one can set all the scalars to be equal

φ1 = φ2 = φ3 = φ (5.32)

giving

I = −N
∫
d2x
√
ge3φ

(
R+ 6(∂φ)2 + 12

)
. (5.33)

This truncation corresponds to solutions which respect the homogeneity of the compacti-

fication torus.

5.3 SYK and random averaging

The geometries discussed in the previous section realise generalized conformal structure

with specific values for the couplings of the scalar operators. A key feature of the SYK

model is of course that these couplings are drawn randomly from a Gaussian distribution

and in this section we discuss the holographic implementation of this averaging.

Formally we could implement the averaging as follows. From (5.17) the scalar fields

behave asymptotically as

ΦA(τ, ρ) = ρ1−∆A (λA(τ) + · · · ) (5.34)

and the non-normalizable modes λA are the sources for the dual operators. Thus a bulk

theory with boundary conditions λA corresponds to a dual theory with fixed values for the

operators sources. One could then implement the Gaussian averaging at the path integral
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level, by Gaussian averaging over bulk configurations with given boundary conditions. The

problem with this approach is that it is far from clear what the IR behaviour of a theory

with any given value of the couplings is, i.e. the interior behaviours of the individual bulk

duals are not known.

If we implement the Gaussian averaging directly in the SYK theory at large N , resulting

in (3.23), then the effective dilatation Ward identity can be expressed in terms of a single

operator or, equivalently, in terms of equal sources for a large number of operators. For

instance, in the q = 4 case the dilatation Ward identity is

H =
1

4
O

∫
dtO(t) ≡

∑
A

∫
dtOA(t) =

∫
dt1dt2

∑
A

ÕA(t1)ÕA(t2) (5.35)

where the operators ÕA denote collectively Jψiψjψkψl.
To implement SYK holographically, we can therefore use two-dimensional gravity cou-

pled to a single scalar or equivalently to a collection of scalars (with equal sources). The

Ward identities are not however sufficient to infer the (leading) form for the bulk action. In

higher dimensions, we could reconstruct the gravity/scalar interaction terms from knowl-

edge of the two point functions but as we discussed earlier the correlation functions are

trivial in this case. Thus we need other input to determine the gravity/scalar interactions

— this comes from the solution of SYK, as the thermodynamic properties are consistent

with underlying two-dimensional conformal invariance i.e. σ = 1.

This implies that both the Ward identities and the thermodynamics are consistent

with a holographic action

I = −N
∫
d2x
√
g e

∑
A φA (R+ 2) (5.36)

with the following solution respecting the generalized conformal structure:

ds2 =
1

ρ2

(
dρ2 − dt2

)
eφA = ρ−

1
P (5.37)

where P is the number of scalar fields/dual operators.

For the purposes of discussing thermodynamics, and computing the Ward identities

controlling the energy, we can effectively replace the multiple scalar fields by a single scalar

field, as was done in previous literature. If however we include fields dual to other SYK

operators, as well as those appearing in the Ward identities, as we do in section 7, then we

will need to take into account that they may couple differently to each of the φA, and thus

we cannot use just a single scalar field.

Note that the very need to include a number of bulk scalars that grows polynomially

with N (to reproduce the required Ward identities) emphasises the point that SYK itself

cannot consistently be described by Einstein gravity. The number of bulk fields depends

on the Newton constant and therefore one would not expect one can simply truncate the

theory at two derivative gravity. As we discuss in the conclusions the action presented

in this section would however be part of the complete action, bootstrapped from SYK

correlation functions.
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6 Reductions of CFTs to quantum mechanics with generalized conformal

structure

6.1 Toy example of CFT2 reduction

We begin by considering the toy example of a (classical) CFT2 reduced on a circle, to

illustrate the emergence of generalized conformal structure upon dimensional reduction.

Consider a doublet of fermions ψα with Lagrangian

I = − 1

2π

∫
d2x
√
−h
(
ψ̄αρiDiψ

α + λψ̄1ψ̄2ψ1ψ2
)

(6.1)

Here we work in Lorentzian signature and ρi represent the two-dimensional Dirac matrices,

which satisfy

{ρi, ρj} = 2ηij (6.2)

while λ is dimensionless. This is of course closely related to the well-known Gross-Neveu

model [42] (N Dirac fermions with quartic interactions). The classical stress energy tensor

on a flat background can be expressed onshell as

Tij =
1

4

(
ψ̄αρi∂jψ

α + ψ̄αρj∂iψ
α + 2λψ̄1ψ̄2ψ1ψ2gij

)
, (6.3)

which is indeed traceless. At the quantum level, it is well-known that the theory is not

conformal [42] but the classical theory can still be used as a useful warm-up example to

illustrate how generalized conformal structure arises from the dimensional reduction.

A convenient representation for the Dirac matrices is

ρ0 =

(
0 1

−1 0

)
ρ1 =

(
0 1

1 0

)
(6.4)

with the components of the Majorana fermions being

ψα =

(
ψα−
ψα+

)
(6.5)

The Lagrangian on a flat background can be expressed in terms of these components as

I = − 1

2π

∫
d2x

(
ψα+∂+ψ

α
+ + ψα−∂−ψ

α
− + λψ1

+ψ
2
+ψ

1
−ψ

2
−
)
, (6.6)

where ∂± = (∂t ± ∂y).
Now let us consider the dimensional reduction of this model. We will need to distin-

guish between Neveu-Schwarz and Ramond sectors: in the former case the fermion modes

are integral while in the latter they are half integral. Let us write the harmonics of the

fermions on the circle as

ψα± =
∑
k

ψ
(k)α
± e

iky
L , (6.7)

where the length of the y circle is 2πL, and implicitly we impose a reality relation on ψα±.
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For integer moded expansions, the lowest modes are k = 0 and retaining just these

modes results in a reduced action:

I = −L
∫
dt
(
ψ

(0)α
+ ∂tψ

(0)α
+ + ψ

(0)α
− ∂tψ

(0)α
− + λψ

(0)1
+ ψ

(0)2
+ ψ

(0)1
− ψ

(0)2
−

)
(6.8)

Rescaling the fermions as

χα± =
√
Lψα± (6.9)

then gives

I = −
∫
dt
(
χα+∂tχ

α
+ + χα−∂tχ

α
− + λ̃χ1

+χ
2
+χ

1
−χ

2
−

)
(6.10)

where χ is now dimensionless and λ̃ has mass dimension one. Reducing the stress energy

tensor we then obtain

O =
1

2

(
λ̃χ1

+χ
2
+χ

1
−χ

2
−

)
(6.11)

J =
1

4

(
χα+∂tχ

α
+ − χα−∂tχα−

)
H = −1

2

(
χα+∂tχ

α
+ + χα−∂tχ

α
− + λ̃χ1

+χ
2
+χ

1
−χ

2
−

)
Using the equations of motion e.g.

∂tχ
1
+ +

1

2
λ̃χ2

+χ
1
−χ

2
− = 0 (6.12)

the latter expression can be simplified onshell to give

H =
1

2

(
λ̃χ1

+χ
2
+χ

1
−χ

2
−

)
(6.13)

i.e. the Hamiltonian would be trivially zero if the coupling vanished.

Thus the reduced theory automatically inherits from the trace and dilatation Ward

identities of the classical two-dimensional CFT the relations

H = O ∂tH = ∂tJ = 0. (6.14)

The reduced action (6.10) is clearly closely related to that of SYK — it is the SYK model

with only four species of fermions and a specified quartic coupling. Just as for SYK,

the theory could be solved perturbatively for small λ̃ by perturbing around free fields

(regulating the dimension) and perturbatively for large λ̃ by rescaling the fermions once

again so that the kinetic term is treated perturbatively i.e. the action is

I = −
∫
dt

(
1

λ̃
1
2

χ̃α+∂tχ̃
α
+ +

1

λ̃
1
2

χ̃α−∂tχ̃
α
− + χ̃1

+χ̃
2
+χ̃

1
−χ̃

2
−

)
(6.15)

and the path integral will be dominated by the interaction term in this limit.

However, it only makes sense to neglect the Kaluza-Klein modes if one probes the be-

haviour at energies small compared to 1/L or, equivalently, probes distances which are large

compared to 1/λ̃. Therefore, the KK modes are negligible for the dynamics on scales such

that tλ̃� 1, in which limit the path integral is indeed dominated by the interaction term.
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6.2 Reductions of higher-dimensional CFTs

In this section we discuss the holographic dual of the AdS5 reduced on a T 3, showing the

emergence of generalized conformal structure in the one-dimensional reduced theory. In

this case the parent theory is conformal at the quantum level, and therefore the reduced

theory will inherit generalized conformal structure at the quantum level. The Euclidean

N = 4 SYM action is

I =

∫
d4x
√
g

(
1

g2
YM

Tr(F 2) + Tr(DXaDXa)− g2
YMTr[Xa, Xb]2 + · · ·

)
(6.16)

where a = 1, · · · 6. Here the ellipses denote the fermionic terms and we implicitly assume

that the metric is flat, by not including curvature couplings. We now reduce on a torus of

volume L3 using the following ansatz for the metric

ds2 = ds2
1 + e2Φ1dx2

1 + e2Φ2dx2
2 + e2Φ3dx2

3 ≡ ds2
1 +

3∑
i=1

e2Φidxi · dxi. (6.17)

Defining Xm = {Xa, X i} where

Xi =
Ai√

2gYM
(6.18)

the reduced action can be written as

I = L3

∫
dτ
√
g1e

∑
i Φi
(

Tr(DτX
aDτXa) + Tr(DτX

iDτXi)e−2Φi (6.19)

−g2
YM

(
Tr[Xa, Xb]2 + e−2ΦiTr[Xa, X i]2 + e−2Φi−2ΦjTr[Xi, Xj ]2

)
+ · · ·

)
,

where implicitly repeated indices (a, b, i, j) are summed over. The equations of motion are

DτD
τXa + 2g2

YMX
b[Xa, Xb] + g2

YMe
−2ΦiXi[Xa, X i] = 0; (6.20)

DτD
τXi + g2

YMX
a[Xi, Xa] + 2g2

YMe
−2ΦjXj [Xi, Xj ] = 0.

Writing the action as

I = L3

∫
dτ
√
g1L (6.21)

the operators dual to the couplings Φi are defined as

OΦi = L3e2Φi−
∑
j Φj δL

δΦi
(6.22)

= L3e2Φi

−Tr(XaDτD
τXa) + Tr(XiDτD

τXi)e−2Φi −
∑
j 6=i

Tr(XjDτD
τXj)e−2Φj

−g2
YM

Tr[Xa, Xb]2 − e−2ΦiTr[Xa, X i]2 +
∑
j 6=i

e−2ΦjTr[Xa, Xj ]2

−
∑
j 6=i

e−2Φi−2ΦjTr[Xi, Xj ]2 +
∑
j,k 6=i

e−2Φj−2ΦkTr[Xj , Xk]2

 ,
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where the summations over a are implicit but the summations over i are shown explic-

itly. Here we have included the boundary contributions to the action to make the onshell

behaviour manifest.

The Hamiltonian is

H = 2L3e−
∑
j Φj 1√

g1

δ(
√
g1L)

δgττ
(6.23)

= L3gττ

(
Tr(XaDτD

τXa) + Tr(XiDτD
τXi)e−2Φi +

−g2
YM

(
Tr[Xa, Xb]2 + e−2ΦiTr[Xa, X i]2 + e−2Φi−2ΦjTr[Xi, Xj ]2

)
+ · · ·

)
.

Then the Ward identity

gττH+
∑
i

e−2ΦiOΦi = 0 (6.24)

is satisfied onshell. This Ward identity (6.24) is the expected reduction of the trace relation

for the 4d stress energy tensor, and is the field theory manifestation of the identity found

in the holographic model.

When the couplings Φi are constant, they may be set to one (or, equivalently, absorbed

into the definitions of Xi) so that the action can be written as

I = L3

∫
dτ
√
g1

(
Tr(DτX

mDτXm)− g2
YMTr[Xm, Xn]2 + · · ·

)
. (6.25)

This is equivalent to the SYM action in one dimension, as it must be. However, D3-branes

reduced on a T 3 and D0-branes differ in terms of what quantities are held fixed. For the

former, we vary the ’t Hooft coupling g2
YMN , while holding N and L fixed (in units of α′),

and the KK modes on T 3 are negligible provided we are only interested in energy scales

E � 1/L. At finite temperature T � 1/L, the scalars Xm ∼ T and thus the entropy

scales as S ∼ c(g2
YMN,N)L3T 3 where the function c depends on the ’t Hooft coupling and

the rank N .

On the other hand, for the matrix model describing D0-branes in the decoupling limit,

it is natural to write the action in terms of rescaled scalars as

I =

∫
dτ
√
g1

(
Tr(DτY

mDτY m)− g2
0Tr[Y m, Y n]2 + · · ·

)
(6.26)

where the coupling g2
0 has (mass) dimension three and is related to the string coupling gs as

g2
0 =

gs

4π2(α′)
3
2

. (6.27)

The appropriate limit is then gs → 0, α′ → 0, N →∞ with g2
0N fixed. Since this coupling

is dimensionful, we introduce an effective dimensionless coupling

λ(E) =
g2

0N

E3
(6.28)

at a given energy scale E. When this effective ’t Hooft coupling is small, perturbation

theory is applicable, while in the opposite limit λ(E) � 1 the supergravity description in

terms of decoupled D0-branes holds. Here the entropy scales as S ∼ c(λ(T ), N) where

again the function c depends on the dimensionless coupling and the rank N . In this case,

the scaling of the entropy with temperature is different at weak and strong coupling.
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7 Chaos in non-conformal theories

7.1 Two-point functions

In this section we consider the holographic description of a scalar operator that is not

driving the dimensionally driven flow. We first note that the couplings of bulk scalars to

the background metric and running scalars are ambiguous without further input. We then

show that these couplings are determined uniquely by the requirement that they respect the

generalized conformal structure. Such a theory can automatically be obtained by general-

ized toroidal reduction of a parent higher-dimensional AdS theory and the mass/dimension

relation between bulk scalar/dual operator will be inherited from the parent AdS theory.

In theories with a top-down realization such as non-conformal brane theories, the

generalized conformal structure should be respected by all bulk excitations. It would be

interesting to verify that bulk scalar excitations in non-conformal brane theories indeed

do have couplings to the running scalar that are consistent with the generalized conformal

structure and hence that there is a parent AdS theory. The cubic couplings in the bulk

dual for SYK were previously discussed in [36].

A natural proposal for describing a scalar operator with a two point function scaling

as τ−2∆ϕ would be a bulk action

Iϕ = N
∫
d2x
√
g
(
(∂ϕ)2 +m2

ϕϕ
2 + · · ·

)
(7.1)

coupling to the metric in dual frame, with N an appropriate normalization factor. Since

the metric in the dual frame is asymptotically AdS2, then, by the usual AdS2/CFT1 rules,

the choice of m2
ϕ = ∆ϕ(∆ϕ− 1) guarantees that the two point function in the ground state

exhibits scaling behaviour.

However, this is not the only option to obtain a two point function with scaling be-

haviour and, as we will show below, the lack of coupling to the running scalar in (7.1)

violates the generalized conformal structure.

The discussion on AdS3 reduction in section 4 showed that an operator Oϕ which has

a two point function that scales as τ1−2∆′ϕ can be described by a bulk scalar such that

Iϕ = N
∫
d2x
√
g e

∑
A φA

(
(∂ϕ)2 +m2

ϕϕ
2 + · · ·

)
(7.2)

where now m2
ϕ = ∆′ϕ(∆′ϕ − 2) i.e. determined by the AdS3 mass/dimension relation.

More generally, let us consider the following action

Iϕ = N ′
∫
d2x
√
g e

∑
A δAφA

(
(∂ϕ)2 +m2

ϕϕ
2 + · · ·

)
, (7.3)

where the coefficients δA are a priori arbitrary. Then the equation of motion in the (Eu-

clidean) AdS2/dilaton geometry is

ρ2∂2
ρϕ+

∑
A

δAαAρ∂ρϕ+ ρ2∂2
τϕ = m2

ϕϕ. (7.4)
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This equation is identical to the equation of motion for a scalar in AdS(D+1) where

D = 1−
∑
A

αAδA. (7.5)

The mass/dimension relation in D + 1 is the standard one i.e. m2
ϕ = ∆′(∆′ −D) and thus

the solutions behave asymptotically as

ϕ(τ, ρ) = ρD−∆′ (ϕD−∆′(τ) + · · · ) + ρ∆′ (ϕ∆′(τ) + · · · ) (7.6)

Following the standard approach to holographic renormalization [43], one can thus show

that the required counterterms for the scalar action are

Ict = N ′
∫
dx
√
h e

∑
A δAφA

(
D −∆′

2
ϕ2 + · · ·

)
(7.7)

and that the scalar one point function can be written as

〈Oϕ〉 = −2N ′(2∆′ −D)ϕ∆′ + · · · (7.8)

where the ellipses in the latter denote terms analytic in the source ϕD−∆′ .

Solving the (Euclidean) field equation in frequency space gives the following solution

that is regular in the interior

ϕ(ω, ρ) = ϕD−∆′(ω)ρ
D
2 K∆′− 1

2
(ωρ) (7.9)

where Kα(z) is the modified Bessel function of order α. From the asymptotic expansion of

the Bessel function as ρ→ 0, we can then read off the behaviour of the two point function

in frequency space:

〈Oϕ(ω)Oϕ(−ω)〉 ∝ ω2∆′−D + · · · , (7.10)

where the ellipses denote contact terms that arise when 2∆′ −D is an even integer.

The correlator in position space is then obtained by an inverse Fourier transform i.e.

〈Oϕ(τ)Oϕ(0)〉 ∝
∫
dωeiωτω2∆′−D ∼ τD−1−2∆′ = τ−

∑
A αAδA−2∆′ (7.11)

which agrees with the particular result given earlier for AdS3 reductions.

Note that for high mass the two point function behaves as

〈Oϕ(τ)Oϕ(0)〉 ∝ τ−2mϕ (7.12)

i.e. the couplings to the background running scalars give negligible contributions to the

scaling. For high mass, the correlator is also well approximated by a geodesic in the

asymptotically AdS2 metric:

〈Oϕ(τ)Oϕ(0)〉 ∝ exp(−L(τ)) (7.13)

where L(τ) is the renormalized length of a geodesic extending between the operators at the

conformal boundary. The different possibilities for coupling to background scalars would

only differ by subleading terms in the large mass limit.
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h, δφA

ϕϕ

Figure 2. Exchange diagrams for three point functions.

Following the discussions in section 3, we should note that the operator dimension can-

not be read off immediately from the scaling in τ , as the normalization of the supergravity

action is itself dimensionful i.e. the coefficients N and N ′ appearing in (7.1), (7.2) and (7.3)

are dimensionful. In a holographic theory these normalisation constants take the form

N = N2aL2b (7.14)

where N � 1 is related to the number of degrees of freedom in the dual theory, L is a length

scale (related to the dimensionful coupling of the dual theory) and (a, b) are constants.

(Loop and α′ corrections to the supergravity action give contributions at lower orders in N

and the dimensionful ’t Hooft coupling respectively.) One can however always redefine the

dual operator as O′ϕ, absorbing a factor of Lb, so that the two point function behaves as

〈O′ϕ(τ)O′ϕ(0)〉 ∼ N2aτ−2mϕ . (7.15)

Note that the higher derivative corrections to supergravity will contribute to this two point

function as a power series in L/τ , reflecting the underlying generalized conformal structure.

We now argue that generalized conformal structure uniquely fixes the couplings δA
in (7.3). This argument applies not just to the two-dimensional models under consideration

here but more generally to any holographic model with generalized conformal structure and

we will thus phrase our arguments for general dimensions.

We noted earlier that the trace Ward identity underlying the generalized conformal

structure

〈T ii 〉+
∑
A

αA〈OφA〉 ∼ 0, (7.16)

where T ii is the trace of the stress energy tensor, implies an infinite tower of relations

between correlation functions. In particular, it implies a relation between three point

functions:

〈T ii OϕOϕ〉+
∑
A

αA〈OφAOϕOϕ〉 ∼ 0, (7.17)
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ϕ

ϕ
ϕ

ϕ

Figure 3. Exchange diagrams for four point functions.

for a scalar operator Oϕ dual to a bulk scalar field ϕ. However, these three point functions

are computed holographically using the three point couplings in

Iϕ = N ′
∫
dd+1x

√
g e

∑
A δAφA

(
(∂ϕ)2 +m2

ϕϕ
2 + · · ·

)
, (7.18)

between graviton/scalar and running scalars/scalar respectively.

In particular, one perturbs the metric and the running scalars around their background

values ḡ and φ̄A as

g = ḡ + h φA = φ̄A + δφA (7.19)

to obtain the cubic interactions between (h, ϕ, ϕ) and (δφA, ϕ, ϕ). One then calculates the

three point functions from the appropriate Witten diagrams shown in figure 2, using the

bulk to boundary propagators for (h, δφA, ϕ).

The relation (7.17) is reproduced only for the specific choice of the couplings δA = 1.

In this case, the relation (7.17) is automatically reproduced, as the action (7.18) can be

obtained from the toroidal reduction of an action in (2σ + 1) dimensions

Iϕ ∼
∫
d2σ+1x

√
G
(
(∂ϕ)2 +m2

ϕϕ
2 + · · ·

)
, (7.20)

in which only the zero modes are retained. In the parent AdS theory, 〈T aa OϕOϕ〉 ∼ 0 and

the reduction of this identity on the torus gives the required relation (7.17).

In d = 1 the three point functions in (7.17) vanish (up to contact terms) but the three

point couplings in (7.3) are needed to compute four point (and higher point) functions.

Contributions to four point functions from Witten diagrams of the type shown in figure 3

again respect the generalized conformal structure only for the specific choice of δA = 1.

7.2 Chaos and four-point functions in conformal theories

Let us begin by reviewing the relation of chaos to four-point functions in conformal field

theories dual to AdS gravity, following [17]. Let V and W be generic operators in the
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dual field theory, such that neither acquire thermal expectation values. Now consider the

following correlator

F (t) = Tr (yV (0)yW (t)yV (0)yW (t)) (7.21)

where y moves an operator a quarter of the way around the thermal circle i.e.

y4 =
1

Z
e−βH . (7.22)

We define the disconnected correlator as

FD(t) = Tr
(
y2V (0)y2V (0)

)
Tr
(
y2W (t)y2W (t)

)
, (7.23)

and the (dimensionless) function f(t) as

f(t) =
F (t)

FD(t)
. (7.24)

The underlying conformal symmetry implies that the function f(t) is a function of the

dimensionless ratio t/β where β = 1/TH .

After the dissipation time tD ∼ β but well before the scrambling time of the black

hole, the out of time correlator F (t) is approximated by the factorized value FD(t). For

large times (t� β), CFTs holographically described by Einstein gravity give

f(t) = 1− ε exp

(
2πt

β

)
+ · · · (7.25)

where ε is a small positive parameter proportional to the (dimensionless) Newton constant

Gd+1 in AdSd+1. gravity The exponential growth of the second term follows from the fact

that the connected contributions to the correlator are dominated by high energy scattering

near the horizon; the centre of mass energy for such processes grows exponentially. This

term determines the Lyapunov exponent of the chaotic behaviour.

One can understand the prefactor of the second term in (7.25) from the supergravity

action:

I = − 1

16πGd+1

∫
dd+1x

√
g (R+ d(d+ 1) + · · · ) (7.26)

The (connected) correlators computed from supergravity all have normalizations propor-

tional to 1/Gd+1. For example, for AdS5 for which 1/G5 ∼ N2 all connected correlation

functions scale as N2. Thus for any four point function the connected contributions scale as

1/Gd+1 while the disconnected contributions scale as the square of two point functions, i.e.

as 1/G2
d+1. The second term in (7.25) follows from the ratio of a connected to disconnected

contribution and therefore scales as Gd+1.

Note that Gd+1 does not scale as 1/N2 in all dimensions (cf the claims in [17]). G7

scales as 1/N3; G4 scales as 1/N3/2 while G3 scales as 1/N . The latter scaling is in

agreement with the scaling of the connected contribution in the SYK model.
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7.3 Chaos and four point functions in non-conformal theories

In this section we consider chaotic behaviour in a holographic theory with generalized

conformal structure. Diffusion and chaos in NAdS2 and related backgrounds has previously

been discussed in [44–47] but here we emphasise the role of the underlying symmetry.

We consider first the (Euclidean) action

I = −NaLb
∫
dd+1x

√
geγφ

(
R+ β(∂φ)2 + C

)
(7.27)

+Na

∫
dd+1x

√
geγφ

(
(∂ϕV )2 +m2

V ϕ
2
V + (∂ϕW )2 +m2

Wϕ
2
W + · · ·

)
.

As in (4.1) the metric and dilaton φ generate the non-conformal background while the

scalar fields ϕV and ϕW are dual to operators V and W respectively. The ellipses include

interaction terms for the scalar fields. In this section we work in general dimensions, but

for simplicity consider a single scalar driving the non-conformal flow. The couplings of ϕV
and ϕW to this background scalar respect generalized conformal structure, as discussed in

section 7.1.

The dilaton gravity part of the action is normalized with a dimensionful prefactor Lb

such that the scaling dimension of the operator dual to the graviton is d, as expected for

a d-dimensional quantum field theory. For the other scalars, the dimensionful prefactor is

absorbed into the definition of the scalar and the dual operator, as in (7.15). The N scaling

is the same for all supergravity terms; terms arising from higher derivative corrections are

subleading in N .

The onset of chaos in a black hole background can then again be explored using the

normalised four point function (7.24). Compared to the conformal case, there are now

three dimensionful scales in the problem (L, t, β) and thus the Lyapunov exponent could

in principle depend on all three. (The effective Newton constant depends explicitly on L.)

However, this action can always be expressed in terms of an action in (2σ+ 1) dimensions,

using the uplift (4.15):

I = −cNa

∫
d2σ+1x

√
G
(
R(G) + 2σ(2σ + 1) (7.28)

−(∂ψV )2 −m2
V ψ

2
V − (∂ψW )2 −m2

Wψ
2
W + · · ·

)
.

Here c is a numerical constant; Lb is the volume of the (2σ − d)-dimensional torus and

(ψV , ψW ) are the uplifts of the scalar fields. The latter are rescaled by appropriate factors

of L relative to the lower-dimensional fields.

In the uplifted theory the normalised four point function behaves as (7.25), with ε ∼
N−a. The dependence on the uplift dimension is implicit, via the temperature. The uplifted

black hole background is

ds2 =
dr2

r2
(
1− m

r2σ

) − r2
(

1− m

r2σ

)
dt2 + r2dx · dx(d−1) + r2dz · dz(2σ−d) (7.29)

where the temperature is as given in (5.23) and depends on σ. The chaotic behaviour is

associated with scattering within the (t, r) plane close to the horizon; the only effect of the

other directions is via the blackening function and hence the temperature.
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The action (7.27) assumes that the scalar fields ϕV and ϕW couple to the dilaton in

such a way that a (formal) uplift to (2σ+1) dimensions exists. It is not known whether this

is indeed the case for generic fields in non-conformal brane theories, although one would

expect the generalized conformal structure to be respected. Note that the Kaluza-Klein

reductions on spheres of non-conformal brane systems have not been explicitly computed so

even the couplings to the running scalar for BPS operators dual to supergravity excitations

are not known.

However, one does not in fact need to know the detailed dilaton couplings with the

scalars to argue that the normalized four point function behaves as (7.25) with ε ∼ N−a: the

argument relies only on the exchange near the horizon i.e. the uplift of the dilaton/metric

sector to an AdS theory.

We can also give an argument for (7.25) directly from the downstairs non-conformal

structure as follows. The black hole metric in the dual frame is asymptotically AdS i.e.

ds2 =
dr2

r2
(
1− m

r2σ

) − r2
(

1− m

r2σ

)
dt2 + r2dx · dx(d−1). (7.30)

The metric can be rewritten in Kruskal coordinates as

ds2 =
(
−A(uv)dudv + r2dx · dx(d−1)

)
A(uv) = − 4

uv

r2
(
1− m

r2σ

)
m

1
σ σ2

(7.31)

and the horizon is located at uv = 0.

The growing term in the connected contribution to the correlator is associated with

exchange near the u = 0 horizon. Following the arguments of [17, 30–32], consider a

perturbation of the fields near the boundary at large Killing time t. The energy associated

with this perturbation behaves as eLb where e is dimensionless and of order one. The

dimensionful factor arises from the prefactor of the dilaton/gravity action: the black hole

itself has energy that scales as NaLb, with the Na factor reflecting the scaling of the number

of black hole microstates with the rank N of the dual theory.

Near the horizon the energy of the perturbation is boosted by a factor of e2πt/β . The

boosted energy is thus comparable to the black hole energy when

t ∼ β

2π
logNa (7.32)

in agreement with the behaviour of the second term in (7.25). So effectively the dimen-

sional coupling Lb controls the energy of both the black hole itself and of the propagating

perturbation and this factor cancels out from the chaos time.

8 Conclusions

In this paper we have explored the role of generalized conformal structure in holographic

duals to SYK and discussed more generally how generalized conformal structure determines

interactions of bulk fields and chaotic behaviour in holographic models.

We have shown that the underlying generalized conformal structure of SYK together

with the thermodynamic properties indicates that the bulk description has a parent AdS3
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origin. This holds not just for the metric/running scalar sector but also for fields dual to

generic operators used to probe chaos. In principle, one could bootstrap the bulk action by

engineering the interactions to reproduce the leading contributions to all SYK correlation

functions (see also [36]). However, since the SYK model is a large N model, this would

result in an effective action involving a large number of fields (the number scaling as a

power of N); this bulk action may have another interpretation in terms of, for example, a

limit of a non-critical string theory.

We have argued that in any holographic theory with generalized conformal structure,

the couplings of bulk fields to the metric and running scalar are determined by the general-

ized conformal structure. It would be interesting to work out the supergravity spectrum and

interactions in non-conformal brane theories, thus verifying that the generalized conformal

structure is preserved by all the supergravity modes and their interactions. Holographic

theories with generalized conformal structure can be interpreted in terms of generalized

reductions of AdS theories in (2σ + 1) dimensions on (2σ − d) dimensional tori, where

σ is not necessarily integral. These parent AdS theories would essentially determine the

dynamics of non-conformal brane theories at large ’t Hooft coupling.

We have constructed two-dimensional gravity theories with multiple scalars and shown

that these also admit parent AdS theories, where the dimension of the parent theory is

determined by the thermodynamic properties. These bulk theories include holographic

duals to conformal theories compactified on spatial tori, such as the case of N = 4 SYM

compactified on a three torus discussed here. It would be interesting to explore applications

of this general class of two dimensional models. Note that various dualities involving 2d

bulk theories have recently been discussed in [48].

Our discussions of chaotic behaviour in holographic theories with generalized conformal

structure are based on the arguments of [17, 30–32] about exchange near the black hole

horizon. It would be interesting to calculate the relevant four point function contributions

explicitly holographically, by computing the Witten diagrams shown in figure 3, using

real-time holography methods [49, 50].
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