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1 Introduction

Advances in heterotic model building on Calabi-Yau manifolds over the past few years [1]–

[18] have led to a large number of models with a realistic standard-model spectrum. It

is now possible to construct models with phenomenologically promising spectra system-

atically searching through classes of compactifications. An immediate next step on the

path towards a fully realistic particle physics model from string theory is the calculation

of Yukawa couplings.

Unfortunately, calculating Yukawa couplings for geometric compactifications of the

heterotic string with general vector bundles is not straightforward, even at the pertur-

bative level, and relatively few techniques and results are known [19]–[28]. The task of

computing the physical Yukawa couplings for such models can be split up into two steps:

the calculation of the holomorphic Yukawa couplings, that is, the couplings in the super-

potential, and the calculation of the matter field Kähler potential. The former relates to

a holomorphic quantity and can, therefore, to some extent be carried out algebraically, as

explained in refs. [20, 27]. However, the matter field Kähler potential is non-holomorphic

and its algebraic calculation does not seem to be possible - rather, it is likely that methods

of differential geometry have to be used.1 At present the matter field Kähler potential has

not been worked out explicitly for any case other than the standard embedding (where it

can be expressed in terms of the Kähler and complex structure moduli space metrics).

In ref. [32], we have presented a new approach to calculating the holomorphic Yukawa

couplings, based entirely on methods of differential geometry. This approach was developed

in the context of the simplest class of Calabi-Yau manifolds - hypersurfaces in products

of projective spaces and the tetra-quadric manifold in a product of four P1’s in particular

- and for bundles with Abelian structure groups. In its original form, as presented in

ref. [32], this method is only applicable to a handful of Calabi-Yau manifolds. The purpose

of the present paper is to present a significant generalisation to all complete intersection

Calabi-Yau manifolds (CICY manifolds in short). Hence, we will show that our approach

is not restricted to specific manifolds but can, in fact, be applied to large classes, in this

case to the almost 8000 CICY manifolds classified in refs. [33, 34] as well as to their

quotients [35]. We would also like to relate our method to the earlier algebraic one [20, 27]

and demonstrate that the two approaches are equivalent. Although, in the present paper,

we will only discuss the holomorphic Yukawa couplings, we hope that the insight gained

in this context will ultimately also be of use for the calculation of the matter field Kähler

potential and the physical Yukawa couplings.

In general, the perturbative, holomorphic Yukawa couplings for a line bundle model

on a Calabi-Yau manifold X are given by

λ(ν1, ν2, ν3) =

∫
X

Ω ∧ ν1 ∧ ν2 ∧ ν3 . (1.1)

Here, Ω is the holomorphic (3, 0)-form on X and νi ∈ H1(X,Ki) are closed (0, 1)-forms,

taking values in certain line bundles Ki on X, which represent the three types of matter

1See refs. [29–31] for recent progress in this direction.
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multiplets involved in the corresponding superpotential term. Consistency of eq. (1.1)

requires that K1⊗K2⊗K3 = OX , where OX is the trivial bundle on X. Strictly speaking,

eq. (1.1) needs to be evaluated for the harmonic representatives (relative to the Ricci-

flat Calabi-Yau metric) of the cohomologies H1(X,Ki). Fortunately, the integral (1.1) is

invariant under changes νi → νi+∂̄ξi by exact forms and for this reason any representatives

of H1(X,Ki) can be used.

The CICY manifolds are defined as complete intersections in ambient spaces of the

form A = Pn1 × · · · × Pnm . Provided the line bundles Ki are obtained as restrictions of

ambient space line bundles Ki → A to X, we will show that the (0, 1)-forms νi can be

obtained from certain forms on the ambient space A and that the integral (1.1) can be

evaluated explicitly by converting it to an integral over the ambient space.

More precisely, we find that a closed (0, 1)-form νi is, in general, related to an entire

chain of ambient space (0, a)-forms, ν̂i,a, where a = 1, . . . , k+1 and k is the co-dimension of

X in A. The integral (1.1) can then be re-written as an integral over A which, in general,

involves all forms ν̂i,a. For a given νi, the associated chain may terminate early, in the

sense that, for a certain τi, we have ν̂i,τi 6= 0 and ν̂i,a = 0 for all a > τi. In this case we say

that νi is of type τi. One of our most important results is the vanishing theorem

τ1 + τ2 + τ3 < dim(A) =⇒ λ(ν1, ν2, ν3) = 0 . (1.2)

Particularly for high co-dimension and corresponding large ambient space dimension

dim(A) this statement implies the vanishing of many Yukawa couplings, since cases with

large types τi are relatively rare. The vanishing due to this theorem can not be explained by

an obvious symmetry of the effective four-dimensional theory and is topological in nature.

The outline of the paper is as follows. In the next section, we review the results of

ref. [32] for Calabi-Yau hypersurfaces in products of projective spaces, in order to set the

scene. In section 3, we generalise to co-dimension two CICYs and in section 4 we deal with

the general case of arbitrary co-dimension. In section 5, our method is illustrated with

several explicit examples and we conclude in section 6. A number of technical issues have

been moved to the appendices. Of particular importance is appendix C which explains the

multiplication of harmonic forms on Pn, the key ingredient required to relate our approach

to the earlier algebraic methods [20, 27] for calculating holomorphic Yukawa couplings.

2 Review of Yukawa couplings for co-dimension one CICYs

In this section, we will review results from ref. [32] for holomorphic Yukawa couplings on

co-dimension one CICYs. The ambient space A consists of a product of projective factors

A = Pn1 × Pn2 × . . .Pnm , (2.1)

where n1 + n2 + · · · + nm = 4, and the homogeneous coordinates on each Pni factor are

denoted by (xαi ), where α = 0, 1, . . . , ni. The Calabi-Yau three-fold X is given by the zero

locus of a single homogeneous polynomial p in A and, for X to be a Calabi-Yau manifold,
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p has to have multi-degree q = (n1 + 1, n2 + 1, . . . , nm + 1). This defining polynomial p

can also be thought of as a global holomorphic section of the line bundle

N = OA(q) . (2.2)

On X, we consider a vector bundle V (in one of the E8 sectors), given by the sum of

line bundles

V =
n⊕
a=1

La . (2.3)

We are interested in a Yukawa coupling between three matter multiplets, each associated

to a closed, bundle-valued (0, 1)-form νi representing a cohomology in H1(X,Ki). Here,

the Ki are certain line bundles on X given either by the line bundles La in eq. (2.3) or

their duals or tensor powers. The precise correspondence between four-dimensional matter

multiplets and associated line bundles is provided in ref. [16]. Further, we assume that the

line bundles Ki are obtained as restrictions of corresponding ambient space line bundles

Ki, so Ki = Ki|X and that, likewise, the (0, 1)-forms νi are obtained as restrictions to X of

ambient space counterparts ν̂i. Further, we require the holomorphic (3, 0)-form Ω on X as

well as its ambient space counterpart Ω̂. With this preparation, we can attempt to evaluate

eq. (1.1), by inserting an appropriate delta-function current [20] in order to convert the

r.h.s. into the ambient space integral

λ(ν1, ν2, ν3) = − 1

2i

∫
A

Ω̂ ∧ ν̂1 ∧ ν̂2 ∧ ν̂3 ∧ δ2(p)dp ∧ dp̄ . (2.4)

To further simplify this integral, we introduce the ambient space differential forms

µj =
1

nj !
εα0α1...αnj

xαoj dx
α1
j ∧ · · · ∧ dx

αnj
j , µ = µ1 ∧ µ2 ∧ · · · ∧ µm , (2.5)

and use the identities [2, 3, 20, 33]

Ω̂ ∧ dp = µ , δ2(p)dp̄ =
1

π
∂̄

(
1

p

)
. (2.6)

Eq. (2.4) can then be converted into

λ(ν1, ν2, ν3) = − 1

2πi

∫
A

µ

p
∧
[
∂̄ν̂1 ∧ ν̂2 ∧ ν̂3 − ν̂1 ∧ ∂̄ν̂2 ∧ ν̂3 + ν̂1 ∧ ν̂2 ∧ ∂̄ν̂3

]
. (2.7)

In deriving this expression, we have performed an integration by parts and ignored the

boundary term. In ref. [32] we have shown that this boundary term indeed vanishes for

the ambient space A = P1 × P1 × P1 × P1 and in appendix A we generalise this proof to

ambient spaces of the form (2.1).

It is important to note that even though the forms νi are closed on X, the forms ν̂i
are not always closed on A and, hence, the integral (2.7) does not necessarily vanish. To

discuss this in more detail, let us focus on a line bundle K → X (which represents any of

the line bundles Ki above) which is obtained as a restriction K = K|X of a line bundle

K → A. For a closed (0, 1)-form ν ∈ H1(X,K) we would like to construct its ambient
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space counterpart ν̂ ∈ Ω1(A,K) such that ν = ν̂|X . To do this, we need to consider the

relation between K and K which is governed by the Koszul short exact sequence

0 −→ N ∗ ⊗K p−→ K r−→ K −→ 0 , (2.8)

where N is the line bundle (2.2), the map p is multiplication by the defining polynomial p

and r is the restriction map. This short exact sequence leads to an associated long exact

sequence of cohomology groups whose relevant part is given by

· · · −→ H1(A,N ∗ ⊗K)
p−→ H1(A,K)

r−→ H1(X,K)
δ−→ H2(A,N ∗ ⊗K)

p−→ H2(A,K)
r−→ H2(X,K) −→ . . . . (2.9)

The map δ is called the co-boundary map. This long exact sequence allows us to write

down a general expression for H1(X,K), namely

H1(X,K) = r
(

Coker
(
H1(A,N ∗ ⊗K)

p→ H1(A,K)
))

⊕ δ−1
(

Ker
(
H2(A,N ∗ ⊗K)

p→ H2(A,K)
))

. (2.10)

We see that H1(X,K) receives two contributions, one from H1(A,K) (modulo identifi-

cations) and the other from (the kernel in) H2(A,N ∗ ⊗ K). Let us discuss these two

contributions separately, keeping in mind that the general case is a sum of these.

Type 1: if ν descends from H1(A,K) we refer to it as “type 1”. In this case we have

a (0, 1)-form ν̂ ∈ H1(A,K) which, under the map r, restricts to ν ∈ H1(X,K). Since ν̂

represents an ambient space cohomology it is closed, so

∂̄ν̂ = 0 . (2.11)

Type 2: if ν descends from H2(A,N ∗ ⊗K) we refer to it as “type 2”. This case is more

complicated since it involves the co-boundary map δ in (2.9). Following the discussion

of co-boundary maps in appendix B, we can start with an ambient space (0, 2)-form ω̂ =

δ(ν) ∈ H2(A,N ∗⊗K) which is the image of ν under the co-boundary map. Then the form

ν can be obtained as the restriction to X of an ambient space (0, 1)-form ν̂ which is related

to ω̂ by the following simple equation

∂̄ν̂ = pω̂ . (2.12)

Unlike in the previous case the form ν̂ is no longer closed. However its restriction to X is

closed because p = 0 on X.

The Yukawa coupling (1.1) involves three (0, 1)-forms, ν1, ν2 and ν3, each of which

can be either of type 1 or type 2 (or a linear combination of both types). The simplest

possibility arises when all three forms are of type 1, so that ∂̄ν̂i = 0 for i = 1, 2, 3. Then,

eq. (2.7) shows that the Yukawa coupling vanishes,

λ(ν1, ν2, ν3) = 0 . (2.13)
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This vanishing is quasi-topological and related to the cohomology structure for K1, K2

and K3 in the sequence (2.9) - there is no expectation that it can be explained in terms

of a symmetry in the four-dimensional theory. This is the simplest case of the vanishing

theorem mentioned in the introduction.

From eq. (2.7) and using (2.12) the general formula for the Yukawa coupling reads

λ(ν1, ν2, ν3) = − 1

2πi

∫
A
µ ∧

[
ω̂1 ∧ ν̂2 ∧ ν̂3 − ν̂1 ∧ ω̂2 ∧ ν̂3 + ν̂1 ∧ ν̂2 ∧ ω̂3

]
. (2.14)

If a particular νi is of type 1 then the associated ω̂i is zero and the corresponding term in

the above expression vanishes. In this case, ν̂i represents an element of the ambient space

cohomology H1(A,Ki) which can be constructed explicitly as a (0, 1) differential form.

For a νi of type two the associated (0, 2)-form ω̂i represents an element of the ambient

space cohomology H2(A,N ∗ ⊗ K) and can be written down as a differential form, while

the associated form ν̂i can be obtained by solving eq. (2.12). In this way, all differential

forms in the integral (2.14) are known and the integral can be evaluated explicitly. Since

holomorphic Yukawa couplings depend only on the cohomology classes of the closed forms

we can take the closed (0, 1) and (0, 2) forms on the ambient space to be harmonic with

respect to the Fubini-Study metric. In ref. [32], the relevant differential forms on P1 have

been constructed and in appendix C this construction is extended to Pn.

A simple case arises when two forms, say ν1 and ν2, are of type 1 and the remaining

one, ν3, is of type 2. In this case, eq. (2.14) simplifies to

λ(ν1, ν2, ν3) = − 1

2πi

∫
A
µ ∧ ν̂1 ∧ ν̂2 ∧ ω̂3 . (2.15)

This expression involves only closed forms on the ambient space and there is no need

to solve the co-boundary map (2.12) for any of the three forms. In ref. [32] the precise

relation between the integral (2.15) and the earlier algebraic calculations [20, 27] has been

established. The main result of this discussion is that both methods - direct evaluation of

the integral (2.15) and the algebraic method - are consistent and only differ by an overall

constant which has been quantified.

3 Yukawa couplings for co-dimension two CICYs

In the remainder of the paper we will generalise the results reviewed in the previous section

to higher co-dimension CICYs starting, in this section, with the co-dimension two case.

3.1 Lifting forms to the ambient space

As before, the ambient space is given by a product of projective spaces

A = Pn1 × Pn2 × . . .Pnm , (3.1)

but now we require that n1 + · · · + nm = 5. The Calabi-Yau manifold X is given by the

common zero locus of two polynomials p = (p1, p2) with multi-degrees q1 = (q11, . . . , q
m
1 )

and q2 = (q12, . . . , q
m
2 ), respectively. The Calabi-Yau condition, c1(X) = 0, translates into

qr1 + qr2 = nr + 1 (3.2)

– 6 –
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for all r = 1, . . . ,m. We can also view p as a global, holomorphic section of the bundle

N = OA(q1)⊕OA(q2) . (3.3)

As before, we would like to understand the relation between closed line-bundle valued

(0, 1)-forms on X and certain forms on the ambient space A. We start with a line bundle

K → X, its ambient space counterpart K → A such that K = K|X and a closed K-

valued (0, 1)-form ν ∈ H1(X,K) which represents any of the three forms νi entering the

integral (1.1) for the holomorphic Yukawa couplings. The relation between K and K is still

described by the Koszul sequence which, due to X being defined at co-dimension two, is

no longer short-exact but given by the four-term sequence

0 −→ Λ2N ∗ ⊗K q−→ N ∗ ⊗K p−→ K r−→ K −→ 0 . (3.4)

As before, the map p acts by multiplication and r is the restriction map. The map q is

fixed by exactness of the sequence, that is p ◦ q = 0, and by matching polynomial degrees.

As a result, it is given, up to an overall, irrelevant constant, by

q =

(
−p2
p1

)
. (3.5)

In practice, the four-term sequence (3.4) is best dealt with by splitting it up into the two

short exact sequences

0 −→ Λ2N ∗ ⊗K q−→ N ∗ ⊗K g1−→ C −→ 0 , 0 −→ C g2−→ K r−→ K −→ 0 , (3.6)

where C is a suitable co-kernel and g1, g2 are maps satisfying g2◦g1 = p. These quantities are

determined by exactness of the above two sequences but will, fortunately, not be required

explicitly. The relevant parts of the two long exact sequences associated to the short exact

sequences (3.6) read

· · · −→ H1(A, C) g2−→ H1(A,K)
r−→ H1(X,K)

δ1−→ H2(A, C) g2−→ H2(A,K) −→ . . . , (3.7)

and

· · · −→ H1(A,Λ2N ∗ ⊗K)
q−→ H1(A,N ∗ ⊗K)

g1−→ H1(A, C)
δ2−→ H2(A,Λ2N ∗ ⊗K)

q−→ H2(A,N ∗ ⊗K)
g1−→ H2(A, C)

δ3−→ H3(A,Λ2N ∗ ⊗K)
q−→ H3(A,N ∗ ⊗K) −→ . . . . (3.8)

Our goal is to obtain an expression for H1(X,K) in terms of ambient space cohomologies

and from (3.7) we find that

H1(X,K) = r
(

Coker
(
H1(A, C) g2→ H1(A,K)

))
⊕ δ−11

(
Ker

(
H2(A, C) g2→ H2(A,K)

))
.

(3.9)
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This expression is analogous to eq. (2.10) obtained in the co-dimension one case, but here

we still have to work out H1(A, C) and H2(A, C). From the second sequence (3.8) they can

be read off as

H1(A, C) = g1

(
Coker

(
H1(A,Λ2N ∗ ⊗K)

q→ H1(A,N ∗ ⊗K)
))

⊕δ−12

(
Ker

(
H2(A,Λ2N ∗ ⊗K)

q→ H2(A,N ∗ ⊗K)
))

, (3.10)

H2(A, C) = g1

(
Coker

(
H2(A,Λ2N ∗ ⊗K)

q→ H2(A,N ∗ ⊗K)
))

⊕δ−13

(
Ker

(
H3(A,Λ2N ∗ ⊗K)

q→ H3(A,N ∗ ⊗K)
))

. (3.11)

Substituting eqs. (3.10) and (3.11) into eq. (3.9) gives the desired formula for H1(X,K)

in terms of ambient space cohomology. Despite its apparent complexity, we will see that

it is possible to get to a simple generalisation of the structure derived in the co-dimension

one case.

We begin by observing that H1(X,K) receives contributions from three ambient space

cohomologies, namely from H1(A,K), H2(A,N ∗ ⊗ K) and H3(A,Λ2N ∗ ⊗ K) (or, more

accurately, from kernels or quotients within these cohomologies). This means that a given

closed (0, 1)-form ν ∈ H1(X,K) descends, in general, from three ambient space forms, a

(0, 1)-form ν̂, a (0, 2)-forms ω̂ and a (0, 3)-form ρ̂. However, a specific ν ∈ H1(X,K) might

not receive all three contributions. We call a ν ∈ H1(X,K) “type 1” if the associated ω̂ and

ρ̂ vanish and, hence, if it is determined by the (0, 1)-form ν̂ only. Likewise, ν ∈ H1(X,K)

is called “type 2” if the associated ρ̂ vanishes and it is determined by the (0, 2)-form ω̂. If

ν ∈ H1(X,K) is determined by ρ̂ it is called “type 3”. In general, a ν ∈ H1(X,K) is a

linear combination of these three types but the discussion is much simplified if we focus

on each type separately. In fact, it is always possible to choose of basis of H1(X,K) such

that every basis element has a definite type. Let us now be more precise and discuss each

of these three types in turn.

Type 1: we will refer to ν ∈ H1(X,K) as “type 1” if it descends from H1(A,K), that

is, if there is a (0, 1)-form ν̂ ∈ H1(A,K) on the ambient space with

ν = ν̂|X ν ∈ H1(X,K)

∂̄ν̂ = 0 ν̂ ∈ H1(A,K) .
(3.12)

Type 2: we will refer to ν ∈ H1(X,K) as “type 2” if it descends from a closed (0, 2)

form ω̂ ∈ H2(A,N ∗ ⊗ K). To understand the relation between ν and ω̂ we need to chase

through eqs. (3.9) and (3.11). Starting with eq. (3.9) and setting γ̂ = δ1(ν) ∈ H2(A, C) we

know from the definition of the co-boundary map δ1 (see appendix B for a review) that

there is (0, 1)-form ν̂ ∈ Ω1(A,K) such that

∂̄ν̂ = g2γ̂ , ν = ν̂|X . (3.13)

Further, from eq. (3.11), there is a ω̂ ∈ H2(A,N ∗ ⊗K) with

γ̂ = g1ω̂ . (3.14)
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Combining these last two equations, together with g2 ◦ g1 = p then leads to

∂̄ν̂ = (g2 ◦ g1)ω̂ = pω̂ . (3.15)

To summarise this discussion, we can write down the following chain of equations

ν = ν̂|X ν ∈ H1(X,K)

∂̄ν̂ = pω̂ ν̂ ∈ Ω1(A,K)

∂̄ω̂ = 0 ω̂ ∈ H2(A,N ∗ ⊗K)

(3.16)

which describes the relation between ν and the (0, 2)-form ω̂ from which it descends.

Type 3: we will refer to ν as “type 3” if it descends from a closed (0, 3)-form ρ̂ ∈
H3(A,∧2N ∗ ⊗ K) and we need to understand the relation between ν and ρ̂. As in the

case of type 2, we start with eq. (3.9) and define γ̂ = δ1(ν) ∈ H2(A, C) and a (0, 1)-form

ν̂ ∈ Ω1(A,K) such that

∂̄ν̂ = g2γ̂ , ν = ν̂|X . (3.17)

From surjectivity of g1 in the first sequence (3.6) we can write γ̂ = g1ω̂ for an ω̂ ∈
Ω2(A,N ∗ ⊗K) and combining this with the previous equation leads to

∂̄ν̂ = pω̂ , (3.18)

as in the type 2 case. However, unlike for the type 2 case, ω̂ is no longer closed and

we need to carry out one more step. To this end, we consider eq. (3.11) and define the

closed (0, 3)-form ρ̂ = δ3(γ̂) ∈ H3(A,Λ2N ∗⊗K). Writing out the co-boundary map δ3 (see

appendix B) now leads to

∂̄ω̂ = qρ̂ , ∂̄ρ̂ = 0 . (3.19)

Altogether, this gives the following chain of equations

ν = ν̂|X ν ∈ H1(X,K)

∂̄ν̂ = pω̂ ν̂ ∈ Ω1(A,K)

∂̄ω̂ = qρ̂ ω̂ ∈ Ω2(A,N ∗ ⊗K)

∂̄ρ̂ = 0 ρ̂ ∈ H3(A,Λ2N ∗ ⊗K)

(3.20)

which describes the relation between ν and the (0, 3)-form ρ̂ from which it descends.

In fact, the system of equations (3.20) describes the general relationship between ν

and the three ambient space forms ν̂, ω̂ and ρ̂. For a given ν, solving the equations (3.20)

gives the associated ambient space forms which, in general, are all non-zero. The three

types discussed above arise from eq. (3.20) as special cases. If ω̂ = ρ̂ = 0 for a given ν,

then ν̂ is closed and ν is of type 1. If ω̂ 6= 0 but ρ̂ = 0 (and ν̂ does not have a closed

part which would correspond to a type 1 component) then ω̂ is closed and ν is of type 2.

Finally, if ρ̂ 6= 0 (and ν̂, ω̂ do not have closed parts which would correspond to type 1 and

type 2 components, respectively) then ν is of type 3.
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Let us point out that, in general, the set of all forms ν̂, ω̂, ρ̂ is not always identified

with the entire spaces in the second column of (3.20) but, rather, with kernels and co-

kernels of the maps p and q within those spaces. In each particular case, these kernels and

co-kernels can be found from eqs. (3.9), (3.10) and (3.11).

Our goal now is to express the Yukawa couplings (1.1) in terms of the ambient space

forms ν̂, ω̂ and ρ̂. If ν is of a specific type, the highest non-vanishing form which appears

in the eqs. (3.20) represents an ambient space cohomology and can be written down ex-

plicitly, following the rules explained in appendix C. The lower-degree forms then have to

be obtained by solving the eqs. (3.20). In this way, all relevant ambient space forms can

be calculated explicitly.

3.2 A derivation of Yukawa couplings

We will now derive the formula for the Yukawa couplings (1.1) in terms of ambient space

forms. For each (0, 1)-form νi ∈ H1(X,Ki) involved we have an associated chain of ambient

space forms ν̂i, ω̂i and ρ̂i, in line with the eqs. (3.20). The forms ω̂i take values in the rank

two line bundle sum N ∗ ⊗ Ki = OA(−q1) ⊗ Ki ⊕ OA(−q2) ⊗ Ki and we denote the two

corresponding components by ω̂ai , where a = 1, 2. Starting with eq. (1.1), we insert two

delta-function currents

λ(ν1, ν2, ν3) =
1

(2πi)2

∫
A

Ω̂ ∧ ν̂1 ∧ ν̂2 ∧ ν̂3 ∧ dp1 ∧ ∂̄
(

1

p1

)
∧ dp2 ∧ ∂̄

(
1

p2

)
. (3.21)

which converts the integral to one over the ambient space. Using the standard formula

(see [2, 3, 20, 33])

Ω̂ ∧ dp1 ∧ dp2 = µ , (3.22)

where µ has been defined in eq. (2.5), we obtain

λ(ν1, ν2, ν3) =
1

(2π)2

∫
A
µ ∧ ν̂1 ∧ ν̂2 ∧ ν̂3 ∧ ∂̄

(
1

p1

)
∧ ∂̄
(

1

p2

)
. (3.23)

Now we have to integrate by parts twice ignoring the boundary integrals which do not

contribute (see appendix A). After the first integration we obtain

λ(ν1, ν2, ν3) =
1

(2π)2

∫
A

µ

p1
∧
[
∂̄ν̂1∧ ν̂2∧ ν̂3− ν̂1∧ ∂̄ν̂2∧ ν̂3 + ν̂1∧ ν̂2∧ ∂̄ν̂3

]
∧ ∂̄
(

1

p2

)
. (3.24)

The derivatives of ν̂i can be evaluated using (3.20). This leads to

∂̄ν̂1 ∧ ν̂2 ∧ ν̂3 − ν̂1 ∧ ∂̄ν̂2 ∧ ν̂3 + ν̂1 ∧ ν̂2 ∧ ∂̄ν̂3 := pβ̂ = p1β̂
1 + p2β̂

2 , (3.25)

where β̂ is a vector with components given by

β̂1 = ω̂1
1∧ν̂2∧ν̂3−ν̂1∧ω̂1

2∧ν̂3+ν̂1∧ν̂2∧ω̂1
3 , β̂2 = ω̂2

1∧ν̂2∧ν̂3−ν̂1∧ω̂2
2∧ν̂3+ν̂1∧ν̂2∧ω̂2

3 . (3.26)

Substituting these expressions back into the integral (3.24), we note that the term p2β̂
2

does not contribute since p2∂̄
(

1
p2

)
∼ p2δ2(p2)dp̄2 = 0 and that we are, hence, left with

λ(ν1, ν2, ν3) =
1

(2π)2

∫
A
µ ∧ β̂1 ∧ ∂̄

(
1

p2

)
= − 1

(2π)2

∫
A

µ

p2
∧ ∂̄β̂1 . (3.27)
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Using eqs. (3.20) it is easy to work out that ∂̄β̂1 = −p2η̂, where

η̂ = ρ̂1 ∧ ν̂2 ∧ ν̂3 + ν̂1 ∧ ρ̂2 ∧ ν̂3 + ν̂1 ∧ ν̂2 ∧ ρ̂3 + ν̂1 ∧ ω̂2
2 ∧ ω̂1

3 − ν̂1 ∧ ω̂1
2 ∧ ω̂2

3

+ω̂1
1 ∧ ν̂2 ∧ ω̂2

3 − ω̂2
1 ∧ ν̂2 ∧ ω̂1

3 + ω̂2
1 ∧ ω̂1

2 ∧ ν̂3 − ω̂1
1 ∧ ω̂2

2 ∧ ν̂3 . (3.28)

Hence, the final expression for the Yukawa coupling is

λ(ν1, ν2, ν3) =
1

(2π)2

∫
A
µ ∧ η̂ (3.29)

with η̂ given in (3.28). Eq. (3.29) together with eq. (3.28) is our main general result for

the co-dimension two case. As we will see in section 5, this result, together with the

expressions for ambient space harmonic forms in appendix C and eq. (3.20), allows for an

explicit calculation of the holomorphic Yukawa couplings.

It is worth discussing a number of special cases. If all three forms νi are of type 1 then

ω̂i = ρ̂i = 0, for i = 1, 2, 3 and as a results η̂ in eq. (3.28) and, hence, the Yukawa coupling

vanishes. Now suppose two of the forms νi, say ν1 and ν2 are of type 1, while ν3 is of type

2. In this case we have ω̂i = ρ̂i = 0 for i = 1, 2 and ρ̂3 = 0 so that η̂ in eq. (3.28) and the

Yukawa coupling still vanishes. These observations can be summarised by the following:

Theorem. Assume that the forms νi which enter the integral (1.1) for the Yukawa cou-

plings are of type τi, where i = 1, 2, 3. Then

τ1 + τ2 + τ3 < dim(A) = 5 =⇒ λ(ν1, ν2, ν3) = 0 . (3.30)

For co-dimension one we have observed that the Yukawa coupling vanishes if all three

forms νi are of type 1. The above vanishing theorem generalises this statement to the case

of co-dimension two.

There are two special cases for which the expression (3.29) simplifies considerably.

Firstly, assume that the types of the (0, 1)-forms νi are given by (τ1, τ2, τ3) = (1, 1, 3).

Then we have from eqs. (3.29) and (3.28)

λ(ν1, ν2, ν3) =
1

(2π)2

∫
A
µ ∧ ν̂1 ∧ ν̂2 ∧ ρ̂3 , (3.31)

and all three bundle-valued forms in the integrand represent ambient space cohomologies.

The other simple case arises for types (τ1, τ2, τ3) = (1, 2, 2) where eq. (3.29) becomes

λ(ν1, ν2, ν3) =
1

(2π)2

∫
A
µ ∧ ν̂1 ∧ ω̂2 ∧ ω̂3 , (3.32)

with an anti-symmetric contraction of the bundle indices for ω̂i understood. Again, all

three forms in the integrand represent ambient space cohomologies.

We will now proceed to arbitrary co-dimension and show that analogous statements

can be obtained in the general case.
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4 Generalisation to higher co-dimensions

4.1 Lifting forms to the ambient space

We will now tackle the case of arbitrary co-dimension starting, as before, with the problem

of writing closed line bundle-valued (0, 1)-forms on the Calabi-Yau manifold in terms of

ambient space forms. Our ambient space remains the product of projective spaces

A = Pn1 × Pn2 × . . .Pnm , (4.1)

where now n1 + · · · + nm = 3 + k and k is the co-dimension. The CICY manifold X ⊂ A
is defined as the common zero locus of k homogeneous polynomials pa with multi-degrees

qa = (q1a, . . . , q
m
a ), where a = 1, . . . , k. The Calabi-Yau condition, c1(X) = 0 now reads

k∑
a=1

qra = nr + 1 (4.2)

for all r = 1, . . . ,m. As before, we combine these polynomials into the row vector p =

(p1, . . . , pk) which can be viewed as a section of the line bundle sum

N = OA(q1)⊕ · · · ⊕ OA(qk) . (4.3)

The relation between a line bundle K → X and its ambient space counterpart K → A
(such that K = K|X) is again governed by the Koszul sequence

0 −→ ΛkN ∗ ⊗K qk−→ Λk−1N ∗ ⊗K
qk−1−→ · · · q2−→ N ∗ ⊗K q1=p−→ K q0=r−→ K −→ 0 , (4.4)

which now consists of k + 2 terms and contains maps qa satisfying qa ◦ qa+1 = 0 for all

a = 0, . . . , k − 1. As previously, q0 = r is the restriction map, q1 = p is the map acting

by multiplication with the polynomial vector p and the higher maps qa for a > 1 are the

obvious tensor maps induced by p. An (a + 1)-form ν̂ taking values in ∧aN ∗ ⊗ K has

components ν̂b1···ba , with completely anti-symmetrised upper indices, and the action of qa
on this form can be explicitly written as

(qaν̂)b1···ba−1 = pb ν̂
b1···ba−1b . (4.5)

Splitting (4.4) up into k short exact sequences and chasing through the associated long exact

sequences shows that H1(X,K) can now receive contributions from the k+1 ambient space

cohomologies H1(A,K), H2(A,N ∗⊗K), . . . , Hk(A,∧k−1N ∗⊗K), Hk+1(A,∧kN ∗⊗K). A

closed K-valued (0, 1)-form ν ∈ H1(X,K) is, therefore, related to a chain of k+ 1 ambient

space (0, a)-forms ν̂a, where a = 1, . . . , k + 1. The precisely relationship between ν and ν̂a
can be derived by a straightforward generalisation of the co-dimension two case discussed
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in the previous section. The result is

ν = ν̂1|X ν ∈ H1(X,K)

∂̄ν̂1 = q1ν̂2 ν̂1 ∈ Ω1(A,K)

∂̄ν̂2 = q2ν̂3 ν̂2 ∈ Ω2(A,N ∗ ⊗K)

...
...

∂̄ν̂k = qkν̂k+1 ν̂k ∈ Ωk(A,Λm−1N ∗ ⊗K)

∂̄ν̂k+1 = 0 ν̂k+1 ∈ Hk+1(A,ΛmN ∗ ⊗K) .

(4.6)

Note that, just like in the co-dimension two case, the forms ν̂a should be thought of as

elements of certain kernels and co-kernels of the maps qa within the spaces on the right-

hand side of eq. (4.6). For a given ν ∈ H1(X,K) the associated chain of ambient space

forms is obtained by solving the above equations and, in general, this leads to k + 1 non-

trivial forms ν̂a. However, as before, it is useful to introduce the type τ of ν which can now

take the values τ ∈ {1, . . . , k+ 1}. We say that ν is of type τ if ν̂τ 6= 0, ν̂a = 0 for all a > τ

and all ν̂a for a < τ do not contain any ∂̄-closed parts. In this case, ν descends, via the

eqs. (4.6), from the ∂̄-closed (0, τ)-form ν̂τ which defines an element of Hτ (A,∧τ−1N ∗⊗K).

4.2 The structure of Yukawa couplings and a vanishing theorem

Each of the three forms νi ∈ H1(X,K1) involved in the Yukawa coupling has, from eq. (4.6),

an associated chain of ambient space forms which we denote by ν̂i,a, where a = 1, . . . , k+1.

To derive the general expression for the Yukawa couplings we start with (1.1), insert k

delta-function currents and use the standard formula (see [2, 3, 20, 33])

Ω̂ ∧ dp1 ∧ · · · ∧ dpk = µ , (4.7)

where µ has been defined in eq. (2.5). This leads to

λ(ν1, ν2, ν3) =

(
− 1

2πi

)k ∫
A

Ω̂ ∧ ν̂1,1 ∧ ν̂2,1 ∧ ν̂3,1 ∧ dp1 ∧ ∂̄
(

1

p1

)
∧ · · · ∧ dpk ∧ ∂̄

(
1

pk

)
=

C̃k
(2π)kk!

εb1···bk

∫
A
µ ∧ ν̂1,1 ∧ ν̂2,1 ∧ ν̂3,1 ∧ ∂̄

(
1

pb1

)
∧ · · · ∧ ∂̄

(
1

pbk

)
, (4.8)

where C̃k = (−1)k(k+1)/2 ik is a phase factor. Integrating the first ∂̄ operator by parts

(ignoring the boundary terms whose vanishing can be shown in the same way as in ap-

pendix A) and using eqs. (4.5), (4.6) this turns into

λ(ν1, ν2, ν3) =
C̃k

(2π)kk!
εb1···bk

∫
A
µ ∧

(
ν̂b11,2 ∧ ν̂2,1 ∧ ν̂3,1−ν̂1,1 ∧ ν̂

b1
2,2 ∧ ν̂3,1+ν̂1,1 ∧ ν̂2,1 ∧ ν̂b13,2

)
∧ ∂̄
(

1

pb2

)
∧ · · · ∧ ∂̄

(
1

pbk

)
. (4.9)

Here, the relation

pb ∂̄

(
1

pb

)
= 0 (4.10)
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has led to the insertion of δb1b from eq. (4.5) so that we remain with a sum over b1, as

indicated above (while the resulting factor pb1 from eq. (4.5) cancels against 1/pb1). We

can now continue integrating by parts until all factors of the form ∂̄(1/pb) are used up.

Each of these factors leads to a partial differentiation of all forms ν̂
b1···ba−1

i,a which appear

in the integral, effective replacing them by the forms ν̂
b1···ba−1b
i,a+1 , which appear one step

lower down in the chain (4.6). Since there are k such partial integrations to be performed,

starting with three (0, 1)-forms, the end result is a sum which contains all product of three

forms whose degree sums up to dim(A) = 3 + k. This leads to

λ(ν1, ν2, ν3) =
Ck

(2π)k

k∑
a1,a2,a3=1

a1+a2+a3=dim(A)

(−1)s(a1,a2,a3)
∫
A
µ ∧ ν̂1,a1 ∧ ν̂2,a2 ∧ ν̂3,a3 . (4.11)

where s(a1, a2, a3) = (a1 +1)a2 +a1a3 +a2a3 determines the relative signs of the terms and

Ck = (−1)k(k+1)/2(−1)[(k+1)/2] ik is another phase. In this formula, the bundle indices have

been suppressed so the wedge product should be understood as including an appropriate

tensoring of the bundle directions to form a singlet, via anti-symmetrisation by εb1···bk . The

anti-symmetrisation is achieved by summing in every case as many terms with permuted

indices as required for complete anti-symmetry, each with a factor 1 or −1 and no additional

overall normalisation. This means that, for example, ν̂1,2∧ ν̂2,2∧ ν̂3,1 = εb1b2 ν̂
b1
1,2∧ ν̂

b2
2,2∧ ν̂3,1

while ν̂1,3 ∧ ν̂2,1 ∧ ν̂3,1 = 1
2εb1b2 ν̂

b1b2
1,3 ∧ ν̂2,1 ∧ ν̂3,1.

Eq. (4.11) is our main general result for the holomorphic Yukawa couplings. All the

ambient space forms ν̂i,a can be constructed explicitly, starting with appendix (C) in order

to write down (harmonic) representatives for ambient space cohomology for the highest

degree non-trivial forms in the chain (4.6) and then solving these equations to find all

associated lower-degree forms. With these forms inserted, the integral (4.11) can be carried

out explicitly, as we will demonstrate for the examples in section 5.

As before, it is useful to discuss some special cases. First assume, that the (0, 1)-

forms νi are of type τi so that ν̂i,a = 0 for all a > τi. If the τi sum up to less than the

ambient space dimension dim(A) then all terms in eq. (4.11) vanish due to the summation

constraint. As a result the Yukawa coupling vanishes. Let us formulate this concisely:

Theorem. Assume that the forms νi which enter the integral (1.1) for the Yukawa cou-

plings are of type τi, where i = 1, 2, 3. Then

τ1 + τ2 + τ3 < dim(A) =⇒ λ(ν1, ν2, ν3) = 0 . (4.12)

This is the general version of the vanishing theorem we have already seen for co-

dimensions one and two in previous sections. As we have discussed, the type τ of a form

ν ∈ H1(X,K) is determined by the cohomology Hτ (A,∧τ−1N ∗⊗K) from which it descends

via successive co-boundary maps. As a rule of thumb, large τ ’s are relatively rare since

they require many non-trivial co-boundary maps and cohomologies. Consequently, for a

large ambient space dimension dim(A) the condition in (4.12) is frequently satisfied and

many Yukawa couplings vanish. We stress again that vanishing due to (4.12) appears to be
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topological in nature, that is, these couplings vanish despite being allowed by the obvious

symmetries of the four-dimensional effective theory.

Another special case of interest is for types τi satisfying τ1 + τ2 + τ3 = dim(A). In this

case, only one term in (4.11) contributes and the integral simplifies to

λ(ν1, ν2, ν3) ∼
1

(2π)k

∫
A
µ ∧ ν̂1,τ1 ∧ ν̂2,τ2 ∧ ν̂3,τ3 , (4.13)

where we have dropped an overall phase factor. Note that, unlike in the general case (4.11),

all three forms ν̂i,τi in the integrand are closed and represent ambient space cohomologies

in Hτi(A,∧τi−1N ∗⊗K). They can, therefore, be directly constructed from the rules given

in appendix C, without any need to solve eqs. (4.6).

5 Examples

In this section, we will illustrate our general statements for models on a certain co-dimension

two CICY and show that the relevant ambient space integrals can, in fact, be carried out

explicitly. We begin by introducing the specific CICY and its properties, then move on

to describing line bundles and line bundle-valued forms before we derive two more specific

formulae for the Yukawa couplings for types (τ1, τ2, τ3) = (1, 1, 3) and (τ1, τ2, τ3) = (1, 2, 2),

respectively. These results are then applied to three examples, each defined by a certain

line bundle sum on the relevant CICY.

5.1 A co-dimension two CICY and its properties

Our chosen CICY is a co-dimensional two manifold in the ambient space A = P1×P1×P1×
P1 × P1, whose homogeneous coordinates we either denote by x = (xαi ), where i = 1, . . . , 5

and α = 0, 1 or, more explicitly, by x = ((x0, x1), (y0, y1), (u0, u1), (v0, v1), (w0, w1)). We

also introduce affine coordinates zi = x1i /x
0
i on the coordinate patch of A where all x0i 6= 0.

The CICY is defined as the common zero locus in A of two homogeneous polynomials

p = (p1, p2) with multi-degrees q1 = (0, 1, 1, 1, 1) and q2 = (2, 1, 1, 1, 1), respectively. This

information is often summarised by the configuration matrix

X =


P1 0 2

P1 1 1

P1 1 1

P1 1 1

P1 1 1



5,45

−80

(5.1)

whose columns are given by q1 and q2. Attached as a superscript are the Hodge numbers

h1,1(X), h2,1(X) and as a subscript the Euler number, η(X). In the standard list of refs. [33,

34], this manifold carries the number 7487. The defining polynomials p = (p1, p2) can also

be viewed as a section of the line bundle sum

N = OA(q1)⊕OA(q2) . (5.2)
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For later reference, we also define q = q1 + q2 = (2, 2, 2, 2, 2) and note that

∧2 N = OA(q) . (5.3)

In order to reduce the size of the problem, it will frequently be useful to work on a discrete

quotient of the above manifold. In fact, X has a freely-acting symmetry Γ = Z2×Z2 whose

generators act on the homogeneous coordinates as

γ(g1) = 15 ×

(
1 0

0 −1

)
, γ(g2) = 15 ×

(
0 1

1 0

)
. (5.4)

while the action on the defining polynomials is

ρ(g1) = diag(1,−1) , ρ(g2) = diag(1,−1) . (5.5)

The quotient X̃ = X/Γ is a Calabi-Yau manifold with Euler number η(X̃) = η(X)/|Γ| =

−20 and Hodge numbers h1,1(X̃) = 5, h2,1(X̃) = 15.

5.2 Line bundles and line bundle-valued harmonic forms

The CICY defined by (5.1) is favourable, by which we mean that the entire second coho-

mology of X descends from the ambient space. This implies that every line bundle L→ X

can be obtained as a restriction L = L|X of an ambient space line bundle L = OA(l),

where l = (l1, . . . , l5). In order to compute Yukawa integrals we need to understand the

cohomology of such ambient space line bundles and write down explicit differential forms

representing these cohomologies. Since we are merely dealing with a product of projective

spaces this is indeed possible. In the following, we briefly review the relevant results for

products of P1 factors obtained in ref. [32]. Their generalisation to arbitrary Pn-factors

can be found in appendix C.

We begin by discussing the cohomology dimensions for a line bundle L = OA(l) which

can be obtained by combining Bott’s formula for line bundle cohomology on P1 and the

Künneth formula. Firstly, all cohomologies of L vanish if at least one of the integers li equals

−1. If all li 6= −1, then there is precisely one non-vanishing cohomology Hq(A,K), and q

equals the number of integers li with li ≤ −2. The dimension of this one non-vanishing

cohomology is given by

hq(A,L) =
∏
i:li≥0

(li + 1)
∏

i:li≤−2

(−li − 1) . (5.6)

The L-values (0, q)-forms representing Hq(A,L) can be written down as

α(l) = P(l)

∏
i:li≤−2

κl
i

i dzi (5.7)

where κi = 1 + |zi|2 and P(l) is a polynomial of degree li in zi, if li ≥ 0, and of degree

−li−2 in zi, if li ≤ −2. In fact, the above forms are harmonic (relative to the Fubini-Study

metric) and are, hence, in ono-to-one correspondence with the elements of Hq(A,L). In
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particular, note that the number of arbitrary coefficients in the polynomial P(l) equals the

dimension (5.6) of the cohomology group.

The above differential forms have been written down in affine coordinates zi. A useful

equivalent version in terms of homogeneous coordinates is given by

α(l) = P̃(l)

∏
i:li≤−2

σl
i

i dµi, (5.8)

where P̃(l) is the homogeneous counterpart of P(l) and

σi = |x0i |2 + |x1i |2 , µi = εαβx
α
i x

β
i . (5.9)

The Yukawa couplings involve wedge products of differential forms and we should,

therefore, understand what happens if we form wedge products of the above forms. To

be specific let us consider a form α(l) with associated polynomial P̃(l), representing the

cohomology Hp(A,OA(l)) and a form β(m) with associated polynomial Q̃(m), representing

the cohomology Hq(A,OA(m)). It is clear that α(l) ∧ β(m) is ∂̄-closed and represents

an element of Hp+q(A,OA(l + m)), however, this will, in general not be the harmonic

representative. We can ask how this harmonic representative, which we denote by γ(l+m)

with associated polynomial R̃(l+m), can be obtained from α(l) and β(m). Fortunately, there

is a simple answer which can be expressed in terms of the associated polynomials P̃(l), Q̃(m)

and R̃(l+m). For a product of P1 spaces this has been derived in ref. [32]. In appendix C,

we explain how harmonic forms on a single Pn are multiplied. These results can be easily

applied to a product of projective spaces with arbitrary dimensions and lead to

R̃(l+m) = cl,mP̃(l)Q̃(m) , (5.10)

where cl,m is a numerical coefficient explicitly given by

cl,m =
∏

i:li≤−2

cli,mi
∏

j:mj≤−2

cmj ,lj , cl,m =
(−l −m− 1)!

(−l − 1)!
. (5.11)

The polynomial multiplication on the r.h.s. of eq. (5.10) is understood with a replacement

of coordinates by associated partial derivatives whenever positive degrees meet negative

degrees. More specifically, whenever coordinates xαi in P̃(k) act on coordinates x̄αi in Q̃(l),

the former should be replaced by ∂/∂x̄αi .

In the following, we would like to further evaluate the Yukawa couplings for our example

manifold and certain specific types. We will work within our familiar setting, that is, we

have three line bundles Ki = OX(ki) on X underlying the expression for the Yukawa

couplings. These line bundles descend from their ambient space counterparts Ki = OA(ki)

and have to satisfy the condition

K1 ⊗K2 ⊗K3 = OX =⇒ k1 + k2 + k3 = 0 . (5.12)

We would like to calculate the Yukawa couplings for three Ki-valued (0, 1)-forms νi ∈
H1(X,Ki). From the eqs. (3.20) each of these comes with a chain of ambient space forms,

namely the (0, 1)-forms ν̂i, the (0, 2)-forms ω̂i and the (0, 3)-forms ρ̂i which enter the general

formula (3.29) for the Yukawa couplings. In the following, we focus on certain cases where

the νi have specific types τi.
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5.3 Yukawa couplings of type (1,1,3)

We now assume that two of the forms νi, say ν1 and ν2 for definiteness, are of type 1, while

ν3 is of type 3. Note that this saturates the bound in eq. (3.30) and constitutes one of the

two simplest cases for co-dimension two to which the vanishing theorem does not apply

(the other one being discussed in the next sub-section). In this case, the Yukawa couplings

are given by eq. (3.31) which only involves the ambient space forms ν̂1 ∈ H1(A,K1),

ν̂2 ∈ H1(A,K2) and ρ̂3 ∈ H3(A,∧2N ∗ ⊗K3).

Following the rules for cohomology explained in the last sub-section, in order for

H1(A,K1) and H1(A,K2) to be non-trivial, we require that k1 and k2 each have pre-

cisely one entry less than or equal to −2 and all other entries positive. Further, for

H3(A,∧2N ∗ ⊗ K3) = H3(A,OA(k3 − q)) to be non-trivial the vector k3 is required to

have precisely three entries less than or equal to 0 and the others greater than or equal

to 2. Due to eq. (5.12), these non-positive entries must arise in different components of

the three vectors. Without restricting generality, we can, therefore, assume that k11 ≤ −2,

with all other components of k1 being greater than or equal to 0, k22 ≤ −2 with all other

components of k2 greater than or equal to 0, k33 ≤ 0, k43 ≤ 0, k53 ≤ 0, while k13 ≥ 2, k23 ≥ 2.

Using these conventions, we can specialise eq. (5.7) to find the following explicit expressions

for the relevant ambient space forms:

ν̂1 = κ
k11
1 P(k1)dz1 , ν̂2 = κ

k22
2 Q(k2)dz2 , ρ̂3 = κ

k33−2
3 κ

k43−2
4 κ

k53−2
5 R(k3−q)dz3 ∧ dz4 ∧ dz5.

(5.13)

Inserting these forms into eq. (3.31) leads to

λ(ν1, ν2, ν3) =
1

(2π)2

∫
C5

d5z d5z κ
k11
1 κ

k22
2 κ

k33−2
3 κ

k43−2
4 κ

k53−2
5 P(k1)Q(k2)R(k3−q). (5.14)

By inserting expressions for the polynomials, this integral splits up into products of integrals

over P1 and can be worked explicitly. Alternatively, we can proceed by noticing that the

integrand ν̂1 ∧ ν̂2 ∧ ρ̂3 represents a cohomology class in H5(A,OA(−q)), which is one-

dimensional. Its harmonic representative has the form

c µ(P,Q,R)κ−21 κ−22 κ−23 κ−24 κ−25 d5z (5.15)

where

µ(P,Q,R) = P̃ Q̃R̃ (5.16)

must be a number, since h5(A,OA(−q)) = 1. This number is obtained from polynomial

multiplication as discussed in the previous sub-section and c is a constant given by

c = ck11 ,−k11−2 ck22 ,−k22−2 ck33−2,−k33 ck43−2,−k43 ck53−2,−k53 . (5.17)

Together with the basic identity ∫
C

1

κ2
dz ∧ dz = 2πi , (5.18)

this leads to the final expression

λ(ν1, ν2, ν3) = 8iπ3c µ(P,Q,R) , µ(P,Q,R) = P̃ Q̃R̃ . (5.19)
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This equation represents our final result for the Yukawa couplings in this case and it allows

for an “algebraic” calculation by multiplying together the polynomials P̃ , Q̃ and R̃. Note

that, given the rules for converting coordinates into partial derivatives in these polynomials,

as discussed in the last sub-section, this must always result in a number, that is, the partial

derivatives remove all remaining coordinates.

5.4 Yukawa couplings of type (1,2,2)

The other simple case which avoids the vanishing theorem (3.30) arises if one of the forms,

say ν1, is of type 1 while ν2 and ν3 are of type 2. This case can be dealt with in complete

analogy with the (1, 1, 3) case in the previous sub-section. The relevant formula for the

Yukawa couplings in this case is eq. (3.32) which only involves the ambient space forms

ν̂1 ∈ H1(A,K1), ω̂2 ∈ H2(A,N ∗ ⊗K2) and ω̂3 ∈ H2(A,N ∗ ⊗K3).

In order to construct these forms it is again useful to fix our conventions. Since we

require that H1(A,K1) be non-trivial we need precisely one component in k1 less than or

equal to −2 (and all others non-negative) and we choose k11 ≤ −2. The two (0, 2) forms

ω̂2, ω̂3 need to originate from different line bundles in the rank two bundle N ∗ ⊗ K3 (or

else the Yukawa coupling would vanish) so we assume that ω̂2 ∈ H2(A,OA(−q1)⊗K3) and

ω̂3 ∈ H2(A,OA(−q2)⊗K3). Hence we need precisely two entries in k3−q1 and in k3−q2

to be less than or equal to −2 (with all other entries non-negative). Due to eq. (5.12) all

negative entries have to arise in different components. Hence, we can choose k22 − q21 ≤ −2,

k32 − q31 ≤ −2, k43 − q42 ≤ −2 and k53 − q52 ≤ −2, with all the other entries non-negative.

Applying these conventions to eq. (5.7) results in

ν̂1 = κ
k11
1 P(k1)dz1 (5.20)

ω̂2 = κ
k22−p21
2 κ

k32−p31
3 Q(k2−p1)dz2 ∧ dz3 (5.21)

ω̂3 = κ
k43−p42
4 κ

k53−p52
5 R(k3−p2)dz4 ∧ dz5 . (5.22)

Inserting these forms into eq. (3.32), the integral can be carried out as in the previous

subsection and results in the same formula

λ(ν1, ν2, ν3) = 8iπ3c µ(P,Q,R) , µ(P,Q,R) = P̃ Q̃R̃ , (5.23)

but with the constant c now given by

c = ck11 ,−k11−2 ck22−p21,−k22+p21−2 ck32−p31,−k32+p31−2 ck43−p42,−k43+p42−2 ck53−p52,−k53+p52−2 . (5.24)

5.5 An example with vanishing Yukawa couplings

We consider a rank five line bundle sum on the CICY (5.1) specified by the following

line bundles:

L1 = OX(1, 0,−2, 0, 1), L2 = OX(1,−2, 0, 1, 0), L3 = OX(0, 1, 0, 0,−1)

L4 = OX(0, 0, 1,−1, 0), L5 = OX(−2, 1, 1, 0, 0) . (5.25)
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This model leads to a four-dimensional theory with gauge group SU(5) × S(U(1)5). The

non-vanishing cohomologies of these line bundles and their tensor products are

h•(X,L1) = (0, 4, 0, 0) h•(X,L2) = (0, 4, 0, 0)

h•(X,L5) = (0, 4, 0, 0) h•(X,L1 ⊗ L2) = (0, 4, 0, 0)

h•(X,L1 ⊗ L3) = (0, 4, 0, 0) h•(X,L2 ⊗ L4) = (0, 4, 0, 0)

h•(X,L3 ⊗ L4) = (0, 1, 1, 0) h•(X,L1 ⊗ L∗2) = (0, 4, 4, 0)

h•(X,L1 ⊗ L∗4) = (0, 16, 0, 0) h•(X,L2 ⊗ L∗3) = (0, 16, 0, 0)

h•(X,L3 ⊗ L∗4) = (0, 1, 1, 0) h•(X,L5 ⊗ L∗3) = (0, 4, 0, 0)

h•(X,L5 ⊗ L∗4) = (0, 4, 0, 0) .

(5.26)

These results imply the following upstairs spectrum

4 101, 4 102, 4 105,

4 51,2, 4 51,3, 4 52,4, 5
H
3,4, 5

H
3,4,

4 11,2, 4 12,1, 4 11,3, 12 11,4, 12 12,3, 4 12,4, 13,4, 14,3, 4 15,3, 4 15,4 . (5.27)

Here, the bold-face numbers denote SU(5) representations and the subscripts indicate under

which of the five Υ(1) symmetries a multiplet is charged. This spectrum consists of 12

families in 5̄ ⊕ 10, one 5–5̄ pair of Higgs multiplets and a number of SU(5) singlets.

Upon dividing by the freely-acting symmetry Γ = Z2 × Z2 in eq. (5.4), one obtains the

standard model spectrum with three families. It is important to remember, however, that

only couplings which respect the S(Υ(1)5) symmetry are allowed in the four-dimensional

theory. One such allowed coupling is described by the following superpotential term:

W = λIJK5
(I)
1,35

(J)
2,410

(K)
5 . (5.28)

In order to compute this coupling, we write down the relevant line bundles and bundle-

valued forms which are given by

4 51,3 → K1 = L1 ⊗ L3 = OX(1, 1,−2, 0, 0), ν̂1 = σ−23 P̃(1,1,−2,0,0)dµ̄3 ∈ H1(A,K1)

4 52,4 → K2 = L2 ⊗ L4 = OX(1,−2, 1, 0, 0), ν̂2 = σ−22 Q̃(1,−2,1,0,0)dµ̄2 ∈ H1(A,K2)

4 105 → K3 = L5 = OX(−2, 1, 1, 0, 0), ν̂3 = σ−21 R̃(−2,1,1,0,0)dµ̄1 ∈ H1(A,K3) ,

(5.29)

with explicit polynomials

P̃ = p0x0y0 + p1x0y1 + p2x1y0 + p3x1y1

Q̃ = q0x0u0 + q1x0u1 + q2x1u0 + q3x1u1 (5.30)

R̃ = r0y0u0 + r1y0u1 + r2y1u0 + r3y1u1 .

Evidently, from eq. (5.29), all three forms νi are of type τi = 1 and, hence, the Yukawa

couplings λIJK in eq. (5.28) are all zero as a consequence of the vanishing theorem (3.30).
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5.6 An example with Yukawa couplings of type (1,1,3)

A line bundle model on the CICY (5.1) which realises Yukawa couplings of type (τ1, τ2, τ3) =

(1, 1, 3) is defined by the five line bundles

L1 = OX(1,−2, 0, 0, 1), L2 = OX(0, 1, 0, 1,−2), L3 = OX(0, 0, 1,−2, 1)

L4 = OX(0, 0,−1, 0, 1), L5 = OX(−1, 1, 0, 1,−1) . (5.31)

As before, the four-dimensional gauge group is SU(5)×S(Υ(1)5) and the non-trivial coho-

mologies of the above line bundles and their tensor product

h•(X,L1) = (0, 4, 0, 0) h•(X,L2) = (0, 4, 0, 0)

h•(X,L3) = (0, 4, 0, 0) h•(X,L1 ⊗ L3) = (0, 4, 0, 0)

h•(X,L2 ⊗ L3) = (0, 1, 1, 0) h•(X,L2 ⊗ L4) = (0, 1, 1, 0)

h•(X,L2 ⊗ L5) = (0, 8, 0, 0) h•(X,L3 ⊗ L4) = (0, 3, 3, 0)

h•(X,L1 ⊗ L∗4) = (0, 4, 0, 0) h•(X,L1 ⊗ L∗5) = (0, 8, 0, 0)

h•(X,L2 ⊗ L∗3) = (0, 9, 9, 0) h•(X,L2 ⊗ L∗4) = (0, 16, 0, 0)

h•(X,L3 ⊗ L∗4) = (0, 3, 3, 0) h•(X,L3 ⊗ L∗5) = (0, 12, 0, 0)

h•(X,L5 ⊗ L∗4) = (0, 4, 0, 0)

(5.32)

lead to the following spectrum:

4 101, 4 102, 4 103,

4 51,3, 5
H
2,3, 5H2,3, 5

H
2,4, 5H2,4, 8 52,5, 3 5

H
3,4, 3 5H3,4,

4 11,4, 8 11,5, 9 12,3, 9 13,2, 16 12,4, 3 13,4, 3 14,3, 12 13,5, 4 15,4 . (5.33)

This spectrum contains 12 families 5̄ ⊕ 10, five 5–5̄ Higgs pairs and SU(5)-singlet mul-

tiplets and gives rise to a three-family standard model after a suitable quotient with the

symmetry (5.4). We are interested in the superpotential terms

W = λIJK5
H,(I)
3,4 10

(J)
1 5

(K)
2,5 . (5.34)

which are allowed by all gauge symmetries of the model. The relevant harmonic forms are

given by

3 5
H
3,4 → K1 = L3 ⊗ L4 = OX(0, 0, 0,−2, 2), ν̂1 = σ−24 P̃(0,0,0,−2,2)dµ̄4

4 101 → K2 = L1 = OX(1,−2, 0, 0, 1), ν̂2 = σ−22 Q̃(1,−2,0,0,1)dµ̄2

8 52,5 → K3 = L2 ⊗ L5 = OX(−1, 2, 0, 2,−3),

ρ̂3 = σ−31 σ−23 σ−55 R̃(−3,0,−2,0,−5)dµ̄1 ∧ dµ̄3 ∧ dµ̄5

(5.35)
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where ν̂1 ∈ H1(A,K1), ν̂2 ∈ H1(A,K2) and ρ̂3 ∈ H3(A,∧2N ∗ ⊗K3). The polynomials P̃ ,

Q̃, R̃ can be explicitly written as

P̃ = p0w
2
0 + p1w0w1 + p2w

2
1

Q̃ = q0x0w0 + q1x1w0 + q2x0w1 + q3x1w1 (5.36)

R̃ = r0x0w
3
0 + r1x0w

2
0w1 + r2x0w0w

2
1 + r3x0w

3
1

+r4x1w
3
0 + r5x1w

2
0w1 + r6x1w0w

2
1 + r7x1w

3
1 .

Note that the coefficients pI , qJ and rK in these polynomials parametrise the various

families. Using these polynomials we can compute the upstairs Yukawa couplings from

eq. (5.19) which leads to

µ(P̃ , Q̃, R̃) = 6p0q0r0 + 2p1q0r1 + 2p2q0r2 + 6p0q1r4 + 2p1q1r5 + 2p2q1r6

+2p0q2r1 + 2p1q2r2 + 6p2q2r3 + 2p0q3r5 + 2p1q3r6 + 6p2q3r7 . (5.37)

The Yukawa couplings λIJK in eq. (5.34) can be easily obtained from this expression by

choosing a basis for the coefficients, for example by setting one each of the coefficients pI ,

qJ , rK to one and the others to zero. It is however more interesting to see what happens in

the downstairs theory, obtained from the present SU(5) GUT theory by a quotient with the

Γ = Z2 × Z2 symmetry (5.4). The GUT multiplets branch as 10 → (Q, u, e), 5 → (d, L),

5
H → (T,H) into standard model multiplets, where T is the Higgs triplet which has to

be projected out. On the quotient manifold X̃ we introduce a Wilson line in the standard

hypercharge direction in order to break SU(5) to the standard model group. Such a Wilson

line can be described by two Γ-representations χ2, χ3 which we choose as χ2 = (1, 1) and

χ3 = (0, 0). This induces the multiplet charges

χd = χ∗3 = (0, 0) , χH = χ∗2 = (1, 1) , χQ = χ2 ⊗ χ3 = (1, 1) . (5.38)

In order to determine the polynomials corresponding to the downstairs spectrum, one has

to keep in mind that every differential dµi has charge (1, 1) under Γ. Moreover, for the

(0, 3)-form ρ̂3, there is an additional (1, 1) charge flip due to the fact that the bundle

∧2N ∗ ⊗ K3 transforms non-trivially under Γ from eq. (5.5). Matching these charges up

with the Wilson line charges (5.38) the representatives of the downstairs spectrum become

H3,4 : P̃ ∈ Span(w2
0 + w2

1)

Q1 : Q̃ ∈ Span(x0w0 + x1w1) (5.39)

d2,5 : R̃ ∈ Span(x0w0w
2
1 + x1w1w

2
0, x0w

3
0 + x1w

3
1)

Using eq. (5.19) the Yukawa couplings in λKH3,4Q1d
(K)
2,4 become proportional to

µ(H3,4, Q1, d
(K)
2,5 ) =

1

4

(
∂2w0

+ ∂2w1

)
(∂x0∂w0 + ∂x1∂w1)

(
x0w0w

2
1 + x1w1w

2
0

x0w
3
0 + x1w

3
1

)
=

(
1

3

)
,

(5.40)
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where we have converted the homogeneous coordinates into derivatives and introduced an

additional factor 1/4, to account for the fact that the integral is carried out on the quotient

manifold. The numerical coefficient c in eq. (5.19) is given by

c = c(−2,0)c(−2,0)c(−5,3)c(−4,2)c(−7,5) = 1 · 1 · 1

4!
· 1

3!
· 1

6!
(5.41)

5.7 An example with Yukawa couplings of type (1,2,2)

This example on the CICY (5.1) is defined by the five line bundles

L1 = OX(1,−2, 0, 0, 1), L2 = OX(0, 1,−2, 0, 1), L3 = OX(0, 0, 1, 1,−2)

L4 = OX(0, 0, 1,−1, 0), L5 = OX(−1, 1, 0, 0, 0) . (5.42)

The non-vanishing cohomologies of these line bundles and their tensor products

h•(X,L1) = (0, 4, 0, 0) h•(X,L2) = (0, 4, 0, 0)

h•(X,L3) = (0, 4, 0, 0) h•(X,L1 ⊗ L3) = (0, 4, 0, 0)

h•(X,L1 ⊗ L4) = (0, 4, 0, 0) h•(X,L2 ⊗ L3) = (0, 1, 1, 0)

h•(X,L2 ⊗ L4) = (0, 1, 1, 0) h•(X,L3 ⊗ L4) = (0, 3, 3, 0)

h•(X,L3 ⊗ L5) = (0, 4, 0, 0) h•(X,L1 ⊗ L∗2) = (0, 12, 0, 0)

h•(X,L3 ⊗ L∗1) = (0, 12, 0, 0) h•(X,L1 ⊗ L∗4) = (0, 4, 0, 0)

h•(X,L1 ⊗ L∗5) = (0, 12, 0, 0) h•(X,L2 ⊗ L∗3) = (0, 9, 9, 0)

h•(X,L2 ⊗ L∗4) = (0, 16, 0, 0) h•(X,L2 ⊗ L∗5) = (0, 4, 0, 0)

h•(X,L3 ⊗ L∗4) = (0, 3, 3, 0) h•(X,L3 ⊗ L∗5) = (0, 4, 0, 0)

(5.43)

lead to the upstairs spectrum

4 101, 4 102, 4 103,

4 51,3, 4 51,4, 5
H
2,3, 5H2,3, 5

H
2,4, 5H2,4, 3 5

H
3,4, 3 5H3,4, 4 53,5,

12 11,2, 12 13,1, 4 11,4, 12 11,5, 9 12,3, 9 13,2, 16 12,4, 4 12,5, 3 13,4, 3 14,3, 4 13,5 .

(5.44)

As before, this spectrum with 12 families in 5̄⊕10, five 5–5̄ Higgs pairs and SU(5)-singlets

leads to a three-family standard model after the quotient by Γ = Z2×Z2. We are interested

in the following superpotential term:

W = λIJK10
(I)
2 5

(J)
1,45

(K)
3,5 (5.45)

The associated harmonic forms

4 102 → K1 = L2 = OX(0, 1,−2, 0, 1), ν̂1 = σ−23 P(0,1,−2,0,1)dµ̄3

4 51,4 → K2 = L1 ⊗ L4 = OX(1,−2, 1,−1, 1), ω̂2 = σ−32 σ−24 Q(1,−3,0,−2,0)dµ̄2 ∧ dµ̄4

4 53,5 → K3 = L3 ⊗ L5 = OX(−1, 1, 1, 1,−2), ω̂3 = σ−31 σ−35 R(−3,0,0,0,−3)dµ̄1 ∧ dµ̄5 ,
(5.46)
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where ν̂1 ∈ H1(A,K1, ω̂2 ∈ H2(A,N ∗ ⊗ K2) and ω̂3 ∈ H2(A,N ∗ ⊗ K3), contain the

polynomials

P̃ = p0y0w0 + p1y1w0 + p2y0w1 + p3y1w1 (5.47)

Q̃ = q0x0y0 + q1x1y0 + q2x0y1 + q3x1y1

R̃ = r0x0w0 + r1x1w0 + r2x0w1 + r3x1w1 .

From eq. (5.23) this leads to upstairs Yukawa couplings

µ(P̃ , Q̃, R̃) = p0q0r0 + p1q0r1 + p2q3r2 + p3q3r3 . (5.48)

Under the standard model group, the relevant part of the upstairs spectrum branches as

102 → (Q, u, e)2, 51,4 → (d, L)1,4, 53,5 → (T,H)3,5. We choose the same Wilson line,

χ2 = (1, 1) and χ3 = (0, 0), as in section 5.6, which then leads to the same multiplet

charges as in eq. (5.38). Once again, we have to keep in mind that the differentials dµi
carry charge (1, 1) under Γ. Moreover, we have to remember from eq. (5.5) that forms

which arise from OA(−q2)⊗Ki transform with an additional overall Γ-charge (1, 1), while

forms from OA(−q1)⊗Ki do not. With these rules, the polynomials corresponding to the

downstairs spectrum turn out to be

Q2 : P̃ ∈ Span(y0w0 + y1w1)

d1,4 : Q̃ ∈ Span(x0y0 + x1y1) (5.49)

H3,5 : R̃ ∈ Span(x0w0 + x1w1)

Then, from eq. (5.23), the downstairs Yukawa coupling for H3,4Q1 d2,5 is proportional to

µ(H3,4, Q1, d2,5) =
1

4
(∂x0∂w0 + ∂x1∂w1)

(
x0∂y0 + x1∂y1

)
(y0w0 + y1w1) =

1

2
(5.50)

with the constant c given by

c = c(−2,0)c(−4,2)c(−3,1)c(−4,2)c(−5,3) = 1 · 1

3!
· 1

2!
· 1

3!
· 1

4!
. (5.51)

6 Conclusion

In ref. [32] methods to calculate the holomorphic Yukawa couplings have been developed

for line bundle models on certain special Calabi-Yau manifolds, with a focus on the tetra-

quadric Calabi-Yau manifolds defined in the ambient space P1×P1×P1×P1. The present

paper generalises these methods to all CICY manifolds, and, hence, demonstrates that they

are applicable to large classes of Calabi-Yau manifolds.

Our methods rely on the presence of an ambient space A, presently a product of

projective spaces although generalisations are likely possible, into which the Calabi-Yau

manifold X is embedded at co-dimension k. Likewise, the three line bundles Ki → X

associated to a Yukawa coupling should be restrictions of ambient space line bundles Ki →
A. We have shown that, in this situation, the three Ki-valued (0, 1)-forms νi ∈ H1(X,Ki)
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which enter the expression for the holomorphic Yukawa couplings can each be related to a

chains ν̂i,a of (0, a) ambient space forms, where a = 1, . . . , k+1. Moreover, from eq. (4.11),

the Yukawa couplings can be written in terms of these ambient space forms ν̂i,a.

We say that a form νi is of type τi ∈ {1, . . . , k + 1} if it originates from the ambient

space (0, τi)-form νi,τi ∈ Hτi(A,∧τi−1N ∗ ⊗ Ki). This means that the associated chain of

ambient space forms breaks down at a = τi, that is, if ν̂i,a = 0 for a > τi. One of our main

results is a vanishing theorem which states that the Yukawa coupling between three forms

νi vanishes if their associated types satisfy τ1 + τ2 + τ3 < dim(A). Especially for large

ambient space dimension dim(A) this implies the vanishing of many Yukawa couplings

since large types τi tend to be rare. This vanishing is not explained by one of the obvious

four-dimensional symmetries and, therefore, appears to be topological in nature.

The nature of this vanishing statement is somewhat puzzling in that it relates a physical

property - the vanishing of Yukawa couplings - to conditions on unphysical quantities,

essentially properties of the ambient space A which is auxiliary and carries no physical

relevance. We do not currently know if the vanishing statement is restricted to Calabi-Yau

manifolds which can be embedded into an ambient space in this way or if it extends to all

Calabi-Yau manifolds. In the latter case, there should be an “intrinsic” formulation of this

statement which only refers to properties of the Calabi-Yau manifold.

We have illustrated our methods by computing certain holomorphic Yukawa couplings

for three different line bundle standard models on a co-dimension two CICY. The most

pressing issue is, of course, the calculation of the matter field Kähler potential and, hence,

of the physical Yukawa couplings. We hope that the methods developed in this paper will

help in this regard and work in this direction is currently underway.
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A The boundary integral

In deriving the formula for the Yukawa couplings, we have performed a number of partial

integrations, starting with eq. (4.8), in order to arrive at the final result (4.11). The

boundary terms from those partial integrations have not been taken into account. The

purpose of this appendix is to justify this procedure by showing that the boundary terms

do indeed vanish.

A.1 The co-dimension one case

We start with the ambient space

A = Pn1 × Pn2 × . . .Pnm ,
m∑
i=1

ni = 4 (A.1)
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and a Calabi-Yau hypersurface X ⊂ A defined as the zero locus of a polynomial p of multi-

degree (n1 + 1, . . . , nm + 1). The relevant integral for the Yukawa couplings, before the

integration by parts, reads2

λ(ν1, ν2, ν3) ∼
∫
C4

d4z ∧ ν̂1 ∧ ν̂2 ∧ ν̂3 ∧ ∂̄
(

1

p

)
, (A.2)

where z1, . . . , z4 are affine coordinates on a patch C4 of A. Let us introduce the (0, 3) form

α̂ = ν̂1 ∧ ν̂2 ∧ ν̂3 ∈ Ω3(A,OA) , (A.3)

which takes values in the trivial bundle. Further, we define the form β̂ by

∂̄α̂ = pβ̂ . (A.4)

Note that β̂ ∈ H4(A,OA(−n1 − 1, . . . ,−nm − 1)) ∼= C and, hence, that β̂ is uniquely fixed

up to an overall constant and an exact form, both of which are irrelevant for the present

purposes. A harmonic representative for β̂ can be written down following the rules in

appendix C (for the case A = P1 × P1 × P1 × P1 it was also constructed in [32]) and this

leads to

β̂ ∼ d4z̄

κn1+1
1 . . . κnk+1

k

. (A.5)

In order to understand the boundary integral we need to study the limit when the modulus

of one of the coordinates, say z1, goes to infinity. Let us assume that z1 is an affine

coordinate of the first projective factor Pn1 . Then, for large |z1|, we have

β̂ ∼ d4z̄

zn1+1
1 z̄n1+1

1

, pβ ∼ d4z̄

z̄n1+1
1

. (A.6)

Let us solve eq. (A.4) for α̂ in this limit. The general solution for α̂ is given by α̂ = α̂0+ α̂1,

where α̂0 is the general solution to the homogeneous equation ∂̄α̂ = 0 and α̂1 is a partial

solution to the inhomogeneous equation (A.4). For a four-dimensional ambient space of

the form (A.1) we have H3(A,OA) = 0 and, hence, α̂0 is exact and, therefore, irrelevant

for the integral. From eq. (A.4) we conclude that

α̂ = α̂1 =
1

z̄n1
1

α̂′ , (A.7)

where α̂′ is a (0, 3)-form independent of z1, z̄1 and dz̄1. Note that α̂ → 0 for large |z1|.
From eq. (A.2) we find that the boundary term in the limit |z1| → ∞ behaves as∫

C3×γ1
d4z ∧ α̂

p

∣∣∣∣
|z1|→∞

, (A.8)

where γ1 is the circle at infinity in the complex plane parameterised by z1. This contour

integral is zero since, generically, p ∼ zn1+1
1 , and α̂→ 0 for large |z1|.

2In this appendix we ignore various numeric pre-factors since they do not matter for our discussion.
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A.2 The co-dimension two case

We will now repeat this discussion for a co-dimension two CICY with ambient space

A = Pn1 × Pn2 × . . .Pnm ,
m∑
i=1

ni = 5 . (A.9)

The CICY X ⊂ A is defined as the common zero locus of a a pair of polynomials p = (p1, p2)

with multi-degrees q1 = (q11, . . . , q
m
1 ) and q2 = (q12, . . . , q

m
2 ), satisfying the Calabi-Yau

condition qi1 + qi2 = ni + 1, for all i = 1, . . . ,m. Introducing affine coordinates (z1, . . . , z5)

on a patch in A, the formula for the Yukawa coupling can be written as

λ ∼
∫
C5

d5z ∧ α̂ ∧ ∂̄
(

1

p1

)
∧ ∂̄
(

1

p2

)
, (A.10)

where α̂ is given by eq. (A.3). Using the results from section 3 we obtain

∂̄α̂ = pβ̂ = p1β̂
1 + p2β̂

2 ,

∂̄β̂1 = −p2η̂ , ∂̄β̂2 = p1η̂ ,

∂̄η̂ = 0 . (A.11)

From eqs. (A.3), (A.11) it follows that

β̂a ∈ Ω4(A,OA(−da)) , η̂ ∈ H5(A,OA(−d1 − d2)) = H5(A,Λ2N ∗) ∼= C . (A.12)

This means that the form η̂ is unique up to a multiplicative coefficient and an exact form,

both irrelevant in the present context. As in the previous subsection we can use the results

from appendix C to write down the harmonic representative

η̂ ∼ d5z̄

κn1+1
1 . . . κnm+1

m

. (A.13)

To compute the boundary integrals we need to study the behaviour in the limit when the

modulus of one of the affine coordinates, say z1, goes to infinity. Let us assume that z1 is

an affine coordinate of the first projective factor Pn1 . In the large |z1| limit we obtain

η̂ ∼ d5z̄

zn1+1
1 z̄n1+1

1

, p1η̂ ∼
d5z̄

z
q12
1 z̄

n1+1
1

, p2η̂ ∼
d5z̄

z
q21
1 z̄

n1+1
1

. (A.14)

Using eq. (A.11) we can now obtain the behaviour of β̂a and α̂ in the limit of large |z1|.
Their general solution is given by

β̂a = β̂a0 + β̂a1 , α̂ = α̂0 + α̂1 , (A.15)

where β̂a0 , α̂0 are the general solutions to the corresponding homogeneous equations and

β̂a1 , α̂1 are partial solutions to the inhomogeneous equations. For a 5-dimensional ambient

space of the form (A.9) we have H3(A,OA) = 0 and H4(A,OA(−da)) = 0 so that α̂0 and

β̂a0 are both exact and can be discarded. Solving for β̂a1 and α̂1 yields

β̂1 = β̂11 ∼
dz̄2 ∧ · · · ∧ dz̄5

z
q11
1 z̄

n1
1

, β̂2 = β̂21 ∼
dz̄2 ∧ · · · ∧ dz̄5

z
q12
1 z̄

n1
1

, α̂ = α̂1 =
1

z̄n1
α̂′ , (A.16)

where α̂′ is a (0, 3)-form independent of z1, z̄1 and dz̄1.
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Now we have all the ingredients to integrate by parts in (A.10). Doing this once leads to

λ ∼
∫
C5

d5z ∧ β̂1 ∧ ∂̄
(

1

p2

)
+ boundary terms . (A.17)

We focus on the boundary terms in this expression for |z1| → ∞ and first note that

∂

∂z̄1

(
1

p1

)
dz̄1 ∧ ∂̄

(
1

p2

)
=

∂

∂z̄1

(
1

p1

)
dz̄1 ∧ ∂̄1̂

(
1

p2

)
, (A.18)

where ∂̄1̂ is the Dolbeault operator with the derivative over z̄1 omitted. Then the boundary

term for |z1| → ∞ turns into∫
C4×γ1

d5z ∧ α̂

p1
∧ ∂̄1̂

(
1

p2

)∣∣∣∣
|z1|→∞

. (A.19)

In the limit of large |z1| we generically have p1 ∼ z
q11
1 p
′
1, p2 ∼ z

q12
1 p
′
2, where p′1, p

′
2 are

holomorphic polynomials independent of z1. Inserting this into eq. (A.19) gives∫
C4×γ1

d5z ∧ α̂

zn1+1
1

1

p′1
∧ ∂̄1̂

(
1

p′2

)∣∣∣∣
|z1|→∞

. (A.20)

This integral is indeed zero because n1 > 0 and α̂→ 0 at infinity.

Finally, we need to perform the second integration by parts in the first term in

eq. (A.17). As before, we focus on the boundary term for |z1| → ∞ which is given by∫
C4×γ1

d5z ∧ β̂
1

p2

∣∣∣∣
|z1|→∞

∼
∫
C4×γ1

d5z ∧ dz̄2 ∧ · · · ∧ dz̄5
zn1+1
1 z̄n1

1 p′2

∣∣∣∣
|z1|→∞

= 0 . (A.21)

B The coboundary map

It is a well-known that for every short exact sequence of sheaves there is an associated long

exact sequence in sheaf cohomology. A crucial ingredient in this correspondence is the co-

boundary map whose construction can be found in standard textbooks, see for example [36],

page 40. Since the co-boundary map plays an important role for our discussion in the main

part of the paper, we now briefly review its construction.

We start with the short exact sequence

0 −→ A
g−→ B

f−→ C −→ 0 (B.1)

of sheaves A, B, C and sheave morphisms f , g, satisfying f ◦ g = 0. The associated long

exact sequence in cohomology has the form

· · · −→ H i(A)
g−→ H i(B)

f−→ H i(C)

δ−→ H i+1(A)
g−→ H i+1(B)

f−→ H i+1(C) −→ . . . . (B.2)

where f and g are the induced maps in cohomology and δ is the co-boundary map which

needs to be constructed. To be in line with the main part of the paper, we will use the

language appropriate for vector bundles, rather than more general sheaves, from now on.
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To derive δ, we start with a differential (0, i)-form ν ∈ H i(C) taking values in C. Since

the map f : B → C in (B.1) is surjective it follows that ν can always be written as ν = f(ν̂)

for some form ν̂ ∈ Ωi(B). However, if H i+1(A) 6= 0 the induced map f : H i(B) → H i(C)

is not surjective which implies that the form ν̂ is not necessarily closed. Now we consider

∂̄ν̂ ∈ Ωi+1(B). We get

f(∂̄ν̂) = ∂̄(f(ν̂)) = ∂̄ν = 0 , (B.3)

where we have used the fact that the map f is holomorphic. This implies that ∂̄ν̂ is in the

kernel of f and by exactness of the sequence (B.2) it is in the image of g. That is, there

exists an element ω̂ ∈ Ωi+1(A) such that gω̂ = ∂̄ν̂. Moreover, since g∂̄ω̂ = ∂̄gω̂ = ∂̄2ν̂ = 0

and g is injective we have ∂̄ω̂ = 0. Hence, ω̂ represents an element of H i+1(A) and we can

define the co-boundary map by

δ(ν) = ω̂ . (B.4)

In summary, the main features of the short exact sequence (B.1) and its long exact coun-

terpart (B.2) that we will require are as follows. For a (0, i)-form ν ∈ H i(C) and its image

ω̂ = δ(ν) ∈ H i+1(A) under the co-boundary map, there exist a (0, i)-form ν̂ ∈ Ωi(B)

such that

ν = f(ν̂) , ∂̄ν̂ = gω̂ . (B.5)

C Harmonic line bundle-valued forms on Pn

One of the main ingredients of our calculation of Yukawa couplings is the explicit con-

struction of bundle-valued forms, representing line bundle cohomologies on the ambient

space. Since the ambient spaces under consideration are products of projective spaces it is

sufficient to discuss a single projective space Pn. For P1 this was done in ref. [32]. Here we

consider the generalisation to arbitrary projective spaces.

We begin by setting up and reviewing standard facts about projective space includ-

ing the Fubini-Study metric. One way to obtain a one-to-one correspondence between

cohomology and forms is to focus on harmonic forms and we will do this relative to the

Fubini-Study metric. Line bundles, their Chern connections and cohomology are the sub-

ject of the next two parts of the appendix. Most of this material can be found in standard

text books, such as refs. [36–38]. Finally, we explain how harmonic line-bundle valued

forms are related under multiplication.

C.1 Basics of projective space

Complex projective space Pn is defined as the set of complex lines through the origin in

Cn+1. We denote coordinates on Cn+1 by xα, where α = 0, 1, . . . , n. The element of

Pn given by the line through the origin and a point (x0, x1, · · · , xn) (with at least one

xα 6= 0) is denoted by (x0 : x1 : · · · : xn) ∈ Pn. The standard open patches on Pn are

Uα = {(x0 : x1 : . . . : xn) |xα 6= 0}, where α = 0, . . . , n+ 1, with associated charts (Uα, φα)

and maps φα : Uα → Cn defined by φα(x0 : x1 : . . . : xn) = (ξα0 , ξ
α
1 , . . . , ξ̂

α
α , . . . , ξ

α
n ). Here,

ξαµ = xµ/xα are the coordinates on Cn and it is understood that ξαα = 1 is discarded. For
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an overlap Uα ∩Uβ 6= ∅, the transition functions φβα = φβ ◦ φ−1α : Cn → Cn takes the form

ξαµ 7→ ξβµ = xα
xβ
ξαµ .

On each patch Uα, the Fubini-Study Kähler potential can be written as

Kα =
i

2π
ln(κα) , κα =

n∑
µ=0

|ξµα|2 . (C.1)

The associated Fubini-Study Kähler form is given by

J = ∂∂̄Kα (C.2)

as usual and it is easy to check that this definition is independent of α on the overlaps and,

hence, gives a globally defined form on Pn. The above Kähler form is normalised such that∫
Pn
Jn = 1 . (C.3)

It will frequently be convenient to work on the patch U0 = Cn whose coordinates we also

denoted by zµ = xµ/x0, where µ = 1, . . . , n and we write κ = κ0 = 1 +
∑n

µ=1 |zµ|2.

C.2 Line bundles on projective space

The kth power of the hyperplane bundle on Pn is denoted by L = OPn(k). For each patch

Uα, a hermitian bundle metric on L is given by

Hα = κ−kα . (C.4)

On the patch U0, we also write H = H0 = κ−k. The associated Chern connection ∇0,1 = ∂̄

and ∇1,0 = ∂̄ +Aα is specified by the gauge field

Aα = ∂lnH̄α = −k∂lnκα = 2πik∂Kα (C.5)

whose curvature Fα = dAα = −∂∂̄lnH̄α is explicitly given by

Fα = k∂∂̄lnκα = −2πik∂∂̄Kα = −2πikJ . (C.6)

For the first Chern class of L = OPn(k) this implies

c1(OPn(k)) =
i

2π
F = kJ , (C.7)

as expected.

C.3 Line bundle cohomology

The dimension of line bundle cohomology for a line bundle K = OPn(k) is described by

Bott’s formula

hq(Pn,OPn(k)) =



(n+ k)!

n!k!
for q = 0, k ≥ 0

(−k − 1)!

n!(−k − n− 1)!
for q = n, k ≤ −(n+ 1)

0 otherwise

(C.8)
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This means that line bundles OPn(k) in the “gap” −n + 1 < k < 0 only have trivial

cohomologies while all other line bundles have precisely one non-trivial cohomology. For

k ≥ 0, this non-trivial cohomology is the zeroth cohomology with dimension given in the

first row of eq. (C.8). For k ≤ (−n−1), on the other hand, only the highest, nth cohomology

is non-trivial with dimension given in the second row of eq. (C.8).

We would like to represent these cohomologies by line bundle valued (0, q)-forms which

are harmonic relative to the Fubini-Study metric. Such forms να should, on each patch Uα
satisfy the equations (see ref. [32] for details)

∂̄να = 0 , ∂(H̄α ∗ να) = 0 , (C.9)

where Hα is the hermitian bundle metric (C.4). To solve these equations, we should

distinguish the different cases displayed in the Bott formula (C.8).

1. K = OPn(k) with k ≥ 0: in this case H0(Pn,OPn(k) is the only non-zero coho-

mology so we are looking for sections, that is harmonic (0, 0)-forms. On the patch

U0 they are given by

ν(k) = P(k)(z1, . . . , zn) , (C.10)

where P(k) are polynomials of degree k in zµ. It is straightforward to check that

these have the correct transition functions upon transformation to another patch.

Note that the dimension of the space of degree k polynomials in n variables is indeed

given by the first line in the Bott formula (C.8), as required.

2. K = OPn(k) with −(n + 1) < k < 0: in this case, all cohomologies vanish and

there are no harmonic forms to construct.

3. K = OPn(k) with k ≤ −(n + 1): in this case, Hn(Pn,OPn(k) is the only non-

vanishing cohomology so we are looking for harmonic (0, n)-forms. It is straightfor-

ward to verify that, on the patch U0, these can be written as

ν(k) = κkP(k)(z̄1, . . . , z̄n)dz̄1 ∧ . . . ∧ dz̄n , (C.11)

where P(k) are polynomials of degree −k−n− 1 in the n variables z̄µ. Note that the

dimension of this polynomial space equals the value in the second row of the Bott

formula (C.8), as it should.

For uniformity of notation, in the following P(k) for k ≥ 0 denotes a polynomial of degree

k in zµ, while P(k) for k ≤ −n− 1 denotes a polynomials of degree −k − n− 1 in z̄µ.

C.4 Multiplication of harmonic forms

Calculating Yukawa couplings requires performing wedge products of harmonic bundle-

valued forms on Pn (or on products of projective spaces) and we would like to understand

in detail how this works. For the case of P1 this has been dealt with in ref. [32] and here

we would like to discuss the generalisation to arbitrary projective spaces.

As we have seen, on Pn, we have harmonic bundle-valued (0, 0)-forms ν(k) = P(k)

which represent the cohomology H0(Pn,OPn(k)) for k ≥ 0 and harmonic bundle-valued
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(0, n) forms ν(k) = κkP(k)dz̄1 ∧ . . . ∧ dz̄n which represent the cohomology Hn(Pn,OPn(k))

for k ≤ −n − 1. Performing a wedge product between any two of those forms clearly

produces a ∂̄-closed form which is a representative of the appropriate cohomology. If this

wedge product is between two harmonic (0, 0)-forms the result is clearly again a harmonic

(0, 0)-form. However, the situation is more complicated for a product of a harmonics (0, 0)-

form and a harmonics (0, n)-form. The result is a ∂̄-closed (0, n)-form which, however, is

generally not harmonic. An obvious problem is to find the harmonic (0, n)-form in the

same cohomology class as this product.

To discuss this in detail, we start with a harmonic (0, 0)-form p(δ) representing a class

in H0(Pn,OPn(δ)) and a harmonic (0, n)-form

ν(k−δ) = κk−δP(k−δ)dz1 ∧ . . . ∧ dzn (C.12)

representing a class in Hn(Pn,OPn(k− δ)), where k ≤ −n− 1. The product p(δ)ν(k−δ) is ∂̄-

closed, but not generally harmonic, and defines a class in Hn(Pn,OPn(k)) whose harmonic

representative we denote by

ν(k) = κkQ(k)dz1 ∧ . . . ∧ dzn . (C.13)

This harmonic representative differs from the original product by an exact piece, so we

have an equation of the form

p(δ)ν(k−δ) + ∂s = ν(k) , (C.14)

where s is a section of OPn(k). It turns out, and will be shown below, that the correct

Ansatz for s is

s = κk−δ+1
0

(
S(1)dz2 ∧ . . . ∧ dzn − S(2)dz1 ∧ z3 ∧ . . . ∧ dzn

+ . . .+ (−1)n−1S(n)dz1 ∧ . . . ∧ dzn−1
)
, (C.15)

where the S(i) are multivariate polynomials of degree δ−1 in zi and of degree −k+δ−n in

z̄i. Eq. (C.14) can be solved by inserting the various differential forms including the most

general polynomials of the appropriate degrees and then matching polynomials coefficients.

In this way, given p(δ) and ν(k−δ), both s and ν(k) can be determined as we will see below.

While this is straightforward in principle the details are complicated. However, the main

result can be stated in a simple way and we would like to do this upfront. It turns out

that the polynomial Q(k) which determines ν(k) is given by

Q̃(k) = c p̃(δ)P̃(k−δ) where c =
(−k − 1)!

(−k + δ − 1)!
. (C.16)

We recall that the tilde denotes the homogenous counterparts of the various polynomials,

so all polynomials in the above equation depend on the homogeneous coordinates xµ, where

µ = 0, 1, . . . , n. The polynomial “multiplication” on the r.h.s. of this equation should be

carried out by converting the coordinates xµ in p̃(δ) into the partial derivatives ∂/∂x̄µ which

then, in turn, act on P̃(k−δ) which depends on x̄µ. Note that this leads to the correct degree
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required for the polynomial Q̃(k). This remarkably simple solution to eq. (C.14) is the key

to converting the calculation of Yukawa couplings into an “algebraic” calculation. From

this result, the wedge products of harmonic forms which appears in the Yukawa integral

can simple be converted into polynomial multiplication, with the appropriate conversion of

coordinates into partial derivatives, as discussed. Although s is determined by eq. (C.14),

we are unfortunately not aware of a formula for s as simple as eq. (C.16).

In order to proof eq. (C.16), we first note the derivative

∂s = κk−δ+1
0

(
∂z1S

(1) + ∂z2S
(2) + . . .+ ∂znS

(n)
)
dz1 ∧ . . . ∧ dzn

+(k − δ + 1)κk−δ0

(
z1S

(1) + . . .+ znS
(n)
)
dz1 ∧ . . . ∧ dzn. (C.17)

Inserting this together with eqs. (C.12) and (C.13) into eq. (C.14) leads to

pP + κ
n∑
i=1

∂ziS
(i) − (−k + δ − 1)

n∑
i=1

ziS
(i) = κδQ . (C.18)

Next, we should write out each of the polynomials explicitly. For each S(i) we have

S(i) =
∑

{0≤i1+...+in≤δ−1}

∑
{0≤j1+...+jn≤−k+δ−n}

c
(i)
(i1...in;j1...jn)

zi11 . . . z
in
n z

j1
1 . . . zjnn (C.19)

with coefficients c
(i)
(i1...in;j1...jn)

such that (i1, . . . , in; j1, . . . , jn) represents any index combi-

nation satisfying 0 ≤ i1 + . . . + in ≤ δ − 1 and 0 ≤ j1 + . . . + jn ≤ −k + δ − n. Similarly,

we can expand the other polynomials as

p(δ) =
∑

0≤i1+...+in≤δ
ai1...inz

i1
1 . . . z

in
n (C.20)

P(k−δ) =
∑

0≤j1+...+jn≤−k+δ−n−1
bj1...jnz

j1
1 . . . zjnn (C.21)

Q(k) =
∑

0≤j1+...+jn≤−k−n−1
qj1...jnz

j1
1 . . . zjnn . (C.22)

A useful polynomials expansion of κ = 1 + z1z1 + . . .+ znzn is given by

κδ =
∑

0≤i1+...+in≤δ

δ!

i1!i2! . . . in!(δ − i1 − . . .− in)!
zi11 . . . z

in
n z

i1
1 . . . z

in
n . (C.23)

Now substituting the polynomials from eq. (C.19)–(C.23) into eq. (C.18), one can derive

the following identity, by extracting the coefficient of the zi1 . . . zi1zi1+j11 . . . zi1+j1n term

δ!

i1! . . . in!(δ − i1 − . . .− in)!
qj1...jn

= ai1...inbl1...ln +

n∑
s=1

(ls + 1)c
(s)
i1...in;l1...ls+1...ln

+

n∑
s=1

(k − δ + 1 + ls)c
(s)
i1...is−1,...,in;l1...ln

+
n∑
s=1

n∑
r=1
r 6=s

(ls + 1)c
(s)
i1...ir−1...in;l1...lr−1...ls+1...ln

, (C.24)
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where we have denoted ls = is + js, for all s = 1, . . . , n. Note, however, that eq. (C.24) is

true only if all is are strictly positive and strictly smaller than δ −
∑n

r 6=s ir. For is = 0 the

c
(s)
i1,...,is−1,...,in;l1...ln term is not present, because the polynomial expansion of S(s) contains

only positive exponents. For is = δ −
∑n

r 6=s ir, the term c
(s)
i1...in;l1...,ls+1,...,ln

is missing,

because it does not respect the summation rule. However, we can conventionally define all

these unwanted c(s) coefficients to be zero, so that eq. (C.24) is valid for any is ≥ 0.

In order to solve the above set of equations for qj1...jn , it is useful to define the quantities

βi1...in =
(−k + δ − n− 1− (i1 + . . .+ in)− (j1 + . . .+ jn))!

(−k − n− 1− (j1 + . . .+ jn))!

(i1 + j1)!

j1!
. . .

(in + jn)!

jn!
,

(C.25)

which satisfy the following combinatorial identity∑
0≤i1+...+in≤δ

βi1...in
δ!

i1! . . . in!(δ − i1 − . . .− in)!
=

(−k + δ − 1)!

(−k − 1)!
. (C.26)

A proof of this identity can be found at the end of this appendix. Next, we multiply both

sides of eq. (C.24) by βi1...in and then sum over all indices {i1, . . . , in} with 0 ≤ i1+. . .+in ≤
δ. This trick removes all coefficients c(s) from our equation, as a result of the identity

∑
0≤i1+...+in≤δ

βi1...in

(
n∑
s=1

(ls + 1)c
(s)
i1...in;l1...ls+1...ln

+
n∑
s=1

(k − δ + 1 + ls)c
(s)
i1...is−1,...,in;l1...ln

+

n∑
s=1

n∑
r=1
r 6=s

(ls + 1)c
(s)
i1...ir−1...in;l1...lr−1...ls+1...ln

)
= 0 . (C.27)

To see this, consider the weight w of an arbitrary coefficient c
(n)
i1...in;l1...ls+1...ln

in the above

sum, defined as

w = (k − δ + 2 + ls)βi1...is+1...in + (ls + 1)βi1...in + (ls + 1)
n∑
r=1
r 6=s

βi1...ir+1...in . (C.28)

Starting from the definition of β in Eq (C.25) we notice that

(ls + 1)βi1...ir+1...in = (lr + 1)βi1...is+1...in , ∀r 6= s . (C.29)

Therefore the weight of c
(n)
i1...in;l1...ls+1...ln

becomes

w = (k − δ +

n∑
r

lr + n+ 1)βi1...is+1...in + (ls + 1)βi1...in , (C.30)

which vanishes. Coming back to eq. (C.24), we multiply with βi1...in and sum over all

{i1, . . . , in} with 0 ≤ i1 + . . . + in ≤ δ. This removes c(i) and leads to an equation for the

coefficients of Q, namely

qj1...jn =
(−k − 1)!

(−k + δ − 1)!

∑
0≤i1+...+in≤δ

βi1...inai1...inbl1,...,ln . (C.31)
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We should now compare this result for Q, obtained by solving eq. (C.14), with the proposed

solution (C.16). To this end, we convert all relevant polynomials into their homogeneous

counterparts and also convert the coordinates in p̃(δ) into derivatives. This leads to

p̃(δ) =
∑

i0+...+in=δ

ai1...in

(
∂

∂x0

)i0 ( ∂

∂x1

)i1
. . .

(
∂

∂xn

)in
(C.32)

P̃(k−δ) =
∑

j0+...+jn=−k+δ−n−1
bj1...jnx

j0
0 x

j1
1 . . . xjnn (C.33)

Q̃(k) =
∑

j0+...+jn=−k−n−1
qj1...jnx

j0
0 x

j1
1 . . . xjnn . (C.34)

Inserting this into the r.h.s. of eq. (C.16) gives

p̃(δ)P̃(k−δ) =
∑

(i0+...+in=δ)

∑
(j0+...+jn=−k−n−1)

(i0 + j0)!

j0!
. . .

(in + jn)!

jn!︸ ︷︷ ︸
βi1...in

×

×ai1...inb(i1+j1)...(in+jn)x
j0
0 x

j1
1 . . . xjnn (C.35)

and inserting the result (C.31) for the coefficients of Q proofs eq. (C.16).

Proof of of eq. (C.26): we start from the n = 1 equation

δ∑
i=0

(−k + δ − 2− i− j)!(i+ j)!

(−k − j − 2)!j!

δ!

i!(δ − i)!
=

(−k + δ − 1)!

(−k − 1)!
, (C.36)

which can be proven by explicit calculation. It is then useful to write the sum over n as

δ∑
i1=0

δ−i1∑
i2=0

. . .

δ−i1−...−in−1∑
in=0

(−k + δ − n− 1−
∑n

s ls)!

(−k − n− 1−
∑n

s js)!

l1!

j1!
. . .

ln!

jn!

δ!

i1! . . . in!(δ − i1 − . . .− in)!
,

(C.37)

and to perform the summation step by step, starting from in and ending with i1, while

using eq. (C.36) every time. For in, we use eq. (C.36) with δn = δ −
∑n−1

s=1 is instead of δ

and kn = k + n− 1 +
∑n−1

s=1 js instead of k which leads to

δ−i1−...−i(n−1)∑
in=0

(−k + δ − n− 1−
∑n

s ls)!

(−k − n− 1−
∑n

s js)!

ln!

jn!

δ!

in!(δ − i1 − . . .− in)!

=
(−k + δ − n−

∑n−1
s=0 ls)!

(−k − n−
∑n−1

s=0 js)!

δ!

(δ −
∑n−1

s=1 is)!

=
(−kn−1 + δn−1 − 2− ln−1)!

(−kn−1 − 2− jn−1)!
δ!

(δn−1 − in−1)!
(C.38)

After performing all the sums, we obtain the required result (C.26).
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