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1 Introduction

Relativistic hydrodynamics is an effective theory which deals well with dynamics of a

large number of classical or quantum particles under the long wavelength, low frequency

limit at nonzero temperature and/or chemical potential, and it has been very successfully

used in describing phenomena for a wide scope of areas in high energy nuclear collisions,

astrophysics as well as cosmology [1, 2].

Fluid dynamics is described by the conservation of energy, momentum, and net charge

number of the system, and the equations of motion (EOMs) are just the conservation

equations of the conserved energy-momentum tensor Tµν and conserved vector currents Jµa .

One has to input initial conditions to uniquely solve these partial differential equations of

the fluid dynamical EOMs. In the first-order hydrodynamical theories due to Eckart [3] and

Landau [4], the conserved energy-momentum tensor and conserved currents are expanded

by using the macroscopic degrees of freedom in the long wavelength and low frequency

limit, i.e., the local energy density ε, the pressure density p, net density of charge na of

type a, 4-velocity uµ, metric gµν (in curved spacetime), and their gradients. As pointed

out in ref. [5], Eckart’s theory has a severe problem that it admits infinite conducting speed

of heat transfer which does not abide by the Einstein’s principle of relativity. Ref. [5], on

the basis of [6, 7], tries to fix this partly by generalizing the conducting equations of heat

flow and temperature, and partly by changing the definition of heat flow 4-vector. Though
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Kranyš goes one step further, this is not yet the final story. Müller [8] and later Israel and

Stewart [9–11] point out that the Kranyš’s work has problem in only considering first order

viscous terms for the expression of entropy flux, which can be fixed by adding the second

order viscous terms. Later investigations [12, 13] show that the second order theory of the

Müller-Israel-Stewart type is the correct theory for relativistic dissipative hydrodynamics.

The strongest driven force for the development of relativistic hydrodynamics is the

experiments in the Relativistic Heavy Ion Collider (RHIC), and Muronga is the first to

apply the 2nd order relativistic hydrodynamics to RHIC physics [14–17]. Strictly speaking,

the Müller-Israel-Stewart theory is not the complete 2nd order theory. So theorists start

the journey to search for the correct and complete 2nd order theory from both the weak

coupling regime [18–22] and strong coupling regime [23–42].

Before we look back on these literatures, we would like to offer the readers some general

information on the second order relativistic fluid. In second-order theories of dissipative

fluids, the space-time evolution of thermodynamic quantities are affected not only by the

equation of state but also by dissipative, non-equilibrium processes. Thus the conservative

energy-momentum tensor have to be expanded to include the dissipative quantities such

as viscosity, thermal conductivity, diffusion and also the relaxation coefficients. Second-

order theories is hyperbolic in structure, which lead to well-posed initial-value (Cauchy)

problems, and also lead to causal propagation. Relaxation time is the distinguishing feature

of second-order theories, and relaxation terms permit us to study the evolution of the

dissipative fluxes. For an uncharged nonconformal relativistic fluid, its constitutive relation

in Landau frame, in the most general form, can be formulated as

Tµν = pPµν + εuµuν − (2ησµν + ζPµνθ) + 2ητπ

(
〈Dσµν〉 +

1

3
σµνθ

)
+ 2ητ∗π

σµνθ

3

+ κ
(
R〈µν〉 − 2uρuσRρ〈µν〉σ

)
+ κ∗2uρuσRρ〈µν〉σ

+ 4λ1σ
ρ
〈µ σν〉ρ + 2λ2σ

ρ
〈µ Ων〉ρ + λ3Ω ρ

〈µ Ων〉ρ + λ4∇〈µ ln s∇ν〉 ln s

+ Pµν(ζτΠDθ + 4ξ1σρλσ
ρλ + ξ2θ

2 + ξ3ΩρλΩρλ + ξ4P
ρλ∇ρ ln s∇λ ln s+ ξ5R

+ ξ6u
ρuλRρλ) , (1.1)

where Pµν = gµν +uµuν is the spatial projection tensor, θ = ∇ρuρ is the expansion viscous

term and Rµν , Rµνρσ are the Ricci tensor and Riemann tensor related with the metric

gµν . Here we use the same nomenclature for the second order transport coefficients as in

ref. [43], which offers a standard prescription for constructing the energy-momentum tensor

for uncharged relativistic fluid. The only difference from the conventions of ref. [43] is that

the shear tensor σµν here is one half of that in ref. [43]: σµν = P ρµP σν ∇(ρuσ) − 1
3Pµν∇ρu

ρ

with ∇(ρuσ) = 1
2(∇ρuσ + ∇σuρ). In order to keep balance, we put an additional factor

of 2 in front of all the viscous terms that consist of the shear tensor. That is why the

viscous terms of eq. (1.1) involving σµν have additional factors of 2 or 4 compared with

ref. [43]. We also define the temporal or the comoving derivative “D”: D = uµ∇µ and the

spatial-projected traceless symmetrized tensor e.g.

A〈µν〉 = P ρµP
λ
ν A(ρλ) −

1

3
PµνP

ρλAρλ. (1.2)
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With this definition one can see the shear viscous tensor is automatically spatial-projected

traceless symmetrized tensor σ〈µν〉 = ∇〈µuν〉 = σµν . Ωµν is the vorticity tensor and is

defined as Ωµν = P ρµP λν ∇[ρuλ] with ∇[ρuλ] = 1
2(∇ρuλ −∇λuρ).

From eq. (1.1) we can learn that for a uncharged nonconformal relativistic fluid, one

needs 2+15 transport coefficients to completely describe its dissipative properties up to

second order. Among these coefficients, 2 of them: η and ζ are the first order ones and

the other 15 of them: τπ, τ
∗
π , τΠ, κ, κ

∗, λ1,··· ,4 and ξ1,··· ,6 are the second order ones. But

only 1+5 of the 2+15 coefficients will be left if the fluid is conformal and uncharged, which

are η in the 1st order and τπ, κ, λ1,2,3 in the second order. κ, κ∗, ξ5 and ξ6 are related

with curved metric thus will be vanish if the fluid is in Minkowski spacetime. This case is

appropriate to the hot and dense plasma in heavy ion collisions.

For the listed references on fluid in the weak coupling, refs. [18–20] are in the dilute

gas limit thus the method that the authors use is the kinetic theory via the Grad’s moment

expansion [44]. Refs. [21, 22] are in the continuum limit and the authors of these refer-

ences employ the conventional linear response theory, in which the transport coefficients

are calculated through the conventional Kubo formula [45, 46] (for a modern pedagogical

treatment of this subject, see e.g. ref. [47]).

The above listed works for strongly coupled fluid are all via holography. Ref. [23]

directly calculates the 2nd order (in derivative expansion) 2-point correlated transport

coefficients κ and τπ,1 for the N = 4 SYM plasma via the Green-Kubo formalism [48–50] of

the fluid/gravity duality. Being aware of the original Green-Kubo formalism of fluid/gravity

correspondence only gives the formulation for 2-point correlators, the authors of ref. [52]

generalize it to the case of 3-point correlators. Based on this, ref. [24] makes a direct

calculation of the 2nd order, 3-point correlated transport coefficients: λ1, λ2 and λ3.

Refs. [25–33] studies the 2nd order transport coefficients for the fluid of various situ-

ations in the framework of BDE formalism of fluid/gravity correspondence. Refs. [25–29]

investigate 4D relativistic fluid by using the asymptotic AdS5 background, among

which [25, 26] set up the BDE formalism and study the 2nd order coefficients [25] and

entropy flux [26] of uncharged conformal fluid. Since the result of [25] is very representa-

tive, so we record it here in our conventions in the hope that it can help the readers to

understand our result better.

TAdS5
µν = r4

H(Pµν + 3uµuν)− r3
H · 2σµν + r2

H

[
2− ln 2

2
· 2
(
〈Dσµν〉 +

1

3
σµνθ

)
+
(
R〈µν〉 − 2uρuσRρ〈µν〉σ

)
+

1

2
· 4σ ρ

〈µ σν〉ρ + ln 2 · 2σ ρ
〈µ Ων〉ρ

]
,

η = r3
H , ητπ =

2− ln 2

2
r2
H , κ = r2

H , λ1 =
1

2
r2
H , λ2 = ln 2 · r2

H , λ3 = 0. (1.3)

Here we also add κ = r2
H from [23] which is obtained by directly calculating the 2-point

correlated Green-Kubo formula in AdS5 black hole background. This result is also derived

out in the Weyl-covariant formulation of BDE formalism [33]. Thus the above equation is

1The authors also find the 2nd order, three-point correlated coefficients λ1 by comparing with the result

of ref. [51].
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the complete summary for the constitutive relation of strongly coupled uncharged N = 4

SYM plasma corresponds to the AdS5 black hole in the unit 1/2κAdS5
5 = 1. Note that

from (1.3) one can see that the Haack-Yarom relation 4λ1 − λ2 = 2ητπ is satisfied, which

will be discussed in detail later.

Different variations for the same system such as the presence of a dilaton dependent

forcing term [27] and a U(1) conserved charge [28, 29] are also investigated. Generalizations

of the calculations of [25] to different dimensional asymptotic AdS spacetimes are also done,

they are ref. [30] in AdS4 and refs. [31–33] in AdSd+1. Among these, ref. [32] adds matter

fields in the AdSd+1 black hole background of [31] and ref. [33] generalizes it to the situation

where the boundary is curved. λ corrections2 to the 2nd transport coefficients of N = 4

SYM plasma are studied in refs. [34–37]. The fluids corresponds to Gauss-Bonnet theories

are studied in refs. [38–40].

It is also interesting to talk about the classifications and constraints for the 2+15

transport coefficients here. One can make classifications in the following aspects [22]:

1) From perturbative field theory view point, the η, ζ, τπ, τΠ, κ, κ
∗ and ξ5,6 can be

calculated from 2-point correlation function in the Green-Kubo formalism while τ∗π , λ1,··· ,4
and ξ1,··· ,4 are from the 3-point correlated function. This means in an effective action

formalism, η, ζ, τπ, τΠ, κ, κ
∗ and ξ5,6 will be related with “linear” terms while τ∗π , λ1,··· ,4

and ξ1,··· ,4 will be related with the “nonlinear” terms in the effective Lagrangian. 2) From

the relation with the flatness of spacetime, κ, κ∗ and ξ5,6 are the only 4 coefficients relate

with curved metric. 3) From conformality, only η, τπ, κ and λ1,2,3 will be present in a

conformal fluid, appearance of any other coefficients except these will suggest the entry

into the nonconformal regime. 4) From the view of being thermodynamical or dynamical,

κ, κ∗, λ3,4 and ξ3,4,5,6 are the thermodynamical ones while η, ζ, τπ, τ
∗
π , τΠ, λ1,2 and ξ1,2

are the dynamical ones. The reason for this can be found in ref. [22].

The above remarks are from ref. [22] and we would like to add one observation here:

5) ref. [53] shows that the 8 thermodynamical coefficients, i.e. κ, κ∗, λ3,4 and ξ3,4,5,6 are

constrained by positivity of the divergence of entropy flux and the number of the constraints

is 5, while the dynamical sector is free of these constraints. So the independent 2nd order

coefficients of any nonconformal uncharged relativistic fluid is 10. But why the number of

the constraints is 5? A physical account can be found in ref. [54] which is based on relating

the constitutive relations of the relativistic fluid with the equilibrium partition function.

Let N̄
(2)
T , N̄

(2)
V , N̄

(2)
S and N̄

(2)
S,tot separately denote the number of tensors, vectors, scalars

and scalars of total derivative which are composed of two partial derivatives acting on

background fields. Such derivatives of background fields are the non-dissipative terms

and the coefficients for such terms are the nondissipative ones. The non-dissipative terms

will not disappear in the stationary equilibrium. We also define Ñ
(2)
T , Ñ

(2)
V , Ñ

(2)
S to stand

for the number of tensors, vectors and scalars that are made of second derivative order

of fluid variables such as T, uµ, gµν , respectively. These terms are actually the terms that

contributes the constituent relations of the fluid. In Landau frame, for example, Ñ
(2)
T +Ñ

(2)
S

viscous terms will appear in the viscous part of stress tensor and Ñ
(2)
V terms will be present

2λ here is the ’t Hooft coupling.
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in the dissipative part of vector current. Then, according to ref. [54], Ñ
(2)
T − N̄

(2)
T + Ñ

(2)
S −

N̄
(2)
S of the coefficients from stress tensor and Ñ

(2)
V − N̄

(2)
V of the coefficients from the

vector conserve current are the dissipative coefficients and will disappear when evaluated

at stationary equilibrium.

For the case of nonconformal relativistic fluid without vector charge, one has Ñ
(2)
T =

8, Ñ
(2)
S = 7 for the viscous terms and N̄

(2)
T = 4, N̄

(2)
S = 4, N̄

(2)
S,tot = 1 for the background

data. So the number of non-dissipative coefficients is N̄
(2)
T + N̄

(2)
S = 4 + 4 = 8. In the

scalar part of second derivative order background terms, only N̄
(2)
S −N̄

(2)
S,tot = 4−1 = 3 will

contribute to the partition function and there will also be 3 known coefficient functions

of background fields appear with respect to each of those 3 scalar background terms. So

these 3 known coefficient functions will help us to eliminate 3 out of the 8 relations which

comes from equating the stress tensor made of background field data and the outcomes of

the variations of partition function. Thus the relations left will be 8− 3 = 5, which are the

number of constraints for the 8 non-dissipative coefficients.

The references that have been introduced above on the 2nd order transport coefficients

of strongly coupled relativistic fluid are all in conformal situations. Kanitscheider et al. [55]

study the 1st order nonconformal hydrodynamics in Dp-branes in the framework of BDE

formalism in Fefferman-Graham coordinate [56]. They predict a rough form for the energy-

momentum tensor of 2nd order but the explicit analytical results for the 2nd order transport

coefficients are not given. Using this method, the authors of ref. [41] offer the first analytic

2nd order transport coefficients for the nonconformal relativistic fluid corresponding to a

scalar deformed AdS5 black hole background. The first numerical calculation for the 2nd

order transport coefficients of nonconformal fluid is done in ref. [42] which builds upon an

Einstein+Scalar bottom-up holographic model. The authors manage to plot numerically

the temperature dependent behavior of τπ, κ, κ
∗, λ3,4 and ξ3,4,5,6 by making use of the

Kubo relations derived out in ref. [22] as well as the 5 constraints from ref. [53]. This

numerical result is the first step towards nontrivial temperature dependence for the 2nd

order transport properties of nonconformal fluid at strong coupling regime thus offers the

crossover information for the quark-gluon plasma (QGP).

Though refs. [41, 42] have covered all the 2nd order transport coefficients for the un-

charged nonconformal relativistic fluid, both of them do not jump out of the framework

of AdS5 black hole — their bulk spacetime are both deviations from AdS5 black hole. In

this work, we would like to offer a non-asymptotically AdS5 background to holographically

study the second order nonconformal relativistic fluid. With this purpose and based on

our previous work [57] where we generalize the BDE formalism of fluid/gravity correspon-

dence [25] in compactified D4-brane at first order, we are going to move to the second

order in the same background and calculate the transport coefficients. Through ref. [57]

and this work, we want to offer a nonconformal counterpart to Bhattacharyya et al.’s AdS5

construction for the BDE formalism [25] and improve our knowledge about the second

order transport properties for nonconformal relativistic fluid.

This paper is organized in 7 sections. In this section we offer the readers some

background knowledge and highlight our motivations. The following sections begin with

– 5 –
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section 2, where we will give a very brief review on the technics of the fluid/gravity cor-

respondence in BDE formalism and results for the first order calculation for nonconformal

fluid. Section 3 will be preliminaries of the second order calculation. In section 4, we

will deal with the 2nd order constraint equations from the boundary fluid viewpoint and

the results will be helpful when we investigate the dynamical equations in section 5 and

express the constitutive relation in section 6. Then we use the results of 2nd order metric

perturbations solved in section 5 to calculate the boundary stress tensor in section 6 and

discuss the final result in section 7.

2 Brief review of the first order

In this section, we will review the setup of our framework at the first order very briefly in

order to warm up for the second order. If the reader wants to learn more about it, we rec-

ommend her/him to ref. [57], where we develop a nonconformal version of the fluid/gravity

correspondence by using the compactified, near-extremal black D4-brane.

The complete action for compactified D4-brane in type IIA string theory in string

frame is [58]

S =
1

2κ2
10

∫
d10x

√
−G(s)

[
e−2φ

(
R+ 4(∇M̂φ)2

)
− g2

s

2 · 4!
F 2

4

]
− 1

κ2
10

∫
d9x
√
−H(s)e−2φK(s) +

1

κ2
10

∫
d9x
√
−H(s)

5

2L
e−

7
3
φ , (2.1)

where L3 = πgsNcl
3
s and other details can be found in the appendix. In the Einstein frame,

the above action becomes

S =
1

2κ2
10

∫
d10x
√
−G

[
R− 1

2
(∇M̂φ)2 − g2

s

2 · 4!
e
φ
2F 2

4

]
− 1

κ2
10

∫
d9x
√
−HK

+
1

κ2
10

∫
d9x
√
−H 5

2L
e−

1
12
φ. (2.2)

We use

ds2 = e−
10
3
AgMNdx

MdxN + e2A+8Bdy2 + L2e2A−2BdΩ2
4 (2.3)

and

ds2 = e−
10
3
AhMNdx

MdxN + e2A+8Bdy2 + L2e2A−2BdΩ2
4 (2.4)

to separately reduce the bulk and boundary part of the Einstein frame action (2.2). Here

again, the details for the relate definitions and derivations can be found in the appendix.

Following the derivations in the appendix, the 5D reduced action is3

S = Sbulk −
1

κ2
5

∫
d4x
√
−hK +

1

κ2
5

∫
d4x
√
−h5

2
e−

5
3
A− 1

12
φ, (2.5)

3Here we have set L = 1.
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in which the second part of r.h.s. is the Gibbons-Hawking term and the third part is the

counter term. K is the trace of the external curvature and Sbulk is

Sbulk =
1

2κ2
5

∫
d5x
√
−g
[
R− 1

2
(∂φ)2 − 40

3
(∂A)2 − 20(∂B)2 − V (φ,A,B)

]
,

V (φ,A,B) =
9

2
e
φ
2
− 34

3
A+8B − 12e−

16
3
A+2B. (2.6)

Here R is the Ricci scalar and φ, A, B are three scalar fields coupled with metric. This bulk

action is first derived in ref. [59] where Benincasa and Buchel derive the sound speed and

the ratio ζ/η for the compactified black D4-brane background. The scalar field φ originates

from the dilaton and A,B characterise the radii of the S1 and S4 on which the original

10D compactified D4-brane background is reduced. The EOMs are also recorded here

EMN − TMN = 0, (2.7)

∇2φ− 9

4
e
φ
2
− 34

3
A+8B = 0, (2.8)

∇2A+
153

80
e
φ
2
− 34

3
A+8B − 12

5
e−

16
3
A+2B = 0, (2.9)

∇2B − 9

10
e
φ
2
− 34

3
A+8B +

3

5
e−

16
3
A+2B = 0, (2.10)

where

EMN ≡ RMN −
1

2
gMNR (2.11)

is the 5 dimensional Einstein tensor and

TMN ≡
1

2

(
∂Mφ∂Nφ−

1

2
gMN (∂φ)2

)
+

40

3

(
∂MA∂NA−

1

2
gMN (∂A)2

)
+ 20

(
∂MB∂NB −

1

2
gMN (∂B)2

)
− 1

2
gMNV (2.12)

is the bulk energy-momentum tensor.

The compactified black D4-brane background can be written as

ds2 = H
− 3

8
4 (−f(r)dt2 + d~x2) +H

5
8
4

dr2

f(r)
+H

− 3
8

4 dy2 +H
5
8
4 r

2dΩ2
4,

eφ = H
− 1

4
4 , F4 = g−1

s Q4ε4, H4 = 1 +
r3
Q4

r3
, f(r) = 1−

r3
H

r3
. (2.13)

In the above, φ is the dilaton field with zero vacuum value, F4 is the Ramond-Ramond

(RR) field magnetically coupled with the D4-brane, ε4 is the volume form on the unit

4-sphere, gs is the string coupling constant and Q4 = (2πls)
3gsNc/Ω4.4 The D4-branes

lie in the directions of {xi, y} with y a compact dimension of topology S1 hence the name

“compactified black D4-brane”. Note that dy2 is written together with dΩ4 which is to

4Q4 is defined through the normalization condition for F4: 2κ2µ4Nc =
∫
S4 F4, where 2κ2 = (2π)7l8s and

µ4 = ((2π)4l5s)
−1 is the D4-brane charge.

– 7 –
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address that it is also a compact direction as the 4-sphere. The near horizon limit of metric

in eq. (2.13) is

ds2 =
( r
L

) 9
8

(−f(r)dt2 + d~x2) +

(
L

r

) 15
8 dr2

f(r)
+
( r
L

) 9
8
dy2 + L

15
8 r

1
8dΩ2

4, (2.14)

eφ =
( r
L

) 3
4
, (2.15)

where L3 = Q4/3 = πgsNcl
3
s and it is related with the Kaluza-Klein mass in the original

framework of Sakai-Sugimoto model [60] where the metric is a double Wick rotated version

of eq. (2.14) in the directions of t and y. L and rH are the two parameters with dimension in

this paper and all the physical results can be formulated in terms of them. In the following

we will set L = 1 thus only rH will appear in the physical results. One can restore the

presence of L if she/he wants to make the results look more reasonable in units.

The EOM can be solved by the following metric and scalar profiles

ds2 = r
5
3 (−f(r)dt2 + d~x2) +

dr2

r
4
3 f(r)

, f(r) = 1−
r3
H

r3
, (2.16)

eφ = r
3
4 , eA = r

13
80 , eB = r

1
10 , (2.17)

which is reduced from the background of compactified near-extremal black D4-brane. The

metric (2.16) is 5 dimensional asymptotically flat5 and has a curvature singularity at r = 0.

The Hawking temperature of (2.16) is T = 3r
1/2
H /(4π) which is also the temperature at

thermal equilibrium of this system. Re-expressed (2.16) in Eddington-Finkelstein coordi-

nates dv = dt+ dr
r3/2f(r)

with the coordinates are boosted as dv → −uµdxµ, dxi → P iµdx
µ,

one will have

ds2 = r
5
3 (−f(r)uµuνdx

µdxν + Pµνdx
µdxν)− 2r

1
6uµdx

µdr,

Pµν = ηµν + uµuν , uµ = γ(1, βi), γ =
1√

1− β2
i

. (2.18)

One can check that both (2.16) and (2.18) are solutions of Einstein equation given that

uµu
µ = −1. In the BDE formalism of fluid/gravity correspondence [25], rH and uµ in (2.18)

are promoted to be xµ dependent as rH → rH(xµ), uµ → uµ(xν), which are called the col-

lective modes. They capture the deviations from the thermo equilibrium of the bulk metric.

In the original formulation of the BDE formalism [25], the boundary that the fluid

lives in is flat. This is also true for the situation here. So the 2nd order viscous terms

should not have those relate with κ, κ∗ and ξ5,6, since these four can only appear when

the spacetime that the fluid resides in is curved. Then from the 5 constraints among

the 2nd order thermodynamical transport coefficients [53], neither should λ4 and ξ4 be

5This has been explained in [57]. One can calculate the Ricci scalar and the square of the Rieman tensor

which separately gives R = − 5(14r3+r3H )

6r11/3
and RMNPQR

MNPQ =
25(62r6+2r3r3H+125r6H )

108r22/3
, from which we can

easily see that at r → 0, both of these two approach to zero. This confirms us that the metric (2.16) is

asymptotically flat.
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at present. To illustrate this, let us record the 5 constraints between the second order

transport coefficients here from e.g. ref. [22]:

κ∗ = κ− T

2

dκ

dT
, (2.19)

ξ5 =
1

2

(
c2
sT

dκ

dT
− c2

sκ−
κ

3

)
, (2.20)

ξ6 = c2
s

(
3T

dκ

dT
− 2T

dκ∗

dT
+ 2κ∗ − 3κ

)
− κ+

4

3
κ∗ +

λ4

c2
s

, (2.21)

ξ3 =
3c2
sT

2

(
dκ∗

dT
− dκ
dT

)
+

3(c2
s−1)

2
(κ∗−κ)−λ4

c2
s

+
1

4

(
c2
sT
dλ3

dT
−3c2

sλ3+
λ3

3

)
, (2.22)

ξ4 = −λ4

6
− c2

s

2

(
λ4 + T

dλ4

dT

)
+ c4

s(1− 3c2
s)

(
T
dκ

dT
− T dκ

∗

dT
+ κ∗ − κ

)
− c6

sT
3 d2

dT 2

(
κ− κ∗

T

)
. (2.23)

Since the boundary fluid resides in a flat spacetime in the framework of fluid/gravity

correspondence, so one has from eqs. (2.21), (2.22) and (2.23) that

λ4 = 0, (2.24)

ξ3 = −λ4

c2
s

+
1

4

(
c2
sT
dλ3

dT
− 3c2

sλ3 +
λ3

3

)
, (2.25)

ξ4 = −λ4

6
− c2

s

2

(
λ4 + T

dλ4

dT

)
, (2.26)

considering κ, κ∗, ξ5,6 are all 0. The above equations will further give

λ4 = 0, ξ4 = 0, (2.27)

ξ3 =
1

4

(
c2
sT
dλ3

dT
− 3c2

sλ3 +
λ3

3

)
. (2.28)

Thus in the original framework of fluid/gravity correspondence that the boundary metric is

flat, λ4 and ξ4 will always be 0, no matter whether the constitutive relation of the boundary

fluid will have the viscous terms relate with λ4 and ξ4. Said differently, the original BDE

formalism as constructed in ref. [25] can not capture the viscous information relate with

λ4 and ξ4.6

From the above discussions one can see that the 6 out of 8 thermodynamical transport

coefficients: κ, κ∗, ξ5,6, λ4 and ξ4 are actually out of reach in the original framework of

the fluid/gravity correspondence. But λ3 and ξ3 are reachable since they relate with the

vorticity tensor and they will always be accompany with each other by (2.28). Thus we can

make a pre-judgement that the potential candidates among the 15 second order coefficients

6The original framework of BDE formalism [25] has been generalize into a Weyl covariant form in ref. [33],

which makes the transport coefficients of curved spacetime like κ reachable. But this Weyl covariant

form is still in the conformal regime. For now we do not know whether there is a similar formulation for

nonconformal backgrounds that can help us to extract the coefficients like κ, κ∗ etc. If the answer is positive,

then one may get the information for λ4 and ξ4 via such a generalized nonconformal BDE formalism.
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that our work may derive out are τπ, τ
∗
π , τΠ, λ1,2,3 and ξ1,2,3. It turns out that λ3 and ξ3

are trivial which is like the case of λ3 in N = 4 SYM plasma [24, 25].

We want to make a further discussion on the above 9 candidates here. Since τπ and τΠ

are the relaxation time due to the dissipation caused by the flow of shear and expansion

types, respectively. Thus these two should be present at this paper. τ∗π is the indicator

for the entry into nonconformal regime associated with τπ so it should also be here. As

for λ1,2,3 and ξ1,2,3, the only message that we can confirm for now is ξ2 should be here

since it associates with θ2. For the rest we can only say if any (or both) of ξ1,3 appear(s),

the corresponding λ1,3 must also appear. Since viscous terms relate with ξ1,3 are the

corresponding “trace” part of those relate with λ1,3.

The following steps are standard: 1. expand the boundary dependent metric with re-

spect to derivatives of collective modes; 2. add perturbations into the expanded metric and

solve them from the EOM of 5D bulk; 3. calculate the boundary stress tensor using the full

5D bulk metric with all the perturbations present and one can get the transport coefficients.

The full metric with first order perturbations in [57] is

ds2 = −r
5
3

(
f(rH(x), r)− Fk(rH(x), r)

r3
∂ρu

ρ

)
uµuνdx

µdxν − 4r
7
6uµDuνdx

µdxν

+ r
5
3F (rH(x), r)σµνdx

µdxν + r
5
3

(
1 +

1

3
F (rH(x), r)∂ρu

ρ

)
Pµνdx

µdxν

− 2r
1
6 (1 + Fj(rH(x), r)∂ρu

ρ)uµdx
µdr, (2.29)

where F (r), Fj(r) and Fk(r) are solved from 1st order dynamical equations for the metric

perturbations:

F (r) =
1

3
√
rH

[
2
√

3

(
arctan

1− 2
√
r/rH√

3
− arctan

1 + 2
√
r/rH√

3
+ π

)

+ ln
(
√
r +
√
rH)4(r +

√
rrH + rH)2(r2 + rrH + r2

H)

r6

]
,

Fj(r) = −2

5

r
5
2 − r

5
2
H

r3 − r3
H

+
1

10
F (r),

Fk(r) =
4

5
r

5
2 − 1

5
(r3 + 2r3

H)F (r). (2.30)

One should note that the way we write functions like F (r) etc. means the rH inside are x

independent while F (rH(x), r) means they depend on x.

As [61, 63] have shown that one can build the precise holography correspondence for the

nonconformal Dp-branes (p 6= 3) just the same as for D3-brane in the so called “dual frame”,

in which the near horizon limit of Dp-branes will have the topology of AdSp+2×S8−p. For

the compactified D4-brane case, the dual frame will be AdS5×S1×S4. The only difference

of the non-conformal brane in the dual frame from the D3-brane is the linear dilaton. Since

the perturbation of dilaton is not turned on, the dilaton is just part of the background.

Thus the framework of BDE formalism of fluid/gravity correspondence build for D3-brane
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can be applied to the cases of nonconformal Dp-branes. This justifies the nonconformal

generalization of BDE formalism.

The boundary stress tensor of the 5D reduced gravity theory can be derived out from

eq. (2.5) [57] as

Tµν =
1

2κ2
5

lim
r→∞

r
5
3 · 2

(
Kµν − hµνK −

5

2
r−

1
3hµν

)
. (2.31)

The 3 scalar fields will not contribute the boundary stress tensor since they depend only

on r. The Hilbert-Einstein part together with the Gibbons-Hawking term of eq. (2.5) will

give (Kµν − hµνK) with the derivations can be found in textbook. The counter term will

contribute as 5
2r
−1/3hµν , whose derivations can be found in ref. [57]. The stress tensor for

the boundary relativistic fluid upto first order viscous terms is

T (0)+(1)
µν = r3

H

(
1

2
Pµν +

5

2
uµuν

)
− r

5
2
H

(
2σµν +

4

15
Pµν∂ρu

ρ

)
. (2.32)

In the above equation and the following, we set 2κ2
5 = 1. It will be restored at the end of

this paper. T
(0)
µν is the ideal fluid energy-momentum tensor which contains only the first

two terms in the r.h.s. of (2.32).

3 Setup of the second order calculation

At every order of the BDE formalism, the first step is to get the correct expanded bulk

metric. The second order calculation is much more complicated than the first order. In

this section, we will give detailed accounts on how to expand the first order complete

metric (2.29) to the second derivative order. Please note that we will not introduce the

second order perturbations in this section which will be the main content of section 5.

Here we would also like to explain a little bit on the meaning of the “second order”

in both the title of this and the next sections. It means that these two sections deal with

the physical information at the second derivative order (that is, the metrics, constraint

equations and stress tensors with terms of two partial derivatives with respect to xµ).

It does not refer to the order of the perturbations (in sections 3 and 4). To be more

precise, we expand the 1st order full metric to the 2nd order in section 3 and derive out the

constraint equations and Navier-Stokes equations of the 2nd derivative order in a purely

fluid viewpoint in section 4. Both of these two sections are the preliminaries for solving

the 2nd order perturbations in section 5.

We begin by expanding rH(x) and βi(x) to 2nd order in (2.29) as:

rH(x) = rH + δrH +
1

2
δ2rH + δr

(1)
H , βi(x) = δβi +

1

2
δ2βi,

uµ(x) =

(
1 +

1

2
δβiδβi

)
δµ0 +

(
δβj +

1

2
δ2βj

)
δµj , (3.1)

where we denote rH ≡ rH(0) and δ#, δ2# are short for xµ∂µ#, xµxν∂µ∂ν#.7 r
(1)
H is the

first order collective mode for the relativistic fluid on the boundary which is independent

7# stands for rH or βi.
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of the first order source xµ∂µr
(0)
H that comes from derivative expansion of r

(0)
H .8 Then

f(rH(x), r), F (rH(x), r), Fj(rH(x), r) and Fk(rH(x), r) in (2.29) can be expanded as

f(rH(x), r) = f(r)−
3r2
H

r3
δrH −

3r2
H

2r3
δ2rH −

3r2
H

r3
δr

(1)
H −

3rH
r3

(δrH)2,

F (rH(x), r) = F (r)− F (r) + 2rF ′(r)

2rH
δrH ,

Fj(rH(x), r) = Fj(r) +

5r
3
2
Hr

3 − 6r2
Hr

5
2 + r

9
2
H

5(r3 − r3
H)2

− F (r) + 2rF ′(r)

20rH

 δrH ,

Fk(rH(x), r) = Fk(r) +
(r3 − 10r3

H)F (r) + 2r(r3 + 2r3
H)F ′(r)

10rH
δrH , (3.2)

where f(r), F (r), Fj(r) and Fk(r) stand for functions with rH independent of x. To any

one of them, e.g. F (r), we may just denote it as F and its derivatives as F ′, F ′′ etc. in

order to make the conventions simple. Thus (2.29) can be expanded to the second order

with respect to boundary derivatives as

ds2 =

[
− r

5
3 f +

3r2
H

r
4
3

δrH +
3r2
H

2r
4
3

δ2rH +
3rH

r
4
3

(δrH)2 +
3r2
H

r
4
3

δr
(1)
H +

r3
H

r
4
3

δβiδβi − 4r
7
6 δβi∂0βi

+
Fk

r
4
3

(∂β + δ∂β + δβi∂0βi) +
(r3 − 10r3

H)F + 2r(r3 + 2r3
H)F ′

10rHr
4
3

δrH∂β

]
dv2

+ 2

[
−
r3
H

r
4
3

δβi −
r3
H

2r
4
3

δ2βi −
3r2
H

r
4
3

δrHδβi −
Fk

r
4
3

δβi∂β + 2r
7
6 (∂0βi + δ∂0βi + δβj∂jβi)

−r
5
3F

2
(δβj∂iβj + δβj∂jβi)

]
dxidv + 2r

1
6

1 +
1

2
δβiδβi + Fj(∂β + δ∂β + δβi∂0βi)

+

5r
3
2
Hr

3 − 6r2
Hr

5
2 + r

9
2
H

5(r3 − r3
H)2

− F + 2rF ′

20rH

 δrH∂β

 dvdr
+

[
r

5
3 δij +

r3
H

r
4
3

δβiδβj − 2r
7
6 (δβi∂0βj + δβj∂0βi)+r

5
3F (∂(iβj)+δ∂(iβj) + δβ(i∂|0|βj))

−r
5
3 (F + 2rF ′)

2rH
δrH∂(iβj)

]
dxidxj − 2r

1
6

(
δβi +

1

2
δ2βi + Fjδβi∂β

)
dxidr, (3.3)

where ∂β ≡ ∂iβi, ∂0 ≡ ∂
∂v and δβ(i∂|0|βj) = 1

2(δβi∂0βj + δβj∂0βi).

8A point should be made clear that in general, the collective modes are expanded as #(x) = #(0)(x) +

#(1)(x) + · · · , and we write r
(0)
H (x) as rH(x) just for simplicity since only r

(0)
H (x) and r

(1)
H (x) are related

with our discussions but not the full collective mode rH(x). β
(1)
i can be set to zero, according to [25].
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4 The second order constraints and Navier-Stokes equations

In this section, we will discuss the constraint equation and the Navier-Stokes equation at

the second derivative order. This section may look like a digression and not relate with the

discussions in the previous section. Its significance lies in two folds: firstly, section 5 will

use the results of this section as a consistent check. Because this section derives out the

constraint equations and Navier-Stokes equations of 2nd derivative order in a purely fluid

point of view while section 5 is in the bulk gravity standpoint. Secondly, the derivation in

section 5 and 6 sometimes need the results of this section.

The constraint equation is given by

∂µ∂
ρT (0)

ρν = 0, (4.1)

and the Navier-Stokes equation is given by

∂µT (0+1)
µν = 0. (4.2)

From (4.1), with µ, ν can be set to 0 or i, we can derive the following constraint relations

satisfied by the second order spatial viscous terms:

s1 +
2

5
s2 −

8

5
S1 −

4

25
S3 = 0, (4.3)

s2 +
1

2
s3 − 2S1 +

2

15
S3 −

1

2
S4 + S5 = 0, (4.4)

v1i + 2v2i −
8

5
V1i −V2i + 2V3i = 0, (4.5)

v1i +
4

3
v4i +

2

15
v5i − 4V1i −

4

5
V2i −

8

5
V3i = 0, (4.6)

v3i +
7

15
V4i −V5i = 0, (4.7)

t1ij + 2t2ij − 4T1ij +
14

15
T4ij +

1

2
T5ij + 2T6ij = 0. (4.8)

The explicit forms of this terms are given in table 1. li = εijk∂jβk is the pseudo vec-

tor associates with the vorticity tensor Ωµν and σij = ∂(iβj) − 1
3δij∂β is the spatial

components of σµν .

It is necessary to give some accounts for the meanings of the constraints, i.e. eq. (4.3)

to eq. (4.8). They come from expanding all the components of (4.1) to second order, in

which eq. (4.3) and eq. (4.4) are the (00) and (ii) components of (4.1); (4.5) and (4.6) are

the (0i) and (i0) components of (4.1); the last two are the anti-symmetric and symmetric

part of the traceless tensor sector of (4.1), respectively.

The Navier-Stokes equations at the second order are got by expanding (4.2) to second

order and ν = 0 gives

∂µT
(0+1)
µ0 = −15

2
r2
H∂0r

(1)
H + r

5
2
H∂iβj∂iβj + r

5
2
H∂iβj∂jβi −

2

5
r

5
2
H(∂β)2

+ r3
Hx

µ

(
− 15

2rH
∂µ∂0rH −

15

r2
H

∂µrH∂0rH − 6∂µβi∂0βi −
9

rH
∂µβi∂irH

− 9

rH
∂µrH∂β − 3∂µ∂β

)
. (4.9)
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1 of SO(3) 3 of SO(3) 5 of SO(3)

s1 = 1
rH
∂2

0rH v1i = 1
rH
∂0∂irH t1ij = 1

rH
∂i∂jrH − 1

3δijs3

s2 = ∂0∂iβi v2i = ∂2
0βi t2ij = ∂(ilj)

s3 = 1
rH
∂2
i rH v3i = ∂0li t3ij = ∂0σij

S1 = ∂0βi∂0βi v4i = 9
5∂jσij − ∂

2βi T1ij = ∂0βi∂0βj − 1
3δijS1

S2 = li∂0βi v5i = ∂2βi T2ij = l(i∂0βj) − 1
3δijS2

S3 = (∂iβi)
2 V1i = 1

3∂0βi∂β T3ij = 2εkl(i∂j)βl∂0βk

S4 = lili V2i = εijk∂0βjlk T4ij = σij∂β

S5 = σijσij V3i = σij∂0βj T5ij = lilj − 1
3δijS4

V4i = li∂β T6ij = σikσkj − 1
3δijS5

V5i = σijlj T7ij = 2εkl(iσj)llk

Table 1. The list of all the second order derivatives of temperature and spatial velocity fields.

One may expect to get an equation of ∂0r
(1)
H with some 2nd order viscous terms in scalar

sector according to [25]. So the offending x dependent terms should be zero by itself, which

can be shown by using the first order constraint equations [57]:

1

rH
∂0rH = −2

5
∂β,

1

rH
∂irH = −2∂0βi. (4.10)

Then the x dependent part can be reexpressed as

v

(
− 15

2rH
∂2

0rH − 3∂0∂β +
6

5
(∂β)2 + 12∂0βi∂0βi

)
+ xi

(
− 15

2rH
∂0∂irH − 3∂i∂β + 6∂0βi∂β + 12∂iβj∂0βj

)
. (4.11)

One can check that the terms in the bracket behind v is just eq. (4.3) and terms in the

bracket of xi is eq. (4.6). Thus ν = 0 component of eq. (4.2) finally gives one of the

Navier-Stokes equations for the non-conformal hydrodynamics at the second order

1

r
1/2
H

∂0r
(1)
H =

8

225
S3 +

4

15
S5. (4.12)

The ν = i component of (4.2) is

∂µT
(0+1)
µi

= r
5
2
H

 3

2r
1
2
H

∂ir
(1)
H −

3

5
∂0βj∂iβj − 2∂0βj∂jβi +

11

15
∂0βi∂β −

4

15
∂i∂β − 2∂jσij + 10∂0βjσij


+ r3

Hx
µ

(
−18

5
∂µβi∂β+

3

rH
∂µrH∂0βi + 3∂µ∂0βi +

3

2rH
∂µ∂irH + 3∂µβj∂jβi + 3∂µβi∂β

)
,

(4.13)
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where the x dependent part can be rewritten as

v

(
3∂2

0βi +
3

2rH
∂0∂irH −

9

5
∂0βi∂β + 3∂0βj∂jβi

)
+ xj

(
3

2rH
∂j∂irH + 3∂0∂jβi − 6∂0βj∂0βi −

3

5
∂jβi∂β + 3∂jβk∂kβi

)
. (4.14)

The brackets behind v and xj are separately the eq. (4.5) and eq. (4.8), thus we have

another Navier-Stokes equation at the second order as

1

r
1/2
H

∂ir
(1)
H =

4

3
v4i +

4

5
v5i +

4

15
V1i −

7

15
V2i −

74

15
V3i. (4.15)

Equations (4.12) and (4.15) can be derived as the constraint equations from the bulk gravity

theory, as will be shown in the next section.

5 The second order perturbations

We will solve the second order perturbations in this section. In considering the perturba-

tions, we will adopt the scheme of [25] that we stick to the gauge that grr = 0 and gµr ∝ uµ.

This gauge offers us the convenience that one need not to consider the fluctuations of (rr)

and (ir) components of the bulk metric. The covariant form for the full perturbation ansatz

can be set as

ds2
(full pert.) =

k(x, r)

r
4
3

uµ(x)uν(x)dxµdxν +
2r3
H

r
4
3

P ρµwρ(x, r)uν(x)dxµdxν

− 2r
1
6 j(x, r)uµ(x)dxµdr + r

5
3 (αµν(x, r) + h(x, r)Pµν)dxµdxν . (5.1)

The 2nd order of the perturbation ansatz is:

ds2
(2nd order pert.) =

k(2)(r)

r
4
3

dv2 −
2r3
H

r
4
3

w
(2)
i (r)dxidv + 2r

1
6 j(2)(r)dvdr

+ r
5
3

(
h(2)(r)δij + α

(2)
ij (r)

)
dxidxj . (5.2)

The results for the second order perturbations will have the form like∑
I

FI(r)× T 2nd viscous
I , (5.3)

where FI(r) are some functions of r and T 2nd viscous
I are the second order viscous terms

listed in table 1. We will begin to solve all these second order perturbations in the rest of

this section, for the sake of simplicity, we set rH = 1 from now on and will restore it when

giving our final result.
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5.1 The tensor part

We begin with the tensor part as in the first order, the EOM for α
(2)
ij is

Eij −
1

3
δijδ

klEkl = Tij −
1

3
δijδ

klTkl. (5.4)

When putting (3.3) into the above equation, one gets the differential equation for α
(2)
ij :

d

dr

(
r4f

dα
(2)
ij

dr

)
=

(
6r− 5

2
r

3
2F−2r

5
2F ′
)

(t3ij+T1ij)+

[
10

3
r−15r2FFj+

5

2
r

3
2

(
2Fj+

7

15
F

)
− 21

5
r

5
2F ′+2r3

(
4FjF

′+2FF ′− 5

2
FF ′j

)
− 1

2

(
2FF ′+4F ′Fj−4FF ′j+FF

′
k

− 2FkF
′)− 4

5
r

7
2F ′′ +

1

6
r4fF ′2 + r4

(
F ′F ′j + 2FjF

′′ + FF ′′
)

+ r
(
F ′F ′k−2FjF

′′−F ′F ′j+FkF ′′−FF ′′−FF ′′k
)]
T4ij +

(
2r +

1

r2

)
T5ij

+
(

8r − 5r
3
2F + r4fF ′2

)
T6ij +

(
r +

5

4
r

3
2F + r

5
2F ′
)
T7ij . (5.5)

One can see that the above second order differential equation is much more complex than

its first order counterpart. So in general it will not have an analytical solution as in the

first order case. Since we only care about its behavior at large r, thus we will take large

r expansion during the solving process. Another remark is that the l.h.s. of eq. (5.5) is

the same as the differential equation of α
(1)
ij . This manifests the remarkable features of

the BDE formalism of fluid/gravity duality: 1. this formalism is linear in r direction and

nonlinear in xµ directions; and 2. the homogeneous part of the differential equations in the

variable r is the same at every order, but the nonhomogeneous part, i.e. the source part

in the r.h.s. of every differential equations for the perturbation ansatz are different from

order to order.

We write the solution of (5.5) formally as

α
(2)
ij =

∫ ∞
r

−1

x4f(x)
dx

∫ x

1
S

(α)
ij (y)dy, (5.6)

where the source term S
(α)
ij is just the r.h.s. of (5.5). An important feature of S

(α)
ij (y) is

that it has several independent branches. Because every second order viscous term can

be seen as an independent branch and they can be solved independently. For example we

may solve (5.5) with only t3ij at present first, and then with only T4ij , . . . To get the final

solution we need only add all these “subsolutions” with only one viscous term present at a

time together. But even does one solve it in this way, he/she still can not integrate (5.5)

directly to get an analytic solution. Since we only care about its behavior at large r, thus

we do the above integration in the following way: 1. calculate the inner integration directly;

2. expand the first integrated result with −1
x4f(x)

multiplied at large r; 3. calculate the outer
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integration. The final result turns out to be

α
(2)
ij =

[(
4

3
− π

9
√

3
− ln 3

3

)
1

r3

](
t3ij+T1ij

)
+

[
8

3r
+

(
28

45
− π

45
√

3
− ln 3

15

)
1

r3

]
T4ij −

1

r
T5ij

+

[
4

r
+

4

3r3

]
T6ij +

[
− 2

r
+

(
π

18
√

3
+

ln 3

6

)
1

r3

]
T7ij . (5.7)

We keep the result to the order 1/r3 since only this order contributes to the boundary

stress tensor. Since (5.7) is already regular at r = rH and asymptotically to zero, thus all

the integration constants for the solution of α
(2)
ij should be zero.

Here we would like to explain more about the integration constants. The vector per-

turbation wi is trivial at any order and it will not contribute to the boundary stress tensor

so will be ignored in the discussion here.

The differential equations that α
(2)
ij and h(2) satisfy are both of second order in deriva-

tives of r and they have the form like:

H(r)P (2)(r) = S(r). (5.8)

P (2)(r) stands for either α
(2)
ij or h(2) and H(r) is the second order differential operator

for both of them. S(r) is the source term for P (2)(r), it can be of single branch or multi

branch. The branch refers to the spatial viscous tensors (presented in table 1) that S(r)

contains. For example, the source S
(α)
ij (r) for α

(2)
ij is a sum of t3ij ,T1ij ,T4ij ,T5ij ,T6ij and

T7ij with r dependent coefficient functions, as can be seen in eq. (5.5). So α
(2)
ij (r) has 5

branches.9 The differential equations for j(2) and k(2) are involved with h(2), it turns out

that their equations are first order ones.

The differential equations are solved analytically by definite integrations. So we come

across the problem for the integration constants here. For α
(2)
ij or h(2), there are two

constants in every branch: one is fixed by the regularity at r = rH , the other one is fixed

by the normalization condition at the infinity. So in general we should write the solution

for α
(2)
ij or h(2) as

P (2) =

∫ ∞
r

−1

x4f(x)
dx

∫ x

1
S(y)dy +

∑
I

(∫ ∞
r

−C(I)
1

x4f(x)
dx+ C

(I)
2

)
, (5.9)

where “I” is summed over all the viscous terms appearing in the source. Since both of

the source for α
(2)
ij and h(2) have 5 branches, both of them contain a total number of 10

integration constants. For j(2) and k(2), due to their equations are first order ones, both

of them have 5 integration constants. The integration constants of j(2) are fixed by the

normalization condition at r → ∞ and those of k(2) are fixed by the restriction that the

boundary stress tensor is in Landau frame. Here we offer table 2 to make a summary on

the integration constants. It turns out that the integration constants for α
(2)
ij , h(2) and j(2)

are all zero and only the 5 of k(2) are non-trivial.

9S
(α)
ij is a summation of 6 spatial viscous tensors, but the coefficient functions for t3ij and T1ij are the

same thus can be treated equally as one branch.
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regularity at rH normalization at r →∞ requirement of Landau frame

α
(2)
ij 5 5 0

h(2) 5 5 0

j(2) 0 5 0

k(2) 0 0 5

Table 2. This table shows that the integration constants for the solutions of the 2nd order pertur-

bations: rows stands for the perturbations while the columns represent the conditions used to fix

the integration constants. The number of each cell tells how many integration constants are fixed

in the corresponding condition for a certain sector of perturbations. The integration constants of

the vector part need not to consider since the vector part does not contribute to the boundary

stress tensor.

5.2 The vector part

The constraint equation of the vector part is

gr0(E0i − T0i) + grr(Eri − Tri) = 0. (5.10)

Using the 2nd order expanded metric (3.3), the above equation gives

1

r8/3
∂ir

(1)
H

=

[
− 20

9r1/6
+

(
100

9
r

1
3 − 4

3r8/3

)
Fj +

20F ′k
9r5/3

− 10Fk
9r8/3

− 10

9
r

4
3 fF ′

]
v4i

+

[
4

9r1/6
+

(
10

9
r

1
3 − 4

9r8/3

)
Fj +

2F ′k
9r5/3

− Fk
9r8/3

+
2

9
r

4
3 fF ′

]
v5i

+

[
16

r1/6
+

4

r37/6f2

(
− 12

5
+

2

5r5/2
+ r

1
2 + 6r3 − 5r

7
2

)
+

4F ′

3

(
1

2
r

4
3 f +

4

5r5/3
+

23

5
r

4
3

)
− 4

3
F ′′
(

6

5r2/3
+

3r
7
3

5

)
− 12F

5r8/3
− 4Fj

3

(
85

2
r

1
3 +

1

r8/3

)
+

4F ′j
3

(
6

r5/3
− 15r

4
3

)
− 19Fk

3r8/3
+

2F ′k
3r5/3

−
4F ′′k
r2/3

]
V1i +

[
− 1

r1/6
− 1

2
r

4
3 fF ′ +

2Fj
3

(
5

2
r

1
3 − 1

r8/3

)
+

F ′k
3r5/3

− Fk
6r8/3

]
V2i +

[
− 6

r1/6
− 3r

4
3 fF ′ +

4Fj
3

(
5

2
r

1
3 − 1

r8/3

)
+

2F ′k
3r5/3

− Fk
3r8/3

]
V3i (5.11)

Expand the above equation to the order of 1/r3 one gets the vector constraint equation at

the second order:

1

r8/3
∂ir

(1)
H =

1

r8/3

(
4

3
v4i +

4

5
v5i +

4

15
V1i −

7

15
V2i −

74

15
V3i

)
, (5.12)

which is the second Navior-Stokes equation (4.15).

The dynamical equation of the vector sector reads

Eri − Tri = 0, (5.13)
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which gives

r
1
2

2

d

dr

[
1

r2

(
dw

(2)
i

dr

)]
= S

(w)
i . (5.14)

Here S
(w)
i is the source of vector perturbation.

S
(w)
i = −

(
5

3r3/2
+

5

6
F ′ − 25

6r
Fj +

5

3
F ′j

)
v4i +

(
1

3r3/2
+

1

6
F ′ +

5

12r
Fj −

1

6
F ′j

)
v5i

+

[
1

r3/2
+

3

2r4f
+

18

r9f3

(
6

5
r

9
2 − r2

5
− r5

)
+

5

r
Fj+F

′
j+

3F

8r
− 57

10
F ′− 33

10
rF ′′

]
V1i

+

(
5

4r3/2
− 3

8
F ′+

5

8r
Fj −

1

4
F ′j

)
V2i −

(
1

2r3/2
+

9

4
F ′ − 5

4r
Fj+

1

2
F ′j

)
V3i. (5.15)

Three out of its five branches have the divergence part

S
(w)
i (r →∞)→ 4V1 + 2V2 + 4V3

r3/2
. (5.16)

So w
(2)
i (r) can be integrated out as

w
(2)
i (r) = −r2(4V1i + 2V2i + 4V3i) +

∫ ∞
r

dxx2

∫ ∞
x

dy
2

y
1
2

(
S

(w)
i (y)− 4V1 + 2V2 + 4V3

y3/2

)
=

(
100

63r1/2
− 37

42r

)
v4i +

(
46

63r1/2
− 71

210r

)
v5i −

(
4r2 +

26

21r1/2
− 3

2r

)
V1i

−
(

2r2 +
1

3r1/2
− 33

280r

)
V2i −

(
4r2 +

86

21r1/2
− 243

140r

)
V3i, (5.17)

where −r2(4V1i + 2V2i + 4V3i) comes from the indefinite integral of the divergent part of

the source term S
(w)
i (r →∞). We record the result of the solution to vector perturbation

for the convenience of the reader. In fact, the vector perturbation does’t contribute to the

boundary stress tensor. This dues to the fact that the vector part in our frame work is

trivial, which is like the case in ref. [25]. The perturbations can contribute to the boundary

stress tensor only if they contain terms of order 1/r3.

5.3 The scalar part

The scalar sector is still the most complicated part at second order. The good news is that

we will benefit a lot from the experiences that we required at solving it in the first order.

The scalar part will contribute to the stress tensor of the fluid on the boundary. So we

need to solve all the three scalar perturbations explicitly. Among the EOMs of φ, A and

B, we only need to consider one of them since their EOMs will give the same differential

equations in the situation that we do not turn on the perturbations for these 3 scalar fields.

The constraint equation of scalar sector is:

grr(Er0 − Tr0) + gr0(E00 − T00) = 0 , (5.18)

grr(Err − Trr) + gr0(Er0 − Tr0) = 0 . (5.19)
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The first one gives

1

r8/3
∂0r

(1)
H =

[
4

15r1/6
+

4

5r19/6
− 2

3
r

1
3 fFj −

Fk
3r8/3

− F

5r8/3
+

2

15
r

4
3 fF ′

]
s2 +

2

5r19/6
s3

+

[
− 8

5r19/6
+

4

15r1/6
− F

5r8/3
− 2

3
r

1
3 fFj −

Fk
3r8/3

+
2

15
r

4
3 fF ′

]
S1

+

[
4

75r6f2

(
5r

10
3 − 6r

17
6 − 4r

1
3 +

6

r1/6
− 1

r8/3

)
+

8

75r19/6
+

4

45r1/6
− 12

75r3/8
F

+
6

75
r

4
3F ′ +

2

45
r

4
3 fF ′ +

4

75
r

7
3 fF ′′ − 2Fk

5r8/3
+

2F ′k
15r5/3

]
S3 −

2

5r19/6
S4

+

[
4

15r1/6
+

4

5r19/6
+

2

15
r

4
3 fF ′

]
S5. (5.20)

After expanding to order O(1/r4), the above equation gives:

1

r8/3
∂0r

(1)
H =

1

r8/3

(
8

225
S3+

4

15
S5

)
+

4

5r19/6

(
s2+

1

2
s3−2S1+

2

15
S3−

1

2
S4+S5

)
. (5.21)

Note that terms in the second bracket in the above equation is eq. (4.4) thus equals to 0.

So we reproduce the first Navier-Stokes equation (4.12). The second scalar constraint

equation gives

3(5r3 − 2)h′(2) − 30r2j(2) − 5k′(2)

=

[
−8r+

5

2
r

3
2F+r

5
2F ′
]
s3+

[
8r−15r

3
2F−6r

5
2F ′
]
S1+

[
28

15
r− 1

3
r

3
2F+10r

3
2Fj−45r2F 2

j

− 74

15
r

5
2F ′ +

1

3
(5r3 − 2)FF ′ + (10r3 − 4)FjF

′ + 2FkF
′ − 1

3
r4fF ′2 − 10FjF

′
k + rF ′F ′k

− 4

5
r

7
2F ′′

]
S3 −

[
1

r2
+ 2r +

5

2
r

3
2F + r

5
2F ′
]
S4 +

[
2r + 5r

3
2F + 2r

5
2F ′ + (5r3 − 2)FF ′

+
1

2
r4fF ′2

]
S5. (5.22)

There are 7 dynamical equations in the scalar part. But only 3 of them are actually

independent, they are the (rr) and (ii) components of Einstein equation (2.7) and the

EOM of φ (2.8). Here we will follow the procedure as what we did in solving the first

order: we choose the (rr) component of Einstein equation

6rh′′(2) + 9h′(2) + 10j′(2) =

(
FF ′ +

r

3
F ′2 +

2

3
rFF ′′ + 2rF ′F ′j − 10FjF

′
j

)
S3 +

2

r2
S4

+
(
rF ′2 + 2rFF ′′ + 3FF ′

)
S5, (5.23)

the EOM of φ

r3fj′(2) + 6r2j(2) + k′(2) −
3

2
r3fh′(2)

=

[
r − 1

4
r

3
2F

]
s3 +

[
2r +

3

2
r

3
2F

]
S1 +

[
− 2

5
r − r

3
2Fj + 9r2F 2

j +
1

30
r

3
2F +

1

5
r

5
2F ′

− 1

6
r3fFF ′ − r3fF ′Fj + 3r3fFjF

′
j + F ′jFk −

1

2
F ′Fk + 2FjF

′
k

]
S3 +

1

4
r

3
2FS4

+

[
1

2
FF ′ − 1

2
r

3
2F − 1

2
r3FF ′

]
S5, (5.24)
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together with the second scalar constraint (5.22) to solve the scalar perturbations.

Eq. (5.24) looks like a “constraint equation” since only the first order derivative of the

scalar perturbations are present. This is because we do not turn on the perturbation for φ.

If turned on, (5.24) will be a second order differential equation for the perturbation of φ

and, of course, with those first order derivative terms in (5.24) at present, too.

Firstly, use (5.22), (5.23) and (5.24) to remove j and k, we get the differential equation

for h(2):

d

dr

(
r4f

dh(2)

dr

)
= Sh = c

(h)
1 (r)s3 + c

(h)
2 (r)S1 + c

(h)
3 (r)S3 + c

(h)
4 (r)S4 + c

(h)
5 (r)S5, (5.25)

where Sh is the source term for the equation of h(2) and the coefficient functions c(h)s are

c
(h)
1 (r)= −r +

5

12
r3/2F +

1

3
r5/2F ′,

c
(h)
2 (r)= 6r − 5

2
r3/2F − 2r5/2F ′,

c
(h)
3 (r)= −2r

45
+

1

9
r4fFF ′′+

1

3
r4fF ′F ′j−

1

18
r4fF ′2− 5

3
r3fFjF

′− 1

9
r3fFF ′+

10

3
r3fFjF

′
j

− 4

15
r7/2F ′′− 59

45
r5/2F ′+

10

3
r3FjF

′+
5

9
r3FF ′− 4

3
FjF

′+
1

3
rF ′F ′k−

1

6
FkF

′− 2

9
FF ′

− 1

18
r3/2F +

5

3
r3/2Fj +

5

3
FkF

′
j ,

c
(h)
4 (r)= − 1

3r2
− 2r

3
+

1

3
rf − 1

3
r5/2F ′ − 5

12
r3/2F,

c
(h)
5 (r)=

2r

3
+

1

3
r4fFF ′′+

1

3
r4fF ′2− 1

3
r3fFF ′+

2

3
r

5
2F ′+

5

3
r3FF ′− 2

3
FF ′+

5

6
r

3
2F. (5.26)

Thus h(2) can be solved by

h(2) =

∫ ∞
r

−1

x4f(x)
dx

∫ x

1
Sh(y)dy. (5.27)

This integral is done in the same way as we solve α
(2)
ij , except for the order of expansion after

finishing the inner integration. Here one should expand the result of the first integration

to at least the order of 1/r6. This is because the 3 scalar perturbations are mixed together

and they have different asymptotic behaviors:

F (r) ' 4

r
1
2

− 2

3r3
+O

(
1

r
7
2

)
, (5.28)

Fj(r) '
1

3r3
+O

(
1

r
7
2

)
, (5.29)

Fk(r) '
2

15
− 12

7r
1
2

+
1

3r3
+O

(
1

r
7
2

)
. (5.30)

From the above one can see that the asymptotic behavior of F is different from Fj and Fk.

That is to say terms of order 1/r6 in F may still have effects on terms of order 1/r3 in Fj
and Fk when solving the differential equations. Considering that terms of order 1/r3 will
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contribute to the boundary stress tensor, we should solve h(2) to the order of 1/r6 in order

to get the right terms of order 1/r3 for j(2) and k(2). For the sake of simplicity, we will

record the differential equations of j(2) and k(2) to the order of 1/r6 and the results of the

3 perturbations only to the order of 1/r3.

h(2)(r) can be integrated out directly as:

h(2)(r) =

[(
− 2

9
+

π

54
√

3
+

ln 3

18

)
1

r3

]
s3 +

[(
4

3
− π

9
√

3
− ln 3

3

)
1

r3

]
S1

+

[
4

9r
−
(

π

405
√

3
+

ln 3

135

)
1

r3

]
S3 +

[
2

3r
+

(
2

9
− π

54
√

3
− ln 3

18

)
1

r3

]
S4

+

[
4

3r
+

(
π

27
√

3
+

ln 3

9

)
1

r3

]
S5. (5.31)

Since the above solution for h(2) is already regular at r = rH and asymptotically to zero

at infinity. Thus all the integration constants for h(2) should be zero.

We would like to make a further explanation on the integration constants for the scalar

sector. When we solve the first order [57], there is only one branch at present: ∂iβi. The

number of the integration constants is 4: two for h and one for each of j and k, because

the differential equation for h is second order in derivative of r and first order for j and

k. The case is the same in the second order except that there are 5 branches at present

now: s3, S1, S3, S4 and S5. Thus the total number of integration constants should be

4 × 5 = 20 among which 10 of them belongs to h(2) while j(2) and k(2) separately has 5.

For h(2), its 10 integration constants are all zero.

The differential equation for j(2) is

j′(2)(r) = Sj = c
(j)
1 (r)s3 + c

(j)
2 (r)S1 + c

(j)
3 (r)S3 + c

(j)
4 (r)S4 + c

(j)
5 (r)S5, (5.32)

where Sj is the source term for the equation of j(2) and the coefficient functions c(j)s are

c
(j)
1 (r) =

(
− 1 +

π

12
√

3
+

ln 3

4

)
1

r4
+

7

5r9/2
− 9

10r5
+

(
− 11

5
+

11π

60
√

3
+

11 ln 3

20

)
1

r7
,

c
(j)
2 (r) =

(
6− π

2
√

3
− 3 ln 3

2

)
1

r4
− 42

5r9/2
+

27

5r5
+

(
66

5
− 11π

10
√

3
− 33 ln 3

10

)
1

r7
,

c
(j)
3 (r) =

2

15r2
−
(

π

90
√

3
+

ln 3

30

)
1

r4
+

28

15r9/2
− 67

25r5
−
(

286

225
+

11π

450
√

3
+

11 ln 3

150

)
1

r7

− 1

15
rFF ′′ − 1

5
rF ′F ′j −

1

30
rF ′2 − 1

10
FF ′ + FjF

′
j ,

c
(j)
4 (r) =

(
1− π

12
√

3
− ln 3

4

)
1

r4
− 7

5r9/2
+

9

10r5
+

(
11

5
− 11π

60
√

3
− 11 ln 3

20

)
1

r7
,

c
(j)
5 (r) =

2

5r2
+

(
π

6
√

3
+

ln 3

2

)
1

r4
− 14

5r9/2
+

9

5r5
+

(
22

15
+

11π

30
√

3
+

11 ln 3

10

)
1

r7

− 1

5
rFF ′′ − 1

10
rF ′2 − 3

10
FF ′. (5.33)

j(2) can be solved by

j(2)(r) = −
∫ ∞
r

Sj(x)dx. (5.34)
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And the solution is

j(2)(r) =

[(
1

3
− π

36
√

3
− ln 3

12

)
1

r3

]
s3+

[(
−2+

π

6
√

3
+

ln 3

2

)
1

r3

]
S1+

[(
π

270
√

3
+

ln 3

90

)
1

r3

]
S3

+

[(
− 1

3
+

π

36
√

3
+

ln 3

12

)
1

r3

]
S4 +

[(
π

18
√

3
− ln 3

6

)
1

r3

]
S5. (5.35)

From the large r behavior of Fj (5.29) one can see that we still do not have to place

integration constants here.

Put h(2) and j(2) into (5.22), we gain the differential equation for k(2)

k′(2)(r) = Sk = c
(k)
1 (r)s3 + c

(k)
2 (r)S1 + c

(k)
3 (r)S3 + c

(k)
4 (r)S4 + c

(k)
5 (r)S5, (5.36)

where Sk is the source term for the equation of k(2) and the coefficient functions c(k)s are

c
(k)
1 (r) =

8r

5
+

1

15r3/2
− 9

140r2
+

(
− 1 +

π

12
√

3
+

ln 3

4

)
1

r4
+

14

15r9/2
− 18

35r5

+

(
− 4

5
+

π

15
√

3
+

ln 3

5

)
1

r7
− 1

2
r

3
2F − 1

5
r

5
2F ′,

c
(k)
2 (r) = −8r

5
− 2

5r3/2
+

27

70r2
+

(
6− π

2
√

3
− 3 ln 3

2

)
1

r4
− 28

5r9/2
+

108

35r5

+

(
24

5
− 6 ln 3

5
− 2π

5
√

3

)
1

r7
+ 3r

3
2F +

6

5
r

5
2F ′,

c
(k)
3 (r) = −128r

75
+

676

315r3/2
− 73

42r2
−
(

91

225
+

π

90
√

3
+

ln 3

30

)
1

r4
+

56

45r9/2
− 268

175r5

−
(

104

225
+

2π

225
√

3
+

2 ln 3

75

)
1

r7
+

1

15
r

3
2F−2r

3
2Fj+

74

75
r

5
2F ′+

4

25
r

7
2F ′′+

1

15
r4fF ′2

+
2

15
FF ′ − 1

3
r3FF ′ +

4

5
FjF

′ − 2r3FjF
′ + 9r2F 2

j −
1

5
rF ′F ′k −

2

5
FkF

′ + 2FjF
′
k,

c
(k)
4 (r) = −8r

5
− 1

15r3/2
+

149

140r2
+

(
1− π

12
√

3
− ln 3

4

)
1

r4
− 14

15r9/2
+

18

35r5

+

(
4

5
− π

15
√

3
− ln 3

5

)
1

r7
+

1

2
r

3
2F +

1

5
r

5
2F ′,

c
(k)
5 (r) = −22r

5
+

170

21r3/2
− 467

70r2
+

(
− 14

15
+

π

6
√

3
+

ln 3

2

)
1

r4
− 28

15r9/2
+

36

35r5

+

(
8

15
+

2π

15
√

3
+

2 ln 3

5

)
1

r7
−r

3
2F− 2

5
r

5
2F ′− 1

10
r4fF ′2+

2

5
FF ′−r3FF ′. (5.37)

The asymptotic behavior of Sk has a divergence term in the branch of S1:

Sk(r →∞)→ 8rS1, (5.38)

which will contribute to the result in the form of indefinite integral
∫

8rdr = 4r2. So k(2)

can be solved by

k(2)(r) = 4r2S1 −
∫ ∞
r

(Sk(x)− 8xS1)dx+ Ck1s3 + Ck2S1 + Ck3S3 + Ck4S4 + Ck5S5,

(5.39)
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where Ck1 to Ck5 are the integration constants which can be fixed by requiring the boundary

stress tensor in Landau frame:

Ck1 =
2

15
− π

90
√

3
− ln 3

30
, Ck2 = −4

5
+

π

15
√

3
+

ln 3

5
, Ck3 =

π

675
√

3
+

ln 3

225
,

Ck4 = − 2

15
+

π

90
√

3
+

ln 3

30
, Ck5 = − π

45
√

3
− ln 3

15
. (5.40)

The reason for the existence of these integration constants can be figured out from the

asymptotic behavior of k(1). From (5.30), we can see that the lowest term of Fk starts from

constants, and one can not get constant terms from only the integration part −
∫∞
r (Sk(x)−

8xS1)dx in (5.39). So we need to add the Cks “by hand”. Thus the final result for k(2) is

k(2)(r) =

[(
2

15
− π

90
√

3
− ln 3

30

)
− 1

20r
+

(
1

3
− π

36
√

3
− ln 3

12

)
1

r3

]
s3

+

[
4r2 +

(
− 4

5
+

π

15
√

3
+

ln 3

5

)
+

3

10r
+

(
− 2 +

π

6
√

3
+

ln 3

2

)
1

r3

]
S1

+

[(
π

675
√

3
+

ln 3

225

)
+

16

105r1/2
+

17

10r
+

(
2

45
+

π

270
√

3
+

ln 3

90

)
1

r3

]
S3

+

[(
− 2

15
+

π

90
√

3
+

ln 3

30

)
− 19

20r
+

(
− 1

3
+

π

36
√

3
+

ln 3

12

)
1

r3

]
S4

+

[(
− π

45
√

3
− ln 3

15

)
+

8

7r1/2
+

9

10r
−
(

π

18
√

3
+

ln 3

6

)
1

r3

]
S5. (5.41)

Collect all the 2nd order perturbations that we have solved in this section together

with eq. (3.3), one can get the complete metric in global form up to second order:

ds2 = −r
5
3

(
f(rH(x), r)− k(x, r)

r3

)
uµuνdx

µdxν − 2r
7
6D(uµuν)dxµdxν

+
2r3
H(x)

r
4
3

P ρµw
(2)
ρ (x, r)uνdx

µdxν + r
5
3 (Pµν + h(x, r)Pµν + αµν(x, r))dxµdxν

− 2r
1
6 (1 + j(x, r))uµdx

µdr, (5.42)

where #(x, r) = #(1)(x, r) + #(2)(x, r) (# = k, h, j, αµν) and

k(1)(x, r) = Fk(rH(x), r)∂ρu
ρ, h(1)(x, r) =

1

3
F (rH(x), r)∂ρu

ρ,

j(1)(x, r) = Fj(rH(x), r)∂ρu
ρ, α(1)

µν (x, r) = F (rH(x), r)σµν . (5.43)

The second order perturbations #(2)(x, r) (# = k, h, j, αµν) together with w
(2)
µ are of course

taken their corresponding results solved in this section.

6 The boundary stress tensor at the second order

Much like the first order, the second order boundary stress tensor contains a tensor part

and a scalar part which can be formally written as

T (2)
µν = π(2)

µν + PµνΠ(2). (6.1)
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The tensor part that we extract from the Brown-York energy-momentum tensor of the

second order full metric is10

π
(2)
ij ∼

(
4− π

3
√

3
− ln 3

)(
t3ij + T1ij +

T4ij

3

)
+

(
8

5
+

2π

15
√

3
+

2 ln 3

5

)
T4ij

3
+ 4T6ij

+

(
π

6
√

3
+

ln 3

2

)
T7ij , (6.2)

and the scalar part is

Π(2) ∼ −
(

4

15
− π

45
√

3
− ln 3

15

)
s3 +

(
8

5
− 2π

15
√

3
− 2 ln 3

5

)
S1 −

(
2π

675
√

3
+

2 ln 3

225

)
S3

+

(
4

15
− π

45
√

3
− ln 3

15

)
S4 +

(
2π

45
√

3
+

2 ln 3

15

)
S5. (6.3)

In order to get the covariant form of the boundary stress tensor, we use the replacement

t3ij = ∂0σij → 〈D∂µuν〉, T1ij = ∂0βi∂0βj −
1

3
δijS1 → Du〈µDuν〉,

T4ij = σij∂β → σµν∂ρu
ρ, T5ij = lilj −

1

3
δijS4 → lµlν −

1

3
Pµν lρl

ρ,

T6ij = σikσkj −
1

3
δijS5 → σ ρ

〈µ σν〉ρ, T7ij = 2εkl(iσj)llk → 4σ ρ
〈µ Ων〉ρ (6.4)

for the tensor sector and

s3 =
1

rH
∂2
i rH →

1

rH
Pµν∂µ∂νrH , S1 = ∂0βi∂0βi → DuµDu

µ, S3 = (∂β)2 → (∂µu
µ)2,

S4 = lili → lµl
µ = 2ΩµνΩµν , S5 = σijσij → σµνσ

µν (6.5)

for the scalar sector. The scalar sector then becomes

Π(2) ∼ −
(

4

15
− π

45
√

3
− ln 3

15

)
1

rH
Pµν∂µ∂νrH +

(
8

5
− 2π

15
√

3
− 2 ln 3

5

)
DuµDu

µ

−
(

2π

675
√

3
+

2 ln 3

225

)
(∂u)2 +

(
4

15
− π

45
√

3
− ln 3

15

)
2Ω2

µν +

(
2π

45
√

3
+

2 ln 3

15

)
σ2
µν .

(6.6)

In order to match with the definition for the constituent relation of nonconformal fluid

in [43], we use the covariant form of (4.4)

D∂u = −1

2

1

rH
Pµν∂µ∂νrH + 3DuµDu

µ − 2

15
(∂u)2 + Ω2

µν − σ2
µν (6.7)

to reexpress (6.6) as

Π(2) ∼
(

8

15
− 2π

45
√

3
− 2 ln 3

15

)
D∂u+

(
16

225
− 2π

225
√

3
− 2 ln 3

75

)
(∂u)2 +

8

15
σ2
µν . (6.8)

10Here we use “∼” because rH is not restored and κ5 is not present.
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Thus the final form of boundary stress tensor upto second order derivative expansion is

Tµν =
1

2κ2
5

{
1

2
r3
HPµν +

5

2
r3
Huµuν − r

5
2
H

(
2σµν +

4

15
∂ρu

ρPµν

)
+ r2

H

[(
4− π

3
√

3
− ln 3

)(
〈Dσµν〉 +

1

3
σµν∂u

)
+

(
8

5
+

2π

15
√

3
+

2 ln 3

5

)
σµν∂u

3

+ 4σ ρ
〈µ σν〉ρ +

(
2π

3
√

3
+ 2 ln 3

)
σ ρ
〈µ Ων〉ρ

]
+ r2

HPµν

[(
8

15
− 2π

45
√

3
− 2 ln 3

15

)
D(∂u)

+

(
16

225
− 2π

225
√

3
− 2 ln 3

75

)
(∂u)2 +

8

15
σ2
µν

]}
. (6.9)

Here we restore rH and κ5. Compare with the standard energy-momentum tensor of

relativistic fluid, we can read all the 2nd order transport coefficients:

ητπ =
1

2κ2
5

(
2− π

6
√

3
− ln 3

2

)
r2
H , ητ∗π =

1

2κ2
5

(
4

5
+

π

15
√

3
+

ln 3

5

)
r2
H , λ1 =

1

2κ2
5

r2
H ,

λ2 =
1

2κ2
5

(
π

3
√

3
+ ln 3

)
r2
H , λ3 = 0, ζτΠ =

1

2κ2
5

(
8

15
− 2π

45
√

3
− 2 ln 3

15

)
r2
H ,

ξ1 =
1

2κ2
5

2

15
r2
H , ξ2 =

1

2κ2
5

(
16

225
− 2π

225
√

3
− 2 ln 3

75

)
r2
H , ξ3 = 0. (6.10)

The appearance of τ∗π , τΠ and ξ1,2 indicates that we are in the nonconformal regime.

There are two simple relations among the 2nd order coefficients in (6.10) given that

c2
s = 1/5:

τπ = τΠ, ξ1 =
1− 3c2

s

3
λ1 =

2

15
λ1. (6.11)

These two relations match with the predictions that made in [43] about the nonconformal

fluid of [55]. And there are also relations that are not satisfied by our work, such as

τ∗π = −(1 − 3c2
s)τπ and ξ2 = 1−3c2s

3 2c2
sητπ. But as it has been pointed out in ref. [62] that

both of these two relations miss λ1 and the authors suggest that the correct form of these

two relations should be

ητ∗π = (1− 3c2
s)(4λ1 − ητπ), ξ2 =

2

9
(1− 3c2

s)
[
3c2
sητπ + (1− 6c2

s)2λ1

]
. (6.12)

Using (6.10) one can see that both of these two relations are also satisfied by our work.

The Haack-Yarom relation 4λ1 − λ2 = 2ητπ (or 4λ1 + λ2 = 2ητπ depending on your

convention) is also satisfied by the coefficients in (6.10). It is first found in ref. [29] in

charged AdS5 black hole system11 to be satisfied for any value of chemical potential. The

authors of [29] also point out that this relation is satisfied in asymptotic AdS black holes

of any dimension [31]. Later in ref. [32], this relation is proved again to be satisfied in a

11The original form of this relation in ref. [29] is 4λ1 + λ2 = 2ητπ. The difference for the sign in front of

λ2 dues to different definitions for the vorticity tensor. In ref. [29] ωµν = P ρµP
σ
ν ∂[σuρ] but our definition is

Ωµν = P ρµP
σ
ν ∂[ρuσ].
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large class of strongly coupled, conformal plasma of any dimension with matter fields [32].

Further study [37] shows that it remains hold in N = 4 SYM plasma under α′3 ∼ λ−
3
2 string

corrections. Even with the Gauss-Bonnet term added into the AdS5 black hole background,

this relation are shown to hold in the first order Gauss-Bonnet correction λGB [38]. But

exception happens at the second order of λGB correction12 which has been confirmed in

both refs. [39] and [40]. The above results are all for the conformal relativistic fluid. For

nonconformal case, ref. [41] has shown that the validity of Haack-Yarom relation in some

scalar field deformed asymptotic AdS5 spacetime. Our result (6.10) offers another solid

confirmation for it. The Haack-Yarom relation is further proved to be held in some specific

class of RG flows under the leading order nonconformal corrections [62]. In a word, if the

manually added Gauss-Bonnet term of bulk gravity is not concerned, the Haack-Yarom

relation 4λ1− λ2 = 2ητπ has a great possibility to be universal for both the conformal and

nonconformal strongly coupled relativistic fluid.

The dispersion relation is got by working in the linearized regime of the fluid [25, 57]

and the results are:

ωT (k) = − i

3r
1
2
H

k2 − i

9r
3
2
H

(
2− π

6
√

3
− ln 3

2

)
k4,

ωL(k) = ± 1√
5
k − i 4

15r
1
2
H

k2 ± 4
√

5

75rH

(
4

3
− π

6
√

3
− ln 3

2

)
k3

− i 32

225r
3
2
H

(
2− π

6
√

3
− ln 3

2

)
k4. (6.13)

where “T” and “L” are short for “transverse” and “longitudinal”, they represent for the

shear and sound mode, respectively.

Grozdanov et al. have got the dispersion relations for the third derivative order rela-

tivistic fluid [64]. If we only count contributions of viscous tensors upto the second order,

the dispersion relations for non-conformal fluid upto k4 are:

ωT (k) = −i η

ε+ p
k2 − i η2τπ

(ε+ p)2
k4,

ωL(k) = ±csk − i
2
3η + 1

2ζ

ε+ p
k2 ± 1

2cs

[
2c2
s

(
2
3ητπ + 1

2ζτΠ

)
ε+ p

−
(

2
3η + 1

2ζ
)2

(ε+ p)2

]
k3

− i
2
(

2
3ητπ + 1

2ζτΠ

) (
2
3η + 1

2ζ
)

(ε+ p)2
k4. (6.14)

Using the 1st (2.32) and 2nd (6.10) order transport coefficients of this model, one can check

that eqs. (6.13) and (6.14) are consistent with each other.

At the end of this section, we would like to talk about the causality for the boundary

fluid in this paper. According to [43, 65], a certain relativistic fluid respects causality when

the group velocity of both the shear and sound modes are less than the speed of light (i.e.,

12We would like to thank S. Grozdanov for pointing this out for us.

– 27 –



J
H
E
P
0
1
(
2
0
1
7
)
1
1
8

unity in natural units) in large k limit. Using the related formulae in [43], one can check that

lim
k→∞

dωT
dk

=

√
η

τπ(ε+ p)
' 0.54 < 1, (6.15)

lim
k→∞

dωL
dk

=

√
c2
s +

4

3

η

τπ(ε+ p)
+

ζ

τΠ(ε+ p)
' 0.82 < 1. (6.16)

Thus the boundary relativistic fluid in our framework is causal.

7 Discussions and outlooks

We continue to investigate the 2nd order transport coefficients for the compactified, near-

extremal black D4-brane in this paper based on our previous study [57] via the BDE

formalism of fluid/gravity duality [25]. We directly calculate 9 second order transport

coefficients for the nonconformal relativistic fluid lives on the boundary. Our work success-

fully generalizes the BDE formalism into nonconformal background and offers a new set of

directly and analytically calculated, 2nd order transport coefficients for strongly coupled,

nonconformal relativistic fluid.

Here we want to compare the known transport coefficients between uncharged AdS5

black hole and the compactified black D4-brane. The results are listed in table 3. In the

column of AdS5 black hole, there are some coefficients belonging only to nonconformal

fluid, we fill the blanks of such cases with a “�”. Ref. [33], based on the construction of

refs. [27, 66], reformulate the BDE formalism in the Weyl covariant language, which allows

the boundary to be a curved spacetime but should belong to the same comformal class.

This Weyl covariant version of BDE formalism can determine κ for the conformal fluid,

but we don’t know whether a similar reformulation exist for the nonconformal fluid. So

we just put a question mark for the compactified D4-brane. If the BDE formalism can be

generalized to nonconformal fluid on the boundary, it will be possible to determine κ, κ∗,

ξ5,6 and perhaps λ4 and ξ4.

In our final result of the 2nd order stress tensor (6.9), rH has been restored. But the

dimension is still not correct. Since the dimensional parameter of the 5D bulk gravity

are κ5, rH and L. The result has already have κ5 and rH , thus we can make some repair

on (6.9) in order to make its dimension correct. Through inserting L to every term in the

stress tensor, we will get the result under the full consideration of dimension as

Tµν =
1

2κ2
5

{
1

2

r3
H

L4
Pµν +

5

2

r3
H

L4
uµuν −

(rH
L

) 5
2

(
2σµν +

4

15
∂ρu

ρPµν

)
+
r2
H

L

[(
4− π

3
√

3
− ln 3

)(
〈Dσµν〉 +

1

3
σµν∂u

)
+

(
8

5
+

2π

15
√

3
+

2 ln 3

5

)
σµν∂u

3

+ 4σ ρ
〈µ σν〉ρ +

(
2π

3
√

3
+ 2 ln 3

)
σ ρ
〈µ Ων〉ρ

]
+
r2
H

L
Pµν

[(
8

15
− 2π

45
√

3
− 2 ln 3

15

)
D(∂u)

+

(
16

225
− 2π

225
√

3
− 2 ln 3

75

)
(∂u)2 +

8

15
σ2
µν

]}
. (7.1)

As can be seen from the above, all terms in the constitutive relation has the dimension

of [Mass]4.
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AdS5 black hole compactified black D4-brane

η r3
H r

5/2
H

ζ � 4
15r

5/2
H

ητπ
2−ln 2

2 r2
H

(
2− π

6
√

3
− ln 3

2

)
r2
H

ητ∗π �
(

4
5 + π

15
√

3
+ ln 3

5

)
r2
H

λ1
1
2r

2
H r2

H

λ2 ln 2 · r2
H

(
π

3
√

3
+ ln 3

)
r2
H

λ3 0 0

κ r2
H ?

ζτΠ �
(

8
15 −

2π
45
√

3
− 2 ln 3

15

)
r2
H

ξ1 � 2
15r

2
H

ξ2 �
(

16
225 −

2π
225
√

3
− 2 ln 3

75

)
r2
H

ξ3 � 0

Table 3. A comparison of the known transport coefficients between AdS5 black hole and compacti-

fied black D4-brane. The coefficients exist only in the nonconformal case will be marked with a “�”

in the column of AdS5 black hole. “?” means that so far we don’t know whether BDE formalism

be capable to determine κ in nonconformal case.

The stress tensor (7.1) has already been in terms of 5D gravity language. In order

to understand our result from the field theory side, here we would like to reformulate the

result in terms of 4D field theory language. Note that our 5D gravity theory is equal

to the 10D compactified near extremal D4-brane background, it is this 10D IIA string

theory corresponds to the 4D field theory. In the string theory side, the parameters that

we have are rH , gs, ls and Nc, they will relate with 5D field theory parameters directly

by g2
5 = (2π)2gsls and λ5 = g2

5NcTd, where g5 and λ5 are separately the 5D Yang-Mills

and ’t Hooft coupling, Td = 3r
1/2
H /4πL3/2 is the deconfinement temperature for the 10D

background [67]. Note Nc is also the field theory parameter. The 5D ’t Hooft coupling

relates with the 4D ’t Hooft coupling by λ = λ5βyTd. Following the way that [68] derives

the entropy for 10D compactified near extremal D4-brane background in terms of field

theory language, we can reformulate our result (6.10) in terms of field theory quantities.

For example, the energy and pressure density behave like ∼ r3
H/(2κ

2
5L

4), and one can
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ε 1
2κ25

5
2
r3H
L4

5
2

(
4π
3

)2 22

35
λN2

c
T 6

T 2
d

p 1
2κ25

1
2
r3H
L4

1
2

(
4π
3

)2 22

35
λN2

c
T 6

T 2
d

η 1
2κ25

(
rH
L

) 5
2

(
4π
3

)
22

35
λN2

c
T 5

T 2
d

ζ 1
2κ25

4
15

(
rH
L

) 5
2 4

15

(
4π
3

)
22

35
λN2

c
T 5

T 2
d

ητπ
1

2κ25

(
2− π

6
√

3
− ln 3

2

)
r2H
L

(
2− π

6
√

3
− ln 3

2

)
22

35
λN2

c
T 4

T 2
d

ητ∗π
1

2κ25

(
4
5 + π

15
√

3
+ ln 3

5

)
r2H
L

(
4
5 + π

15
√

3
+ ln 3

5

)
22

35
λN2

c
T 4

T 2
d

λ1
1

2κ25

r2H
L

22

35
λN2

c
T 4

T 2
d

λ2
1

2κ25

(
π

3
√

3
+ ln 3

)
r2H
L

(
π

3
√

3
+ ln 3

)
22

35
λN2

c
T 4

T 2
d

λ3 0 0

ζτΠ
1

2κ25

(
8
15 −

2π
45
√

3
− 2 ln 3

15

)
r2H
L

(
8
15 −

2π
45
√

3
− 2 ln 3

15

)
22

35
λN2

c
T 4

T 2
d

ξ1
1

2κ25

2
15
r2H
L

2
15

22

35
λN2

c
T 4

T 2
d

ξ2
1

2κ25

(
16
225 −

2π
225
√

3
− 2 ln 3

75

)
r2H
L

(
16
225 −

2π
225
√

3
− 2 ln 3

75

)
22

35
λN2

c
T 4

T 2
d

ξ3 0 0

Table 4. Reformulation of the result under full consideration of dimension in field theory language.

reformulate them in field theory language as

1

2κ2
5

r3
H

L4
=
L4Ω4βy
κ2

10

1

L4

(
4π

3

)6

L9T 6 =

(
4π

3

)6 8

3
π2 βy

(2π)7g2
s l

8
s

(πgsNcl
3
s)

3T 6

=
26

37
π2 · (2π)2gsls ·NcTd · βyTd ·N2

c ·
T 6

T 2
d

=

(
4π

3

)2 22

35
λN2

c

T 6

T 2
d

. (7.2)

We summarize the result under full consideration of dimension in field theory language

in table 4.

Our result covers the whole sector of dynamical 2nd order transport coefficients.

These coefficients satisfy the Haack-Yarom relation and some other relations proposed in

refs. [43, 62]. Comparing with ref. [25], we derive 5 more second order coefficients: τ∗π , τΠ

and ξ1,2,3 that indicate the non-conformality. λ3 and ξ3 are still zero in this work, similar

as the case of λ3 in refs. [24, 25].

If one wants to study the transport properties for orders higher than two, he/she should

begin with the 2nd order complete metric of global form (5.42) and expand it to the 3rd

– 30 –



J
H
E
P
0
1
(
2
0
1
7
)
1
1
8

order in boundary derivatives just as the procedure of 2nd order in this paper. But we

are afraid it will be very painful since according to Grozdanov et al. [64], a total number

of 68 new transport coefficients for the uncharged, nonconformal fluid will appear at the

3rd order. This number will reduce to 20 if one constrains the fluid into conformal regime.

One fascinating question is will there be any relations like 4λ1 − λ2 = 2ητπ exist in the

3rd or even higher derivative orders? Some recent frameworks for exploring high order

hydrodynamics [69–71] may be helpful in this direction. Another choice for learning high

order hydrodynamics may be at the linearized limit [72–75]. But this framework may not

answer the above question since it can not reach the coefficients like λ1,2 of 2nd order which

relate with nonlinear viscous tensors.

Considering the discussions about the literatures on 2nd order strongly coupled hydro-

dynamics and the achievement that we have made in this paper, there are still some aspects

valuable for future explorations. Firstly, one can use the Green-Kubo formula to calculate

the thermal 2nd order coefficients for the background in this paper. Because of its inner

structure, the original framework of BDE formalism of fluid/gravity correspondence is only

able to extract λ3 and ξ3 among the 8 thermodynamical coefficients. But as ref. [42] have

shown us that the Green-Kubo formalism is good at extracting them. We are expecting to

get at least κ, κ∗ and ξ5 not only because they are both from the 2-point correlation function

hence relatively easier to calculate, but also these three coefficients form closed constraint

equations [53]. Secondly, to calculate the entropy flux. Refs. [41, 42, 55] talking about the

strongly coupled nonconformal relativistic fluid both do not mention the entropy flux. But

this subject is reachable in the BDE formalism of fluid/gravity correspondence [26] which

is also a good aspect to explore. Thirdly, considering the nonconformal version that we

have developed in [57] and this paper, it is direct to calculate the 2nd order coefficients

for the near-extremal black Dp-brane [55, 76] to test the method of ref. [55]. Finally, it

is interesting to add the smeared D0-brane charge into the compactified D4-brane [77, 78]

to study the nonconformal fluid with a background vector charge. This framework can be

seen as a nonconformal counterpart of [28, 29] from a technical point of view. If adding a

Chern-Simons term of D0-branes RR field, we may study the Chiral Vortical Effect for the

nonconformal relativistic fluid in D0-D4 Sakai-Sugimoto model [79].
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A The dimensional reduction for the action of compactified D4-brane

The total action for the compactified D4-brane background contains the bulk action, the

Gibbons-Hawking boundary term and the counter term, which reads, in string frame as [58]

S =
1

2κ2
10

∫
d10x

√
−G(s)

[
e−2φ

(
R+ 4(∇M̂φ)2

)
− g2

s

2 · 4!
F 2

4

]
− 1

κ2
10

∫
d9x
√
−H(s)e−2φK(s) +

1

κ2
10

∫
d9x
√
−H(s)

5

2L
e−

7
3
φ, (A.1)

where 2κ2
10 = (2π)7g2

s l
8
s . Note φ here is the dilaton with zero vacuum expectation value,

which is not same as in ref. [58]. The first term of the above is the 10D bulk action with

G
(s)

M̂N̂
the 10D metric in string frame. “M̂, N̂” are the spacetime indices of 10D, R is the

10D Ricci scalar. The second term is the Gibbons-Hawking term with H
(s)

M̂N̂
the boundary

metric and K(s) = −HM̂N̂
(s) ∇M̂n

(s)

N̂
the external curvature of 10D spacetime in string frame.

n
(s)

M̂
≡ ∇M̂ r√

GN̂P̂
(s)
∇N̂r∇P̂ r

is the 10D unit normal vector in string frame pointing to the direction

of increasing r. The third term is the counter term.

Now we will reexpress the 10D total action of string frame into Einstein frame. For the

bulk metric G
(s)

M̂N̂
we already know it will transfer to Einstein frame by G

(s)

M̂N̂
= e

φ
2GM̂N̂

where GM̂N̂ is the 10D bulk metric in Einstein frame. Thus the transformation rule for

the unit norm nM̂(s) is

n
(s)

M̂
=

∇M̂r√
GN̂P̂(s) ∇N̂r∇P̂ r

=
∇M̂r√

e−
φ
2GN̂P̂∇N̂r∇P̂ r

= e
φ
4 nM̂ . (A.2)

Here nM̂ is the 10D unit norm in Einstein frame. Then we have the transformation rule

for H
(s)

M̂N̂
as

H
(s)

M̂N̂
= G

(s)

M̂N̂
− n

(s)

M̂
n

(s)

N̂
= e

φ
2 (GM̂N̂ − nM̂nN̂ ) = e

φ
2HM̂N̂ , (A.3)

where HM̂N̂ is the induced metric on a hyperplane at constant r in the Einstein frame and

its components can be read from

ds2 = e−
10
3
AhMNdx

MdxN + e2A+8Bdy2 + L2e2A−2BdΩ2
4, (A.4)

where hMN is the induced metric on a hyperplane at constant r in the 5D reduced spacetime

and the indices like “M,N” are 5 dimensional. Eq. (A.4) is actually the boundary of the

following metric

ds2 = e−
10
3
AgMNdx

MdxN + e2A+8Bdy2 + L2e2A−2BdΩ2
4, (A.5)

which is the ansatz for dimensional reduction of the 10D bulk metric. The procedure to

fix the coefficients in front of A,B in eq. (A.5) can be found in ref. [57]. From (A.5) one

can see that M̂ = {M,y, θa} with θa the coordinates on the S4.
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Now we are ready to derive the transformation rule for the external curvature:

K(s) = −HM̂N̂
(s) ∇M̂n

(s)

N̂
= −e−

φ
2HM̂N̂∇M̂ (e

φ
4 nN̂ )

= −
(
e−

φ
4HM̂N̂∇M̂nN̂ + e−

φ
2 (∇M̂e

φ
4 )HM̂N̂nN̂

)
= e−

φ
4K. (A.6)

Note that HM̂N̂nN̂ = 0. Here we define K is the 10D external curvature in Einstein frame.

Using the fact that
√
−H(s) = e

9
4
φ
√
−H, one can reexpress the Gibbons-Hawking term

into the Einstein frame as

SGH = − 1

κ2
10

∫
d9x
√
−H(s)e−2φK(s) = − 1

κ2
10

∫
d9xe

9
4
φ
√
−He−2φe−

φ
4K

= − 1

κ2
10

∫
d9x
√
−HK. (A.7)

And the counter term turns out to be

Sc.t. =
1

κ2
10

∫
d9x
√
−H(s)

5

2L
e−

7
3
φ =

1

κ2
10

∫
d9xe

9
4
φ
√
−H 5

2L
e−

7
3
φ

=
1

κ2
10

∫
d9x
√
−H 5

2L
e−

1
12
φ (A.8)

in the Einstein frame. The details for getting the bulk action in Einstein frame can be

found in standard textbooks so will be omitted here. Thus the total action in Einstein

frame for the compactified D4-brane is

S =
1

2κ2
10

∫
d10x
√
−G

[
R− 1

2
(∇M̂φ)2 − g2

s

2 · 4!
e
φ
2F 2

4

]
− 1

κ2
10

∫
d9x
√
−HK

+
1

κ2
10

∫
d9x
√
−H 5

2L
e−

1
12
φ. (A.9)

Note that with the appearance of L in the denominator, the counter term has the same

dimension with the Gibbons-Hawking term.

Now we will use eqs. (A.4) and (A.5) to reduce the last total action into 5D form.

The reducing procedure for the bulk action can be found in ref. [57] and will be omit

here, we mainly care about SGH and Sc.t.. Firstly, we have from eq. (A.4) that
√
−H =

L4e−
5
3
A
√
−h√γ4, where γ4 is the determinant of γab, the metric on the unit 4-sphere.

From the definition of nM̂ , one can see that the components of the 10D unit norm in the

directions of y and θa are both 0 thus one has nM̂ = (nM , 0,0) with

nM =
∇Mr√

GN̂P̂∇N̂r∇P̂ r
=

∇Mr√
GNP∇Nr∇P r

=
∇Mr√

e
10
3
AgNP∇Nr∇P r

= e−
5
3
A ∇Mr√

gNP∇Nr∇P r
= e−

5
3
AnM , (A.10)

where we use GMN = e−
10
3
AgMN from eq. (A.5). Note also that in fact

GN̂P̂∇N̂r∇P̂ r = GNP∇Nr∇P r, (A.11)
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since one has ∇yr = ∇θar = 0. We also define the unit norm of 5D as nM ≡ ∇M r√
gNP∇Nr∇P r

.

So the external curvature of 10D can be reduced to

K = −HM̂N̂∇M̂nN̂ = −HMN∇MnN = −e
10
3
AhMN∇M (e−

5
3
AnN )

= −e
5
3
AhMN∇MnN = e

5
3
AK, (A.12)

where K = −hMN∇MnN is the external curvature in 5D. We have used the fact that

∇ynM = ∇θanM = 0 since nM will only depend on r. Also note that hMNnN = 0. So

finally we can reduce SGH as

SGH = − 1

κ2
10

∫
d9x
√
−HK = − 1

κ2
10

∫
d4x

∫
dy

∫
d4θ
√
γ4L

4e−
5
3
A
√
−he

5
3
AK

= −L
4Ω4βy
κ2

10

∫
d4x
√
−hK = − 1

κ2
5

∫
d4x
√
−hK, (A.13)

where
∫
dy = βy,

∫
d4θ
√
γ4 = Ω4 and we have defined

1

κ2
5

≡ L4Ω4βy
κ2

10

. (A.14)

Then for the counter term, we have

Sc.t. =
1

κ2
10

∫
d9x
√
−H 5

2L
e−

1
12
φ =

1

κ2
10

∫
d4xdyd4θL4e−

5
3
A
√
−h√γ4

5

2L
e−

φ
12

=
L4Ω4βy
κ2

10

∫
d4x
√
−h 5

2L
e−

5
3
A− φ

12 =
1

κ2
5

∫
d4x
√
−h 5

2L
e−

5
3
A− φ

12 . (A.15)

And the details for the dimensional reduction of the bulk action can be found in ref. [57].

So the total action of the 5D reduced system is

S =
1

2κ2
5

∫
d5x
√
−g
[
R− 1

2
(∂φ)2 − 40

3
(∂A)2 − 20(∂B)2 − V (φ,A,B)

]
− 1

κ2
5

∫
d4x
√
−hK +

1

κ2
5

∫
d4x
√
−h 5

2L
e−

5
3
A− 1

12
φ, (A.16)

where

V (φ,A,B) =
Q2

4

2L8
e
φ
2
− 34

3
A+8B − 12

L2
e−

16
3
A+2B. (A.17)
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