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1 Introduction

The original motivation for string field theory was to develop tools for studying non-

perturbative aspects of string theory. For open string field theory this goal has been

partially realized in the form of non-trivial classical solutions that are not accessible to

perturbation theory [1]. Similar success for closed strings has not been forthcoming despite

some tantalizing numerical results [2]. Nevertheless superstring field theory can provide

us with practical tools for addressing issues that arise within perturbation theory, e.g. in

dealing with situations where the masses of external states get renormalized or the classical

vacuum gets destabilized and new stable vacua arise near the original classical vacuum [3].

Superstring field theory has infinite number of fields with masses going all the way up

to infinity. We may want to consider a situation where the only states that participate in

the scattering are ‘light’ particles — those that are massless at string tree level — but we

want to include the effect of higher derivative corrections as well as loop corrections where

heavy string states propagate in the loop. In this case the most useful description will be

provided by an effective action of light fields obtained by integrating out the heavy state

contributions. This effective action will still be capable of reproducing the full string theory

amplitudes involving light external states to any arbitrary order in perturbation theory.

In particular, like the parent string field theory, this effective field theory will be free from

ultraviolet (UV) divergences. Our goal in this paper will be to analyze the structure of

such an effective action.

Our main result is that the interaction vertices of the effective field theory so con-

structed satisfy the same algebraic identities as those of the parent string field theory [4].
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It then follows that the effective action satisfies the Batalin-Vilkovisky (BV) master equa-

tion and can be quantized using the BV formalism [5–9]. Furthermore following the analysis

of [10, 11] one can show that in this effective action the modes of the light fields above a

certain energy scale are also integrated out implicitly. This energy scale is determined by

a parameter, known as the stub length, that the effective action inherits from the original

action [12–14]. By varying this parameter we can change this energy scale, which also de-

termines the effective UV cut-off of the theory. Therefore the effective action so constructed

can be regarded as the Wilsonian effective action [15–17] of superstring field theory.

Given this effective action, one can use it to compute any quantity involving the light

fields, e.g. S-matrix elements, using standard Feynman rules. The absence of UV diver-

gences is made manifest by the exponential suppression of the vertices at large euclidean

momenta provided one takes the ends of the integration contours over loop energies to be

at ±i∞ [18]. Furthermore as long as the energies of the external states remain below the

threshold of production of the heavy particles, the loop energy integration contours can be

chosen to avoid the singularities in the vertices arising from the effect of integrating out

the heavy particles.

It is also possible to construct the one particle irreducible (1PI) effective action of the

light fields by also integrating out the light fields propagating in the loops. This satisfies

a different set of properties which can also be derived using the same general procedure.

Such an effective action can be useful for finding the correct vacuum, and computing the

renormalized masses of light fields around this vacuum. For example the entire analysis

of [3] could be carried out using such an effective action without having to deal with the

heavy string states. The final result of course will remain unchanged.

The rest of the paper is organized as follows. In section 2 we review some of the

algebraic structures that arise in the conventional superstring field theory, and derive some

Ward identities for the off-shell amplitudes of this theory. In section 3 we integrate out

the heavy fields of the theory and use manipulations similar to those in section 2 to derive

certain identities involving the interaction vertices of this effective field theory. These

identities are then used to show that the resulting effective action satisfies the BV master

equation. We also describe the construction of the 1PI action of the light fields and show

that this satisfies the classical master equation. In section 4 we describe the role of the stub

length parameter in controlling the energy scale above which the modes of the light fields

in the effective action are also implicitly integrated out. We conclude in section 5 with

a discussion of our results and possible generalizations where, instead of integrating out

all the heavy modes of the string, we integrate out the modes above a certain mass level

and construct an effective theory of string fields below that mass level. In appendix A we

describe explicitly the algorithm for constructing the vertices of the effective action using

off-shell amplitudes of light states only. In appendix B we describe how a set of spurious

fields which are present in the effective action do not play any role in the evaluation of

Feynman diagrams.
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2 Algebraic structures in superstring field theory

We shall first review some algebraic structures that appear in the construction of super-

string field theories [4] generalizing the corresponding results in closed bosonic string field

theory [9, 12]. We shall denote by HT the subspace of GSO even states in the matter ghost

superconformal field theory (SCFT) satisfying

b−0 |s〉 = 0, L−
0 |s〉 = 0, for |s〉 ∈ HT , (2.1)

where

b±0 = b0 ± b̄0, c±0 =
1

2
(c0 ± c̄0), L±

0 = L0 ± L̄0 . (2.2)

Ln, L̄n are the total Virasoro generators, and bn, b̄n, cn, c̄n are the modes of the usual

b, b̄, c, c̄ ghost fields. We do not make any assumption about the background except that

it is described by some arbitrary world-sheet SCFT. For heterotic string theory we shall

denote by Hm the subspace of states in HT carrying picture number m, whereas for type II

string theories Hm,n will denote the subspace of states in HT carrying left-moving picture

number m and right-moving picture number n. We also define

for heterotic : ĤT ≡ H−1 ⊕H−1/2, H̃T ≡ H−1 ⊕H−3/2 ,

for type II :

{
ĤT ≡ H−1,−1 ⊕H−1/2,−1 ⊕H−1,−1/2 ⊕H−1/2,−1/2

H̃T ≡ H−1,−1 ⊕H−3/2,−1 ⊕H−1,−3/2 ⊕H−3/2,−3/2 .
(2.3)

For both heterotic and type II string theories we take |ϕr〉 ∈ ĤT , |ϕ
c
r〉 ∈ H̃T to be appro-

priate basis states satisfying

〈ϕc
r|c

−
0 |ϕs〉 = δrs , 〈ϕr|c

−
0 |ϕ

c
s〉 = δrs . (2.4)

The second relation follows from the first. Eq. (2.4) implies the completeness relation

∑

r

|ϕr〉〈ϕ
c
r|c

−
0 = 1,

∑

r

|ϕc
r〉〈ϕr|c

−
0 = 1 , (2.5)

acting on states in ĤT and H̃T respectively. The basis states ϕr and ϕc
r will in general carry

non-trivial grassmann parities which we shall denote by (−1)γr and (−1)γ
c
r respectively. In

the NS sector of the heterotic theory and the NSNS and RR sector of type II theory, the

grassmann parity of ϕr or ϕc
r is odd (even) if the ghost number of ϕr or ϕc

r is odd (even).

In the R sector of the heterotic theory and the RNS and NSR sector of the type II theory,

the grassmann parities of the states will have opposite correlation with the ghost number.

It follows from the ghost number conservation rule and (2.4) that

(−1)γr+γc
r = −1 . (2.6)

For heterotic string theories we shall denote by G the identity operator in the NS

sector and the zero mode of the picture changing operator (PCO) in the R sector. For

type II string theories G will be defined as the identity operator in the NSNS sector, zero

– 3 –
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mode of the left-moving picture number in the RNS sector, zero mode of the right-moving

picture number in the NSR sector, and product of the zero modes of the left-moving and

right-moving picture numbers in the RR sector. G satisfies

[G, L±
0 ] = 0, [G, b±0 ] = 0 , [G, QB] = 0 , (2.7)

where QB is the BRST charge.

Using the standard identification between the wave-function of the first quantized the-

ory and fields in the second quantized theory, the fields in string field theory are represented

as states in the SCFT. In the full BV quantized theory there are two sets of string fields:

|Ψ〉 ∈ ĤT and |Ψ̃〉 ∈ H̃T without any further restriction. The action is given by1

S =
1

g2S

[
−
1

2
〈Ψ̃|c−0 QBG|Ψ̃〉+ 〈Ψ̃|c−0 QB|Ψ〉+

∞∑

n=1

1

n!
{{Ψn}}

]
, (2.8)

where gS is the string coupling, and {{A1 · · ·AN}} is a multilinear function of |A1〉, · · · |AN 〉 ∈

ĤT , constructed by first computing the correlation functions of these vertex operators

together with PCO’s and other ghost insertions on Riemann surfaces, and then integrating

the result over certain subspaces of the moduli space of Riemann surfaces with punctures.

The string fields |Ψ〉 and |Ψ̃〉 are grassmann even i.e. the coefficient of a grassmann even

(odd) basis state in the expansion of the string field is grassmann even (odd). In order to

avoid cluttering up various formulæ due to sign factors, we shall multiply the grassmann

odd vertex operators of the CFT by grassmann odd c-numbers and work with states Ai

which are all grassmann even. Whenever needed we can always strip off these factors from

both sides of an equation at the cost of picking up appropriate signs. With this convention

{{A1 · · ·AN}} is symmetric under exchange of external states and satisfies the relation,

N∑

i=1

{{A1 · · ·Ai−1(QBAi)Ai+1 · · ·AN}}

= −
1

2

∑

ℓ,k≥0

ℓ+k=N

∑

{ia;a=1,···ℓ},{jb;b=1,···k}

{ia}∪{jb}={{1,···N}

{{Ai1 · · ·Aiℓϕs}}{{ϕrAj1 · · ·Ajk}}〈ϕ
c
s|c

−
0 G|ϕ

c
r〉

−
1

2
g2S {{A1 · · ·ANϕsϕr}} 〈ϕ

c
s|c

−
0 G|ϕ

c
r〉 . (2.9)

Using this relation one can show that the action (2.8) satisfies BV master equation [4] and

can be quantized in the Siegel gauge b+0 |Ψ〉 = 0, b+0 |Ψ̃〉 = 0.

We shall now describe the Siegel gauge propagator [3]. Since only the Ψ field appears

in the interaction, the relevant propagator is the Ψ − Ψ propagator. Instead of giving

its expression directly we shall describe it by its operation of joining two Feynman di-

agrams. Let us suppose that f(A1, · · ·Am, ϕs) denotes the contribution to the off-shell

1We shall work in the convention in which the path integral is carried out with the weight factor eS . If

we want to change this, e.g. use the weight factor e−S or eiS , we can achieve this by replacing g2S by −g2S
or −ig2S in all subsequent formulæ.
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amplitude2 from a specific Feynman diagram with external states A1, · · ·Am, ϕs ∈ ĤT and

g(B1, · · ·Bn, ϕr) denotes the contribution from another Feynman diagram with external

states B1, · · ·Bn, ϕr ∈ ĤT . In both we use a normalization such that the contribution

to f(A1, · · ·Am, ϕs) from the elementary vertex is just {{A1 · · ·Amϕs}}, and similarly for

g. Generically f and g have no symmetry property since we are not considering sum

over all diagrams. Now we can construct another Feynman diagram with external states

A1, · · ·Am, B1, · · ·Bn by joining ϕs and ϕr by a propagator, and summing over s and r.

Its contribution is given by3

− f(A1, · · ·Am, ϕs) g(B1, · · ·Bn, ϕr) 〈ϕ
c
s|c

−
0 b

+
0 (L

+
0 )

−1G|ϕc
r〉 . (2.10)

Note that f and/or g may have odd grassmann parity from the grassmann odd numbers

hidden inside the Ai’s, so one should be careful about their relative positioning. Similarly

if f(A1, · · ·An, ϕs, ϕr) denotes a Feynman diagram with external states A1, · · ·An, ϕs, ϕr

and if we consider a new Feynman diagram obtained by joining ϕs and ϕr by a propagator

and summing over all choices of ϕs, ϕr, the new Feynman diagram is given by

−
1

2
g2S f(A1, · · ·Am, ϕs, ϕr)〈ϕ

c
s|c

−
0 b

+
0 (L

+
0 )

−1G|ϕc
r〉 . (2.11)

The power of gS reflects that this operation increases the number of loops in the diagram

by 1. The factor of 1/2 is a combinatorial factor.

Using this propagator and the elementary vertices encoded in the interaction term

in (2.8) one can compute off-shell amplitudes of string field theory. Using standard ma-

nipulations these can be expressed as integrals over the moduli space of Riemann surfaces,

with the integrand given by the correlation function of vertex operators of external states,

PCO’s and ghost fields on the Riemann surface. The correlation function depends on

the choice of local holomorphic coordinates around the punctures and the PCO locations.

String field theory provides us with these data. It also gives us a cell decomposition of the

moduli space such that the contribution from each cell can be identified with a Feynman

diagram of the string field theory. These choices are not unique, but are tightly constrained,

and different choices give equivalent string field theories related by field redefinition [14].

Given a string field theory we can not only define the full off-shell amplitude, but consider

other quantities commonly used in quantum field theories e.g. 1PI amplitudes obtained by

summing over certain subset of diagrams. In the language of Riemann surface, this means

that we only integrate over certain subspaces of the moduli space. We shall now describe

some properties of these amplitudes.

Let G(A1, · · ·AN ) be the full off-shell truncated Green’s function with external

states A1, · · ·AN , obtained by summing over all Feynman diagrams with external states

A1, · · ·AN , but dropping the tree level propagators of the external states. We impose

2Throughout this paper we shall mean by off-shell amplitude the truncated Green’s function where the

tree level propagators for external states are dropped.
3The expression for the propagator is somewhat different from the standard one (see e.g. [3]) where

instead of a c−0 the propagator contained a b−0 . This difference can be traced to the inclusion of the c−0 in

the normalization (2.4) of the basis states.
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Siegel gauge condition on the internal states, but take the external states A1, · · ·AN to be

arbitrary elements of ĤT . Then G(A1, · · ·AN ) will be given by a sum of terms, each of

which is given by a product of the propagators and vertices. Let us now consider the com-

bination
∑N

i=1G(A1, · · ·Ai−1, QBAi, Ai+1, · · ·AN ). Since each Ai must come from some

vertex {{· · ·}} in a given Feynman diagram, the sum over i can be organized into subsets,

where in a given subset QB acts on different external states of the same vertex. This can

then be simplified using (2.9). This gives4

N∑

i=1

G(A1, · · ·Ai−1, QBAi, Ai+1 · · ·AN ) (2.12)

=−
1

2

∑

ℓ,k≥0

ℓ+k=N

∑

{ia;a=1,···ℓ},{jb;b=1,···k}

{ia}∪{jb}={{1,···N}

G(Ai1 , · · ·Aiℓ , ϕs)G(ϕr, Aj1 · · ·Ajk)〈ϕ
c
s|c

−
0 G|ϕ

c
r〉

−
1

2
g2S G(A1, · · ·AN , ϕs, ϕr) 〈ϕ

c
s|c

−
0 G|ϕ

c
r〉

−
1

2

∑

ℓ,k≥0

ℓ+k=N

∑

{ia;a=1,···ℓ},{jb;b=1,···k}

{ia}∪{jb}={{1,···N}

[
−G(Ai1 , · · ·Aiℓ , QBϕs)G(ϕr, Aj1 · · ·Ajk)

−(−1)γsG(Ai1 , · · ·Aiℓ , ϕs)G(QBϕr, Aj1 · · ·Ajk)
]
〈ϕc

s|c
−
0 b

+
0 (L

+
0 )

−1G|ϕc
r〉

−
g2S
2

[
−G(A1, · · ·AN , QBϕs, ϕr)−(−1)γsG(A1, · · ·AN , ϕs, QBϕr)

]
〈ϕc

s|c
−
0 b

+
0 (L

+
0 )

−1G|ϕc
r〉.

The first two terms on the right hand side represent the contribution from the right hand

side of (2.9) when we use (2.9) to simplify the contribution from individual vertices of the

Feynman diagram. The other two terms on the right hand side come from the fact that

while using (2.9) for a given vertex, we have to subtract the terms where QB acts on the

legs of the vertex connected to internal propagators since on the left hand side of (2.12)

QB only acts on the external states. The third term represents the contribution from a

propagator that connects two disjoint Feynman diagrams, whereas the last term represents

the contribution from a propagator that connects two external lines of a connected Feynman

diagram. The overall minus signs in front of the third and the fourth terms come from

having to move these from the left hand side of the equation, where they appear naturally,

to the right hand side. The minus signs inside the square brackets come from the ones on

the right hand sides of (2.10) and (2.11). The (−1)γs factors arise from having to move

QB through ϕs. In the third term, we have included a factor of 1/2 to compensate for

4To the best of our knowledge this form of the Ward identity has not been written down before even

for closed bosonic string field theory. While its consequence, described in (2.15), has a standard form, we

should add that this is not a convenient form for analyzing properties of on-shell amplitudes. The Green’s

function G has self energy insertions on the external legs and therefore diverges on-shell. One needs to

work with its cousin Γ described in [3] where the full external propagators are removed and work with

the Ward identities satisfied by Γ which take a different form. If there are tadpoles of light fields then G

will be divergent even for off-shell external states and (2.12), (2.15) are formal. In this case one has to

first construct the 1PI effective action, find its extremum and expand the action around this extremum to

compute the off-shell amplitudes [3]. Nevertheless we present this analysis here since in section 3 we shall

describe a similar analysis where all relevant quantities will be manifestly free from divergences.
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the double counting associated with the {ia} ↔ {jb} exchange. The 1/2 in the last factor

arises from the right hand side of (2.11).

Using the completeness relation (2.5) we can now move QB inside the matrix element

〈ϕc
s|c

−
0 b

+
0 (L

+
0 )

−1G|ϕc
r〉 in the third and the fourth terms, e.g. we have

QB|ϕs〉〈ϕ
c
s|c

−
0 b

+
0 (L

+
0 )

−1G|ϕc
r〉= QBb

+
0 (L

+
0 )

−1G|ϕc
r〉= |ϕs〉〈ϕ

c
s|c

−
0 QBb

+
0 (L

+
0 )

−1G|ϕc
r〉, (2.13)

and

(−1)γsQB|ϕr〉〈ϕ
c
s|c

−
0 b

+
0 (L

+
0 )

−1G|ϕc
r〉 = QB|ϕr〉〈ϕ

c
r|c

−
0 b

+
0 (L

+
0 )

−1G|ϕc
s〉 = QBb

+
0 (L

+
0 )

−1G|ϕc
s〉

= |ϕr〉〈ϕ
c
r|c

−
0 QBb

+
0 (L

+
0 )

−1G|ϕc
s〉 = |ϕr〉〈ϕ

c
s|c

−
0 b

+
0 QB(L

+
0 )

−1G|ϕc
r〉 . (2.14)

Using the relations QBb
+
0 + b+0 QB = L+

0 and (2.7) one can now show that on the right

hand side of (2.12) the third term cancels the first term and the fourth term cancels the

second term. This gives us the Ward identity for the off-shell Green’s function

N∑

i=1

G(A1, · · ·Ai−1, QBAi, Ai+1 · · ·AN ) = 0 . (2.15)

As a simple example we can consider the tree level four point function, given by the

sum of s, t and u-channel diagrams and the four point vertex. As a direct consequence

of (2.9), the contribution of the 4-point vertex to the right hand side of (2.12) will be

given by

−G(A1, A2, ϕs)G(ϕr, A3, A4)〈ϕ
c
s|c

−
0 G|ϕ

c
r〉 −G(A1, A3, ϕs)G(ϕr, A2, A4)〈ϕ

c
s|c

−
0 G|ϕ

c
r〉

−G(A1, A4, ϕs)G(ϕr, A2, A3)]〈ϕ
c
s|c

−
0 G|ϕ

c
r〉 . (2.16)

The contribution from the s-channel diagram will be given by

(G(A1, A2, QBϕs)G(ϕr, A3, A4)

+ (−1)γsG(A1, A2, ϕs)G(QBϕr, A3, A4))〈ϕ
c
s|c

−
0 b

+
0 (L

+
0 )

−1G|ϕc
r〉 . (2.17)

After moving QB inside the matrix element 〈ϕc
s|c

−
0 b

+
0 (L

+
0 )

−1G|ϕc
r〉 using the completeness

relation, and using QBb
+
0 + b+0 QB = L+

0 , this cancels the first term in (2.16). Similarly

the contribution from the t and u-channel diagrams cancel the second and third terms

in (2.16).

An identity similar to (2.15) can be derived for the 1PI amplitudes. Let {A1 · · ·An}

denote the 1PI amplitude of the external states A1, · · ·An. This will satisfy an identity

similar to (2.12) with G(A1, · · ·An) replaced by {A1 · · ·An}, and without the third term on

the right hand side of (2.12). This is due to the fact that by definition, 1PI amplitudes do

not include sum over Feynman diagrams in which a single propagator connects two other

Feynman diagrams. Therefore the first term on the right hand side remains uncanceled

and we arrive at the identity:

N∑

i=1

{A1 · · ·Ai−1(QBAi)Ai+1 · · ·AN}

= −
1

2

∑

ℓ,k≥0

ℓ+k=N

∑

{ia;a=1,···ℓ},{jb;b=1,···k}

{ia}∪{jb}={1,···N}

{Ai1 · · ·Aiℓϕs}{ϕrAj1 · · ·Ajk}〈ϕ
c
s|c

−
0 G|ϕ

c
r〉 . (2.18)
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3 The effective action of light fields

In this section we shall analyze the effective action for light fields obtained by integrating

out the heavy fields. By definition, the L+
0 −α′k2/2 eigenvalue vanishes for the light states.

We shall denote by P the projection operator into light states. P satisfies5

[P, b±0 ] = 0, [P,L±
0 ] = 0, [P,G] = 0, [P,QB] = 0 . (3.1)

Consider a set of light off-shell states a1, · · · aN . We denote by {{a1 · · · aN}}e the total

contribution to the amplitude with external states a1, · · · aN from all the Feynman diagrams

of superstring field theory, but with the propagator factors appearing in (2.10), (2.11)

replaced by 〈ϕc
s|c

−
0 b

+
0 (L

+
0 )

−1G(1 − P )|ϕc
r〉. This removes the contributions of light fields

from the propagator. Therefore {{a1 · · · aN}}e can be regarded as the contribution to the

off-shell amplitude due to the elementary N -point vertex of the effective theory, obtained

by integrating out the heavy fields.6 We can now repeat the argument leading to (2.12)

with G(· · · ) replaced by {{· · ·}}e. On the left hand side of (2.12) and the first two terms on

the right hand side of (2.12) we simply replace G(· · · ) by {{· · ·}}e, but in the last two terms

of (2.12) the propagator factors will now have additional insertions of (1− P ) since this is

the propagator used in the definition of {{· · ·}}e. This gives

N∑

i=1

{{a1 · · · ai−1(QBai)ai+1 · · · aN}}e

= −
1

2

∑

ℓ,k≥0

ℓ+k=N

∑

{ia;a=1,···ℓ},{jb;b=1,···k}

{ia}∪{jb}={{1,···N}

{{ai1 · · · aiℓϕs}}e{{ϕraj1 · · · ajk}}e〈ϕ
c
s|c

−
0 G|ϕ

c
r〉

−
1

2
g2S{{a1 · · · aNϕsϕr}}e 〈ϕ

c
s|c

−
0 G|ϕ

c
r〉

−
1

2

∑

ℓ,k≥0

ℓ+k=N

∑

{ia;a=1,···ℓ},{jb;b=1,···k}

{ia}∪{jb}={{1,···N}

[
− {{ai1 · · · aiℓ(QBϕs)}}e{{ϕraj1 · · · ajk}}e

−(−1)γs{ai1 · · · aiℓϕs}}e{{(QBϕr)aj1 · · · ajk}}e

]
〈ϕc

s|c
−
0 b

+
0 (L

+
0 )

−1G(1− P )|ϕc
r〉

−
1

2
g2S

[
− {{a1 · · · aN (QBϕs)ϕr}}e − (−1)γs{{a1 · · · aNϕs(QBϕr)}}e

]

〈ϕc
s|c

−
0 b

+
0 (L

+
0 )

−1G(1− P )|ϕc
r〉 . (3.2)

5While P projects to states of mass level zero, it keeps all the momentum modes of the light fields.

Therefore at this stage it will be premature to claim that integrating out modes outside the P invariant

subspace will lead to the Wilsonian effective action. We shall see in the next section that by adjusting a

parameter in string field theory we can effectively integrate out the high momentum modes of the light fields.
6Even in the presence of tadpoles of light fields, these amplitudes do not suffer from divergences of the

kind mentioned in footnote 4.
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Now the third and the fourth terms on the right hand side cancel the first and the second

terms only partially, leaving behind terms proportional to 〈ϕc
s|c

−
0 G P |ϕc

r〉:

N∑

i=1

{{a1 · · · ai−1(QBai)ai+1 · · · aN}}e

= −
1

2

∑

ℓ,k≥0

ℓ+k=N

∑

{ia;a=1,···ℓ},{jb;b=1,···k}

{ia}∪{jb}={{1,···N}

{{ai1 · · · aiℓϕs}}e{{ϕraj1 · · · ajk}}e〈ϕ
c
s|c

−
0 G P |ϕc

r〉

−
1

2
g2S{{a1 · · · aNϕsϕr}}e 〈ϕ

c
s|c

−
0 G P |ϕc

r〉 . (3.3)

If we denote by {|χα〉} and {|χc
α〉} the basis states in P ĤT and P H̃T respectively, satisfying

〈χα|c
−
0 |χ

c
β〉 = δαβ , 〈χc

β |c
−
0 |χα〉 = δαβ , (3.4)

then we can express (3.3) as

N∑

i=1

{{a1 · · · ai−1(QBai)ai+1 · · · aN}}e

= −
1

2

∑

ℓ,k≥0

ℓ+k=N

∑

{ia;a=1,···ℓ},{jb;b=1,···k}

{ia}∪{jb}={{1,···N}

{{ai1 · · · aiℓχα}}e{{χβaj1 · · · ajk}}e〈χ
c
α|c

−
0 G|χ

c
β〉

−
1

2
g2S {{a1 · · · aNχαχβ}}e 〈χ

c
α|c

−
0 G|χ

c
β〉 . (3.5)

This may be considered as the key technical result of this paper.

Given the identity (3.5) one can now construct the string field theory action satisfying

BV master equation in a straightforward manner following the procedure described in [4]

and reviewed in section 2. We introduce two sets of grassmann even string fields, Φ ∈ P ĤT

and Φ̃ ∈ P H̃T , i.e. both containing only light states. The effective master action is given by

Se =
1

g2S

[
−
1

2
〈Φ̃|c−0 QBG|Φ̃〉+ 〈Φ̃|c−0 QB|Φ〉+

∞∑

n=1

1

n!
{{Φn}}e

]
. (3.6)

Even though we used Siegel gauge to integrate out the heavy fields, there is no restriction on

|Φ〉 and |Φ̃〉 to satisfy the Siegel gauge condition. This is in the spirit of the BV formalism

where the master action is constructed before gauge fixing. In order to show that (3.6)

satisfies the BV master equation we proceed as follows [4]:

1. We define Ĥ+ and H̃+ to be the subspaces of ĤT and H̃T respectively containing

states of ghost numbers ≥ 3, and Ĥ− and H̃− to be the subspaces of ĤT and H̃T

respectively containing states of ghost numbers ≤ 2. We organize the basis states

{|χα〉} into {|χ̂−
α 〉} and {|χ̂α

+〉} of P Ĥ− and P Ĥ+ respectively, and the basis states

{|χc
α〉} into basis states {|χ̃−

α 〉} and {|χ̃α
+〉} of P H̃−, and P H̃+ respectively, satisfying

orthonormality conditions7

〈χ̂−
α |c

−
0 |χ̃

β
+〉 = δα

β = 〈χ̃β
+|c

−
0 |χ̂

−
α 〉, 〈χ̃−

α |c
−
0 |χ̂

β
+〉 = δα

β = 〈χ̂β
+|c

−
0 |χ̃

−
α 〉 , (3.7)

7By an abuse of notation we are using the same indices α to label the new basis even though the label

runs over a smaller set for the new basis.
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and the completeness relations

∑

α

|χ̂−
α 〉〈χ̃

α
+|c

−
0 +

∑

α

|χ̂α
+〉〈χ̃

−
α |c

−
0 = 1,

∑

α

|χ̃−
α 〉〈χ̂

α
+|c

−
0 +

∑

α

|χ̃α
+〉〈χ̂

−
α |c

−
0 = 1 ,

(3.8)

acting on states in P ĤT and P H̃T respectively.

2. The light string fields |Φ〉 and |Φ̃〉 are expanded as

|Φ̃〉 =
∑

α

|χ̃−
α 〉φ̃

α +
∑

α

(−1)γ
∗
α+1|χ̃α

+〉φ
∗
α ,

|Φ〉 −
1

2
G|Φ̃〉 =

∑

α

|χ̂−
α 〉φ

α +
∑

α

(−1)γ̃
∗
α+1|χ̂α

+〉φ̃
∗
α . (3.9)

Here γ∗α, γα, γ̃
∗
α and γ̃α label the grassmann parities of φ∗

α, φ
α, φ̃∗

α and φ̃α respectively.

We shall identify the variables {φα, φ̃α} as ‘fields’ and the variables {φ∗
α, φ̃

∗
α} as the

conjugate ‘anti-fields’ in the BV quantization of the theory.

3. Given two functions F and G of all the fields and anti-fields, we now define their

anti-bracket as:

{F,G} =
∂RF

∂φα

∂LG

∂φ∗
α

+
∂RF

∂φ̃α

∂LG

∂φ̃∗
α

−
∂RF

∂φ∗
α

∂LG

∂φα
−

∂RF

∂φ̃∗
α

∂LG

δφ̃α
, (3.10)

where the subscripts R and L of ∂ denote left and right derivatives respectively. We

also define

∆F ≡
∂R
∂φα

∂LF

∂φ∗
α

+
∂R

∂φ̃α

∂LF

∂φ̃∗
α

. (3.11)

4. Using (3.8), (3.9) and (3.10) one gets, after some algebra,

g4S{Se, Se}=−2
∑

n

1

(n−1)!
{{Φn−1QBΦ}}e −

∑

m,n

1

m!n!
{{χβΦ

m}}e{{χαΦ
n}}e 〈χ

c
β |c

−
0 G|χ

c
α〉.

(3.12)

Here |χα〉’s denote the original choice of basis states in ĤT before splitting it into Ĥ±.

5. On the other hand using (3.8), (3.9) and (3.11) we get

∆Se = −
1

2 g2S

∑

n

1

n!
{{Φnχβχα}}e〈χ

c
β |c

−
0 G|χ

c
α〉 . (3.13)

6. Using the identity (3.5), and eqs. (3.12), (3.13) one can show that the action Se given

in (3.6) satisfies the quantum BV master equation

1

2
{Se, Se}+∆Se = 0 . (3.14)

One can choose Siegel gauge b+0 |Φ〉 = 0 = b+0 |Φ̃〉 and derive the Feynman rules in a

straightforward manner following a procedure identical to the one used for the full string
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field theory. One finds that the field Φ describes an interacting field, while the degrees

of freedom associated with Φ̃ describe decoupled free fields. By analyzing the amplitudes

with external Φ legs one arrives at the conclusion that when two Feynman diagrams are

joined by a Φ propagator one has an expression analogous to (2.10)

− f(a1, · · · am, χα) g(b1, · · · bn, χβ) 〈χ
c
α|c

−
0 b

+
0 (L

+
0 )

−1G|χc
β〉 . (3.15)

On the other hand when two legs of a connected Feynman diagram are joined by a Φ

propagator, we have the analog of (2.11)

−
1

2
g2S f(a1, · · · am, χα, χβ)〈χ

c
α|c

−
0 b

+
0 (L

+
0 )

−1G|χc
β〉 . (3.16)

By writing down an analog of (2.12) in the effective field theory one can show that the

full amplitude constructed by summing over all Feynman diagrams of light fields with

{{a1 · · · aN}}e as elementary vertices satisfies the same identity as (2.15). This is of course a

reflection of the fact that the full amplitude constructed from the effective action and the

original string field theory action are identical.8

We can also introduce the notion of 1PI amplitudes {a1 · · · aN}e built from the ele-

mentary vertices described above. By proceeding in the same way as from (2.9) to (2.18),

one can show that {a1 · · · aN}e satisfies the identity

N∑

i=1

{a1 · · · ai−1(QBai)ai+1 · · · aN}e

= −
1

2

∑

ℓ,k≥0

ℓ+k=N

∑

{ia;a=1,···ℓ},{jb;b=1,···k}

{ia}∪{jb}={1,···N}

{ai1 · · · aiℓχα}e{χβaj1 · · · ajk}e〈χ
c
β |c

−
0 G|χ

c
α〉 . (3.17)

Using this one can construct 1PI action for light fields:

S1PI
e =

1

g2S

[
−
1

2
〈Φ̃|c−0 QBG|Φ̃〉+ 〈Φ̃|c−0 QB|Φ〉+

∞∑

n=1

1

n!
{Φn}e

]
. (3.18)

This satisfies the classical master equation

{S1PI
e , S1PI

e } = 0 . (3.19)

Furthermore by restricting the fields |Φ〉 and |Φ̃〉 to carry ghost number 2, we arrive at the

gauge invariant 1PI action of space-time matter fields with gauge transformation laws

δ|Φ̃〉 = QB|Λ̃〉+
∑

n

1

n!
[ΦnΛ]e , δ|Φ〉 = QB|Λ〉+

∑

n

1

n!
G [ΦnΛ]e . (3.20)

Here the gauge transformation parameters |Λ〉 and |Λ̃〉 are states of P ĤT and P H̃T re-

spectively, carrying ghost number 1. For |ai〉 ∈ P ĤT , [a1 · · · aN ]e describes a state in P H̃T

defined via

〈a0|c
−
0 |[a1 · · · aN ]e〉 = {a0a1 · · · aN}e , ∀|a0〉 ∈ P ĤT . (3.21)

8As mentioned in footnote 4, if there are tadpoles of light states then the full amplitude is divergent.

In such cases one has to first construct the 1PI effective action, find the extremum of this action and then

compute the Green’s functions by expanding the action around the new background.
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The 1PI action so constructed is useful for analyzing various properties of light fields.

For example the quantum corrected vacuum can be found by identifying the translationally

invariant extremum of the action. The renormalized masses can be computed directly by

solving the linearized equations of motion around the extremum of the action.9

Before concluding this section, we shall give some physical insight into the definition

of the vertex {{a1 · · · aN}}e. We have defined it as the result of building up the off-shell am-

plitude of light states by summing over Feynman diagrams of superstring field theory after

subtracting off the contribution due to light states from the propagators. This would be a

complicated procedure involving piecing together amplitudes of heavy states with the help

of (2.10), (2.11) with additional insertion of (1− P ) factors in the propagators. A simpler

definition involves proceeding from the other end, where we begin with the full off-shell

amplitude of light states and carry out appropriate subtraction involving light intermedi-

ate states. A systematic procedure for doing this has been described in appendix A. The

full amplitude has simple interpretation as the integrals of correlation functions of vertex

operators of light states over the full moduli space of Riemann surfaces. The subtraction

terms also involve products of light state propagators and correlation functions of off-shell

vertex operators of light states over lower genus Riemann surfaces. Therefore with this

definition one never has to worry about computing off-shell amplitudes of heavy states.

The analysis nevertheless requires some data from string field theory since the definition

of the off-shell amplitude, as well as the association of subspaces of the moduli space with

the Feynman diagrams, requires data from string field theory. We shall elaborate on this

in section 5. A similar procedure can be adapted for defining the 1PI vertices {a1 · · · aN}e.

In this case the subtraction of the contribution of light states has to be applied only on

those propagators which connect two Feynman diagrams that are otherwise disjoint.

4 The effective action as Wilsonian effective action

In this section we shall argue following [10, 11] that the effective action derived in section 3

is actually a Wilsonian effective action in which the high momentum modes of the light

fields are also effectively integrated out. For this we shall first illustrate this mechanism in

the context of a quantum field theory.

Consider an ordinary quantum field theory, possibly containing multiple fields of differ-

ent masses. A Feynman diagram of this theory is given by the integral over loop momenta

of an integrand that is given by the product of propagators and vertices. Let us represent

the denominator factor of each propagator as an integral over a Schwinger parameter as

follows:

(k2 +m2)−1 =

∫ ∞

0
ds e−s(k2+m2) . (4.1)

Now let us replace the right hand side by

∫ ∞

Λ
ds e−s(k2+m2)+

∫ Λ

0
ds e−s(k2+m2) = e−Λ(k2+m2)(k2+m2)−1+

∫ Λ

0
ds e−s(k2+m2) . (4.2)

9Even though in ten dimensions the masses of light states do not get renormalized due to gauge invari-

ance, this is not always true in lower dimensions, e.g. in the situation analyzed in [3].
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The first term contains a pole at k2 +m2 = 0. Let us redefine the vertices by absorbing a

factor of e−Λ(k2+m2)/2 in each of the two vertices that the propagator connects to. If we do

this for each propagator and pick the first term in each propagator then the result will have

an interpretation of Feynman diagram in a new theory in which each vertex is scaled by

a factor of e−Λ
∑

i(k
2
i+m2

i )/2, with the sum running over all the external legs of the vertex.

This still leaves us with the second term in (4.2) which needs to be taken into account.

Since this does not have any pole at k2 +m2 = 0, its contribution may be represented by

including a further additive contribution to the vertices. This leads to a new set of vertices

(and the standard propagator) which give identical contribution to the S-matrix as the

original vertices.

As a simple example we can consider a tree level four point amplitude corresponding

to the ‘s-channel diagram’. Representing the propagator as in (4.2), we can regard the

contribution to the four point function from the second term in (4.2) as coming from a new

additive contribution to the four point vertex. On the other hand the e−Λ(k2+m2) factor in

the first term can be absorbed into a multiplicative factor of e−Λ(k2+m2)/2 in each of the two

three point vertices. This procedure can be carried out for all tree and loop amplitudes.

It is clear that this procedure removes some of the contribution from the composite

Feynman diagrams and transfers it to the definition of the elementary vertices. This is

precisely the notion of integrating out certain set of degrees of freedom to generate a new

but equivalent theory. It is also easy to see which degrees of freedom are being integrated

out. For this let us consider the case of massless fields and euclidean theory so that k2

is positive. In this case most of the contribution of the modes with k2 ≫ Λ−1 is in the

second term in (4.2) — the contribution of these modes to the first term is exponentially

suppressed. Therefore including the contribution from the second term in the vertices

corresponds to integrating out the modes carrying momentum ≫ Λ−1/2. This is precisely

the notion of Wilsonian effective action.

Let us now return to string field theory. It turns out that string field theories auto-

matically come with the parameter Λ [12]. This corresponds to the freedom of rescaling

the local holomorphic coordinates around the punctures by a constant. This rescaling au-

tomatically multiplies the off-shell amplitudes (and hence also the elementary vertices) by

a factor of e−Λ
∑

i(k
2
i+m2

i )/2 where the (k2i + m2
i ) factor arises from the conformal weight

of the vertex operator. However the rescaling of the local holomorphic coordinates also

needs to be accompanied by a change in the cell decomposition of the moduli space —

transferring some part of the moduli space corresponding to composite Feynman diagrams

to elementary vertices — in order to preserve the relations (2.9). Therefore the operation

of rescaling the local holomorphic coordinates in the definition of off-shell amplitudes —

known in the string field theory literature as the operation of adding stubs — is precisely

the operation of rearranging the contribution from different Feynman diagrams in a quan-

tum field theory using (4.2). As argued before, this operation is equivalent to integrating

out the high momentum modes. Therefore we see that the effective action we have obtained

automatically represents Wilsonian effective action in which by controlling the stub length

we can adjust the energy scale above which the modes of the light fields are integrated out.
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This also determines the effective UV cut-off of the theory, encoded in the exponential

suppression factor in the vertices.10

In the BV formalism the operation of adding stubs is generated by a symplectic trans-

formation of the fields and does not change the physical theory [14]. In particular this

operation generates a field redefinition of the 1PI effective action and leaves the S-matrix

unchanged [20, 21].

5 Discussion

Construction of superstring field theory has two parts. The first part involves associating,

to each elementary vertex of the field theory with a certain number of external lines, a

certain subspace of the moduli space of punctured Riemann surfaces, and specifying, for

each Riemann surface belonging to the subspace, a choice of local holomorphic coordinates

around the punctures and PCO locations. The number of punctures match the number of

external lines and the genus of the Riemann surface determines the power of gS by which

the contribution from the vertex is multiplied. Generically a vertex with a given number of

external lines receives contribution from all genera. The choice of this data is not unique,

but neither is this completely arbitrary as it has to satisfy some stringent constraints that

will be described below. Given this data one can draw all possible Feynman diagrams for a

given amplitude, and for each of these Feynman diagrams associate a subspace of the moduli

space of Riemann surfaces using the following algorithm. When two elementary vertices

are joined by a Feynman propagator to generate a new Feynman diagram as in (2.10),

this corresponds to gluing the corresponding Riemann surfaces via the plumbing fixture

relation

zw = e−s+iθ, 0 ≤ s < ∞, 0 ≤ θ < 2π , (5.1)

where z and w are the local holomorphic coordinates around the punctures which are joined

by the propagator. This not only generates a family of Riemann surfaces corresponding to

the Feynman diagram but also specifies the local coordinates around the punctures and the

PCO locations on each member of this new family.11 A similar interpretation can be given

for the case where two lines coming out of a single vertex are joined by a propagator as

in (2.11). Repeating this procedure one can generate a family of Riemann surfaces corre-

sponding to every Feynman diagram, together with choice of local holomorphic coordinates

around the punctures and PCO locations for each member of this family. The consistency

of the original choice guarantees that the family of Riemann surfaces corresponding to all

Feynman diagrams covers the full moduli space of Riemann surfaces in a one to one fashion

and furthermore that the choice of local holomorphic coordinates around the punctures and

10Note however that in a given scattering amplitude with some fixed total center of mass energy E carried

by the incoming particles, the loop energy integration contours veer away from the imaginary axis by a

distance of order E in order to go around the poles of the propagators [18, 19]. Since the vertices grow

exponentially for real energy, a large stub length does not help us in reducing the range of loop energy

integration below E.
11When two punctures associated with Ramond sector states are joined this way, one has an additional

insertion of the zero mode of the PCO around one of the punctures.
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the PCO locations are continuous across the boundaries that separate the subspaces of the

moduli space associated with different Feynman diagrams.

In the second step one focusses on superstring theory in some specific background as-

sociated with a choice of the superconformal field theory of matter and ghost fields and

computes the amplitude associated with a Feynman diagram by inserting the vertex oper-

ators at the punctures using the predefined local holomorphic coordinates and integrating

the correlation function over the corresponding subspace of the moduli space of Riemann

surfaces. Based on this one arrives at the definition of {{A1 · · ·AN}} and the BV master

action described in section 2.

The result of our analysis can be interpreted by saying that these data can be used to

construct other useful quantities in string theory, e.g. Wilsonian effective action and 1PI

effective action for light fields. For the interaction vertices of the Wilsonian effective action

we take the expression for the full off-shell amplitude of light states and subtract from

each Feynman diagram the contribution to the propagator from the light states following

the procedure described in appendix A. For the 1PI effective action we carry out a similar

procedure, but perform the subtraction only from the propagators connecting two disjoint

Feynman diagrams. For amplitudes with light fields as external states, these actions contain

the full information of the original string field theory.

The construction described in this paper can be generalized to other situations by

replacing the projection operator P to light states by some other projection operator sat-

isfying the identities given in (3.1). In particular we could choose P to be a projection

operator into another mass level, or into a set of mass levels. Projecting into a fixed

mass level may be useful, e.g. for computing the renormalized masses of the states at that

mass level, while projecting into a set of mass levels can be useful for computing S-matrix

elements where the external states are chosen from that set. This will automatically im-

plement the procedure described in [20–23] for integrating out states at other mass levels

while computing the renormalized mass at a given level. Note however that if the theory

has tadpoles of mass level zero fields requiring a shift in the vacuum under quantum cor-

rections then it is not possible to integrate out the degrees of freedom associated with the

mass level zero states. The projection operator P must always include the mass level zero

states so that the corresponding 1PI action can be used to determine the correct vacuum

before proceeding to compute the renormalized masses. Even in the absence of tadpoles, an

effective action in which the fields of lower mass levels are integrated out will necessarily be

complex, reflecting that the scattering could produce the states that have been integrated

out. For this reason, for computing a given scattering amplitude, it is best to keep all the

fields up to the mass level that can be produced in the final state, and integrate out all

fields above this mass level. This will have the advantage of having to deal with only a finite

number of fields, but all the standard manipulations can be carried out with this action.

For example the proof of unitarity given in [24] can be repeated with this formulation of

the theory without any change.

Given the complexity of string field theory — having infinite number of fields — one

could wonder whether what we have learned from string field theory can be reformulated

as some suitable modification of the world-sheet description of scattering amplitudes. The
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effective action just described can be regarded as the answer to this question. The data

required for writing down the action involves computation of correlation functions on the

Riemann surface of only states below a certain mass level, with certain subtractions that

also involves correlation functions of the same states. Nevertheless the action so constructed

is free from all divergences. Therefore in this formalism all the divergences of the S-matrix

appear as usual infrared divergences of a quantum field theory and can be dealt with using

standard tools of quantum field theory.

One could also consider other projection operators satisfying (3.1). As an example,

consider toroidal compactification of type II string theory and take P to be the projection

operator on to states for which the left and right-moving oscillators are forced to be in their

GSO invariant ground state. By integrating out all other fields following the procedure

described in this paper, one would arrive at the double field theory action envisaged in [25].

Such a field theory may be useful for describing scattering of states in the kinematic regime

in which the P non-invariant states are not produced in the final state.

It is tempting to conjecture that the form of the effective action we have found extends

beyond conventional string theory, e.g. the Wilsonian effective action of the eleven dimen-

sional M-theory may be given by a formula similar to (3.6) with the vertices satisfying the

identities (3.5), even though they are not given as integrals over the moduli space of Rie-

mann surfaces. M-theory is known to exist [26, 27] but there is no systematic method for

computing scattering amplitudes beyond the leading order due to the absence of a dimen-

sionless expansion parameter. The artificial dimensionless parameter given by the ratio of

the cut-off scale and the Planck scale could serve the purpose of an expansion parameter,

with higher loop contributions being suppressed by powers of this parameter as long as

the momenta of external states remain below the cut-off scale. From this perspective, con-

struction of M-theory reduces to the problem of finding solutions to (3.5) subject to the

boundary condition at low momentum provided by the eleven dimensional supergravity.
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A Construction of the interaction vertices of the effective action

In this appendix we shall give a systematic procedure for constructing the interaction

vertices {{a1 · · · aN}}e that go into the definition of the Wilsonian effective action. For this

we shall need to introduce some notation. The original superstring field theory provides us

with a cell decomposition of the moduli space of Riemann surfaces with punctures, with

every cell corresponding to a particular Feynman diagram. It also specifies the choice of

local holomorphic coordinates at the punctures and the PCO locations for every Riemann

surface. This allows us to express the off-shell amplitude with external states a1, · · · aN
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as
∫
I where the integral runs over the moduli space and the integrand I is expressed in

terms of appropriate correlations functions on the Riemann surface. The contribution to

{{a1 · · · aN}}e will be given by a similar integral but with different integrand, taking different

forms inside different cells of the moduli space. We shall now describe how to construct

the integrand.

First consider the cell C associated with the Feynman diagram that has a single vertex

with N external legs and no propagators. The contribution of this cell to {{a1 · · · aN}}e is

given by
∫
C I where I is the same integrand that appears in the expression for the full

off-shell amplitude.

Now suppose we have a cell C1 corresponding to a Feynman diagram in which we have

a single propagator. This could either connect two legs of a single vertex or two vertices.

Riemann surfaces in this cell have a natural relation to the Riemann surfaces corresponding

to the vertex (pair of vertices) that remains when the propagator is removed. The former

is obtained by sewing two parts of the latter Riemann surface (pair of Riemann surfaces)

using the plumbing fixture relation

z w = e−s+iθ, 0 ≤ s < ∞, 0 ≤ θ < 2π . (A.1)

Here z and w are the local holomorphic coordinates around the extra punctures that arise

due to the removal of the propagator. The moduli of the original Riemann surface labelling

points inside the cell C1 can be labelled by the moduli of the cell C̃1 corresponding to the

vertex (pair of vertices), and the variables (s, θ).

Now take the original Feynman diagram and replace the propagator by the propagator

of the light states. This contribution will be expressed in terms of the product of the

propagator of the light states given by (k2)−1〈χc
α|c

−
0 b

+
0 G|χ

c
β〉 and the contribution to the off-

shell amplitude from the constituent vertex (pair of vertices). The latter can be expressed

as an integral over C̃1, while the (k2)−1 term in the propagator can be expressed as12

α′

4π

∫ ∞

0
ds

∫ 2π

0
dθ e−s α′k2/2 . (A.2)

When the propagator connects two vertices, k is fixed in terms of the external momenta

using momentum conservation. When the propagator connects two legs of a single vertex,

we carry out the integration over momenta k treating it as a gaussian integral. In either

case, since the coordinates of C̃1 together with (s, θ) give the coordinates of C1, we see that

the net contribution has been expressed as an integral over the cell C1. The integrand of

course is different from the integrand I that appeared in the original off-shell amplitude.

Let us call this integrand I1. Then the contribution to {{a1 · · · aN}}e from the cell C1 is

given by
∫
C1
(I − I1). The subtraction term removes the contribution of light states from

the propagator and renders the integral free from divergences in the s → ∞ limit.

Next consider the case of a Feynman diagram with two propagators, which we shall

label by 1 and 2. We define I to be the integrand appearing in the original amplitude,

12The α′/2 factor multiplying k2 has been fixed using the fact that k2 appears in the expression for L+
0

in the combination α′k2/2.
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Ir for r = 1, 2 to be the integrand that appears when we replace the r-th propagator

by the light state propagator and use (A.2), and I12 to be the integrand that appears

when we replace both the propagators by light state propagators and use (A.2). The

contribution to {{a1 · · · aN}}e from the cell C12 associated with this Feynman diagram is

given by
∫
C12

(I − I1 − I2 + I12), with the additive factor of I12 compensating for the over

subtraction that we have made by subtracting I1 and I2 from I.

The general procedure is now clear. Contribution to {{a1 · · · aN}}e from a cell C12···k

associated with a Feynman diagram with k propagators labelled by 1, · · · k is given by

∫

C12···k

k∑

ℓ=0

(−1)ℓ
∑

{r1,···rℓ}⊆{1,2,···k}

Ir1···rℓ , (A.3)

where Ir1···rℓ is the integrand that we get by replacing the propagators r1, · · · rℓ by light

state propagators and then applying (A.2).

The procedure described above gives an expression for {{a1 · · · aN}}e that is free from all

divergences as long as the energies of external states a1, · · · aN are below the threshold of

production of heavy states. Above this threshold we shall get divergences from the region

where one or more Schwinger parameters s appearing in (A.2) become large (see e.g. [19]).

As described in section 5, this may be avoided by working with a different effective action

in which only states above the threshold are integrated out. In this case we carry out the

algorithm described above by including in the subtraction terms not just the light state

propagators but the projection of the full propagator to states up to a fixed mass level.

B Removing spurious fields

Since the effective action has only the light fields as its degrees of freedom, one would

expect the number of fields to be finite. This is indeed true in the NS sector since there

are no bosonic zero modes which can act on a light state to create infinite number of light

states. However in the R sector we have zero modes of γ in the picture number −1/2 sector

and zero modes of β in the picture number −3/2 sector. Therefore we can create infinite

number of states at mass level zero by acting with these oscillators. We shall now show

that only a finite number of these states appear in the computation of Feynman diagrams.

Let us focus on the right-moving Ramond sector state, the analysis for the left-moving

Ramond sector will be identical. We drop all reference to the left-moving sector and

also the momentum labels and the space-time spinor index coming from the right-moving

sector. The only exception will be the zero modes of the b, c, b̄, c̄ ghosts since for these

the condition (2.1) couples the two sectors. Denoting by |p〉 the Ramond ground state

of picture number p in this convention, the unwanted modes of |Φ〉 are the coefficients

of (γ0)
nc1| − 1/2〉 and (γ0)

nc+0 c1| − 1/2〉 for n ≥ 1. Their duals, in the sense described

in (3.4), are c+0 (β0)
nc1| − 3/2〉 and (β0)

nc1| − 3/2〉 respectively. Now (3.15), (3.16) show

that the propagator involves b+0 G acting on the dual basis state. The b+0 annihilates the

state (β0)
nc1| − 3/2〉. On the other hand acting on c+0 (β0)

nc1| − 3/2〉, b+0 G will generate

G(β0)
nc1| − 3/2〉. This is a state carrying right-moving picture number −1/2 and ghost
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number (1−n). It is easy to see that this vanishes for n ≥ 1 — there is simply no candidate

state with the right ghost number and picture number at mass level zero. This shows that

the fields associated with states of the form described above do not appear as intermediate

states in the Feynman diagrams. Similar arguments together with (3.12), (3.13) show

that these fields also do not contribute to {Se, Se} or ∆Se. Therefore for all practical

computation we can drop these fields and their dual, and work with a finite number of fields.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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