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1 Introduction

The scattering amplitudes program has revealed extraordinary structures underlying long-

studied quantum field theories. One such class of miracles reformulates gravity as the

“square” of gauge theory. Discovered by KLT [1] and generalized by BCJ [2], this relation-

ship is encoded in concrete formulae expressing the scattering amplitudes of pure gravity

as sums over products of the scattering amplitudes of Yang-Mills theory,

AGR ∼
∑

AYMĀYM, (1.1)

where the barred and unbarred factors need not be the same amplitude. This duality

appears in various guises in a variety of contexts, both in field theory and string theory

(see ref. [3] and refs. therein). Remarkably, the double copy structure also persists in

classical field theory, where certain gauge theory backgrounds map directly to solutions of

general relativity [4–9].

Pragmatically, these squaring relations simplify certain gravity calculations by con-

necting them directly to known computations in gauge theory [10]. From a top-down

perspective, however, this correspondence suggests a very surprising fact about the under-

lying symmetries of gravity. In particular, since the right-hand side of eq. (1.1) is a sum

over products of Lorentz scalars, it is separately invariant under Lorentz transformations
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acting individually on each Yang-Mills factor. To see this explicitly, consider graviton

polarizations expressed as a bivector,

εab̄ = εaε̄b̄, (1.2)

where AYM and ĀYM depend only on ε and ε̄, respectively. Denoting the momenta con-

tracted with unbarred and barred indices by k and k̄, respectively, it follows that the

right-hand side of eq. (1.1) exhibits a formal twofold invariance under a pair of Lorentz

transformations,

ka → Λ b
a kb and k̄ā → Λ̄ b̄

ā k̄b̄, (1.3)

together with a pair of Ward identity transformations,

εa → εa + ka and ε̄ā → ε̄ā + k̄ā. (1.4)

The fact that the physical scattering amplitudes of pure gravity can be expressed as

products of Yang-Mills amplitudes hints at an underlying “twofold Lorentz symmetry”

of pure gravity,

SO(D − 1, 1)× SO(D − 1, 1). (1.5)

It should be possible to manifest such a property at the level of the action. Such a for-

mulation would manifest “index factorization”, i.e., where all interactions of the graviton

field hab̄ involve indices contracted with ηab and ηāb̄, thus forbidding contractions between

barred and unbarred indices. This condition places stringent restrictions on the allowed

interaction terms. For example, something as innocuous as the trace of the graviton,

h a
a = hab̄η

b̄a, is not twofold Lorentz invariant since εaε̄
a = εaε̄b̄η

b̄a contracts barred and

unbarred indices.

The canonical procedure for graviton perturbation theory grossly violates index factor-

ization and, in turn, twofold Lorentz symmetry. In particular, the Einstein-Hilbert (EH)

action in D spacetime dimensions is1

S =

∫
dDx
√
−g

(
R

16πG
+ LGF

)
, (1.6)

where LGF denotes the Faddeev-Popov gauge-fixing term. To compute graviton scattering

amplitudes in perturbation theory, we typically define

gab = ηab + hab (1.7)

and expand the action in powers of the graviton perturbation hab. Terms involving the

trace of the graviton, together with other nonfactorized structures, induce propagators and

interaction vertices that explicitly violate the twofold Lorentz symmetry.

Nevertheless, in the seminal work of ref. [11], Bern and Grant showed how the KLT

relations can be reverse-engineered to perturbatively construct an action for pure gravity

1We work in mostly-plus signature and use the conventions Rab = Rc
acb and Ra

bcd = ∂cΓ
a
bd − ∂dΓa

bc +

Γa
ceΓe

bd−Γa
deΓe

bc. We denote the determinant of a metric as the metric’s label with no indices, e.g., g = det gab,

etc. For notational reasons, we will adopt Latin indices throughout.
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compatible with manifest index factorization. They achieved this feat up to fifth order

in graviton perturbations, leaving open the question of an all-orders generalization. Fur-

thermore, to derive this action from the original EH action required the introduction of a

dilaton, which when integrated out induced nonlocal graviton interactions.

In this paper, we recast the EH action for pure gravity into a form that is local and

manifestly twofold Lorentz invariant at all orders in graviton perturbations. To do so, we

exploit the fact that the usual EH action of conventional graviton perturbation theory is

not particularly meaningful: the freedom of nonlinear field redefinitions and gauge fixing

permits one to rewrite the action in an infinite number of different ways, all describing

equivalent physics. By exploring this full freedom, we derive a local representation of the

EH action that is compatible with index factorization at all nonlinear orders and requires

no additional dynamical or auxiliary fields beyond the graviton. The off-shell Feynman

propagators and vertices are trivially twofold Lorentz invariant and the resulting tree-level

on-shell scattering amplitudes are twofold gauge invariant. The resulting action is derived

most naturally in an “exponential basis” for the graviton, reminiscent of the common

parameterization of Nambu-Goldstone bosons in the nonlinear sigma model.

By recasting this action in terms of fields on a doubled spacetime of dimension 2D, we

automate the bookkeeping of the barred and unbarred indices at the expense of introducing

a two-form field, which decouples from all tree-level graviton scattering amplitudes. We

comment on the link between these representations and those that arise from double field

theory [12–18], where Einstein gravity coupled to a dilaton and two-form arises as the low-

energy effective field theory of string theory at leading order in the derivative expansion.

An obvious corollary is that our action also generates, via further field redefinitions, an

infinite class of equivalent twofold Lorentz invariant actions. Again utilizing this freedom of

graviton field basis, we study alternative versions of this action, going from the exponential

basis to the analogue of the “Cayley basis” [19] for the nonlinear sigma model. Here, we find

that graviton perturbation theory simplifies substantially and manifests some unexpected

additional symmetries.

The remainder of this paper is organized as follows. In section 2, we discuss a sys-

tematic procedure parameterizing the space of local field redefinitions and gauge-fixing

conditions in pure gravity. Afterwards, we show in section 3 how this exercise yields a

simple action that exhibits index factorization and thus twofold Lorentz invariance. This

form is naturally written in terms of a spacetime of doubled dimension. We then discuss

the graviton propagator, as well as a more general class of twofold Lorentz invariant theo-

ries related by field redefinitions. Next, we generalize this formalism to curved spacetime

in section 4, establishing index factorization for any Ricci-flat spacetime and deriving the

corresponding Einstein equations. We conclude and discuss future directions in section 5.

2 Building the action

In this section, we define the space of local actions equivalent to the EH action modulo

field redefinitions and gauge fixing. For a particular choice, the EH action can be recast

into a form that manifests index factorization and is thus compatible with twofold Lorentz
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invariance. Here, we will study graviton perturbation theory as an expansion about flat

spacetime in Cartesian coordinates,

ηab = diag(−1, 1, . . . , 1). (2.1)

In section 4, we will generalize our results to arbitrary backgrounds and curvilinear coor-

dinate systems.

2.1 Index factorization

To begin, we identify which terms are compatible and incompatible with index factorization.

For later convenience, we define powers of the graviton tensor by

hnab = hab1η
b1a1ha1b2η

b2a2 · · ·han−2bn−1η
bn−1an−1han−1b

= h a1
a h a2

a1 · · ·h
an−1
an−2

han−1b,
(2.2)

together with a shorthand for the trace,

[hn] = hnabη
ba. (2.3)

We can now determine when these products of the graviton tensor are compatible with in-

dex factorization. Many operators are comprised of gravitons built from objects of the form

[h2n] = even cycle or [h2n+1] = odd cycle, (2.4)

where we have suppressed all derivatives and their contractions. The odd cycles necessarily

violate index factorization. This is obvious because an odd number of graviton tensors

appear with an odd number of barred indices and an odd number of unbarred indices.

Thus, contracting all the indices will necessarily involve the contraction of at least one

barred and one unbarred index. In contrast, the even cycles are compatible with index

factorization, since there exists a consistent assignment of barred and unbarred indices.

As noted before, however, odd cycles appear ubiquitously in the conventional approach

to graviton perturbation theory, which is derived by expanding the EH action in the field

basis in eq. (1.7). For example, the volume element is given by

√
−g = exp

(
1

2

∞∑
n=1

(−1)n−1

n
[hn]

)
, (2.5)

which has an infinite number of odd cycles that are incompatible with index factorization.

Hence, to construct a representation with manifest index factorization it is necessary to go

beyond the standard prescription. To do so, we rewrite the EH action in an arbitrary local

graviton field basis and gauge-fixing, which we now discuss.

2.2 Field basis and gauge fixing

To construct an arbitrary field basis, we consider all possible local field redefinitions of

the graviton defined in eq. (1.7). Due to a theorem of Haag [20] (see also ref. [21] and
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refs. therein), field redefinitions leave all scattering amplitudes invariant, provided the

asymptotic states remain unaltered. For example, the local field redefinition of a scalar,

φ→ α1φ+ α2φ
2 + α3φ

3 + · · · , (2.6)

leaves scattering amplitudes unchanged provided α1 = 1 so that the linearized field is the

same. For the graviton, the analogous field redefinition is

hab → α1hab+α2ηab[h]

+ α3h
2
ab+α4hab[h]+α5ηab[h

2]+α6ηab[h]2

+ α7h
3
ab+α8h

2
ab[h]+α9hab[h

2]+α10hab[h]2+α11ηab[h
3]+α12ηab[h

2][h]+α13ηab[h]3

+ · · · , (2.7)

where α1 = 1. Here we will restrict to field redefinitions without any derivatives in or-

der to maintain the familiar two-derivative form of the graviton interactions. In general,

it is straightforward but tedious to enumerate the various tensor structures at higher or-

ders in the graviton. At O(hn), there are
∑n

j=0 p(j) possible terms in the nonlinear field

redefinition, where p(j) is the number of partitions of j.

Next, we consider gauge fixing, which also comes with an immense freedom. Using the

Faddeev-Popov gauge-fixing procedure, we define

LGF = −ηabFaFb, (2.8)

for a local but otherwise arbitrary gauge-fixing vector,

Fa = ∂bhcd(β1 ηabηcd + β2 ηacηbd (2.9)

+ β3habηcd+β4 hacηbd+β5 ηabhcd+β6 ηachbd+β7 ηabηcd[h]+β8 ηacηbd[h]+· · · ),

which can be thought of as a highly nonlinear generalization of harmonic gauge. At O(hn)

in the nonlinear gauge-fixing vector, there are 2
∑n

j=1 j p(n− j) possible terms.

As noted earlier, the α and β parameters that appear in the field basis and gauge-fixing

have absolutely no effect on physical scattering amplitudes. However, as a check of our

calculation, we have also explicitly computed the three-particle and four-particle scattering

amplitudes and verified that they are indeed independent of α and β.

3 Factorizing the action

The α and β parameters of the field basis and gauge-fixing alter the action but have no

effect on physical observables. Next, we can examine the action at each order in graviton

perturbations, fixing the α and β parameters so as to precisely eliminate all appearances

of odd cycles, as defined in eq. (2.4). This is a necessary condition for manifest index

factorization. By explicit computation, we have verified that this criterion can be satisfied

at least up to fifth order in the graviton. Perhaps surprisingly, we have also found that a

special choice of the α and β parameters follows a simple pattern that straightforwardly

generalizes to all orders in perturbation theory, taking a simple analytic form. One can

then prove that this choice of nonlinear field redefinition and gauge-fixing allows for index

factorization of the action at all orders in the graviton. It is to this special class of field

redefinitions and gauge-fixing that we now turn.
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3.1 Definition of the action

We focus on a special field basis for the graviton defined by

gab = ηab + πab +
1

2!
π2
ab +

1

3!
π3
ab + · · · , where πab = hab −

1

D − 2
ηab[h]. (3.1)

It will often be convenient to invoke the shorthand notation

gab = (eπ)ab and gab = (e−π)ab, (3.2)

where by construction gabg
bc = δca. We emphasize here that gab and gab are matrix inverses,

not related by raising and lowering with respect to ηab. The utility of an exponential basis

for gravity, in that it treats the metric and its inverse symmetrically in the perturbation

expansion, was understood previously in ref. [22]. Our Faddeev-Popov gauge-fixing term is

LGF = − 1

64πG(D − 2)
e[h]/(D−2)(e−h)ab∂a[h]∂b[h]. (3.3)

Using, eqs. (3.1) and (3.2), we see that we can write the gauge-fixing term in the com-

pact form

LGF = −D − 2

64πG
gabωaωb, (3.4)

where we have defined the vector

ωa = ∂a log
√
−g = − 1

D − 2
∂a[h]. (3.5)

We will postpone further discussion of the physical meaning of this gauge condition to sec-

tion 4. For now, let us simply view LGF in eq.(3.4) as a particular choice of the coefficients

in the general gauge-fixing vector in eq. (2.9). However, note that the above gauge-fixing

term does not eliminate the full gauge freedom: the propagator is not yet invertible, al-

though we will see in section 3.3 how this is remedied by an additional gauge fixing.

Putting everything together, we find that EH action in eq. (1.6) is drastically simplified,

in part because derivatives act nicely on the exponential form of eq. (3.1). The resulting

action is independent of the spacetime dimension D and can be written compactly as

S =
1

16πG

∫
dDx ∂aσce∂bσ

de

(
1

4
σabδcd −

1

2
σcbδad

)
, (3.6)

expressed in terms of a new exponential field,

σab = ηab + hab +
1

2!
h2
ab +

1

3!
h3
ab + · · · , (3.7)

which we will often express in the shorthand

σab = (eh)ab and σab = (e−h)ab, (3.8)

where σabσ
bc = δca. Note that to obtain eq. (3.6) we applied the useful identity σab∂cσab =

∂c[h], valid in Cartesian coordinates so the metric has unit determinant.
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Eq. (3.6) is a primary result of this paper, so let us pause to discuss some salient points.

First, since we derived this action directly from the EH action, it is a completely equivalent

description of pure gravity expanded around flat spacetime. Consequently, the scattering

amplitudes computed with this action are exactly equal to those obtained in conventional

graviton perturbation theory.

Second, eq. (3.6) is constructed so that every interaction is compatible with index

factorization. Consequently, it is always possible to assign distinct sets of barred and

unbarred indices that are separately contracted. For example, our field basis is chosen to

precisely eliminate the
√
−g = e−[h]/(D−2) factor, which was a persistent source of odd

cycles in the action. This factor is precisely canceled by the factors of [h] in the definition

of πab in eq. (3.1). Formally, two sets of independently contracted indices exhibit an

enhanced twofold Lorentz symmetry. However, these are not, at least in this particular

form, symmetries in the literal sense because they act as rigid transformations on the

barred and unbarred indices, as for, e.g., an internal symmetry. In terms of the scattering

amplitudes relations in eq. (1.1), this restriction of the enhanced symmetry comes from

the fact that the two Yang-Mills amplitudes are separately Lorentz invariant, but crucially

must have the same external momenta. As we will soon see, by introducing auxiliary extra

dimensions one can promote this property of index factorization into a bona fide symmetry

of the action.

Third, it is remarkable how the exponential field defined in eq. (3.7) arises naturally

from our prescription for eliminating odd cycles. This object is curiously reminiscent of

the exponential parameterization of the nonlinear sigma model. It is tempting to imagine

that this form of the EH action implies some form of underlying spontaneous symmetry

breaking within gravity. However, as we will see later, there are many alternative field

bases that are not exponential.

Fourth, eq. (3.6) is extremely simple compared to the standard action for graviton per-

turbations, which is derived by inserting the field basis of eq. (1.7) into eq. (1.6). Expanding

eq. (3.6) in perturbations, we find that

S =
1

16πG

∫
dDx

∑
n

On, (3.9)

where the first few orders of the operators On are

O2 =+
1

2
∂chab∂

bhac− 1

4
∂chab∂

chab

O3 =+
1

4
hab∂ahcd∂bh

cd− 1

2
hab∂chad∂bh

cd

O4 =+
1

8
habh

cd∂bhce∂dh
ae− 1

8
habhac∂bhde∂

chde− 1

12
habhcd∂chbe∂

ehad+
1

24
habhcd∂ehcb∂ehad

+
1

6
habhac∂

chde∂ehdb+
1

24
habhac∂

dhec∂ehdb−
1

24
habhac∂

ehdc∂ehdb (3.10)

O5 =− 1

12
habhachde∂

chfe∂dhfb+
1

24
habhachdb∂

chef∂dhef+
1

24
habhcdhef∂cheb∂fhad

+
1

24
habhach

de∂dhfb∂eh
fc− 1

24
habhcdhef∂ehad∂fhcb+

1

24
habhach

de∂chfe∂
fhdb

− 1

24
habhach

de∂eh
fc∂fhdb−

1

24
habhachdb∂

dhef∂
fhec.
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It is straightforward to check that in all of these interactions it is always possible to assign

independent sets of barred and unbarred indices that never contract with one another.

While eq. (3.6) is compatible with index factorization, it is certainly not ideal that

checking this requires running through each interaction term one at a time and intelli-

gently assigning barred and unbarred indices. Indeed, the situation would be substantively

improved with a formalism that does not require a case-by-case analysis of each term, in-

stead treating indices as barred and unbarred from the very beginning. We construct just

such a representation in the next subsection.

3.2 Adding auxiliary dimensions

To automate the proper contraction of barred and unbarred indices, we introduce an ad-

ditional set of auxiliary dimensions. In particular, let us extend the D dimensions of

spacetime into 2D dimensions, where

xA = (xa, x̄ā) and ∂A = (∂a, ∂ā) (3.11)

and the original D-dimensional spacetime corresponds to the restriction to the “diagonal”

spacetime

xa = x̄ā. (3.12)

Here, indices in 2D-dimensional spacetime are contracted with the metric tensors

ηAB =

[
ηab 0

0 ηāb̄

]
and ηAB =

[
ηab 0

0 ηāb̄

]
, (3.13)

so all terms are automatically twofold Lorentz invariant with respect to barred and un-

barred indices.

Next, we repackage the graviton into a tensor in 2D-dimensional spacetime,

HAB =

[
0 hab̄
hāb 0

]
, (3.14)

where the two off-diagonal blocks are transposes of each other. The structure of this

representation explicitly breaks the underlying SO(2D − 2, 2) symmetry of the doubled

2D-dimensional spacetime down to the symmetry in eq. (1.5). Since barred and unbarred

indices are distinct, hab̄ is automatically lifted to a general D-dimensional matrix. The

usual physical graviton modes correspond to the symmetric components of this tensor. As

we will see shortly, the antisymmetric component can be neglected at tree level for graviton

scattering amplitudes. In terms of this new field, we define the exponential field

ΣAB = (eH)AB and ΣAB = (e−H)AB. (3.15)

A simple computation shows that

ΣAB =

[
(coshh)ab (sinhh)ab̄
(sinhh)āb (coshh)āb̄

]
, (3.16)

– 8 –
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where, in our shorthand,

(coshh)ab = ηab +
1

2!
h2
ab +

1

4!
h4
ab + · · · and (sinhh)ab̄ = hab̄ +

1

3!
h3
ab̄ +

1

5!
h5
ab̄ + · · ·

(3.17)

are even and odd functions in the graviton, respectively. Because these terms have distinct

parity, we can, in analogy with eq. (2.2), define

h2n
ab = hab̄1η

b̄1ā1hā1b2η
b2a2 · · ·ha2n−2b̄2n−1

ηb̄2n−1ā2n−1hā2n−1b

= h ā1
a h a2

ā1 · · ·h
ā2n−1
a2n−2

hā2n−1b

(3.18)

for even powers of the graviton, while for odd powers of the graviton,

h2n+1
ab̄

= hab̄1η
b̄1ā1hā1b2η

b2a2 · · ·hā2n−1b2nη
b2na2nha2nb̄

= h ā1
a h a2

ā1 · · ·h
a2n
ā2n−1

ha2nb̄
(3.19)

and similarly for the other tensors. By construction, we see that the barred and unbarred

indices are never contracted with each other.

In terms of these new variables, the action takes the form

S =
1

16πG

∫
dDx dDx̄ δD(x− x̄) ∂AΣCE∂BΣDE

(
1

16
ΣABδCD −

1

4
ΣCBδAD

)
, (3.20)

where the numerical factors are slightly different from those in eq. (3.6) due to additional

factors of two coming from the trace over the 2D-dimensional spacetime. Notably, eq. (3.20)

has several properties not manifest in the usual representation of the EH action, which we

now discuss.

First and foremost, the action is manifestly invariant under a twofold Lorentz symmetry

that acts separately on x and x̄. Due to the δ function in eq. (3.20), i.e., the fact that

the action is only integrated over the diagonal combination x = x̄, the two corresponding

conserved currents are one and the same. In particular, they produce the usual single

conservation of energy, momentum, and angular momentum in D-dimensional spacetime.

To see the index factorization explicitly, we can again expand the action in perturbations

to obtain

O2 = +
1

4
∂chab̄∂

ahcb̄ +
1

4
∂c̄hab̄∂

b̄hac̄ − 1

8
∂chab̄∂

chab̄ − 1

8
∂c̄hab̄∂

c̄hab̄

O3 = +
1

4
hab̄∂ahcd̄∂b̄h

cd̄ − 1

4
hab̄∂dhac̄∂b̄h

dc̄ − 1

4
hab̄∂d̄hcb̄∂ah

cd̄

O4 =− 1

16
hab̄hcb̄∂ah

dē∂chdē −
1

16
hab̄hac̄∂b̄h

dē∂ c̄hdē +
1

16
hab̄h

cd̄∂ahed̄∂ch
eb̄

+
1

16
hab̄h

cd̄∂ b̄hcē∂d̄h
aē − 1

24
hab̄hcd̄∂

cheb̄∂eh
ad̄ − 1

24
hab̄hcd̄∂

b̄hcē∂ēh
ad̄

+
1

48
hab̄hcd̄∂ehcb̄∂

ehad̄ +
1

48
hab̄hcd̄∂ēhcb̄∂

ēhad̄ +
1

12
hab̄hcb̄∂

ched̄∂ehad̄ (3.21)

+
1

12
hab̄hac̄∂

c̄hdē∂ēhdb̄ −
1

96
hab̄hcb̄∂

ehcd̄∂ehad̄ −
1

96
hab̄hcb̄∂

ēhcd̄∂ēhad̄

+
1

48
hab̄hac̄∂

dhec̄∂ehdb̄ +
1

48
hab̄hcb̄∂

d̄hcē∂ēhad̄ −
1

96
hab̄hac̄∂

ehdc̄∂ehdb̄

− 1

96
hab̄hac̄∂

ēhdc̄∂ēhdb̄
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O5 = +
1

24
hab̄hac̄hdb̄∂

c̄hef̄∂dhef̄ −
1

24
hab̄hac̄hdē∂

c̄hfē∂dhf b̄ +
1

24
hab̄hcd̄hef̄∂b̄hcf̄∂ehad̄

− 1

24
hab̄hcb̄hdē∂

chdf̄∂ ēhaf̄ +
1

48
hab̄hcb̄h

dē∂dhaf̄∂ēh
cf̄ +

1

48
hab̄hac̄h

dē∂dhf b̄∂ēh
fc̄

− 1

24
hab̄hcd̄hef̄∂ehad̄∂f̄hcb̄ +

1

48
hab̄hcb̄h

dē∂chdf̄∂
f̄haē −

1

48
hab̄hcb̄h

dē∂dh
cf̄∂f̄haē

+
1

48
hab̄hac̄h

dē∂ c̄hfē∂
fhdb̄ −

1

48
hab̄hac̄h

dē∂ēh
fc̄∂fhdb̄ −

1

48
hab̄hac̄hdb̄∂

c̄hfē∂
fhdē

− 1

48
hab̄hac̄hdb̄∂

dhef̄∂
f̄hec̄.

As expected, the barred and unbarred indices are all contracted consistently.

Second, the action (3.20) is manifestly invariant under a Z2 parity that swaps the two

D-dimensional spacetimes,
xa ↔ x̄ā

hab̄ ↔ hāb.
(3.22)

In terms of the full 2D-dimensional objects, this Z2 parity acts as

H ↔ τHτ and η ↔ τητ = η, (3.23)

where we have defined the swap operator

τAB =

[
0 1

1 0

]
. (3.24)

The symmetric and antisymmetric components of hab̄ are manifestly even and odd under

this parity, respectively. The former corresponds to the usual physical graviton modes,

while the latter is an additional two-form field. However, since the antisymmetric compo-

nent is odd under the Z2 parity, it enters the action in pairs and thus does not contribute

to tree-level graviton scattering amplitudes. Thus, since eq. (3.20) is expressed in terms

of a general graviton tensor hab̄, it is, strictly speaking, only equivalent to pure gravity at

tree level.

The above construction is very much reminiscent of one discovered previously in the

context of double field theory and there is a close link between our approaches. Double

field theory [12–18] is derived from the massless modes of closed string field theory on a

doubled torus exhibiting a manifest O(D,D) T-duality group. The resulting low-energy

effective theory is comprised of the graviton plus additional massless degrees of freedom: a

dilaton and Kalb-Ramond two-form field necessary to maintain diffeomorphism invariance

of the full space. Similarly motivated by ref. [11], Hohm [15] constructed a form of the

double field theory action that maintains index factorization as a low-energy remnant of

the underlying T-duality. The resulting action is quite similar to our eq. (3.20), except

that is has both a massless dilaton and two-form. In this sense, our result is a derivation of

a consistent truncation of this action in which the dilaton is not present. Conversely, the

fact that our results are applicable in standard general relativity, i.e., without a dilaton,

mean that they are directly relevant for calculations pertinent to our own universe, e.g.,

scattering amplitudes in Einstein gravity and gravitational wave computations.
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3.3 Scattering amplitudes

The action in eq. (3.20) is a rewriting of the EH action that manifests index factorization

and twofold Lorentz symmetry. We now study how these properties are encoded in scat-

tering amplitudes. All interaction vertices will be twofold Lorentz invariant even off-shell.

To determine the symmetries of the propagator, we study the kinetic term in momentum

space. Sending ∂ → ip, we obtain

O2 =
1

4
hab̄hcd̄K

ab̄cd̄, where Kab̄cd̄ = −p2ηacηb̄d̄ + ηacpb̄pd̄ + papcηb̄d̄. (3.25)

We can systematically determine the zero eigenvectors of the kinetic term by solving

0 = Kab̄cd̄hcd̄ = −p2hab̄ + had̄pd̄p
b̄ + papch

cb̄, (3.26)

where indices are raised and lowered with ηab and ηāb̄. Dotting this equation into pa,

we obtain

0 = pah
ad̄pd̄p

b̄, (3.27)

which is trivially satisfied for the antisymmetric component of hab̄. This equation also

vanishes for the symmetric component of hab̄ when it takes the form of a transverse dif-

feomorphism, hab = ∂aξb + ∂bξa with ∂b∂aξ
a = 0. The existence of zero eigenmodes of the

kinetic term implies that hab̄ does not yet have an invertible kinetic term.

To remedy this, recall that the antisymmetric component of hab̄ enters the action

in pairs on account of the underlying Z2 parity, so it decouples from tree-level graviton

scattering. We must also, however, modify the gauge-fixing of the symmetric piece in order

to produce an invertible kinetic term. In principle, there are many prescriptions for doing

so. Here we consider a gauge-fixing that is manifestly twofold Lorentz symmetric at the

expense of the Z2 parity, so

Kab̄cd̄
ξ = −p2ηacηb̄d̄ +

(
1 +

1

ξ

)
ηacpb̄pd̄ +

(
1− 1

ξ

)
papcηb̄d̄, (3.28)

where we take ξ → 0 in the analogue of Landau gauge for gauge theory. The corresponding

propagator, ∆ab̄cd̄, satisfies

Kab̄cd̄
ξ ∆cd̄ef̄ = iδae δ

b̄
f̄ , (3.29)

from which we obtain

∆ab̄cd̄ = − i

p2

(
ηacηb̄d̄ − (1 + ξ)ηac

pb̄pd̄
p2
− (1− ξ)papc

p2
ηb̄d̄

)
. (3.30)

At zeroth order in ξ, the Z2 parity of the propagator is restored, yielding a simple and

convenient propagator for explicit computations. Contributions first order in ξ also vanish

because the underlying Z2 parity of the interactions eliminates all odd powers of ξ depen-

dence from the tree-level graviton scattering amplitude. Note that to obtain consistent

answers, it is crucial to use the fully gauge-fixed propagator in eq. (3.30) with the the

factorized action in eq. (3.20) and its perturbative expansion. That is, dropping the delin-

eation between barred and unbarred indices will yield inconsistent results. In this sense,
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the two-form is critical for the gauge-fixing introduced in eq. (3.28), even though it does not

appear as an external state in graviton scattering amplitudes. We have checked explicitly

that the Feynman diagrams constructed from the propagator in eq. (3.30) and the interac-

tion vertices of eq. (3.20) produce the correct three-, four-, and five-point amplitudes, even

for finite ξ.

More generally, in this gauge, all off-shell Feynman diagrams are invariant under

twofold Lorentz symmetry as well as Z2 exchange. Furthermore, the resulting tree-level

scattering amplitudes are invariant under the twofold Ward identities defined in eq. (1.4).

The reason for this is simple: the symmetric combination of gauge transformations is an

invariance of graviton scattering, while the antisymmetric combination decouples because

this mode only enters in pairs and thus does not contribute to pure graviton scattering at

tree level.

Finally, let us emphasize that the action presented here is distinct from the action

constructed perturbatively up to fifth order in ref. [11]. This is evident from our propagator,

which is different from the propagator assumed in ref. [11].

3.4 Alternative representations

We have presented a simple representation of the EH action that manifests index factor-

ization and in turn twofold Lorentz symmetry. Now, by again exploiting the freedom to

choose a field basis, we can generate an infinite class of physically equivalent actions that

manifest the same symmetries. In particular, we can consider field redefinitions of the form

hab̄ → α1hab̄ + α3h
3
ab̄ + α5h

5
ab̄ + · · · , (3.31)

where again we have α1 = 1 to maintain the form of the asymptotic states. Here, the

field redefinition involves only odd powers of the graviton defined by eq. (3.19), so that

barred and unbarred indices are properly contracted. More generally, one can consider an

arbitrary sum over hn
ab̄

for odd n, with each term multiplied by [hm] for some even m,

which preserves the ability to consistently factorize indices.

In general, this additional set of field redefinitions can further simplify various parts of

the action. For example, to eliminate the appearance of hyperbolic functions in eq. (3.16),

we could send

hab̄ → (sinh−1 h)ab̄ = hab̄ −
1

6
h3
ab̄ +

3

40
h5
ab̄ + · · · , (3.32)

so that the EH action is just as in eq. (3.20), except with a new field defined as

ΣAB →

[
(
√

1 + h2)ab hab̄
hāb (

√
1 + h2)āb̄

]
. (3.33)

In what follows, we discuss an alternative field basis for the action that results in even

simpler expressions for graviton perturbation theory.

In particular, inspired by the so-called Cayley basis for the nonlinear sigma model

action [19], it is natural to consider the field redefinition

hab̄ → log

(
1 + 1

2h

1− 1
2h

)
ab̄

= hab̄ +
1

12
h3
ab̄ +

1

80
h5
ab̄ + · · · , (3.34)
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for which the field in the doubled spacetime becomes

ΣAB =

(1+h2/4
1−h2/4

)
ab

(
h

1−h2/4

)
ab̄(

h
1−h2/4

)
āb

(
1+h2/4
1−h2/4

)
āb̄

 . (3.35)

The first few terms in the perturbation expansion are

O2 = +
1

2
∂chab∂

bhac − 1

4
∂chab∂

chab

O3 = +
1

4
hab∂ahcd∂bh

cd − 1

2
hab∂chad∂bh

cd

O4 = +
1

8
habh

cd∂bhce∂dh
ae − 1

8
habhac∂bhde∂

chde +
1

4
habhac∂

chde∂ehdb

+
1

8
habhac∂

dhec∂ehdb −
1

8
habhac∂

ehdc∂ehdb

O5 =− 1

8
habhachde∂

chfe∂dhfb +
1

16
habhachdb∂

chef∂dhef +
1

8
habhach

de∂dhfb∂eh
fc

− 1

8
habhach

de∂eh
fc∂fhdb −

1

8
habhachdb∂

dhef∂
fhec,

(3.36)

after dropping the distinction between barred and unbarred indices.

We immediately note that the Cayley-like basis yields fewer terms than our action in

eq. (3.6) — for which the first few orders are given in eq. (3.10) — and far fewer terms

than occur in the canonical graviton perturbation theory of the EH action. In particular, at

O(hn) for n = 2, 3, 4, 5, the canonical graviton perturbation yields 4, 13, 35, 76 terms in the

action, respectively, counted such that no single graviton is acted upon with two derivatives.

A unique aspect of the Cayley-like basis (3.34) is that it makes the action invariant

up to a sign-flip under the duality of small and large graviton perturbations. Specifically,

consider a metric perturbation hab that has a nonsingular matrix inverse h−1
ab . Then, in

the Cayley-like basis, the transformation

hab
2
→
(
hab
2

)−1

(3.37)

merely induces a sign in the field

σab → −σab (3.38)

and thus sends the action to minus itself, which simply flips the sign of ~ and is thus an

invariance of the interactions. This invariance, which is unique to the Cayley-like basis,

is reminiscent of T-duality, but is more general in the sense that it applies to arbitrary

invertible metric perturbations, while more specific in that it applies to the pure gravity

theory considered in this paper.

4 Generalizing to curved spacetime

In sections 2 and 3, we presented a factorized form of the pure gravity action expanded

around a flat background. We will now generalize this construction to curved spacetime,

first in terms of the full metric and then for perturbations around a nontrivial background.

Afterwards, we derive the corresponding factorized Einstein equations.
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4.1 Lifting to curved spacetime

Although the action in eq. (3.6) was derived by expanding about flat spacetime, it remains

valid to all orders in the graviton perturbation. This implies that this action encodes the

physics of large graviton field variations away from flat spacetime, i.e., a curved background.

In particular, by combining eq. (3.1) with eq. (3.7), we see that the nonlinear field defined

earlier is simply

σab =
√
−g gab. (4.1)

Remarkably, this combination of fields arises naturally from the EH action in curved space-

time. After some rearrangement, one can show that

√
−g R =

√
−g
[
∂agce∂bg

de

(
1

4
gabδcd −

1

2
gcbδad

)
− gab∂a∂b(log

√
−g)

]
+ total derivative

=
√
−g
[
∂a

(
gce√
−g

)
∂b

(√
−g gde

)(1

4
gabδcd −

1

2
gcbδad

)
+
D − 2

4
gab∂a(log

√
−g)∂b(log

√
−g)

]
+ total derivative,

(4.2)

which is naturally a function of σab and σab. Something similar arises when we expand

in graviton perturbations around a background spacetime g̃ab. To see this, we lift the

nonlinear field into curved spacetime, defining√
−g̃ σab =

√
−g gab. (4.3)

Furthermore, we define ωa as before and ω̃a analogously,

ωa = ∂a log
√
−g and ω̃a = ∂a log

√
−g̃, (4.4)

as well as their difference,

Ωa = ωa − ω̃a, (4.5)

which enters the curved-background generalization of eq. (3.4),

LGF = −D − 2

64πG
gabΩaΩb. (4.6)

Let us comment on the physical interpretation of this gauge-fixing. At the level of the

gravity action, the gauge condition is a constraint on the full metric gab or, equivalently,

on the metric perturbation hab in a given field basis. The gauge-fixing Lagrangian LGF

itself can be viewed as being added simply to cancel expressions in the non-gauge-fixed

equations of motion that vanish when the gauge condition is satisfied. In our case, the

gauge condition associated with LGF is

Ωa = ∂a log

√
−g
−g̃

= 0, (4.7)

which is different from the commonly used harmonic gauge condition, ∂b(g
ab√−g) = 0.

A gauge condition on the metric can be recast as a condition on the choice of coordinate
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system xa, regarded as a set of D scalar functions on spacetime. In harmonic gauge,

this corresponds to ∇b∇bxa = 0. The coordinate condition corresponding to our gauge

condition in eq. (4.7), in terms of the coordinates xa for the spacetime gab and x̃a for the

background spacetime g̃ab, is

∇b∇axb = ∇̃b∇̃ax̃b, (4.8)

using that ∇b∇axb = −ωa. Here, ∇̃a is the covariant derivative on the background metric

g̃ab and ∇a is the covariant derivative defined with respect to the full perturbed metric gab.

Armed with the necessary definitions, we are ready to write the gravity action in terms

of our field redefinition and gauge-fixing, generalized to an arbitrary background spacetime.

First, we note that eqs. (4.2) and (4.6) imply that eq. (1.6) is, up to a total derivative,

S =
1

16πG

∫
dDx

√
−g̃
[
∂aσce∂bσ

de

(
1

4
σabδcd −

1

2
σcbδad

)
− σab∂aω̃b

]
. (4.9)

A useful identity for this simplification is σab∂cσab = (2 − D)ωc + Dω̃c, which makes use

of the fact that gab∂cgab = 2ωc. To derive an expression that is manifestly covariant with

respect to the background spacetime, we recast partial derivatives in terms of covariant

derivatives and Christoffel symbols of the background metric. We then obtain an action

that is a nice generalization of eq. (3.6) to an arbitrary curved background spacetime,

S =
1

16πG

∫
dDx

√
−g̃
[
∇̃aσce∇̃bσde

(
1

4
σabδcd −

1

2
σcbδad

)
+ σabR̃ab

]
, (4.10)

where R̃ab is the Ricci tensor of the background spacetime. This action reverts back to

eq. (3.6) in the flat-spacetime limit.

Note that eq. (4.10) applies independently of the precise field basis for the graviton

perturbations, merely requiring the existence of an object σab consistent with eq. (4.3), as

well as the gauge fixing in eq. (4.6). For concreteness, we now give an explicit field basis

for the graviton, for which the required object exists and thus for which eq. (4.10) is the

action. Lifting eqs. (2.7) and (3.1) to curved spacetime, we define the full metric gab to be

gab = g̃ab + πab +
1

2!
π2
ab +

1

3!
π3
ab + · · · , where πab = hab −

1

D − 2
g̃ab[h] (4.11)

and where we have defined

hnab = hab1 g̃
b1a1ha1b2 g̃

b2a2 · · ·han−2bn−1 g̃
bn−1an−1han−1b

= h a1
a h a2

a1 · · ·h
an−1
an−2

han−1b,
(4.12)

with traces [hn] = hnabg̃
ba. We now define an exponential field

σab = g̃ab + hab +
1

2!
h2
ab +

1

3!
h3
ab + · · · = (eh)ab (4.13)

and similarly redefine σab = (e−h)ab with indices in its expansion contracted using g̃ab. With

these definitions, along with the useful relation
√
−g =

√
−g̃ e−[h]/(D−2), the nonlinear field

σab satisfies the property desired in eq. (4.3). Hence, the action for the graviton, to all
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orders in perturbation theory, expanded about an arbitrary background spacetime as in

eq. (4.11) and gauge-fixed according to eq. (4.6), is given in eq. (4.10). In this field basis,

the gauge condition (4.7) becomes ∂a[h] = 0.

Generically, a nonzero value of R̃ab will violate index factorization since σabR̃ab un-

avoidably contracts left and right indices in all odd powers of hab in σab. For example, this

will occur in (anti-)de Sitter space, where R̃ab ∝ g̃ab. However, for a background vacuum

solution R̃ab = 0, the action (4.10) factorzies when expressed in terms of 2D-dimensional

spacetime, so

S =
1

16πG

∫
dDx dDx̄ δD(x− x̄)

√
−g̃ ∇̃AΣCE∇̃BΣDE

(
1

16
ΣABδCD −

1

4
ΣCBδAD

)
, (4.14)

where ∇̃A = (∇̃a, ∇̃ā). This action applies for any background vacuum solution to the

Einstein equations, including the Schwarzschild and Kerr metrics, Taub-NUT space, grav-

itational wave backgrounds, etc. In all of these cases, eq. (4.14) provides an all-orders

factorized representation of the perturbation theory. As a special case, eq. (4.14) can

accommodate any background metric on Minkowski spacetime, e.g., curvilinear coordi-

nates, as opposed to the strict Cartesian coordinate system necessary for the formulation

in eq. (3.20). In addition to the nice factorization properties, the action is very simple

in perturbation theory; indeed, the slow scaling of the number of terms discussed in sec-

tion 3.4 is equally applicable to eq. (4.14). Hence, our result may have applicability to the

treatment of black hole perturbations, nonlinear gravitational wave effects, etc.

In general, a nontrivial background energy-momentum tensor T̃ab will source the Ricci

curvature R̃ab, thus violating index factorization. However, it is simple to see that one

particular matter source actually remains compatible with twofold Lorentz symmetry: a

massless, minimally-coupled free scalar. For a background source φ̃, the energy-momentum

tensor and Ricci tensor are

T̃ab = ∂aφ̃∂bφ̃−
1

2
g̃ab∂cφ̃∂

cφ̃ and R̃ab = 8πG∂aφ̃∂bφ̃. (4.15)

Moreover, the matter action, in the full perturbed spacetime metric with the φ̃ back-

ground, is

Smatt = −1

2

∫
dDx
√
−g gab∂aφ̃∂bφ̃ = −1

2

∫
dDx

√
−g̃ σab∂aφ̃∂bφ̃. (4.16)

In this case, the contribution to the action (4.10) from σabR̃ab and the matter action Smatt

are both separately compatible with index factorization and moreover exactly cancel each

other. The individual index factorization of the two terms and the cancellation between

Smatt and σabR̃ab both stem from the fact that the matter Lagrangian for the free massless

scalar is linear in the metric gab, which allows for the background value of the scalar

action to be equal to
√
−g gabR̃ab. In this case, the background value of the scalar becomes

irrelevant to the gravity action, which in factorized form reduces to that given in eq. (4.14).

4.2 Equations of motion

As we saw previously, the twofold Lorentz invariance of the action is directly manifest

in the corresponding Feynman diagrams. Moreover, this property should be exhibited by
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the equations of motion, i.e., the Einstein equations. In this section, we compute the

Einstein equations, to all orders in perturbation theory in our chosen field basis, about

an arbitrary curved spacetime background. A priori, one can compute the equations of

motion corresponding to field variations of gab, σab, or hab, but all of these are related to

each other by an appropriate Jacobian.

The Einstein equations with respect to gab are of the standard form,

Rab −
1

2
Rgab = 8πGTab, (4.17)

where we have defined the stress-energy tensor

Tab = − 2√
−g

δ(
√
−gLmatt)

δgab
(4.18)

for matter Lagrangian Lmatt. Now, let us relate the usual Einstein equations to the equation

of motion corresponding to the variation of σab. The Jacobian relating σab and gab is

Jabcd =

√
−g
−g̃

δgab

δσcd
=

1

2

(
δac δ

b
d + δadδ

b
c

)
− 1

D − 2
gabgcd, (4.19)

which has the structure of the graviton propagator numerator in harmonic gauge. To

obtain the equations of motion for σab, we multiply eq. (4.17) by the Jacobian, yielding

Jcdab

(
Rcd −

1

2
Rgcd

)
= 8πGJcdabTcd =⇒ Rab = 8πG

(
Tab −

1

D − 2
Tgab

)
, (4.20)

which are just another form of the Einstein equations. Varying the action (4.10) with

respect to σab, we obtain the equations of motion to all orders in perturbation theory,

Rab =
1

2
∇̃c
(
σcd∇̃aσbd + σcd∇̃bσad − σcd∇̃dσab

)
+

1

2

(
σceσdf − σcfσde

)
∇̃dσac∇̃fσbe +

1

4
∇̃aσcd∇̃bσcd + R̃ab.

(4.21)

A useful trick for handling the inverse matrix σab in the equations of motion is to introduce

a constraint term λab (σacσ
cb − δba), where λ is a Lagrange multiplier. As consistency check,

we can instead write Rab explicitly in terms of gab for the perturbation expansion about

flat spacetime, substituting in our field redefinition from eq. (3.1). Indeed, in this case we

obtain the same result as the flat-background limit of eq. (4.21).

Let us momentarily consider the linearized Einstein equations in the flat-

spacetime limit,

−�hab + ∂a∂ch
c
b + ∂b∂ch

c
a = 16πG

(
Tab −

1

D − 2
Tηab

)
, (4.22)

where � = ηab∂b∂a. The left-hand side of eq. (4.22) is nearly the same as the general,

non-gauge-fixed linearized field equations in the so-called trace-reversed basis [23], but is

missing the term −ηab∂c∂dhcd, which violates index factorization and which was removed

by our gauge-fixing procedure. Note that we have not eliminated all of the available gauge

– 17 –



J
H
E
P
0
1
(
2
0
1
7
)
1
0
4

freedom, since we can shift the coordinate functions xa by a perturbation δxa satisfying

∇b∇aδxb = 0. Equivalently, as noted in section 3.3, we can send hab → hab + ∂aξb + ∂bξa,

as long as ∂aξa = constant, so that ∂a[h] = 0 and the gauge condition (4.7) remains

satisfied. In particular, for a radiative solution in which Tab = 0, we can choose ξa such

that �ξa = −∂bhab, in which case we find that, after the shift, the perturbation satisfies

∂ahab = 0. Hence, the vacuum equation reduces to the usual wave equation �hab = 0.

We now turn back to the general case of the Einstein equation for perturbation theory

in an arbitrary background spacetime. To be as general as possible, we will for now ignore

the issue of factorization and merely consider some implications of eq. (4.21), the equation

of motion for the gravity action (4.10). While eq. (4.10) appears with a tadpole in the

graviton, habR̃ab, this is precisely canceled by additional tadpole terms generated by the

matter action. This is mandated by the equations of motion for the background,

R̃ab −
1

2
R̃ g̃ab = 8πG T̃ab, (4.23)

where R̃ = R̃abg̃
ba. So as long as the background spacetime satisfies the Einstein equation,

the tadpole in the action in eq. (4.10) is canceled.

For backgrounds with vanishing R̃ab, we can also write the equations of motion asso-

ciated with the action in eq. (4.14) in terms of the fields ΣAB on the doubled spacetime,

so that the factorization of indices in hab̄ occurs automatically. Doing so, we can rewrite

eq. (4.21) as

[RAB]x=x̄ =

[
1

4
∇̃C

(
ΣCD∇̃BΣAD + ΣDC∇̃AΣDB −

1

2
ΣCD∇̃DΣAB

)
(4.24)

+
1

8

(
ΣECΣFD − ΣFCΣED

)
∇̃DΣAC∇̃FΣEB +

1

8
∇̃AΣCD∇̃BΣCD

]
x=x̄

,

where RAB is the lift of the Ricci tensor into the 2D-dimensional space. We thus have a

factorized form of the Einstein equations, valid to all orders in perturbation theory about an

arbitrary curved vacuum background spacetime. Note, however, that if one simply varies

the doubled-spacetime action in eq. (4.14) with respect to ΣAB, the resulting expression

contains various errors in factors of two compared to the correct expression in eq. (4.24),

since the Lagrangian is integrated only over the diagonal spacetime x = x̄. If one substitutes

explicit expressions for ΣAB in terms of hab̄ and then drops all bars, setting x = x̄, then

eq. (4.24) reduces to eq. (4.21) with R̃ab = 0 as required.

5 Conclusions

In this paper, we have described a systematic search for a pure gravity action exhibiting

the twofold Lorentz symmetry suggested by the double copy relations. This property is

manifested by two sets of indices, barred and unbarred, that are independently contracted

and naturally parameterized by an auxiliary set of extra spacetime dimensions. By explor-

ing the space of nonlinear field redefinitions and local gauge-fixing of the Einstein-Hilbert

action discussed in section 2, we derived the twofold Lorentz invariant action described in
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section 3. This action extends to an infinite family of actions related by twofold Lorentz

invariant field redefinitions. Some choices, e.g., the case of the Cayley-like basis explored in

section 3.4, possess enhanced simplicity in terms of the reduced number of Lorentz invariant

structures present in the action at each order in perturbation theory.

Because our results for flat-spacetime perturbation theory apply to all orders in the

graviton field, they can be extended to curved spacetime. In section 4, we derived a simple

action for graviton perturbations around an arbitrary curved spacetime background in our

field basis. Furthermore, we found that this action exhibited the same factorization prop-

erties for arbitrary Ricci-flat background spacetimes. We derived the Einstein equations in

index-factorized form to all orders in the graviton about an arbitrary vacuum background

and explored several interesting features they possess.

This work leaves a number of promising directions for future research. First of all,

while we introduced auxiliary spacetime dimensions simply as a convenient bookkeeping

tool, it is likely that these can be derived from a truly extra-dimensional construction.

One path would be to understand how our action somehow arises as a truncation of double

field theory that lifts the dilaton from the spectrum. Alternatively, one could introduce

dynamics governing fluctuations of the D-dimensional region within the doubled spacetime

or smear out the delta function in eq. (3.20), modifying the theory in the ultraviolet.

Second, it would be illuminating to study the properties of graviton scattering ampli-

tudes computed with this class of twofold Lorentz invariant actions. Indeed, it has long

been known that the properties of on-shell graviton scattering amplitudes enjoy improved

high-momentum behavior from the study of BCFW recursion relations [24, 25] for gen-

eral gauge and gravity theories [26, 27]. As discussed in ref. [26], these properties can be

understand from a “spin Lorentz symmetry” that can be derived from the high-energy

limit of these theories. From this perspective, the results of this paper are a nonlinear

generalization of this property beyond the high-energy limit.

Last but not least, a critical open question is whether and how our results relate directly

to the double copy construction for scattering amplitudes in gauge theory and gravity. Here,

it would be extraordinary to somehow reformulate our family of twofold Lorentz invariant

gravity actions as two bona fide gauge theory copies. The naive prescription — to simply

substitute hab̄ ∼ AaĀb̄ at the level of Feynman vertices — is ambiguous since there are an

infinite number of pure gravity actions from which one can start. Nevertheless, we believe

that a formulation likely exists, in part because the analogous puzzle has been understood

for the double copy of effective field theories, where new representations of the nonlinear

sigma model and special Galileon theories [28] manifest these dualities as a symmetry of a

cubic action. In any case, this paper represents an initial step towards understanding the

gauge and gravity double copy at the level of the action.
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