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1 Introduction

Defect conformal field theories (dCFTs) with holographic duals constitute an interesting

new arena for precision tests of the AdS/CFT correspondence [1] and for the search for

integrable structures [2]. Moreover, for such quantum field theories new types of correlation

functions come into play. For instance, fields living on the defect can mix with bulk

fields and two-point functions of bulk fields with unequal conformal dimensions need not

vanish [3]. Further interesting features emerge if one considers set-ups where some of the

bulk fields acquire a vacuum expectation value (vev), in which case the theory can have non-

vanishing one-point functions already at tree level [3, 4]. The study of one-point functions is

a natural first step when entering the realm of dCFTs. Tree-level studies carried out within

the AdS/dCFT framework show that one-point functions, interestingly, have many features

in common with three-point functions of the standard AdS/CFT set-up, e.g. determinant-

based expressions, integrable structure and an accessible strong-coupling limit [5–7].

In the present paper, we shall develop the necessary tools to go beyond tree-level

computations in certain dCFTs with vevs and with holographic duals, an endeavour which

will make possible the extraction of large amounts of new data from these theories as well

as the initiation of new directions of study. We already briefly presented one example of

a one-loop analysis in such a dCFT in the letter [8], where we calculated the one-loop

correction to the one-point function of a chiral primary and compared it to the result

of a string-theory computation in a certain double-scaling limit, finding exact agreement.

Here, we present the derivations which made the field-theoretic part of that computation

possible, give the details of the computation and extend these results to finite N as well as

to general single-trace operators built out of scalar fields.

The dCFT we are going to consider consists of N = 4 super Yang-Mills (N = 4 SYM)

theory with a codimension-one defect inserted at x3 = 0 [4]. Three of the scalar fields of

the theory are assigned specific, x3-dependent vevs on one side of the defect, x3 > 0, while

all classical fields vanish for x3 < 0. This Higgsing results in a highly non-trivial mass

mixing problem where different colour components for both bosonic and fermionic fields

mix with each other and where in addition one space-time component of the gauge field

mixes with the scalars. Moreover, all mass terms become x3-dependent. The motivation for

this particular Higgsing comes from the string-theory set-up, where the vevs represent the

so-called fuzzy-funnel solution of the probe D5-D3 brane system where the probe-D5 brane

is embedded in AdS5 × S5 so that it shares three dimensions (the defect) with the N D3

branes. More precisely, the geometry of the D5 brane is AdS4×S2 and a certain background

gauge field has a non-vanishing flux, k, on S2 meaning that k out of the N D3 branes get

dissolved in the D5 brane [9–12]. On the gauge theory side, the parameter k appears as

the difference in rank of the gauge group on the two sides of the defect, cf. figure 1.

Due to the Higgsing, the theory has non-vanishing one-point functions already at tree

level. Tree-level one-point functions of chiral primaries were calculated for this particular

theory in [13] as well as in a closely related one in [14], and a match with a string-theory

computation was found at the leading order in a certain double-scaling limit. Moreover,

making use of the tools of integrability, it was possible to derive a closed expression of de-

– 2 –



J
H
E
P
0
1
(
2
0
1
7
)
0
9
8

N D3N − k D3

D5

(a)

x3

x0

x1,2

SU(N − k) (broken) SU(N)

(b)

Figure 1. Illustration of the set-up: (a) k of the N D3 branes get dissolved in the D5 probe brane

(b) the rank of the gauge group differs on the two sides of the defect.

terminant form for the tree-level one-point functions of non-protected operators belonging

to an SU(2) subsector of N = 4 SYM theory [5, 6]. An empirically based proposal for how

to extend this to an SU(3) sector likewise exists [7].

Due to the mass mixing problem, going beyond tree-level for the Higgsed theory is con-

siderably more complicated than for N = 4 SYM theory itself. It turns out, however, that

the language of fuzzy-sphere coordinates is tailored for the diagonalisation of the mass ma-

trix. In these coordinates, the mixing problem can literally be viewed as the spin-orbit inter-

action of the hydrogen atom of the 21st century, N = 4 SYM theory. Furthermore, it is pos-

sible to avoid the space-time dependence of the masses by formulating the propagators in an

effective AdS4 space. The radial coordinate of this AdS4 space is x3, the coordinate perpen-

dicular to the defect, and the defect itself plays the role of the AdS4 boundary. With these

steps accomplished, the theory is in principle amenable to the standard program of pertur-

bation theory. We show that the one-loop correction to any (single-trace) operator built

from scalars obtains contributions from only two Feynman diagrams and we calculate these

using dimensional regularisation in combination with dimensional reduction carefully ad-

justed to respect the symmetries of the present set-up. One of the two relevant Feynman di-

agrams corresponds to the one-loop correction to the vevs of the scalars and cancels exactly.

We discuss in some depth the computation of one-loop corrections to one-point func-

tions in the SU(2) subsector and, in particular, we present the details of the calculation

of the planar correction to the one-point function of the BMN vacuum state, the result of

which we presented in the letter [8]. Here, we adress the finite-N case as well.

The first step of our perturbative calculation consists in expanding the SYM action

around the classical fields and fixing an appropriate gauge. This step is carried out in

section 2. Section 3 is devoted to the resolution of the mass mixing problem. First,

we rewrite the mass term in terms of irreducible SU(2) representations in flavour space.

Then, we explicitly construct the eigenstates via fuzzy-sphere coordinates and a Clebsch-

Gordan decomposition. The section closes with a table of the resulting spectrum of the

theory, cf. page 12. As all mass terms carry space-time dependence, being proportional

to 1/x3 for fermions and 1/(x3)2 for bosons, the propagators of the theory are not of

standard Minkowskian type. We show in section 4 that the propagators can be viewed as

– 3 –
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standard propagators of AdS4 instead. Moreover, we translate the propagators in the mass

eigenbasis to the flavour and colour basis. We discuss the dimensional regularisation of

the occurring integrals as well as dimensional reduction in section 5. Section 6 deals with

the computation of one-loop corrections to one-point functions of scalar operators, first in

general, subsequently for operators belonging to the SU(2) subsector and finally for the

BMN vacuum state. We are mainly working in the planar limit but include a number of

finite N results as well. The computation of the one-loop correction to the vevs of the scalar

fields, which is required for the analysis of this section, is relegated to appendix D. Section 7

is devoted to the comparison to string theory and finally section 8 contains a conclusion

and outlook, where we discuss a number of other interesting quantum computations for

dCFTs which our work makes feasible. Five appendices provide details on various aspects

of our work: the irreducible SU(2) representations A, the fuzzy-sphere coordinates B, our

conventions for the ten-dimensional gamma matrices C, the aforementioned calculation of

the vevs of the scalars D and the alternative Hadamard and zeta-function regularisation E.

2 The action

The action of the dCFT is the sum of the usual N = 4 SYM action in the bulk and an

action describing the self-interactions of a 3D hypermultiplet of fundamental fields living

on the defect and their couplings to the fields of N = 4 SYM theory:

S = SN=4 + SD=3 . (2.1)

The defect fields will turn out to play no role at the loop order we consider. We will use

the action of N = 4 SYM theory in the following form

SN=4 =
2

g2
YM

∫
d4x tr

[
− 1

4
FµνF

µν − 1

2
Dµ φi Dµ φi +

i

2
Ψ̄Γµ Dµ Ψ

+
1

2
Ψ̄Γ̃i[φi,Ψ] +

1

4
[φi, φj ][φi, φj ]

]
, (2.2)

where
Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ] ,

Dµ φi = ∂µφi − i[Aµ, φi] , Dµ Ψ = ∂µΨ− i[Aµ,Ψ] .
(2.3)

Here, the field Ψ is a ten-dimensional Majorana-Weyl fermion and {Γµ, Γ̃i} are the corre-

sponding ten-dimensional gamma matrices, which we explicitly give in appendix C. The

ranges of the indices are µ, ν = 0, 1, 2, 3 and i, j = 1, 2, 3, 4, 5, 6. We are using a mostly-plus

convention for the metric.

We wish to expand the fields around the classical solution

〈φi〉tree = φcl
i = − 1

x3
ti ⊕ 0(N−k)×(N−k) , (2.4)

where i = 1, 2, 3 and the ti constitute a k-dimensional irreducible representation of the Lie

algebra SU(2); expressions for the representation matrices in our conventions can be found

– 4 –
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in appendix A. All other classical fields vanish. This solution is the gauge-theory dual of

the fuzzy-funnel solution of the probe D5-D3 brane set-up [12].

We expand the action around the classical solution, writing

φi = φcl
i + φ̃i , (2.5)

where φcl
i denotes the classical part and φ̃i the quantum part. Terms which upon expansion

do not depend on any quantum fields can be ignored as can all terms linear in the quantum

fields as these should vanish by the equations of motion. This latter fact can also be checked

explicitly.

2.1 Gauge fixing

As usual, we have to fix a gauge in order to perform calculations. Moreover, we notice that

the expansion of the gauge-kinetic term of the scalar contains

i[Aµ, φ
cl
i ]∂µφ̃i , (2.6)

which would lead to complications in computing the propagators. Hence, we want to

cancel this term while fixing the gauge. Following [15], this can be achieved by adding the

gauge-fixing term

− 1

2
tr(G2) with G = ∂µA

µ + i[φ̃i, φ
cl
i ] (2.7)

to the action. The price for doing this is a massive ghost field that couples to the scalars.

Explicitly, we add to the action (2.2) the BRST exact term

Sgh =
2

g2
YM

∫
d4x tr

[
−s
(
c̄(∂µA

µ − i[φcl
i , φ̃i]) +

1

2
c̄B

)]
, (2.8)

where s is the BRST variation defined by

sAµ = Dµ c = ∂µc− i[Aµ, c] , sφi = −i[φi, c] , sΨ = i{Ψ, c} ,
sc = ic2 , sc̄ = −B , sB = 0 .

(2.9)

One can check that with this definition s2 = 0. The ghosts c, c̄ are fermionic (Lorentz)

scalars, while the auxiliary field B is a bosonic scalar. The BRST variation only acts on

the quantum part of φi, i.e.

sφcl
i = 0 , sφ̃i = −i[φcl

i + φ̃i, c] . (2.10)

We now find, noting that moving s past a fermion introduces a sign,

Sgh =
2

g2
YM

∫
d4x tr

[
c̄(∂µ Dµ c− [φcl

i , [φ
cl
i + φ̃i, c]]) +B(∂µA

µ − i[φcl
i , φ̃i]) +

1

2
B2

]
.

(2.11)

Since B is not dynamical, we can immediately integrate it out; its equation of motion is

B = −∂µAµ + i[φcl
i , φ̃i]. After rearranging the result a bit, this yields

Sgh =
2

g2
YM

∫
d4x tr

[
c̄(∂µ Dµ c− [φcl

i , [φ
cl
i + φ̃i, c]])−

1

2
(∂µA

µ)2 + i[Aµ, φ̃i]∂µφ
cl
i

+i[Aµ, ∂µφ̃i]φ
cl
i +

1

2
[φcl
i , φ̃i]

2

]
. (2.12)
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We note that this cancels the unwanted mixing between Aµ and ∂µφ̃i, as mentioned above.

We also see that the kinetic term for the gluons is changed to

− 1

4
(∂µAν − ∂νAµ)2 − 1

2
(∂µA

µ)2 =
1

2
Aµ∂ν∂

νAµ , (2.13)

which is invertible and diagonal in the Lorentz index. Notice that for φcl
i = 0 our gauge

choice reduces to Feynman gauge.

2.2 The expanded action

We can write the gauge-fixed action as

SN=4 + Sgh = Skin + Sm,b + Sm,f + Scubic + Squartic . (2.14)

The Gaußian part consists of the kinetic terms

Skin =
2

g2
YM

∫
d4x tr

[
1

2
Aµ∂ν∂

νAµ +
1

2
φ̃i∂ν∂

ν φ̃i +
i

2
ψ̄γµ∂µψ + c̄∂µ∂

µc

]
, (2.15)

the bosonic mass terms

Sm,b =
2

g2
YM

∫
d4x tr

[
1

2
[φcl
i , φ

cl
j ][φ̃i, φ̃j ] +

1

2
[φcl
i , φ̃j ][φ

cl
i , φ̃j ] +

1

2
[φcl
i , φ̃j ][φ̃i, φ

cl
j ]

+
1

2
[φcl
i , φ̃i][φ

cl
j , φ̃j ] +

1

2
[Aµ, φ

cl
i ][Aµ, φcl

i ] + 2i[Aµ, φ̃i]∂µφ
cl
i

]
, (2.16)

and the fermionic mass terms

Sm,f =
2

g2
YM

∫
d4x tr

[
1

2
ψ̄Gi[φcl

i , ψ]− c̄[φcl
i , [φ

cl
i , c]]

]
, (2.17)

where we have reduced the ten-dimensional Majorana-Weyl fermion to four four-

dimensional Majorana fermions ψj , j = 1, 2, 3, 4, as explained in appendix C, and the

4 × 4 matrices Gi that describe their coupling to the scalars are given in (C.10). The

interaction is given by the cubic vertices

Scubic =
2

g2
YM

∫
d4x tr

[
i[Aµ, Aν ]∂µAν + [φcl

i , φ̃j ][φ̃i, φ̃j ] + i[Aµ, φ̃i]∂µφ̃i + [Aµ, φ
cl
i ][Aµ, φ̃i]

+
1

2
ψ̄γµ[Aµ, ψ]+

3∑
i=1

1

2
ψ̄Gi[φ̃i, ψ]+

6∑
i=4

1

2
ψ̄Gi[φ̃i, γ5ψ]+i(∂µc̄)[A

µ, c]−c̄[φcl
i , [φ̃i, c]]

]
(2.18)

and the quartic vertices

Squartic =
2

g2
YM

∫
d4x tr

[
1

4
[Aµ, Aν ][Aµ, Aν ] +

1

2
[Aµ, φ̃i][A

µ, φ̃i] +
1

4
[φ̃i, φ̃j ][φ̃i, φ̃j ]

]
. (2.19)

We shall see below that Squartic is not relevant for the one-loop corrections in this article.

In the remainder of the paper, we will work in Euclidean signature.
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3 The mass matrix

The mass terms of the action (2.16) and (2.17) involve mixing between fields of different

flavour as well as mixing between colour components of the same field. To prepare for per-

turbative calculations of correlation functions, we first have to solve this highly non-trivial

mixing problem. Notice that the mass terms are also unconventional in the sense that they

depend via the classical fields on the distance x3 to the defect. This x3-dependence ren-

ders some of the traditional tools of quantum field theory in Minkowski space inapplicable.

We will show how to deal with this issue by trading x3-dependent 4d Minkowski space

propagators for x3-independent propagators in AdS4 in the next section.

Let us now diagonalise the mass matrix. First, in subsection 3.1 we rewrite the mass

terms in close analogy to the spin-orbital interaction of the hydrogen atom, so that they

are easy to diagonalise. Subsequently, in subsection 3.2 we explicitly carry out the diago-

nalisation and read off the spectrum including its degeneracies. We summarise our results

on the spectrum in subsection 3.3.

3.1 Rewriting of the mass terms

For a sub-set of the fields, the mass terms are diagonal in the flavor index (but not in

the colour index) and we denote the corresponding fields as easy fields. Accordingly, the

remaining fields are denoted as complicated fields. The easy fields consist of the three

scalars φ4, φ5, φ6, the three gauge fields A0, A1, A2 and the ghost c.

For the easy fields, say A0 for concreteness, the mass term is proportional to

tr([ti, A0][ti, A0]) = − tr(A0[ti, [ti, A0]]) = − tr(A0L
2A0) , (3.1)

where

Li = Ad(ti) , L2 = LiLi (3.2)

are satisfying the well-known commutation relations of angular momenta:

[Li, Lj ] = iεijkLk . (3.3)

The operator L2 is the Laplacian on the so-called fuzzy sphere. The field A0 transforms in

a — in general reducible — representation of the Lie algebra SU(2). We will decompose

this representation into irreducible representations with definite orbital quantum number

` and magnetic quantum number m in the next subsection.

The mass term for the complicated bosons, i.e. φ1, φ2, φ3 and A3, reads

Sm,cb =
2

g2
YM

∫
d4x

1

x2
3

tr

[
−1

2
φ̃iL

2φ̃i −
1

2
A3L

2A3 + iεijkφ̃iLjφ̃k + iφ̃iLiA3 − iA3Liφ̃i

]
,

(3.4)

where i = 1, 2, 3. We can write this in the more suggestive way

Sm,cb =
2

g2
YM

∫
d4x

1

x2
3

tr

[
CT
(
−1

2
L2 + 2SiLi

)
C

]
, (3.5)
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where we have introduced the combined field

C =


φ̃1

φ̃2

φ̃3

A3

 , (3.6)

and where the matrices Si acting on the ‘flavour’ index of C are given by

S1 = −1

2

(
0 σ2

σ2 0

)
, S2 =

i

2

(
0 12

−12 0

)
, S3 =

1

2

(
σ2 0

0 σ2

)
(3.7)

with the Pauli matrices

σ1 =

(
0 1

1 0

)
, σ2 =

(
0 −i
i 0

)
, σ3 =

(
1 0

0 −1

)
. (3.8)

It is easy to verify that the matrices Si form a four-dimensional representation of the SU(2)

Lie algebra:

[Si, Sj ] = iεijkSk . (3.9)

This representation is reducible and its explicit decomposition into irreducible representa-

tions is

U †SiU =

(
1
2σi 0

0 1
2σi

)
, U =

1√
2


−i 0 0 i

1 0 0 1

0 i i 0

0 −1 1 0

 . (3.10)

The eigenvectors of the irreducible representations are
Ct,+

Ct,−

Cb,+

Cb,−

 = U †C =
1√
2


+iφ̃1 + φ̃2

−iφ̃3 −A3

−iφ̃3 +A3

−iφ̃1 + φ̃2

 , (3.11)

which have spin 1
2 and spin magnetic quantum number ±1

2 . It now follows that the compli-

cated boson problem can be solved by the usual procedure of adding angular momentum

as it occurs in the well-known spin-orbit interaction of the hydrogen atom. Concretely, we

define the total angular momentum operator

Ji = Li +
1

2
σi , (3.12)

and find that

σiLi = J2 − L2 − 3

4
. (3.13)

We will construct the simultaneous eigenstates of L2, J2 and J3 in the next subsection.
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The fermionic mass term is proportional to

tr[ψ̄Gi[ti, ψ]] = tr[ψ̄GiLiψ] , (3.14)

where the matrices Gi are given by

G1 = i

(
0 −σ3

σ3 0

)
, G2 = i

(
0 σ1

−σ1 0

)
, G3 =

(
σ2 0

0 σ2

)
. (3.15)

These matrices satisfy the commutation relations

[Gi, Gj ] = −2iεijkGk (3.16)

and thus also form a representation of the Lie algebra SU(2), at least after a rescaling.

This representation is equally reducible and explicitly reduced as

Ũ †GiŨ =

(
−σi 0

0 −σi

)
, Ũ =

1√
2


0 −i −1 0

0 1 i 0

−1 0 0 i

i 0 0 −1

 . (3.17)

The eigenvectors of these irreducible representations are
ψt,+

ψt,−

ψb,+

ψb,−

 = Ũ †ψ =
1√
2


−ψ3 − iψ4

+ψ2 + iψ1

−ψ1 − iψ2

−ψ4 − iψ3

 , (3.18)

which have spin 1
2 and spin magnetic quantum number ±1

2 . The mixing problem of the

fermions can now be solved in complete analogy to the one of the complicated bosons.

To summarise, the complete mass term (2.16), (2.17) can be written as

Sm,b + Sm,f =
2

g2
YM

∫
d4x

1

x2
3

tr

[
−1

2
ETL2E − c̄L2c− 1

2
C†t (L

2 − 2σiLi)Ct

]
(3.19)

+
2

g2
YM

∫
d4x

1

x3
tr

[
1

2
ψ̄tσiLiψt

]
+ (t→ b) ,

where

E =



A0

A1

A2

φ̃4

φ̃5

φ̃6


. (3.20)

– 9 –
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Note that the conjugation here is understood to be outside of the indices, i.e.

C†t ≡ (Ct)
† , ψ̄t ≡ (ψt)

†γ0 , (3.21)

and similarly for t → b. Correspondingly, C†t/b,± and ψ̄t/b,± are related to C and ψ̄ via U

and Ũ , respectively.

3.2 Explicit diagonalisation of the mass matrix

We decompose the different fields with respect to their matrix elements in colour space as

Φ = [Φ]n,n′E
n
n′ + [Φ]n,aE

n
a + [Φ]a,nE

a
n + [Φ]a,a′E

a
a′

+Φtr((N − k)1k×k +k 1(N−k)×(N−k)) ,
(3.22)

where Φ ∈ {A0, A1, A2, φ̃4, φ̃5, φ̃6, c, Ct,±, Cb,±, ψt,±, ψb,±}, n, n′ = 1, . . . , k and a, a′ = k +

1, . . . , N . Moreover, we have split the diagonal components into individually traceless

blocks,
∑

n[Φ]n,n = 0 =
∑

a[Φ]a,a, and a component Φtr proportional to the identity in

each block. Note that the matrix elements above are not independent degrees of freedom;

apart from the aforementioned tracelessness condition, they are also (partially) related to

each other via reality conditions.

The matrices Eaa′ are annihilated by the Li and the corresponding components [Φ]a,a′

in the (N − k)× (N − k) block of all fields are hence massless. Moreover, the Li annihilate

((N − k)1k×k +k 1(N−k)×(N−k)) such that Φtr is also massless.

The matrices Ena and Ean in the off-diagonal k × (N − k) and (N − k) × k blocks

transform in the irreducible k-dimensional representation of SU(2) with angular momentum

` = k−1
2 and magnetic quantum number m = ±

(
k+1

2 − n
)
:

LiE
n
a = En

′
a[ti]n′,n , LiE

a
n = −[ti]n,n′E

a
n′ . (3.23)

The same holds for the corresponding components of the fields.

The standard matrices Enn′ in the k× k block do not transform in an irreducible rep-

resentation of SU(2) yet. The desired eigenstates yielding the decomposition to irreducible

representations are provided by the spherical harmonics Ŷ m
` of the fuzzy sphere, where

` = 1, . . . , k − 1 and m = −`, . . . , `. They are explicitly given in appendix B and satisfy

L3Ŷ
m
` = mŶ m

` , L2Ŷ m
` = `(`+ 1)Ŷ m

` . (3.24)

We thus write

[Φ]n,n′E
n
n′ = Φ`,mŶ

m
` , (3.25)

where the traceless Ŷ m
` implement the tracelessness condition

∑
n[Φ]n,n = 0. This con-

cludes the diagonalisation of L2.

For the easy bosons and ghosts, only L2 occurs in the mass term, and Φ`,m, [Φ]n,a,

[Φ]a,n, [Φ]a,a′ and Φtr completely diagonalise it. In terms of these components, the mass

term reads

− 1

2x2
3

tr(A0L
2A0) = − 1

2x2
3

(
2
k2 − 1

4
[A0]†n,a[A0]n,a + `(`+ 1)(A0)†`,m(A0)`,m

)
, (3.26)
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where we again have chosen A0 for concreteness and used (B.11). Here, [A0]†n,a ≡
([A0]n,a)

† = [A0]a,n and (A0)†`,m ≡ ((A0)`,m)† = (−1)m(A0)`,−m. Comparing this to the

kinetic term

− 1

2
tr(A0∂

2A0) = −1

2

(
2[A0]†n,a∂

2[A0]n,a + (A0)†`,m∂
2(A0)`,m

)
+ massless fields , (3.27)

we immediately see that we have the nonzero mass eigenvalues m2

x2
3

= k2−1
4x2

3
with multiplicity

2k(N − k) and m2

x2
3

= `(`+1)
x2

3
with multiplicity 2`+ 1 for ` = 1, . . . , k− 1. Note that in both

equations we have used the first reality condition to remove [A0]a,n, resulting in the relative

factor 2 in front of the fields from the k× (N − k) block compared to those from the k× k
block.

For the complicated bosons and the fermions, we have to diagonalise J2 with Ji =

Li + 1
2σi in addition to L2, see the discussion in the previous subsection. Let Φ± be a field

with definite angular momentum `, magnetic quantum number m, spin 1
2 and spin mag-

netic quantum number ±1
2 , i.e. [Ct,±]n,a, [Ct,±]a,n, (Ct,±)`,m as well as the corresponding

components of Cb,±, ψt,±, ψb,±, ψt,± and ψb,±. The field can then be written in terms of

the desired eigenstates of L2 and J2 as

Φ± = +

〈
j1 = `, j2 =

1

2
;m1 = m,m2 = ±1

2

∣∣∣∣j = j1 −
1

2
,mj

〉
Φ��,mj

+

〈
j1 = `, j2 =

1

2
;m1 = m,m2 = ±1

2

∣∣∣∣j = j1 +
1

2
,mj

〉
Φ��,mj .

(3.28)

Here, Φ��,mj denotes the eigenstate with total angular momentum j = ` − 1
2 and Φ��,mj

denotes the eigenstate with total angular momentum j = `+ 1
2 , i.e.

L2Φ��,mj = `(`+ 1)Φ��,mj , L2Φ��,mj = `(`+ 1)Φ��,mj ,

J2Φ��,mj =

(
`− 1

2

)(
`+

1

2

)
Φ��,mj , J2Φ��,mj =

(
`+

1

2

)(
`+

3

2

)
Φ��,mj .

(3.29)

The explicit expressions for the occurring Clebsch-Gordan coefficients are〈
j1, j2 =

1

2
;m1,m2 = +

1

2

∣∣∣∣j = j1 +
1

2
,mj

〉
= δmj ,m1+m2

√
j1 +m1 + 1√

2j1 + 1
, (3.30)〈

j1, j2 =
1

2
;m1,m2 = −1

2

∣∣∣∣j = j1 +
1

2
,mj

〉
= δmj ,m1+m2

√
j1 −m1 + 1√

2j1 + 1
, (3.31)〈

j1, j2 =
1

2
;m1,m2 = +

1

2

∣∣∣∣j = j1 −
1

2
,mj

〉
= −δmj ,m1+m2

√
j1 −m1√
2j1 + 1

, (3.32)

and 〈
j1, j2 =

1

2
;m1,m2 = −1

2

∣∣∣∣j = j1 −
1

2
,mj

〉
= δmj ,m1+m2

√
j1 +m1√
2j1 + 1

. (3.33)
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Using the above eigenstates, we can write the mass term of the complicated bosons as

− 1

2x2
3

tr[CT (L2 − 4SiLi)C]

= − 1

2x2
3

(
2

(k + 2)2 − 1

4
C†at��,mjCat��,mj + 2

(k − 2)2 − 1

4
C†at��,mjCat��,mj

+ (`2 + 3`+ 2)C†`t��,mjC`t��,mj + (`2 − `)C†`t��,mjC`t��,mj + (t→ b)

)
, (3.34)

where C†at��,mj ≡ (Cat��,mj )
†, etc. We have the (mostly) non-zero mass eigenvalues m2

x2
3

=

(k+2)2−1
4x2

3
with multiplicity 4(k−1)(N−k), m

2

x2
3

= (k−2)2−1
4x2

3
with multiplicity 4(k+1)(N−k),

m2

x2
3

= `2−`
x2

3
with multiplicity 4(` + 1) and m2

x2
3

= `2+3`+2
x2

3
with multiplicity 4` for ` =

1, . . . , k − 1.

Similarly, we can write the fermion mass term as

− 1

2x3
tr[ψ̄GiLiψ] = − 1

2x3

(
2
k + 1

2
ψ̄at��,mjψat��,mj − 2

k − 1

2
ψ̄at��,mjψat��,mj

+ (`+ 1)ψ̄`t��,mjψ`t��,mj − `ψ̄`t��,mjψ`t��,mj + (t→ b)

)
,

(3.35)

where ψ̄at��,mj ≡ (ψat��,mj )
†γ0, etc. In this case, we have the nonzero mass eigenvalues

m
x3

= k+1
2x3

with multiplicity 4(k− 1)(N − k), m
x3

= −k−1
2x3

with multiplicity 4(k+ 1)(N − k),
m
x3

= − `
x3

with multiplicity 4(`+ 1) and m
x3

= `+1
x3

with multiplicity 4` for ` = 1, . . . , k− 1.

3.3 Summary of the spectrum

Defining

ν =

√
m2 +

1

4
, (3.36)

we find the following pattern for the masses and ν’s:

Multiplicity ν(φ̃4,5,6, A0,1,2, c) m(ψ1,2,3,4) ν(φ̃1,2,3, A3)

`+ 1 `+ 1
2 −` `− 1

2

` `+ 1
2 `+ 1 `+ 3

2

(k + 1)(N − k) k
2 −k−1

2
k−2

2

(k − 1)(N − k) k
2

k+1
2

k+2
2

(N − k)(N − k) 1
2 0 1

2

(3.37)

where ` = 1, . . . , k − 1.

4 Propagators

Having diagonalised the quadratic part of the action, we can derive the propagators of

the mass eigenstates. Anticipating the use of dimensional regularisation and taking into
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account the symmetries of the problem, we will work in d+ 1 dimensions with d referring

to the dimension of the codimension-one defect. For notational simplicity, we will keep

denoting the coordinate transverse to the defect as x3. We derive the scalar and fermionic

propagators in subsections 4.1 and 4.2, respectively, by expressing them in terms of prop-

agators in AdSd+1. We translate the propagators of the mass eigenstates to those of the

flavour and colour eigenstates in subsection 4.3.

4.1 Scalar propagators

The scalar Minkowski space propagator K(x, y) is the solution to(
−∂µ∂µ +

m2

x2
3

)
K(x, y) =

g2
YM

2
δ(x− y) , (4.1)

where the derivatives are all with respect to x, µ = 0, 1, . . . , d takes d + 1 different values

and m
x3

is the “mass” coming from the classical expectation value. The factor g2
YM/2 stems

from the normalisation of the action in (2.2).

As noted in [13], K(x, y) is basically the usual propagator of a massive scalar in AdSd+1.

To see this, we write

K(x, y) =
g2

YM

2

K̃(x, y)

(x3y3)
d−1

2

. (4.2)

Equation (4.1) then becomes

δ(x− y) =

(
−∂µ∂µ +

m2

x2
3

)
K̃(x, y)

(x3y3)
d−1

2

=
1

(x3y3)
d−1

2

(
−∂µ∂µ + (d− 1)

1

x3
∂3 +

m2 − d2−1
4

x2
3

)
K̃(x, y) ,

(4.3)

or(
−x2

3∂µ∂
µ + (d− 1)x3∂3 +m2 − d2 − 1

4

)
K̃(x, y) = (x3y3)

d−1
2 x2

3 δ(x− y) = xd+1
3 δ(x− y) .

(4.4)

Let us now compare this to the AdSd+1 case. We choose coordinates such that the (Eu-

clidean) metric is

gµν =
1

x2
3

δµν , gµν = x2
3δ
µν ,

√
g =

1

xd+1
3

. (4.5)

The AdS propagator with mass m̃ is defined by

(−∇µ∇µ + m̃2)KAdS(x, y) =
δ(x− y)
√
g

. (4.6)

Inserting the explicit expression (4.5) for the metric, we find

xd+1
3 δ(x− y) = (−∇µ∇µ + m̃2)KAdS(x, y)

= − 1
√
g
∂µ(
√
ggµν∂νKAdS(x, y)) + m̃2K(x, y)AdS

=
(
−x2

3 δ
µν∂µ∂ν + (d− 1)x3∂3 + m̃2

)
KAdS(x, y) .

(4.7)
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We see that the equations for K̃(x, y) and KAdS(x, y) coincide, and hence that

K(x, y) =
g2

YM

2

K̃(x, y)

(x3y3)
d−1

2

=
g2

YM

2

KAdS(x, y)

(x3y3)
d−1

2

, (4.8)

with the identification

m̃2 = m2 − d2 − 1

4
. (4.9)

Notice that the above implies that the coordinate transverse to the defect, x3, plays the

role of the radial coordinate of an AdS4 space with the defect as its boundary. This inter-

pretation continues to hold when fermions are taken into account, cf. the next subsection.

Notice also that none of the scalar masses in (3.37) violate the Breitenlohner-Freedman

(BF) bound [16], since m̃2 ≥ −9/4, which is precisely the BF bound for AdS4. The bound

is saturated only for the special case k = 2.

Closed expressions for KAdS(x, y) in terms of hypergeometric functions can be found

in the literature, see e.g. [17, 18]. Another representation, which is useful for our purpose,

can be found in [19], and reads

KAdS(x, y) = (x3y3)d/2
∫

dd~k

(2π)d

∫ ∞
0

dw
w

w2 + ~k2
ei
~k·(~x−~y) Jν(wx3)Jν(wy3),

= (x3y3)d/2
∫

dd~k

(2π)d
ei
~k·(~x−~y) Iν(|~k|x<3 )Kν(|~k|x>3 ) ,

(4.10)

where I and K are modified Bessel functions with x<3 (x>3 ) the smaller (larger) of x3 and

y3 and ν was defined in (3.36).

4.2 Fermionic propagators

For the fermions, after diagonalisation and when working in Euclidean space where

{γµ, γν} = −2δµν , the propagator KF (x, y) fulfils(
−iγµ∂µ +

m

x3

)
KF (x, y) =

g2
YM

2
δ(x− y) . (4.11)

To relate this propagator to the propagator of fermions on AdSd+1, we introduce

KF (x, y) =
g2

YM

2

K̃F (x, y)

(x3)d/2(y3)d/2
. (4.12)

Then, we find

δ(x− y) =

(
−iγµ∂µ +

m

x3

)
K̃F (x, y)

(x3)d/2(y3)d/2

=
1

(y3)d/2

(
− i

(x3)d/2
γµ∂µ +

d

2
iγ3 1

(x3)d/2+1
+

m

(x3)d/2+1

)
K̃F (x, y) ,

(4.13)

or(
−x3iγ

µ∂µ +
d

2
iγ3 +m

)
K̃F (x, y) = (x3)d/2+1(y3)d/2δ(x− y) = (x3)d+1δ(x− y) . (4.14)
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Using again the AdS metric given in (4.5), the fermion propagator KF,AdS(x, y) solves

(−i/D + m̃)KF,AdS(x, y) =
δ(x− y)
√
g

, (4.15)

where

/D = x3∂µγ
µ − d

2
γ3 (4.16)

is the spinor covariant derivative; see [20] and also [21]. Thus, we have

KF (x, y) =
g2

YM

2

K̃F (x, y)

(x3)d/2(y3)d/2
=
g2

YM

2

KF,AdS(x, y)

(x3)d/2(y3)d/2
, (4.17)

with m = m̃.

In [22], the following useful expression for the fermionic propagator KF,AdS in AdSd+1

in terms of the bosonic one is given:

Km
F,AdS(x, y) =

√
y3

x3

[
i/D +

i

2
γ3 +m

] [
K
ν=m− 1

2
AdS (x, y)P− +K

ν=m+ 1
2

AdS (x, y)P+

]
, (4.18)

where

P± =
1

2
(1± iγ3) . (4.19)

From this, we can express the flat space fermionic propagator in terms of the bosonic one

as follows

Km
F (x, y) = x

− d+1
2

3

[
x3iγ

µ∂µ −
d− 1

2
iγ3 +m

]
x
d−1

2
3

[
Kν=m− 1

2 (x, y)P− +Kν=m+ 1
2 (x, y)P+

]
=

[
iγµ∂µ +

m

x3

] [
Kν=m− 1

2 (x, y)P− +Kν=m+ 1
2 (x, y)P+

]
. (4.20)

For future reference, we note that the fermionic propagator enjoys the charge conju-

gation symmetry

C
(
KF (x, y)

)TC−1 = KF (y, x) , (4.21)

where the transpose acts in spinor space, and C is defined in (C.5).

4.3 Colour and flavour part of propagators

Using the mass eigenstates derived in section 3.2, we can now rewrite the propagators of

the fields with definite flavour in terms of the propagators of the mass eigenstates.

We begin with the fields in the k × k block. For the easy fields, the propagator is

already diagonal in the Ŷ m
` basis, so we have e.g.

〈(φ̃4)`,m(x)(φ̃4)†`′,m′(y)〉 = δ`,`′δm,m′K
m2=`(`+1)(x, y) . (4.22)

Here, (φ̃4)†`,m ≡ ((φ̃4)`,m)† = (−1)m(φ̃4)`,−m and Km2
is the propagator for a scalar mode

with squared mass m2, see section 4.1.
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Calculating the propagators for the complicated fields takes a little more effort. It is

useful to first consider the Ct,± fields. Using the relation to the diagonal fields (3.28) and

suppressing space-time positions for brevity, we find

〈(Ct,+)`,m(Ct,+)†`′,m′〉 = δ`,`′δm,m′

(
`+m+1

2`+ 1
Km2=`(`−1)+

`−m
2`+1

Km2=(`+1)(`+2)

)
, (4.23)

〈(Ct,−)`,m(Ct,−)†`′,m′〉 = δ`,`′δm,m′

(
`−m+1

2`+1
Km2=`(`−1)+

`+m

2`+1
Km2=(`+1)(`+2)

)
, (4.24)

〈(Ct,+)`,m(Ct,−)†`′,m′〉 = δ`,`′
[t

(2`+1)
− ]`−m+1,`−m′+1

2`+ 1
(Km2=`(`−1) −Km2=(`+1)(`+2)) , (4.25)

and

〈(Ct,−)`,m(Ct,+)†`′,m′〉 = δ`,`′
[t

(2`+1)
+ ]`−m+1,`−m′+1

2`+ 1
(Km2=`(`−1) −Km2=(`+1)(`+2)) . (4.26)

Here, t
(2`+1)
i are the generators of the (2`+1)-dimensional irreducible representation of the

Lie algebra SU(2) defined in appendix A with k → 2`+ 1. The propagators with t→ b are

identical, while the mixed ones vanish. Using (3.11), we express the original fields in terms

of Ct,± and Cb,±. We can now compute e.g.

〈(φ̃1)`,m(φ̃2)†`′,m′〉 =
1

2

(
−i〈(Ct,+)`,m(Ct,+)†`′,m′〉+ i〈(Cb,−)`,m(Cb,−)†`′,m′〉

)
= −iδ`,`′

[t
(2`+1)
3 ]`−m+1,`−m′+1

2`+ 1
(Km2=`(`−1) −Km2=(`+1)(`+2)) .

(4.27)

Repeating this exercise, we finally find

〈(φ̃i)`,m(φ̃j)
†
`′,m′〉 = δi,jδ`,`′δm,m′

(
`+ 1

2`+ 1
Km2=`(`−1) +

`

2`+ 1
Km2=(`+1)(`+2)

)
(4.28)

−iεijl[t
(2`+1)
l ]`−m+1,`−m′+1δ`,`′

1

2`+ 1
(Km2=`(`−1) −Km2=(`+1)(`+2)) ,

〈(A3)`,m(A3)†`′,m′〉 = δ`,`′δm,m′

(
`+ 1

2`+ 1
Km2=`(`−1) +

`

2`+ 1
Km2=(`+1)(`+2)

)
(4.29)

and

〈(φ̃i)`,m(A3)†`′,m′〉 = −〈(A3)`,m(φ̃i)
†
`′,m′〉 (4.30)

= iδ`,`′
[t

(2`+1)
i ]`−m+1,`−m′+1

2`+ 1
(Km2=`(`−1) −Km2=(`+1)(`+2)) .

Similarly, we obtain the propagators of the fermions as

〈(ψi)`,m(ψj)`′,m′〉 = δi,jδm,m′δ`,`′

(
`+ 1

2`+ 1
Km=−`
F +

`

2`+ 1
Km=`+1
F

)
−δ`,`′ [Gl]i,j

[t
(2`+1)
l ]`−m+1,`−m′+1

2`+ 1

(
Km=−`
F −Km=`+1

F

)
,

(4.31)
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where (ψj)`′,m′ ≡ ((ψj)`′,m′)
†γ0 = (−1)m

′
(ψ̄j)`′,−m′ , G

l are the 4 × 4 matrices defined

in (3.15) and Km
F denotes the fermionic propagators of definite mass m derived in sec-

tion 4.2.

To obtain the propagator between the matrix elements, one can write

〈[Φ1]n1,n2 [Φ2]n3,n4〉 = [Ŷ m
` ]n1,n2 [(Ŷ m′

`′ )†]n3,n4〈(Φ1)`,m(Φ2)†`′,m′〉 (4.32)

and use (B.12) to get an explicit expression. In practice, however, it is often more conve-

nient to work directly in the Ŷ m
` basis.

We have now written all the propagators for the k × k block. To obtain the corre-

sponding expressions for the k × (N − k) and (N − k) × k blocks is mostly a matter of

replacing (Φ)`,m → [Φ]n,a and `→ (k− 1)/2 in the above formulae. In particular, we have

〈[φ̃4]n,a[φ̃4]†n′,a′〉 = δn,n′δa,a′K
m2= k2−1

4 , (4.33)

〈[A3]n,a[A3]†n′,a′〉 = δn,n′δa,a′

(
k + 1

2k
Km2=

(k−2)2−1
4 +

k − 1

2k
Km2=

(k+2)2−1
4

)
, (4.34)

〈[φ̃i]n,a[φ̃j ]†n′,a′〉 = δi,jδn,n′δa,a′

(
k + 1

2k
Km2=

(k−2)2−1
4 +

k − 1

2k
Km2=

(k+2)2−1
4

)
(4.35)

−iεijl[tl]n,n′δa,a′
1

k

(
Km2=

(k−2)2−1
4 −Km2=

(k+2)2−1
4

)
,

〈[φ̃i]n,a[A3]†n′,a′〉 = −〈[A3]n,a[φ̃i]
†
n′,a′〉

= i[ti]n,n′δa,a′
1

k

(
Km2=

(k−2)2−1
4 −Km2=

(k+2)2−1
4

)
(4.36)

and

〈[ψi]n,a[ψj ]n′,a′〉 = δa,a′δi,jδn,n′
1

k

(
k + 1

2
K
m=− k−1

2
F +

k − 1

2
K
m= k+1

2
F

)
(4.37)

−δa,a′ [Gl]i,j
[tl]n,n′

k

(
K
m=− k−1

2
F −Km= k+1

2
F

)
,

where [φ̃4]†n′,a′ ≡ ([φ̃4]n′,a′)
† = [φ̃4]a′,n′ , [ψj ]n′,a′ ≡ ([ψj ]n′,a′)

†γ0 = [ψ̄j ]a′,n′ , etc.

Fermionic propagators with bars added and/or removed can be obtained from those

given above using the Majorana condition ψi = Cψ̄Ti ; see appendix C. In particular, we

will need the propagator

〈[ψi]a,n[ψj ]a′,n′〉 = δa,a′δi,jδn,n′
1

k

(
k + 1

2
K
m=− k−1

2
F +

k − 1

2
K
m= k+1

2
F

)
(4.38)

+δa,a′ [G
l]i,j

[tl]n′,n
k

(
K
m=− k−1

2
F −Km= k+1

2
F

)
.

Here, we have used the charge conjugation symmetry (4.21) to simplify the expression.

5 Dimensional regularisation

For our one-loop computation, we need to evaluate K(x, x) as well as trKF (x, x) and we

hence need to regulate these quantities. Dimensional regularisation has been used success-

fully in combination with dimensional reduction in a number of higher loop computations
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in standard N = 4 SYM theory, see e.g. [23, 24] and references therein, but neither have

been tested in the defect setup. In this section, we determine K(x, x) as well as trKF (x, x)

in dimensional regularisation and discuss the preservation of supersymmetry in analogy to

dimensional reduction.

Results for K(x, x) and trKF (x, x) in Hadamard as well as zeta-function regularisation,

which are commonly used in AdS, can be found in the literature and for completeness we

summarise these in appendix E.

Bosonic fields. In order to evaluate K(x, x) using dimensional regularisation, we use as

our starting point the expression (4.10), consider the ~k integral in d = 3− 2ε dimensions,

set ~x = ~y and go to polar coordinates. The expression (4.8) then turns into

Km2=ν2− 1
4 (x, x) =

g2
YM

2
x3

2π3/2−ε

Γ(3/2− ε)

∫ ∞
0

dk
k2−2ε

(2π)3−2ε
Iν(kx3)Kν(kx3) , (5.1)

where k denotes the radial component of ~k and 2π3/2−ε

Γ(3/2−ε) is the area of the unit sphere in

d = 3 − 2ε dimensions resulting from the angular integration. Expanding in small ε and

dropping terms of O(ε), we find∫ ∞
0

dk k2−2εIν(kx3)Kν(kx3)=
1

8x3
3

(
2m2

[
1

2
+ Ψ

(
ν +

1

2

)
− log 2x3 −

1

2ε

]
− 1

)
. (5.2)

This means that the total, regularised propagator is given by

Kν(x, x) =
g2

YM

2

1

16π2 x2
3

(
m2

[
−1

ε
− log(4π) + γE − 2 log(x3) + 2Ψ

(
ν +

1

2

)
− 1

]
− 1

)
,

(5.3)

where γE is the Euler-Mascheroni constant.

The form of the bosonic spectrum found in the previous section means that the

digamma function Ψ simplifies. We first observe that the eigenvalues come in two families.

The first family is

m2 =
(k + 2s)2 − 1

4
, s ∈ {−1, 0, 1} , (5.4)

and the second family is

m2 = j(j − 1), j = 1, . . . , k + 1 . (5.5)

The digamma terms then reduce to

Ψ

(√
(k + 2s)2 − 1

4
+

1

4
+

1

2

)
=

−γE − 2 log 2 +
∑ k

2
+s

n=1
2

2n−1 , k even ,

−γE +
∑ k−1

2
+s

n=1
1
n , k odd ,

(5.6)

and

Ψ

(√
j(j − 1) +

1

4
+

1

2

)
= −γE +

j−1∑
n=1

1

n
, (5.7)

respectively.
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Fermionic fields. The other quantity that is relevant for our one-loop computation is

the trace of the fermionic propagator. In this case, we will use as our starting point the

formula (4.20). Since the γ matrices are traceless and furthermore satisfy tr(γiγ3) = 0,

what remains to evaluate is then effectively

trKm
F (x, y) = 2

[
−∂3 +

m

x3

]
Kν=m− 1

2 (x, y) + 2

[
∂3 +

m

x3

]
Kν=m+ 1

2 (x, y) , (5.8)

where we have used that trm = 4m and tr(γ3)2 = −4. Now, we have to find the regularised

version of this expression at coinciding points, KF (x, x).

Using the fact that trKF (x, y) and K(x, y) are symmetric under interchanging x and

y,1 we can write

trKm
F (x, y) =

[
−∂x3 − ∂y3 +

m

x3
+
m

y3

]
Kν=m− 1

2 (x, y)

+

[
∂x3 + ∂y3 +

m

x3
+
m

y3

]
Kν=m+ 1

2 (x, y) .

(5.9)

In the limit y → x, we have (∂x3 + ∂y3)K(x, y)→ ∂x3K(x, x), such that

trKm
F (x, x) =

[
−∂x3 + 2

m

x3

]
Kν=m− 1

2 (x, x) +

[
∂x3 + 2

m

x3

]
Kν=m+ 1

2 (x, x) . (5.10)

Substituting the regularised expression (5.3) for the boson into this then leads

trKm
F (x, x) =

g2
YM

2

1

4π2x3
3

[
m3 +m2 − 3m− 1

+m(m2 − 1)

(
−1

ε
− log(4π) + γE − 2 log(x3) + 2Ψ(m)− 2

)]
. (5.11)

The diagonalisation of the fermionic mass terms yields both positive and negative

eigenvalues. By chirally rotating the fermion fields, one can argue that the sign of the

mass should only affect the overall sign of the fermion loop; cf. also the expression for the

propagator in [25]. Hence, the full m dependence of (5.11) is

trKm
F (x, x) = sgn(m)

g2
YM

2

1

4π2x3
3

[
|m|3 + |m|2 − 3|m| − 1

+ |m|(|m|2 − 1)

(
−1

ε
− log(4π) + γE − 2 log(x3) + 2Ψ(|m|)− 2

)]
. (5.12)

Dimensional reduction. Dimensional regularisation alone breaks supersymmetry, as

the number of components of the gauge field Aµ is changed from nA = 4 to nA = D = 4−2ε

while the numbers of fermions nψ = 4 and real scalars nφ = 6 remains unchanged. In usual

1For trKF (x, y), this follows from (4.21).
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N = 4 SYM theory, a supersymmetry-preserving alternative to dimensional regularisa-

tion is dimensional reduction [26, 27].2 It uses the fact that N = 4 SYM theory in four

dimensions is the dimensional reduction of N = 1 SYM theory in ten dimensions. Dimen-

sionally reducing to D = 4 − 2ε dimensions instead leads to a supersymmetry-preserving

regularisation with nψ = 4 fermions but nφ = 6 + 2ε real scalars.

Our regularisation will follow the spirit of dimensional reduction adapted to the

situation with the defect and the classical vevs. In our dCFT, the gauge fields and

scalars are split into easy and complicated fields: nA = nA,easy + nA,com. = 4 − 2ε and

nφ = nφ,easy + nφ,com. = 6 + 2ε. In the calculation above, we have only touched the d

dimensions parallel to the defect, such that the codimension of the defect remains one.

Thus, we have nA,easy = 3− 2ε and nA,com. = 1. Furthermore, we have left untouched the

three scalar fields which acquire vevs as this ensures that the classical equations of motion

and the Nahm condition which define the fuzzy-funnel solution continue to be fulfilled away

from d = 3. Thus, we are led to conclude nφ,com. = 3 and nφ,easy = 3 + 2ε.

Further support for the above conclusion comes from the construction via the D5-D3

probe-brane set-up. The easy gauge fields corresponds to the directions in which both

the D5 and the D3 brane extend, while the easy scalars correspond to the directions into

which none of the branes extend. The complicated scalars (gauge field) correspond to

the directions in which only the D5 (D3) extends. For the D5-D3 probe-brane set-up,

supersymmetry requires that the number of Neumann-Dirichlet directions, i.e. the number

of dimensions in which only the D5 brane or the D3 branes extend, is 0, 4 or 8; see for

instance [32, 33]. Thus, supersymmetry requires that we further keep nA,com. + nφ,com. =

10− nA,easy + nφ,easy = 4 fixed, which indeed leads to nφ,com. = 3 and nφ,easy = 3 + 2ε.

6 One-loop corrections to one-point functions

For operators O with definite scaling dimension ∆, conformal symmetry constrains the

one-point function to be of the form [3]

〈O∆〉(x) =
C

x∆
3

, (6.1)

where C is a constant and x3 denotes the distance to the defect.

Let us consider a general single-trace operator built out of L real scalars:

O(x) = Oi1i2...iL tr(φi1φi2 . . . φiL)(x) . (6.2)

The classical one-point function is simply given by inserting the classical solution (2.4)

into (6.2):

〈O〉tree(x) = Oi1i2...iL tr(φcl
i1φ

cl
i2 . . . φ

cl
iL

)(x) . (6.3)

This is depicted in figure 2a. We now calculate the first quantum correction to this quantity.

2Note that dimensional reduction is inconsistent at sufficiently high loop orders though [28–31].
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(a) (b) (c)

Figure 2. The diagrams which contribute to the one-point functions of scalar fields at tree level (a)

and one-loop order ((b) tadpole and (c) lollipop). The operator is represented by a dot and a cross

symbolises the insertion of the classical solution.

6.1 One-loop one-point functions of general operators

At one-loop order, two different diagrams can contribute to the one-point function of any

operator. We call them the lollipop diagram and the tadpole diagram and depict them in

figure 2c and 2b, respectively.

The lollipop diagram is obtained by expanding the operator to linear order in the

quantum fields and connecting this quantum field with a propagator to a quantum field in

a cubic vertex whose other two quantum fields are connected with each other by a second

propagator:

〈O〉1-loop,lol(x) = Oi1i2...iL
L∑
j=1

tr(φcl
i1 . . . φ̃ij . . . φ

cl
iL

)(x)

∫
d4y

∑
Φ1,Φ2,Φ3

V3(Φ1,Φ2,Φ3)(y) ,

(6.4)

where the second sum is over all cubic vertices V3 in the theory. Note that this diagram is

1-particle-reducible and effectively is expressed in terms of the contribution of the one-loop

correction to the scalar vevs:

〈O〉1-loop,lol(x) = Oi1i2...iL
L∑
j=1

tr(φcl
i1 . . . 〈φij 〉1-loop . . . φ

cl
iL

)(x) , (6.5)

where

〈φi〉1-loop(x) = φ̃i(x)

∫
d4y

∑
Φ1,Φ2,Φ3

V3(Φ1,Φ2,Φ3)(y) . (6.6)

We calculate 〈φi〉1-loop in appendix D, finding

〈φi〉1-loop(x) = 0 . (6.7)

Thus,

〈O〉1-loop,lol(x) = 0 , (6.8)

independently of which operator we are looking at.
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The tadpole diagram is obtained by expanding the operator to quadratic order in the

quantum fields and connecting the resulting two quantum fields with a propagator:

〈O〉1-loop,tad(x) =
∑
j1,j2

Oi1...ij1 ...ij2 ...iL tr(φcl
i1 . . . φ̃ij1 . . . φ̃ij2 . . . φ

cl
iL

)(x) . (6.9)

In the large-N limit, the tadpole integral only contributes when the two quantum fields are

neighbouring, i.e. when j ≡ j1 = j2−1; the components in the off-diagonal k× (N−k) and

(N − k)× k blocks can contribute only in this case, and only they scale with N .3 Inserting

the decomposition (3.22), we find

〈O〉1-loop,tad(x) =
∑
j

Oi1...ij ij+1...iL tr(φcl
i1 . . . E

n
aE

a
n′ . . . φ

cl
iL

)(x)〈[φ̃ij ]n,a(x)[φ̃ij+1 ]a,n′(x)〉

+ (k × k)-contributions . (6.10)

The occurring propagator is only non-vanishing for ij = ij+1 = 4, 5, 6 and ij , ij+1 = 1, 2, 3.

All required cases are given in subsection 4.3.

At one-loop order, the one-point functions do not receive contributions from the quartic

vertices as the occurrence of such a vertex would require an additional propagator in

comparison with a cubic vertex. The one-point functions do not receive any contributions

from the fields living on the defect either. This is due to the fact that any such one-loop

diagram would involve a loop consisting of a single propagator of a defect field, which

vanishes due to conformal invariance.

In general, there are two further contributions at one-loop level. The first originates

from the need to renormalise the operator via the renormalisation constant Z = 1+Z1-loop+

O(λ2):

〈O〉1-loop,Z(x) = 〈Z1-loopO〉tree(x) . (6.11)

This contribution cancels the UV divergence in (6.10), see also the discussion under-

neath (6.17). The second additional contribution originates from the first quantum correc-

tion to the one-loop eigenstate, i.e. the two-loop eigenstate, if we are looking at operators

of definite scaling dimension ∆:

〈O〉1-loop,O(x) = Oi1i2...iL2-loop tr(φcl
i1φ

cl
i2 . . . φ

cl
iL

)(x) . (6.12)

Thus, we have for the planar one-loop one-point function of any single-trace operator

built out of scalar fields:

〈O〉1-loop(x) = 〈O〉1-loop,tad(x) + 〈O〉1-loop,Z(x) + 〈O〉1-loop,O(x) . (6.13)

6.2 One-loop one-point functions in the SU(2) sector

Let us now consider operators in the SU(2) sector, which are built from the complex scalars

Φ↓ ≡ X = φ1 + iφ4 and Φ↑ ≡ Z = φ3 + iφ6. Consider the operator

O(x) = Os1s2...sL tr(Φs1Φs2 . . .ΦsL)(x) , (6.14)

3Recall that the fields in the (N − k) × (N − k) block do not directly couple to the classical fields.

Moreover, they are massless such that their tadpole integrals vanish.
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where si =↑, ↓. The tree-level one-point functions of these operators were computed using

integrability in [5, 6].

Of the above diagrams contributing to the one-loop one-point function, only the tadpole

diagram simplifies further if we restrict ourselves to the SU(2) sector. Using the explicit

expressions for the propagators given in section 4.3, we find

〈O〉1-loop,tad(x) =
λ

16π2

1

(x3)2

∑
j

δsj=sj+1Os1...sj sj+1...sL tr(φcl
s1 . . . φ

cl
sj−1

φcl
sj+2

. . . φcl
sL

)(x)

+
λ

8π2

(
− 1

2ε
− 1

2
log(4π) +

1

2
γE − log(x3) + Ψ

(
k + 1

2

))
(6.15)

×
∑
j

Os1...sj sj+1...sL tr(φcl
s1 . . . φ

cl
sj−1

[φcl
sj , φ

cl
sj+1

]φcl
sj+2

. . . φcl
sL

)(x) .

We observe that the third line is precisely proportional to the one-loop dilatation operator

in the SU(2) sector originally obtained in [34]. For one-loop eigenstates, the third line is

proportional to the one-loop anomalous dimension multiplied by the tree-level one-point

function:

〈O〉1-loop,tad(x) =
λ

16π2

1

(x3)2

∑
j

δsj=sj+1Os1...sj sj+1...iL tr(φcl
s1 . . . φ

cl
sj−1

φcl
sj+2

. . . φcl
sL

)(x)

+
λ

8π2

(
− 1

2ε
− 1

2
log(4π) +

1

2
γE − log(x3) + Ψ

(
k + 1

2

))
∆1-loop

2
〈O〉tree(x) . (6.16)

As Z1-loop = λ
16π2

∆1-loop

2ε when using minimal subtraction, we have

〈O〉1-loop,Z(x) =
λ

16π

∆1-loop

2ε
〈O〉tree(x) . (6.17)

Thus, this contribution cancels the divergence above.4 Moreover, the prefactor of

log(x3)∆1-loop has the expected form coming from the one-loop correction to the scaling

dimension.

The two-loop eigenstates are also known and can be efficiently obtained using one of

the two recently developed technologies [35, 36] and [37, 38], both of which build on the

manipulation of an inhomogeneous version of the Heisenberg spin chain. Hence, it only

remains to calculate two overlaps, one involving a matrix-product state and an amputated

one-loop Bethe state, and the other one involving a matrix product state and a two-loop

correction to a Bethe state. These calculations should be doable [39] adapting the technique

developed in [5, 6].

6.3 One-loop one-point functions of tr(ZL)

Finally, let us consider the special case of the BPS operator tr(ZL), i.e. Oi1...iL =∏L
j=1(δij=3 + iδij=6).

4When using modified minimal subtraction, Z1-loop = λ
16π2

∆1-loop

2ε
e−εγE(4π)ε and also the − 1

2
log(4π) +

1
2
γE is cancelled.
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At tree level, we have [5]

〈tr(ZL)〉tree(x) =
(−1)L

xL3

k∑
i=1

dLk,i =

0 , L odd ,

− 2
xL3 (L+1)

BL+1

(
1−k

2

)
, L even ,

(6.18)

where dk,i given in (A.3) denotes the diagonal entries of t3 and BL+1(u) is the Bernoulli

polynomial of degree L+ 1.

The one-loop contributions 〈O〉1-loop,Z(x) and 〈O〉1-loop,O(x) vanish for this operator,

and (6.10) reduces to

〈tr(ZL)〉1-loop,tad(x) = L tr((φcl
3 )L−2EnaE

a
n′)(x)

(
〈[φ̃3]n,a[φ̃3]a,n′〉 − 〈[φ̃6]n,a[φ̃6]a,n′〉

)
+ (k × k)-contributions , (6.19)

where we have suppressed the argument x of both propagators and the trivial summation

over j has produced a factor L. Inserting (4.35) and (4.33), the summation over a produces

a factor (N − k) and the summation over n, n′ reduces the matrix unities to a unit matrix.

Thus, we find5

〈tr(ZL)〉1-loop(x) = 〈tr(ZL)〉1-loop,tad(x) = 〈tr(ZL−2)〉tree(x)
1

x2
3

λ

16π2
L+O

(
1

N

)
. (6.20)

6.4 Finite-N results

In order to check our formalism and results, we have also computed the one-point functions

explicitly in colour components for small N, k using Mathematica. In this way, we explicitly

diagonalised the mass matrix and used the mass eigenstates to find the propagators in

colour space. We find that the mass spectrum perfectly matches (3.3). Moreover, from

our explicit results for N, k < 9, we were able to extract closed formulas for the one-point

functions for any N, k. We find that they agree with (6.8) and (6.20) in the large-N limit.

The cancellations of divergencies for small mass, the regulator and irrational terms like γE

all provide non-trivial consistency checks of our approach.

One-loop correction to vev. From computations for N, k < 9, we were able to find a

closed expression for the vev of the scalar fields. In particular, our explicit computations

show that the planar result

〈φi〉1-loop = 0 (6.21)

is actually exact.

Tadpole correction to tr(ZL). Similarly, we have explicitly checked the tadpole dia-

grams for N, k < 9. Again, we were able to find an exact expression for any N, k, L. It is

given by

〈tr(ZL)〉1-loop,tad(x) = L
g2

YM

8π2

1

xL3

{
BL−1

(
k+1

2

)
1− L

[
N − k +

k − 1

k

L− 1

2

]

+

b k−2
2
c∑

i=0

(Hk−i−1 −Hi)

[
k − 2i− 1

2

]L−1}
, (6.22)

5Recall that the lollipop contribution vanishes for all operators, cf. (6.7).
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where Hn =
∑n

i=1 i
−1 are the harmonic numbers. Notice that (6.22) reduces to (6.20) in

the large-N limit.

7 Comparison to string theory for 〈tr(ZL)〉

When we wish to compare our perturbative, planar gauge-theory results to string theory,

we are of course facing the eternal problem (and virtue) of the AdS/CFT correspondence

that it is a strong-weak coupling duality. A proposal for how to circumvent this issue in the

present set-up was put forward by Nagasaki, Tanida and Yamaguchi [13]. They pointed

out that, compared to the usual AdS/CFT scenario, we here have at our disposal one extra

tunable parameter, namely k, which plays the role of the background gauge-field flux in

the string-theory picture and corresponds to the dimension of the SU(2) representation

associated with the classical fields around which we expand on the gauge-theory side.

Hence, one can consider the double-scaling limit

λ→∞, k →∞, λ/k2 finite, (7.1)

and furthermore consider λ/k2 to be small. The limit λ → ∞ justifies a supergravity ap-

proximation on the string-theory side, whereas the assumption of λ/k2 being small might

bring one to the realm of perturbation theory for the field theory. This, however, requires

that the gauge-theory perturbation series for the observables of interest organises into an ex-

pansion in powers of λ/k2. This idea is analogous to the BMN construction [40], where an-

other large quantum quantum number, J , with the interpretation of an angular momentum,

was considered to be large and was combined with λ to form the double-scaling parameter

λ/J2. In the study of the spectral problem of N = 4 SYM theory, it was found that the per-

turbative expansion ceased to be an expansion in the parameter λ/J2 at four loops [41–43].

In [13], the authors calculated in a supergravity approximation the one-point function

of a special chiral primary of even length L, namely the unique one which carries SO(3)×
SO(3) symmetry:

O(x) = CL tr

( 3∑
i=1

φ2
i

)L/2
+

(
6∑
i=4

φ2
i

)
QL−2

(
3∑
i=1

φ2
i ,

6∑
i=4

φ2
i

) (x) , (7.2)

where CL is a normalisation constant and QL−2(y, z) is a homogeneous polynomial of degree
L−2

2 in y and z. This was done by considering the bulk-to-boundary propagator carrying

the quantum numbers characteristic of the chiral primary, fixing one of its endpoints to the

point x in the AdS boundary and integrating the other one over all points belonging to the

D5-brane in the interior of AdS5 × S5. We note in passing that the computation can be

considerably simplified, not necessitating any integration, if one is only interested in the

leading large-L behaviour [6]. However, we will include finite-L corrections in the following

discussion. The result for the string-theory one-point function found in [44] turned out

to be expandable as a series in the double-scaling parameter λ/k2 and the leading term

in this expansion was shown to agree with the result of a tree-level computation in the

gauge theory, which simply amounts to inserting the classical value for the fields into (7.2).
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The string-theory result of [44] also implies a prediction for the gauge-theory result for

the one-point function of the operator above at next-to-leading order in the double-scaling

parameter. The chiral primary (7.2) differs from the one we focused on in section 6.3,

namely tr(ZL), but one can easily convince oneself that the latter has a non-vanishing

projection on the former. This implies that the ratio between the next-to-leading-order

contribution and the leading-order contribution in λ/k2 should be the same for the two

operators. The prediction for this ratio following from the analysis of [44] reads

〈O〉1-loop

〈O〉tree-level

∣∣∣∣
string

=
λ

4π2k2

L(L+ 1)

L− 1
. (7.3)

Combining (6.18) and (6.20), we likewise have a result for this quantity:

〈O〉1-loop

〈O〉tree-level

∣∣∣∣
gauge

=
λ

4π2k2

(
L(L+ 1)

L− 1
+O(k−2)

)
, (7.4)

which perfectly matches the string-theory prediction. This constitutes a highly nontrivial

test of the AdS/dCFT correspondence! Whether the field theory result continues to organ-

ise into a power series expansion in the double-scaling parameter λ/k2 at higher loop order is

obviously a question which requires further investigation. As already mentioned, the BMN

expansion broke down at four-loop order. Nevertheless, the BMN idea was instrumental

in catalysing the integrability approach to AdS/CFT. One could dream that the present

double-scaling idea would play a similarly instrumental role for the study of AdS/dCFT.

8 Conclusion and outlook

With the present paper, we have performed a non-trivial, positive test of the gauge-gravity

correspondence in a set-up where both the supersymmetry and the conformal symmetry

are partially broken. In order to carry out the test, we had to set up the framework for loop

computations in a Higgsed defect version of N = 4 SYM theory, dual to a D5-D3 probe

brane system with flux. This framework now opens the possibility of calculating a large

amount of observables of the theory and hence obtaining more insight into the properties

of the AdS/dCFT setup in general and the specific dCFT in particular. As an application,

we formulated the precise line of action for calculating the one-loop correction to any scalar

operator, leaving only a combinatorial problem that should be solvable invoking the tools of

integrability. In particular, we have found that only two Feynman diagrams are relevant for

the calculation and we have evaluated these using dimensional regularisation finding that

one of them vanishes. So far, we have completed the calculation of the one-loop correction

to the one-point function of the BMN vacuum which we previously summarised in [8]. For

this particular correlator, a comparison with string theory is possible in a certain double-

scaling limit and a perfect match is found. A similar situation occurs in a calculation of

the expectation value of a straight Wilson line [45].

Apart from the two simple observables just mentioned, there exist at the time of writ-

ing no other string-theory results that one could compare to and it would be interesting
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and important to extend the string-theory computations to other cases. The most imme-

diate one would be one-point functions of spinning strings corresponding to non-protected

operators of the SU(2) subsector.

One-point functions only constitute one out of several novel types of correlators specific

to dCFTs. Another class of such operators are two-point functions between operators with

different conformal dimensions. General arguments constrain the space-time dependence

of such two point functions [3] and it would be interesting to demonstrate by explicit

computation that the constraints are met both from the particular dCFT considered here

and from its string-theory counterpart.

Until now, we have focused on one-loop computations for which the defect fields do

not play any role. A natural new direction of investigation would be to consider situations

where the defect fields come into play. We expect that this will happen if the present

calculation is carried on to higher-loop order. Defect fields can of course also appear in

correlation functions either with other defect fields or with bulk fields. Correlation functions

between defect and bulk fields again constitute a novel type of observables for which only

very few explicit results are known [4].

The D5-D3 probe brane set-up is only one out of a number of probe brane set-ups which

have dual dCFTs, see for instance [33]. Another set-up which is very reminiscent of the one

considered here is the D7-D3 probe brane system where the geometry of the D7 brane is

either AdS4×S4 or AdS4×S2×S2 and where again a certain background gauge field has a

non-vanishing flux through either S4 or S2×S2, making possible the definition of a double-

scaling parameter. The dual dCFT is again a defect version of N = 4 SYM theory but the

set-up is no longer supersymmetric. So far, for this dCFT only tree-level one-point functions

of chiral primaries have been calculated and these were found to match a string-theory pre-

diction to the leading order in the double-scaling parameter [14]. It would be interesting to

extend this study to non-protected operators [46] as well as to generalise the approach pre-

sented in this paper to proceed to one-loop order. The latter endeavour, however, is likely to

involve novel complications and subtleties due to the complete absence of supersymmetry.

The development of the last 15 years has lead to numerous discoveries of novel features

of N = 4 SYM theory and the AdS/CFT correspondence as well as novel techniques appli-

cable to this set-up, such as integrability [2], localisation [47], the conformal bootstrap [48]

and the duality between Wilson loops and correlators [49]. The tools of integrability have

already proven useful in the present set-up, in particular at tree level where they permitted

the derivation of a close form for the one-point function valid for any operator in the SU(2)

subsector and for any value of the parameter k [5, 6], but also for the present one-loop

considerations where they come into play for instance in section 6.2. Whether integrability

tools will facilitate going to higher loop orders or to other subsectors remains to be seen. A

generalisation of the conformal bootstrap approach to the defect set-up has been studied

in [50–53]. It would be interesting to investigate in more detail how far this as well as the

other above mentioned techniques can be taken in the context of the present dCFT.
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A Explicit form of the representation matrices

We present here explicit expressions for the representation matrices ti in the k-dimensional

irreducible representation of the Lie algebra SU(2).

Following [5], we define the standard matrices Eij satisfying

EijE
k
l = δkjE

i
l . (A.1)

We define

t+ =

k−1∑
i=1

ck,iE
i
i+1 , t− =

k−1∑
i=1

ck,iE
i+1

i , t3 =

k∑
i=1

dk,iE
i
i , (A.2)

where

ck,i =
√
i(k − i) , dk,i =

1

2
(k − 2i+ 1) . (A.3)

The standard k-dimensional representation of the Lie algebra SU(2) is then given by

t1 =
t+ + t−

2
, t2 =

t+ − t−
2i

and t3 . (A.4)

B ‘Spherical’ colour basis and the fuzzy sphere

In this appendix, we summarise some properties of the spherical harmonics of the fuzzy

sphere, which are used in the diagonalisation of the mass matrix in section 3.2.

Let Φ be any adjoint field. It transforms naturally under SU(2) as

Φ→ e−iλiti Φ eiλiti , (B.1)

or infinitesimally

δΦ = −iλi Ad(ti)Φ = −iλi[ti,Φ] . (B.2)

As usual, we can decompose this representation into a sum of irreducible representations.

To do this explicitly for the components in the k×k block, we use the spherical harmonics

Y m
` ; see [54, 55]. We start by remembering that r`Y m

` can be written as a homogeneous

polynomial of order ` in the Cartesian coordinates. In detail, we have

r`Y m
` = (−1)m

√
2`+ 1Π̄m

` (x1 + ix2)m , r`Y −m` =
√

2`+ 1Π̄m
` (x1 − ix2)m , (B.3)
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for m ≥ 0 and with

Π̄m
` =

√
(`−m)!

(`+m)!

b(`−m)/2c∑
s=0

(−1)s2−`
(
`

s

)(
2`− 2s

`

)
(`− 2s)!

(`− 2s−m)!
r2sx`−2s−m

3 . (B.4)

Note that x1, x2, x3 have nothing to do with the physical coordinates. It follows that there

is a symmetric set of coefficients f `mi1,i2,...i` such that

r`Y m
` =

∑
{i}

f `mi1,i2,...i`xi1 · · ·xi` . (B.5)

We now want to define a N ×N matrix corresponding to Y m
` . We rescale the SU(2)

generators to

x̂i =

√
4

k2 − 1
ti . (B.6)

These are coordinates on the fuzzy unit sphere. In particular, we have

x̂2 = x̂ix̂i = 1 (B.7)

as an operator identity. Substituting these operators into (B.5), we obtain the operators6

Ỹ m
` =

∑
{i}

f `mi1,i2,...i` x̂i1 · · · x̂i` , ` = 1, . . . , k − 1 . (B.8)

These operators achieve the decomposition of the SU(2) representation (3.25) in the k× k
block, cf. [54, 55]. In particular, they satisfy (3.24).

The Ỹ m
` form a orthogonal basis for the traceless k × k matrices, but they are not

normalised. If we define7

Ŷ m
` =

√
(k − `− 1)!

(k + `)!
2`
(
k2 − 1

4

)`/2
Ỹ m
` , (B.9)

we have

tr[(Ŷ m
` )†Ŷ m′

`′ ] = δ``′δmm′ , where (Ŷ m
l )† = (−1)mŶ −ml , (B.10)

and thus

tr[Ŷ m
` Ŷ m′

`′ ] = (−1)mδ``′δm+m′,0 . (B.11)

The matrix elements of the fuzzy spherical harmonics can be found in [56] up to

normalisation; we normalise them to satisfy (B.10). They are given explicitly by

[Ŷ m
` ]n,n′ = (−1)k−n

√
2`+ 1

(
k−1

2 ` k−1
2

n− k+1
2 m −n′ + k+1

2

)
, n, n′ = 1, . . . , k ,

(B.12)

where the large parenthesis denote Wigner’s 3j symbol. Hence,

Ŷ m
` = [Ŷ m

` ]n,n′E
n
n′ . (B.13)

6Note that for ` ≥ k this construction simply gives zero.
7The normalisation constant follows from [54].
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Inverting this equation using the orthogonality and normalisation of Ŷ m
` and Enn′ , we find

Enn′ = [Ŷ m
` ]n,n′ Ŷ

m
` . (B.14)

Note that Ŷ m
` transforms in the spin-` representation under Li, i.e.

LiŶ
m
` = [t

(k)
i , Ŷ m

` ] = Ŷ m′
` [t

(2`+1)
i ]`−m′+1,`−m+1 , (B.15)

where t
(k)
i ≡ ti denotes the generators of the k-dimensional irreducible representation given

in appendix A and t
(2`+1)
i denotes the analogous generators of the (2` + 1)-dimensional

irreducible representation.

Finally, for ` = 1 the spherical harmonics can be explicitly related to our ti matrices:

t1 =
(−1)k+1

2

√
k(k2 − 1)

6
(Ŷ −1

1 − Ŷ 1
1 ) ,

t2 = i
(−1)k+1

2

√
k(k2 − 1)

6
(Ŷ −1

1 + Ŷ 1
1 ) ,

t3 =
(−1)k+1

2

√
k(k2 − 1)

3
Ŷ 0

1 .

(B.16)

C Decomposition of 10-D Majorana-Weyl fermions

In this appendix, we present our conventions for the decomposition of the ten-dimensional

fermion into the four-dimensional fermions and the corresponding gamma matrices.

The ten-dimensional Majorana-Weyl fermions satisfy

Ψ = C10Ψ̄T , Γ11Ψ = −Ψ , (C.1)

where ΓM are ten-dimensional gamma matrices satisfying8

{ΓM ,ΓN} = −2ηMN . (C.2)

We proceed to decompose the ten-dimensional gamma matrices in term of four-dimensional

ones. The four-dimensional gamma matrices are γµ, µ = 0, 1, 2, 3, and we choose the

representation

γµ =

(
0 σµ

σ̄µ 0

)
, {γµ, γν} = −2ηµν , (C.3)

where σµ = (12, σ
i) and σ̄µ = (12,−σi). We also have

γ5 = iγ0γ1γ2γ3 (C.4)

and the charge conjugation matrix

C =


0 1 0 0

−1 0 0 0

0 0 0 −1

0 0 1 0

 , γTµ = −CγµC−1 . (C.5)

8Recall that we are using mostly-positive signature.
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It follows that a Lorentz invariant reality condition is

ψ = ψC , ψC ≡ Cψ̄T , (C.6)

where ψ̄ = ψ†γ0.

We adopt the following representation for the ten-dimensional Clifford algebra

Γµ = γµ ⊗ 18 , µ = 0, 1, 2, 3, (C.7)

Γi+3 = Γ̃i = γ5 ⊗

(
0 −Gi

Gi 0

)
, i = 1, 2, 3, (C.8)

Γi+3 = Γ̃i = γ5 ⊗

(
0 Gi

Gi 0

)
, i = 4, 5, 6, (C.9)

where Gi are the 4× 4 matrices

G1 = i

(
0 −σ3

σ3 0

)
, G2 = i

(
0 σ1

−σ1 0

)
, G3 =

(
σ2 0

0 σ2

)
,

G4 = i

(
0 −σ2

−σ2 0

)
, G5 =

(
0 −12

12 0

)
, G6 = i

(
σ2 0

0 −σ2

)
.

(C.10)

The latter satisfy

{Gi, Gj} =

{
+2δi,j , i, j = 1, 2, 3,

−2δi,j , i, j = 4, 5, 6,
(C.11)

[Gi, Gj ] =


−2i εijkGk, i, j = 1, 2, 3,

+2 εijkGk, i, j = 4, 5, 6,

0, i = 1, 2, 3, j = 4, 5, 6.

(C.12)

Finally, the ten-dimensional charge conjugation matrix and Γ11 are given by

C10 = C ⊗

(
0 14

14 0

)
, Γ11 = γ5 ⊗

(
−14 0

0 14

)
. (C.13)

Imposing the Majorana-Weyl constraint (C.1) on a ten-dimensional fermion is now seen to

imply

Ψ =



Lψ1

...

Lψ4

Rψ1

...

Rψ4


, (C.14)
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where

L =
1

2
(1 + γ5), R =

1

2
(1− γ5) (C.15)

act on four-dimensional Majorana fermions ψi satisfying (C.6).

Using the above decomposition of the ten-dimensional fermions and gamma matrices,

we find

1

2
Ψ̄jΓ̃

i
jk[φi,Ψk] =

1

2

3∑
i=1

ψ̄jG
i
jk[φi, ψk] +

1

2

6∑
i=4

ψ̄jG
i
jk[φi, γ5ψk] , (C.16)

and hence the fermion mass term reads

− 1

2x3

3∑
i=1

ψ̄jG
i
jk[ti, ψk] . (C.17)

D One-loop correction to the scalar vevs

In this appendix, we compute the one-loop correction to the vevs of the scalar fields. To

this loop order, we only need to take cubic vertices into account as only diagrams of lollipop

type contribute. The one-loop correction takes the form

〈φi〉1-loop(x) = φ̃i(x)

∫
d4y

∑
Φ1,Φ2,Φ3

V3(Φ1(y),Φ2(y),Φ3(y)) . (D.1)

There are three parts to the computation of the above vev: the contractions of the fields

in the vertex, the integral and the external contraction corresponding to the stick of the

lollipop. However, we will see that the sum of all the contractions in the vertex already

vanishes after partial integration, and thus

〈φi〉1-loop(x) = 0 . (D.2)

Moreover, the one-loop corrections to the vevs of all other individual fields also vanish.

D.1 Contractions of the fields in the loop

From the cubic interaction terms in the action (2.18) and the form of the propagators in

section 4.3, we find the externally contracted field in the vertex can be either Φ1 = φ̃i or

Φ1 = Aµ.9 There are then three possible types of loops. We can have easy bosons E and

ghosts, complicated bosons C or fermions running in the loop. When we evaluate the loop,

all the propagators are taken at the same point y in space-time. Moreover, we will also

work in the planar limit.

9We have no non-vanishing contraction for Φ1 = ψ, which would lead to a potentially non-vanishing vev

of a single fermion.
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Contribution of easy scalars, easy gauge fields and ghosts in the loop. Let us

first consider the contribution of easy scalars, easy gauge fields and ghosts running in the

loop of the lollipop diagrams, where we restrict ourselves to the off-diagonal k × (N − k)

and (N − k)× k blocks that contribute in the large-N limit.

We start with diagrams for which Φ1 = φ̃i. For the sake of concreteness, we focus

on the easy scalar φ̃4 running in the loop; the contributions of all other easy fields are

essentially the same. The corresponding interaction term is (2.18)

+ tr([φcl
i , φ̃4][φ̃i, φ̃4]) = + tr(φ̃i[φ̃4, [φ

cl
i , φ̃4]]) = − 1

y3
tr(φ̃i[φ̃4, [ti, φ̃4]]) . (D.3)

From the decomposition (3.22) of φ̃4, we find

tr(φ̃i[φ̃4, [ti, φ̃4]]) ' −〈[φ̃4]n,a[φ̃4]a,n′〉
(

tr(φ̃iE
n
n′ti) + tr(φ̃itiE

n
n′)
)
, (D.4)

where we have dropped the contributions from the components in the k×k block, which are

irrelevant in the large-N limit. We denote the restriction to terms relevant in the large-N

limit by '. Using the explicit form of the propagator (4.33), the matrices Enn′ become

unit matrices after the summation over n, n′, the a summation yields a factor N − k and

we find in the large-N limit

+ tr(φ̃i[φ̃4, [φ
cl
i , φ̃4]]) ' 2N

y3
Km2= k2−1

4 tr(φ̃iti) . (D.5)

In total, this contribution has a prefactor of nφ,easy + nA,easy − nc.
Let us now turn to the effective vertices that involve Φ1 = Aµ. We again focus on the

easy scalar φ̃4 running in the loop. The corresponding vertex is

i tr([Aµ, φ̃4]∂µφ̃4) = i tr(Aµ[φ̃4, ∂µφ̃4]) . (D.6)

We contract the scalar fields and obtain

i tr(Aµ[φ̃4, ∂µφ̃4]) ' i
[
〈[φ̃4]n,a∂µ[φ̃4]a,n′〉 − i〈∂µ[φ̃4]n,a[φ̃4]a,n′〉

]
tr(AµEnn′) = 0 , (D.7)

where the last step follows from the symmetry of the propagator. Similarly, the

contractions of

i[Aµ, Aν ]∂µAν , i(∂µc̄)[A
µ, c] (D.8)

with the easy gauge fields and ghosts running in the loop are also vanishing.

Contribution from complicated bosons in the loop. For the case of complicated

bosons contracted in the loop, there are two vertices with insertions of the classical fields

that can contribute:

+ tr([φcl
i , φ̃j ][φ̃i, φ̃j ]) = − 1

y3
tr(φ̃i[φ̃j , [ti, φ̃j ]]) ,

+ tr([Aµ, φcl
i ][Aµ, φ̃i]) = − 1

y3
tr(φ̃i[A

µ, [ti, Aµ]]) . (D.9)
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The requirement that the boson in the loop is complicated effectively fixes i, j = 1, 2, 3 and

µ = 3.

The fields at the vertex can be contracted in three different ways. Let us for simplicity

restrict to the vertex with Φ1 = φi. We can connect φ̃j to φ̃j and there are two ways we

can connect φ̃j to φ̃i:

tr(φ̃i[φ̃j , [ti, φ̃j ]]), tr(φ̃i[φ̃j , [ti, φ̃j ]]), tr(φ̃i[φ̃j , [ti, φ̃j ]]) . (D.10)

The terms with A3 can be contracted analogously.

Out of the above three contractions, the easiest one to compute is the first one. Again,

we work in the planar limit and the computation is similar to the easy bosons discussed

above. From (4.35), we then immediately find

tr(φ̃i[φ̃1, [ti, φ̃1]]) ' −N
[
k + 1

k
Km2=

(k−2)2−1
4 +

k − 1

k
Km2=

(k+2)2−1
4

]
tr(φ̃iti) . (D.11)

From (4.35), it is easy to see that all the complicated bosons give the same contribution,

which results in an overall factor of nφ,com. + nA,com..

The other two contractions are more involved but share a similar structure. Let us

work out the last one first. We obtain

tr(φ̃i[φ̃j , [ti, φ̃j ]]) ' (〈[φ̃i]a,n[φ̃j ]n′,a〉 − 〈[φ̃j ]a,n[φ̃i]n′,a〉) tr(Enn′ [ti, φ̃j ]) . (D.12)

Inserting the explicit form of the propagator (4.35), it is easy to see that the contribution

of the term with δn,n′ cancels and we are left with

tr(φ̃i[φ̃j , [ti, φ̃j ]]) ' −2i
N

k

(
Km2=

(k−2)2−1
4 −Km2=

(k+2)2−1
4

)
εijk tr(tk[ti, φ̃j ])

= 2
N

k

(
Km2=

(k−2)2−1
4 −Km2=

(k+2)2−1
4

)
εijkεkil tr(tlφ̃j)

= 2(nφ,com. − 1)
N

k

(
Km2=

(k−2)2−1
4 −Km2=

(k+2)2−1
4

)
tr(tiφ̃j) . (D.13)

The final contraction gives

tr(φ̃i[φ̃j , [ti, φ̃j ]]) ' 〈[φ̃i]a,n[φ̃j ]n′,a′〉 tr(Enn′tiφ̃j) + 〈[φ̃j ]n,a[φ̃i]a′,n′〉 tr(Enn′ φ̃jti) . (D.14)

The second term in the propagator (4.35) evaluates in the same way as above, but the δn,n′

term now also contributes and we obtain

tr(φ̃i[φ̃j , [ti, φ̃j ]]) ' N
(
k + 1

k
Km2=

(k−2)2−1
4 +

k − 1

k
Km2=

(k+2)2−1
4

)
tr(φ̃iti)

+ (nφ,com. − 1)
N

k

(
Km2=

(k−2)2−1
4 −Km2=

(k+2)2−1
4

)
tr(φ̃iti) . (D.15)
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The vertices from (D.9) with Φ1 = A3 instead of Φ1 = φ̃i contribute with

tr(φ̃i[A3, [ti, A3]]) = tr(φ̃i[A3, [ti, A3]]) ' 0 , (D.16)

as can be seem from a short analogous calculation.

Finally, there is a non-trivial contribution from the vertex

tr(i[Aµ, φ̃i]∂µφ̃i) , (D.17)

which can be contracted non-trivially in two different ways that contribute for Φ1 = φi:

tr(i[A3, φ̃i]∂3φ̃i) , tr(i[A3, φ̃i]∂3φ̃i) . (D.18)

In the large-N limit, the only terms that survive are

tr(i[A3, φ̃i]∂3φ̃i) ' 2i〈[A3]n,a[φ̃i]a,n′〉 tr(Enn′∂3φ̃i)

' 2
N

k

(
Km2=

(k−2)2−1
4 −Km2=

(k+2)2−1
4

)
tr(ti∂3φ̃i) (D.19)

and

tr(i[A3, φ̃i]∂3φ̃i) ' 2i〈[∂3φ̃i]n,a[A
3]a,n′〉 tr(Enn′ φ̃i)

' −N
k
∂3

(
Km2=

(k−2)2−1
4 −Km2=

(k+2)2−1
4

)
tr(tiφ̃i) . (D.20)

In the last line, we expressed the propagator with a derivative on the field as a derivative

of the propagator. It follows from the identity

lim
x→y
〈[A3(x)]n,a[∂3φ̃i(y)]a,n′〉 =

1

2
∂y3 lim

x→y
〈[A3(x)]n,a[φ̃i(y)]a,n′〉 , (D.21)

which follows from the explicit form of the propagator (4.10) and the following property of

the Bessel functions

1

2
∂x

[
Iν−1(x)Kν−1(x)− Iν+1(x)Kν+1(x)

]
=
[
∂xIν−1(x)

]
Kν−1(x)−

[
∂xIν+1(x)

]
Kν+1(x).

(D.22)

The third contraction of (D.17), which corresponds to Φ1 = A3, vanishes in complete

analogy to (D.7).

Contribution of fermions in the loop. The relevant vertices read

1

2

3∑
i=1

tr(ψ̄j [G
i]jk[φ̃i, ψk]) +

1

2

3+nφ,easy∑
i=4

tr(ψ̄j [G
i]jk[φ̃i, γ5ψk]) +

1

2
tr(ψ̄jγ

µ[Aµ, ψj ]) , (D.23)

which contribute for Φ1 = φ̃i,com., Φ1 = φ̃i,easy and Φ1 = Aµ, respectively. The first term

gives

1

2
tr(ψ̄j [G

i]jk[φ̃i, ψk])'
1

2
[Gi]jk

(
〈[ψ̄j ]a,n[ψk]n′,a〉 tr(En

′
nφ̃i)− 〈[ψ̄j ]n,a[ψk]a,n′〉 tr(Enn′ φ̃i)

)
=N [Gi]jk[G

l]kj
[tl]n,n′

k

(
trK

m=− k−1
2

F −trK
m= k+1

2
F

)
tr(Enn′ φ̃i) , (D.24)
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where we used the fermionic propagator (4.37) and the trace of KF is with respect to its

spinor indices. Using the anti-commutator relation (C.11) for the Gi matrices, we then find

1

2
tr(ψ̄j [G

i]jk[φ̃i, ψk]) '
N

2k
tr({Gi, Gl})(trKm=− k−1

2
F − trK

m= k+1
2

F ) tr(tlφ̃i)

=
N

k
nψ(trK

m=− k−1
2

F − trK
m= k+1

2
F ) tr(tiφ̃i) .

(D.25)

The evaluation of the second and third term in (D.23) is similar to the discussion above, but

with Gi replaced by Gi with easy index i and γµ, respectively. It then follows directly that

this contribution vanishes because of the orthogonality of these matrices, cf. appendix C.

D.2 Total effective vertex

All vertices come with an overall factor of 2
g2
YM

. Adding all the contributions derived above,

we arrive at the following total contribution

Veff(y) = neasy
2N

y3
Km2= k2−1

4 tr(φ̃iti)
2

g2
YM

+nφ,com.
N

y3

(
k + 1

k
Km2=

(k−2)2−1
4 +

k − 1

k
Km2=

(k+2)2−1
4

)
tr(φ̃iti)

2

g2
YM

−3(nφ,com. − 1)
N

y3

1

k

(
Km2=

(k−2)2−1
4 −Km2=

(k+2)2−1
4

)
tr(φ̃iti)

2

g2
YM

+nA,com.
2N

k

(
Km2=

(k−2)2−1
4 −Km2=

(k+2)2−1
4

)
tr(ti∂3φ̃i)

2

g2
YM

−nA,com.
N

k
∂3

(
Km2=

(k−2)2−1
4 −Km2=

(k+2)2−1
4

)
tr(tiφ̃i)

2

g2
YM

+nψ
N

k

(
trK

m=− k−1
2

F − trK
m= k+1

2
F

)
tr(tiφ̃i)

2

g2
YM

, (D.26)

where all propagators are taken at y and for conciseness we introduced neasy = nφ,easy +

nA,easy−nc. In particular, the total contribution from all externally contracted fields except

for Φ1 = φi,com. vanishes.

When contracting the effective vertex (D.26) with a propagator such as in (D.1), the

derivative term can be partially integrated. When we then substitute the dimensional

regularised expressions for the propagator from section 5, the effective vertex becomes

Veff(y) =
N tr(tiφ̃i)

16π2y3
3

[
k2(neasy + nφ,com. − 2nψ) + neasy − 11nφ,com. − 2nψ + 24nA,com. + 12

2

×
{

1

ε
− γE + log(4π) + 2 log(y3)− 2Ψ

(
k + 1

2

)}
(D.27)

−
k2(neasy + nφ,com. − 2nψ) + 5nφ,com. − 3neasy + 6nψ − 24nA,com.

2

]
.

We see that the above vanishes exactly when

nA,com. = 1, nφ,com. = 3, neasy = 2nψ − 3 . (D.28)
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In four dimensions, we have neasy ≡ nφ,easy + nA,easy − nc = 3 + 3 − 1 = 5 and nψ = 4,

which satisfies (D.28) such that the effective vertex vanishes. In dimensional regularisation,

however, the number of easy gauge fields is d = 3−2ε. In dimensional reduction, the number

of easy scalars is also changed in order to preserve supersymmetry, cf. the discussion at the

end of section 5, and the total number of easy fields stays five. In other words, the one-loop

correction to the vacuum expectation value of all fields vanishes. For the scalar fields, this

happens exactly because of supersymmetry. It would be interesting to see whether there

is a general argument based on supersymmetry that implies that the quantum corrections

to (scalar) vevs vanish also at higher loop orders.

E Hadamard and zeta-function regularisation

In this appendix, we summarise the results for K(x, x) and trKF (x, x) obtained in section 5

in the alternative Hadamard as well as zeta-function regularisation, which are commonly

used in AdS.

Bosonic fields. The expression for the scalar loop K(x, x) in zeta-function renormalisa-

tion can be found in [57], and it reads

Km(x, x) =
g2

YM

2x2
3

(
−

1
3 +m2

16π2
+
m2

8π2

[
Ψ

(
ν +

1

2

)
− log µ

])
. (E.1)

Here, µ is the renormalisation (mass) scale, and Ψ is the digamma function. In [58], K(x, x)

is found using Hadamard renormalisation:

Km(x, x) =
g2

YM

2x2
3

(
−

1
3 +m2

16π2
+
m2

8π2

[
Ψ

(
ν +

1

2

)
− log

(√
2M e−γE

)])
, (E.2)

where M is the Hadamard renormalisation scale. We notice, as also pointed out in [58],

that the two expressions agree with the identification

µ =
√

2M e−γE . (E.3)

Fermionic fields. The trace of the fermion loop in the Hadamard renormalisation scheme

can be extracted from [59]:10

trKm
F (x, x) =

g2
YM

2x3
3

(
1

4π2

[
m3 +m2 +

m

6
− 1

]
+
m(m2 − 1)

2π2

[
Ψ (m)− log

(√
2M e−γE

)])
.

(E.4)

In [59], it is likewise stated (for the stress-energy tensor) that the Hadamard renormalisa-

tion for fermions agrees with the zeta-function one via the identification (E.3). However,

note that the fermion loop is also calculated using Schwinger-de Witt renormalisation

in [59], and this result does not match with the Hadamard expression. Zeta-function

renormalisation for fermions was first carried out in [60]. The same remark as made under

the discussion of dimensional regularisation concerning the chiral rotation of fermions

with negative mass applies here.

10There is a misprint in [59] in the overall sign in the equivalent of (E.4). We thank the authors for

communications on this point.
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Implementation. For the tadpole diagram, zeta function regularisation gives the same

result as dimensional regularisation, presented in (6.20). However, zeta-function regularisa-

tion of the lollipop diagram does not reproduce (6.8) but gives a non-vanishing result. More

precisely, inserting (E.1) and (E.4) into the effective vertex (D.26) yields a non-vanishing

result, which remains non-vanishing after the contraction with the quantum scalar and the

subsequent integration over the vertex position. The reason for this appears to be that zeta

function regularisation breaks supersymmetry as observed in other situations [60, 61]; re-

call that supersymmetry in the form of dimensional reduction was crucial for the vanishing

of the lollipop diagram in dimensional regularisation.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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