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1 Introduction

In the modern era of Cosmology, theories of Hot Big Bang (HBB) and Inflation have

achieved great success, and thus have long been regarded as the standard paradigm of the

early universe. However, the inflation still suffers from the cosmological singularity prob-

lem [1, 2], unless it was preceded by a bounce [3–7] or a Genesis phase [8–10]. It is exciting

to study classical nonsingular cosmology, such as bounce universe models [11, 12], Genesis

models [13–15], slow expansion models [16–19], since we might get classical nonsingular

cosmology without begging the details of the unknown UV-complete gravity theory.

One of the most exciting endeavors in this area is to build nonsingular cosmological

models with the field theories which can violate the Null Energy Condition (NEC) [20].

Usually the violation of NEC may lead to the ghost instability [21, 22]. This problem can be

solved if one considers the so-called Galileon theory [23] or its generalizations (such as the

Horndeski theory [24, 25] and its beyond [26]). Making use of the simplest cubic Galileon,

many heuristic nonsingular cosmological models have been constructed, e.g. [13, 17, 18,

27, 28]. However, it seems quite difficult to avoid the gradient instability problem, which

indicates a negative sound speed squared [7, 9, 29, 30] and thus leads to an exponential

growth of the perturbation [31, 32].

Recently, Libanov, Mironov and Rubakov (LMR) have proved a no-go theorem, which

shows that healthy nonsingular cosmological models based on the cubic Galileon does not

exist [33]. Hereafter, it was generalized with an additional scalar in ref. [34] or with the

full Horndeski theory in ref. [35]. However, Ijjas and Steinhardt claimed that there exists a

loophole in the proof of ref. [35] (which was also noticed by the author of ref. [35]), and they

can even reconstruct a fully stable classical bounce [36] throughout the whole evolution by

using the “inverse method” [37]. However, we believe that this relevant issue still needs to

be studied further.
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Prior to LMR’s work, studies were also made along other lines. The danger of c2
s < 0 is

mainly attributed to the exponential growth of the amplitude of short wavelength modes.

In [31, 32], it was argued that the strong coupling scale during c2
s < 0 is low so that the

dangerous short wavelength modes lie outside the range of the validity of the effective

theory, thus can be disregarded. However, this argument begs unknown strong coupling

physics, which actually makes the “classical nonsingular” bounce loose sense. What is the

effective theory of nonsingular cosmology is a significant issue. It is interesting to notice

that some spatial covariant operators also help to remove the gradient instability [7, 9, 10].

The Effective Field Theory (EFT) of cosmological perturbations is extremely powerful

and has been widely used to study inflation [38, 39] and dark energy [40–42]. It offers a

unifying platform to deal with the cosmological perturbations of all kinds of theories, such

as the Horndeski theory and its beyond, the Horava gravity [43], and the spatial covariant

gravity [44, 45]. In the following context, we will see that it is also a powerful tool for

studying nonsingular cosmology.

In this paper, we will explore how to build healthy nonsingular cosmological models

within the framework of EFT. Practically, in section 2, based on EFT, we clarify how to

understand the no-go theorem and how to avoid it. We find that some effective operators

can play significant role in building nonsingular cosmological models without pathologies.

In section 3, we study the evolution of primordial perturbation in nonsingular models with

these corresponding effective operators, and find the perturbation spectrum can be consis-

tent with the observations. In section 4, we present a realistic healthy nonsingular bounce

model by introducing an effective operator of R(3)δg00. Finally, we conclude in section 5.

Note added. After our paper appeared in arXiv, nearly simultaneously Creminelli sent

us their draft (the preprint [46]), which overlaps substantially with ours.

2 The framework of EFT and the no-go theorem

We consider the metric in the ADM form:

ds2 = −N2dt2 + hij(dx
i +N idt)(dxj +N jdt) , (2.1)

where N and N i are the lapse function and shift vector, and hij is the 3-dimentional

spatial metric.

With the spirit of the EFT of cosmological perturbation [38, 40, 43], we write down

the EFT action for nonsingular cosmological models

S =

∫
d4x
√
−g
[
M2
p

2
f(t)R− Λ(t)− c(t)g00

+
M4

2 (t)

2
(δg00)2 − m3

3(t)

2
δKδg00 −m2

4(t)
(
δK2 − δKµνδK

µν
)

+
m̃2

4(t)

2
R(3)δg00

− m̄2
4(t)δK2 +

m̄5(t)

2
R(3)δK +

λ̄(t)

2
(R(3))2 + . . .

− λ̃(t)

M2
p

∇iR(3)∇iR(3) + . . .

]
, (2.2)
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where we turn off the accelerator vectors ai in [43] for simplicity. We assume the matter

part is minimally coupled to field so that the expansion or contraction of the background

with respect to physical rulers is unambiguous. The first line describes the background

of our model, while the rest is for perturbations. One is also allowed to contain terms

such as R(3)
µνR

(3)µν and ∇iR(3)
jk∇iR(3)jk, which we don’t bother to write them explicitly

and just put them into the ellipsis. All the coefficients are allowed to vary with t, with

the dimension [mi] = 1, [λi] = 0, so as to make the action dimensionless. Moreover, in

this action we define δKµν = Kµν − HHµν , δK = K − 3H, with the induced metric

Hµν ≡ gµν + nµnν and the normal vector is defined as nµ ≡ (−N, 0, 0, 0).

It is rather straightforward to fix the relations among the functions f(t), c(t) and Λ(t),

which is in the background part. Varying the first line of action eq. (2.2) with respect to

N and a, one can get the two equations:

3M2
p [f(t)H2 + ḟ(t)H] = c(t) + Λ(t) , (2.3)

−M2
p [2f(t)Ḣ + 3f(t)H2 + 2ḟ(t)H + f̈(t)] = c(t)− Λ(t) . (2.4)

For the minimal coupling theories where f(t) = 1, these are nothing but the Friedmann

equations, thus we have c(t) = −M2
p Ḣ and Λ(t) = M2

p (Ḣ + 3H2). The c(t) and Λ(t) have

the same expressions as those in the EFT of inflation, however, to have a non-singular

scenario a crucial condition must be satisfied, i.e., the violation of NEC. That means c(t)

must be negative at least for a while. Since the NEC will finally be restored in the expanding

universe, we conclude for the EFT of nonsingular cosmology, c(t) must be a function that

can pass the zero boundary. For the case with non-minimal coupling, f(t) is nontrivial,

then a more complicated constraint will be imposed on c(t) and Λ(t).

2.1 The no-go theorem

It is straightforward to derive the quadratic action of scalar and tensor perturbation from

eq. (2.2). We give some main steps of the derivation in appendix A and just write down

the results here. Under the unitary gauge, the quadratic action of scalar perturbation is

S
(2)
ζ =

∫
d4xa3

[
c1ζ̇

2 −
(
ċ3

a
− c2

)
(∂ζ)2

a2
+
c4

a4
(∂2ζ)2 − 16λ̃(t)

M2
pa

6

(
∂3ζ
)2]

, (2.5)

where we have left the expressions of ci in appendix A since they are complicated (except for

the c2, which has a quite simple expression as c2 = M2
p f(t)). The sound speed squared reads

c2
s =

(
ċ3

a
− c2

)
/c1 . (2.6)

The conditions to avoid the ghost instability and the gradient instability are

c1 > 0 , ċ3 − ac2 > 0 . (2.7)

Moreover, the quadratic action of tensor perturbation from eq. (2.2) is

S(2)
γ =

M2
p

8

∫
d4xa3QT

[
γ̇2
ij − c2

T

(∂kγij)
2

a2

]
, (2.8)
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where

QT = f + 2

(
m4

Mp

)2

, c2
T =

f

QT
. (2.9)

To avoid the ghost and gradient instability for tensor modes, we need QT > 0 and c2
T > 0,

respectively.

We begin with ċ3 − ac2 > 0, which indicates

c3

∣∣
tf
− c3

∣∣
ti
>

∫ tf

ti

ac2dt = M2
p

∫ tf

ti

af(t)dt . (2.10)

This expression is the key inequality to clarify the no-go theorem. This inequality turns

out to be remarkablely general since it is correct not only for the Horndeski theory, but

also for these theories beyond the Horndeski. As matter of fact, by mapping the cubic

Galileon to the EFT [41], eq. (2.10) will lead to the key inequality used to prove the LMR

no-go theorem [33] (see the following part of this subsection); and by mapping the whole

Horndeski theory to the EFT [41], eq. (2.10) will produce the key inequality in Kobayashi’s

paper [35].

Now let’s consider the cubic Galileon L2 + L3 with f(t) = 1, eq. (2.10) reads

c3

∣∣
tf
− c3

∣∣
ti
>

∫ tf

ti

ac2dt = M2
p

∫ tf

ti

adt , (2.11)

and according to the appendix A, we find

c3 =
2aM4

p

2HM2
p −m3

3

=
aM2

p

γ
, (2.12)

where γ = H − (1/2)m3
3/M

2
p . We see from eq. (2.10) that c3 is increased with time.

Supposing c3

∣∣
ti
< 0, from

c3

∣∣
tf
> c3

∣∣
ti

+M2
p

∫ tf

ti

adt (2.13)

we can tell that c3

∣∣
tf

will finally be larger than zero, thus c3 must equal to zero at sometime

t with ti < t < tf , making γ blows away. Therefore the gradient instability cannot be

avoided. The remaining case is that c3 be always positive. However, from

c3

∣∣
tf
−M2

p

∫ tf

ti

adt > c3

∣∣
ti

(2.14)

and let ti → −∞, we see this is impossible in a similar manner. So we have reformu-

lated the LMR no-go theorem [33] for the cubic Galileon in the framework of EFT, which

indicates the pathologies in nonsingular cosmological models based on the cubic Galileon

are inevitable.
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2.2 How to evade the no-go theorem within the framework of EFT

Recently, the no-go proof has been extended to the full Horndeski theory by

T. Kobayashi [35]. However, it seems that this no-go theorem might be broken if the

integral
∫ tf
ti
afdt is not divergent.1 Very recently, A. Ijjas and P. J. Steinhardt found a

fully stable bounce by keeping the integral
∫ tf
ti
afdt convergent [36, 37]. In this section,

we discuss how to avoid the no-go theorem within the framework of EFT eq. (2.2), while

we assume
∫ tf
ti
afdt is divergent and QT > 0 throughout (see [36] for the cases

∫ tf
ti
afdt is

convergent or QT = 0 at some time), which actually indicates that we have to go beyond

Horndeski theory.

We firstly consider the addition of the effective operator R(3)δg00 to the cubic Galileon.

It gives a contribution with (∂ζ)2 ∼ k2ζ2
k to the scalar perturbation, while does not change

the tensor perturbation at quadratic order. The EFT action is written as:

Seff =

∫
d4x
√
−g
[
M2
p

2
R− Λ(t)− c(t)g00

+
M4

2 (t)

2
(δg00)2 − m3

3(t)

2
δKδg00 +

m̃2
4(t)

2
R(3)δg00

]
, (2.15)

here we have set f(t) = 1, the coefficients c(t), Λ(t), M4
2 (t) and m3

3(t) can be found

by requiring that they have the same time-dependent behaviors as in the cubic Galileon

L2+L3. The existence of the last m̃2
4(t) term indicates this model eq. (2.15) goes beyond the

Horndeski. Note, the dynamical equation for the true degree of freedom is still second order,

thus the m̃2
4(t) term here, as well as the higher order spacial derivative terms (R(3))2 and

∇iR(3)∇iR(3) used below, does not introduce the Ostrogradski instability (see, e.g., [41]).

According to the appendix A, we have

c3 =
aM2

p

γ

(
1 +

2m̃2
4

M2
p

)
, (2.16)

with γ = H − (1/2)m3
3/M

2
p . Again with eq. (2.13), suppose c3

∣∣
ti
< 0, since the integral∫ tf

ti
adt diverges, eventually we have c3

∣∣
tf
> 0, thus c3 must cross 0 at sometime t with

ti < t < tf . However, if at that time we have 2m̃2
4/M

2
p cross −1, the c3 will cross 0 naturally

without the divergence of γ. So the no-go behavior can be avoided, and notice for eq. (2.15),

since m2
4(t) = 0 and QT = 1, the tensor perturbation will be healthy. Generally, we could

set the effective operator m̃2
4R

(3)δg00/2 to be dominated only when we meet c2
s < 0, thus

it just modifies the sound speed squared during this time, see section 4 for details.

We can further add the term −m2
4(t)

(
δK2 − δKµνδK

µν
)

into the effective action

eq. (2.15), then c3 changes to be

c3 =
aM2

pQT

γ

(
1 +

2m̃2
4

M2
p

)
(2.17)

with γ = H
(

1 +
2m2

4
M2
p

)
− (1/2)m3

3/M
2
p . Generally, we may find those coefficients with

2m̃2
4/M

2
p crossing −1 and m2

4(t) 6= m̃2
4(t) which goes beyond Horndeski, to make c3 cross 0

while QT 6= 0 and γ won’t blow up. The case of QT /γ crosses 0 is discussed in [36] with L4.

1Note that in EFT description of Horndeski theory, we have f = 2[G4 −X(φ̈G5,X +G5,φ)] [41, 43].
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However, when m2
4(t) = m̃2

4(t), such as for the case of Horndeski theory,

c3 =
aM2

p

γ
Q2
T (2.18)

crosses 0 suggests the no-go behavior must happen unless the integral
∫ tf
ti
adt in eq. (2.10)

is convergent or Q2
T /γ crosses 0. Obviously, this argument also applies to a general L4 with

time-dependent f(t), as has been argued by T. Kobayashi [35] (see also [36]).

Furthermore, let’s consider the effective operators (R(3))2 and∇iR(3)∇iR(3), which will

give contributions to higher order spatial derivatives with k4ζ2
k and k6ζ2

k . As the operator

(R(3))2 has been applied to the nonsingular cosmology in [9], here we’d like to take the

following nonsingular model

Seff =

∫
d4x
√
−g
[
M2
p

2
R− Λ(t)− c(t)g00

+
M4

2 (t)

2
(δg00)2 − m3

3(t)

2
δKδg00 − λ̃(t)

M2
p

∇iR(3)∇iR(3)

]
(2.19)

with f(t) = 1, and the coefficients c(t), Λ(t), M4
2 (t) and m3

3(t) are taken according to the

EFT mapping for the cubic Galileon L2 + L3 [41]. Then we have an effective sound speed

squared with

c2
s,eff(k) = c2

s +
32λ̃

M2
pa

2z2
k4 , (2.20)

where z =
√

2a2c1 and c2
s are given by eq. (2.6).

From the equation of motion of ζ eq. (3.1), we see that if these effective operators

with higher order spatial derivatives have not been included, we’ll have a solution of

ζ ∼ e−i
√
c2sk∆τ which indicates an exponential growth when c2

s < 0. However, the growth

turns out to be negligible for the perturbation modes with k∆τ � 1, and can be quite dan-

gerous for the modes with k∆τ � 1 [31, 32]. So we may specify λ̃(t) to make c2
s,eff(k) ∼ c2

s

for the modes with k∆τ � 1, while make c2
s,eff(k) modified to be positive for the modes

with k∆τ � 1. Then such kind of exponential growth of ζ due to c2
s < 0 can be removed.

3 Primordial perturbation spectrum within the framework of EFT

In the last section we have presented how to evade the no-go theorem within framework

of EFT, i.e., by adding the effective operators such as R(3)δg00, (R(3))2, ∇iR(3)∇iR(3), to

the original nonsingular cosmological models based on the cubic Galileon. One might ask

if the perturbation spectrum will be modified due to these operators. In this section, we

study the perturbation evolution in detail, and show that the predictions can be consistent

with the observations.

The equation of motion of ζ is

u′′ +

(
c2
s,eff(k)k2 − z′′

z

)
u = 0 , (3.1)

– 6 –
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where

c2
s,eff(k) = c2

s −
2c4

z2
k2 +

32λ̃

M2
pa

2z2
k4 (3.2)

with u = zζ, z =
√

2a2c1 and c2
s is given by eq. (2.6), the prime denotes the derivative with

respect to the conformal time τ =
∫
dt/a.

To study the evolution of the primordial perturbation concretely, let’s consider a

bounce inflation background in this section. We can define the “bouncing phase” as the

time interval during which the NEC is violated, i.e., Ḣ > 0. At the beginning time τB− and

the ending time τB+ of the “bouncing phase” we have Ḣ = 0, while before the beginning

time and after the ending time, the NEC is restored and thus leads to Ḣ < 0.

By adding the effective operators like R(3)δg00, (R(3))2 or ∇iR(3)∇iR(3) to the original

G-bounce models [27, 47], within the framework of EFT the whole Lagrangian tends to be

like the ones in eq. (2.15) or eq. (2.19). To cure the gradient instability problem in these

models, we can set the corresponding operators to be dominated only during the duration

∆τ = τB+ − τB− of the bouncing phase. Thus eq. (3.1) can be written as

u′′ +

(
k2 − z′′

z

)
u = 0 , (τ < τB−, τ > τB+), (3.3)

u′′ +A2nk2nu = 0 , (τB− < τ < τB+), (3.4)

where n ≥ 1, and the corresponding operators will respectively contribute ∼ k2, k4, k6

corrections to the equation of motion. To be rigorous, all the coefficients A2n of the k2n

terms should be time-dependent. However, here we set A2n constant for simplicity.

During the contracting phase τ < τB−, the background can be parameterized as

ac = aB−

(
τ − τ̃B−
τB− − τ̃B−

) 1
εc−1

, (3.5)

where τ̃B− = τB− − [(εc − 1)HB−]−1, and εc > 3 is a constant. Thus we have

a′′c
ac

=
ν2
c − 1

4

(τ − τ̃B−)2
, (3.6)

where νc = 1/2− 1
εc−1 . The solution of eq. (3.3) can be given as

uc =

√
π

2

√
|τ − τ̃B−|

[
c1,1H

(1)
νc (k|τ − τ̃B−|) + c1,2H

(2)
νc (k|τ − τ̃B−|)

]
, (3.7)

where H
(1)
ν and H

(2)
ν are the ν-th order Hankel function of the first and the second kind.

Initially, the perturbations are deep inside the horizon. The initial condition can be

taken as u ∼ 1√
2k
e−ikτ , thus

c1,1 = 1 , c1,2 = 0 . (3.8)

During the bouncing phase τB− < τ < τB+, the solution of eq. (3.4) is

ub = c2,1 · eiA
nkn(τ−τB) + c2,2 · e−iA

nkn(τ−τB) , (3.9)

– 7 –
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where c2,1 and c2,2 are determined by the evolution of the contracting phase. By consid-

ering the effective operators, the effective sound speed squared c2
s,eff > 0 for short wave-

length perturbation modes, thus there won’t be any dangerous growths of the curvature

perturbation ζ.

During the inflation τ > τB+, the background can be parameterized as

ae = aB+

(
τ − τ̃B+

τB+ − τ̃B+

) 1
εe−1

, (3.10)

where τ̃B+ = τB+ − [(εe − 1)HB+]−1. So we have

a′′e
ae

=
ν2
e − 1

4

(τ − τ̃B+)2
, (3.11)

where νe = 1/2− 1
εe−1 . The solution of eq. (3.3) can be given as

ue =

√
π

2

√
|τ − τ̃B+|

[
c3,1H

(1)
νe (k|τ − τ̃B+|) + c3,2H

(2)
νe (k|τ − τ̃B+|)

]
. (3.12)

The power spectrum is calculated as

Pζ = P inf
ζ · |c3,1 − c3,2|2 . (3.13)

The information of the evolution history of the universe and the contributions of the EFT

operators are encoded in c3,1 and c3,2. Though we work with bounce inflation scenario,

actually, our result is also applicable to the bounce scenario, as will be seen.

By requiring the continuity of u and u′ at the matching surfaces, we obtain(
c3,1

c3,2

)
=M(3,2) ×M(2,1) ×

(
c1,1

c1,2

)
, (3.14)

where the components of the matrix M(2,1) are

M(2,1)
11 =

eidA
nkn√π

8Ankn
√
Ĥ

[
ikH

(1)
νc−1

(
k

Ĥ

)
− ikH(1)

νc+1

(
k

Ĥ

)
+ (2Ankn + iĤ)H(1)

νc

(
k

Ĥ

)]
,

M(2,1)
12 =

eidA
nkn√π

8Ankn
√
Ĥ

[
ikH

(2)
νc−1

(
k

Ĥ

)
− ikH(2)

νc+1

(
k

Ĥ

)
+ (2Ankn + iĤ)H(2)

νc

(
k

Ĥ

)]
,

M(2,1)
21 =

e−idA
nkn√π

8Ankn
√
Ĥ

[
− ikH(1)

νc−1

(
k

Ĥ

)
+ ikH

(1)
νc+1

(
k

Ĥ

)
+ (2Ankn − iĤ)H(1)

νc

(
k

Ĥ

)]
,

M(2,1)
22 =

e−idA
nkn√π

8Ankn
√
Ĥ

[
− ikH(2)

νc−1

(
k

Ĥ

)
+ ikH

(2)
νc+1

(
k

Ĥ

)
+ (2Ankn − iĤ)H(2)

νc

(
k

Ĥ

)]
,
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and the components of matrix M(3,2) are

M(3,2)
11 = − ie

idAnkn√π
4
√
HB+

[
− 2kH

(2)
νe−1

(
k

HB+

)
+
(
− 2iAnkn+(2νe−1)HB+

)
H(2)
νe

(
k

HB+

)]
,

M(3,2)
12 =

e−idA
nkn√π

4
√
HB+

[
2ikH

(2)
νe−1

(
k

HB+

)
+
(

2Ankn − i(2νe − 1)HB+

)
H(2)
νe

(
k

HB+

)]
,

M(3,2)
21 =

eidA
nkn√π

4
√
HB+

[
− 2ikH

(1)
νe−1

(
k

HB+

)
+
(

2Ankn + i(2νe − 1)HB+

)
H(1)
νe

(
k

HB+

)]
,

M(3,2)
22 =

ie−idA
nkn√π

4
√
HB+

[
− 2kH

(1)
νe−1

(
k

HB+

)
+
(

2iAnkn + (2νe − 1)HB+

)
H(1)
νe

(
k

HB+

)]
with d = τB+− τB, Ĥ = (εc−1)HB+, and HB+ is the comoving Hubble parameter at τB+.

Considering the long wavelength limit, k/HB+ � 1, we have

|c3,1 − c3,2|2 ≈
1

9π

(
k

HB+

) 2εc
εc−1

(1− 4dHB+)2(2εc − 2)
2

1−εc Γ2

(
1

2
+

1

1− εc

)
∼
(

k

HB+

) 2εc
εc−1

. (3.15)

In bounce scenario where the bounce is followed by the Hot Big-Bang expansion, Pζ
is given by eq. (3.15),

Pζ ∼ |c3,1 − c3,2|2 ∼
(

k

HB+

) 2εc
εc−1

(3.16)

since the perturbation modes with k/HB+ > 1 can be hardly produced during the ex-

pansion after the bounce. The result is consistent with that in ekpyrotic universe [48–50].

Thus the spectrum of primordial perturbations in bounce scenario is unaffected by the

corresponding spatial derivative operators in eq. (2.2).

However, in the bounce inflation scenario, the perturbation modes with k/HB+ > 1

will be produced during the inflation after the bounce. When we take the short wavelength

limit, k/HB+ � 1, the |c3,1 − c3,2|2 acquires drastic oscillation and even diverges when

k/HB+ →∞. Without making qualitative deviation, we have

|c3,1 − c3,2|2 ≈ 1 +

(
k

HB+

)2n−2 A2n

H2−2n
B+

cos2

(
k

HB+

)
sin2(2dAnkn) . (3.17)

The “1” in right-hand side of eq. (3.17) actually stands for the terms ∼ k0, such as

cos2(2dAnkn). Here, we do not specify it, since it makes no qualitative difference when

k/HB+ � 1. In order to satisfy the observations, eq. (3.17) should be nearly scale invari-

ant. Thus the operator R(3)δg00 ∼ k2 in EFT eq. (2.2) is applicable, but the operators

(R(3))2 ∼ k4 and ∇iR(3)∇iR(3) ∼ k6 will make eq. (3.17) diverge, since

|c3,1 − c3,2|2 ∼
(

k

HB+

)2n−2

, (3.18)

for k/HB+ � 1, which are unacceptable. This result could be general, though the drastic

oscillations in eq. (3.17) might be attributed to the matching method and the oversimplified

approximation we have used.
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4 Application: constructing a healthy G-bounce inflation model

In this section we apply the effective operator R(3)δg00 to cure the gradient instability

faced by the G-bounce inflation model proposed in [7] (see also [30]). The G-bounce

inflation background was built by using the cubic Galileon, which can be written in the

EFT language as

c(t) =
1

2
φ̇2

0

(
K(φ) + T φ̇2

0

)
+

1

2
φ̇2

0

(
−φ̈0 + 3Hφ̇0

)
G3X − φ̇2

0G3φ,

Λ(t) =
1

4
T (φ)φ̇4

0 + V (φ) +
1

2
φ̇2

0

(
φ̈0 + 3Hφ̇

)
G3X ,

M4
2 =

1

2
T (φ)φ̇4

0 +
1

4

(
φ̈0 + 3Hφ̇0

)
φ̇2

0G3X +
3

4
Hφ̇5

0G3XX −
1

4
φ̇4

0G3Xφ,

m3
3 = φ̇3

0G3X , (4.1)

where

K(φ) = 1− 2k0

[
1 + 2κ1

(
φ

Mp

)2
]−2

, T (φ) =
t0
M4
p

[
1 + 2κ2

(
φ

Mp

)2
]−2

,

G3 (φ,X) =
θX

M3
p

[
1 + 2κ2

(
φ

Mp

)2
]−2

, (4.2)

and

V (φ) = −V0e
c̄φ/Mp

[
1− tanh

(
λ1

φ

Mp

)]
+ Λ4

inf

(
1− φ2

v2

)2 [
1 + tanh

(
λ2

φ

Mp

)]
(4.3)

such that V = −V0e
c̄φ for φ� −Mp/λ1 (responsible for the ekpyrotic contraction), and is

V = Λ4
inf(1−

φ2

v2
)2 for φ�Mp/λ2 (responsible for the inflation after bounce). Here k0, t0,

θ, κ1, κ2, λ1, λ2, V0, c̄, Λinf and v are constants.

However, the bounce with the cubic Galileon is pathological due to the existence

of the no-go theorem. Actually, the gradient instability exists since c2
s < 0 around the

bounce [7, 30]. As has been argued in section 2.2, it can be avoided by introducing an

effective operator
m̃2

4
2 R

(3)δg00. By doing so, c2
s is modified to

c2
s =

c′3 − a2M2
p

a2c1
, (4.4)

where

c1 =
M2
p

(2HM2
p −m3

3)2

(
3m6

3 + 4H2εM4
p + 8M2

pM
4
2

)
, (4.5)

c3 =
aM2

p

H −m3
3/(2M

2
p )

(
1 + 2

m̃2
4

M2
p

)
. (4.6)
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(a) c2s (b) m̃2
4/M

2
p

Figure 1. Left: the evolution of c2s in G-bounce inflation model [7], right: the function of m̃2
4. We

can see the c2s can be modified to be larger than 0 by introducing the effective operator
m̃2

4

2 R
(3)δg00.

We are able to avoid the gradient instability by choosing a suitable m̃2
4(t). We have

numerically calculated eqs. (4.1), see e.g., [7, 51], and plotted the evolution of c2
s in figure 1.

The effect of R(3)δg00 on c2
s can be clearly seen in figure 1. Because c1 is unaffected by m̃2

4,

there is also no ghost instability, as demonstrated in [7]. Noting that the operator ξ(t)R(3)

used in ref. [7] dose not involve R(3)δg00.

5 Conclusion

Building classical nonsingular cosmological models is inspiring, since it offers us a self-

consistent framework to deeply understand the physics of the primordial universe, even

though we still don’t know the complete theory of the quantum gravity. However, the

popular nonsingular cosmological models based on the cubic Galileon are afflicted by the

LMR no-go theorem, which means we have to go beyond the cubic Galileon to construct

models without pathologies.

In this paper, we have explored the nonsingular cosmology within the framework of

EFT. We have illustrated how to avoid the no-go theorem in theories beyond Horndeski, and

pointed out how could the effective operators, such as R(3)δg00, (R(3))2 and ∇iR(3)∇iR(3),

play significant roles in building healthy nonsingular cosmological models. We also have

studied the perturbation evolution of these healthy models. We find that the spectrum of

the primordial perturbation can be consistent with the observations.

We conclude that based on EFT, a fully healthy nonsingular bounce model can be

built without begging any unknown physics. As an application of the EFT, we have

presented a realistic healthy bounce inflation model by making use of the operator R(3)δg00.

The study of classical nonsingular cosmology in the framework of EFT will be helpful for

understanding the evolution and the gravity theory in the primordial universe.
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A The derivations of the quadratic actions for scalar and tensor

perturbations

With the ADM line element given in eq. (2.1), we have

gµν =

(
NkN

k −N2 Nj

Ni hij

)
, gµν =

(
−N−2 Nj

N2

N i

N2 hij − N iNj

N2

)
, (A.1)

and
√
−g = N

√
h, where Ni = hijN

j , and the spatial indices are raised and lowered by

the spatial metric hij . We can define the unit one-form tangent vector nν = n0(dt/dxµ) =

(−N, 0, 0, 0) and nν = gµνnµ = (1/N,−N i/N), which satisfies nµn
µ = −1. The induced

3-dimensional metric on the hypersurface is Hµν = gµν + nµnν , thus

Hµν =

(
NkN

k Nj

Ni hij

)
, Hµν =

(
0 0

0 hij

)
. (A.2)

Moreover, the extrinsic curvature on the hypersurface is

Kµν ≡
1

2
LnHµν

=
1

2N
(Ḣµν −DµNν −DνNµ) , (A.3)

where Ln is the Lie derivative with respective to nµ, and Dµ is the covariant derivative

associate with Hµν . The Ricci scalar is decomposed as

R = R(3) −K2 +KµνK
µν + 2∇µ(Knµ − nν∇νnµ) , (A.4)

where R(3) is the induced 3-dimensional Ricci scalar associated with Hµν . Note that in

general, when there is a non-minimal coupling between the scalar field and R, the last term

in eq. (A.4) cannot be discarded.

In action (2.2), we have defined

δg00 = g00 + 1 , (A.5)

δKµν = Kµν −HµνH , (A.6)

δKµν = Kµν −HµνH , (A.7)

δK = δKµ
µ = Kµ

µ − 3H . (A.8)
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In the unitary gauge, we set

hij = a2e2ζ(eγ)ij , γii = 0 = ∂iγij . (A.9)

Moreover, N and Ni are expressed as N = 1 +α and Ni = ∂iβ. Then, it is straightforward

to obtain

δg00 = 1− 1

(1 + α)2
, (A.10)

R(3) = −2a−2e−2ζ
[
2∂2ζ + (∂ζ)2

]
, (A.11)

δKij =
1

1 + α

{
a2(ζ̇ − αH)e2ζδij − ∂i∂jβ + ∂iβ∂jζ + ∂jβ∂iζ − ∂kβ∂kζδij

}
, (A.12)

δKij =
a−4e−4ζ

1 + α

{
a2(ζ̇ − αH)e2ζδij − ∂i∂jβ + ∂iβ∂jζ + ∂jβ∂iζ − ∂kβ∂kζδij

}
, (A.13)

where ∂2 = ∂i∂i.

Substituting eqs. (A.10) to (A.13) into the action (2.2) and using the Hamiltonian

constraints

∂L
∂α

= 0 ,
∂L

∂(∂2β)
= 0 , (A.14)

we find

α = A1ζ̇ +A2∂
2ζ , ∂2β = B1ζ̇ +B2∂

2ζ , (A.15)

in which

A1 =
2

D

(
fM2

p + 2m2
4

) [(
2fH + ḟ

)
M2
p −m3

3 + 4Hm2
4 + 6Hm̄2

4

]
,

A2 =
2

a2D

{
M2
p

[
2fm̄2

4 +
(

2fH + ḟ
)
m̄5

]
−
(
m3

3 − 4Hm2
4

)
m̄5 + 4m̄2

4m̃
2
4

}
,

B1 =
a2

D

{
3m6

3 − 6ḟm3
3M

2
p + 8fM4

2M
2
p +

(
4f2H2ε+ 2fḟH + 3ḟ2 − 2ff̈

)
M4
p

+ (4m2
4 + 6m̄2

4)
[
4M4

2 + (2fH2ε+ ḟH − f̈)M2
p

]}
,

B2 =
2

D

{[
3Hm3

3 + 4M4
2 +

(
2fH2ε− 2Hḟ − f̈

)
M2
p

]
m̄5

−
[(

2fH + ḟ
)
M2
p −m3

3 + 4Hm2
4 + 6Hm̄2

4

] (
fM2

p + 2m̃2
4

)}
,

D =
[
m3

3 − 4Hm2
4 −

(
2fH + ḟ

)
M2
p

]2

+ 2m̄2
4

[
12H2m2

4 + 4M4
2 +

(
fH2(6 + 2ε) + ḟH − f̈

)
M2
p

]
. (A.16)
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Then, with eqs. (A.15), we obtain the quadratic action of scalar perturbation, which is

displayed in eq. (2.5). Here, we write down the expressions of the coefficients in eq. (2.5):

c1 =
1

D

(
2m2

4 + fM2
p

){
3m6

3 + 4f2H2εM4
p + 8M4

2

(
2m2

4 + 3m̄2
4

)
+M2

p

[
−2f̈

(
2m2

4 + 3m̄2
4

)
+ ḟ

(
−6m3

3 + 4Hm2
4 + 3ḟM2

p + 6Hm̄2
4

)]
+ 2fM2

p

[
4M4

2 − f̈M2
p +H

(
4Hεm2

4 + ḟM2
p + 6Hεm̄2

4

)]}
,

c2 = fM2
p ,

c3 =
2a

D

(
2m2

4 + fM2
p

){
2f2HM4

p + m̄5

[
(2Hḟ + f̈)M2

p − 3Hm3
3 − 4M4

2

]
+ fM2

p

[
−m3

3 + ḟM2
p + 2H

(
2m2

4 + 3m̄2
4 −Hεm̄5 + 2m̃2

4

)]
+ m̃2

4

(
8Hm2

4 − 2m3
3 + 2ḟM2

p + 12Hm̄2
4

)}
,

c4 =
2

D

{
4λ̄D +

[
12H2m2

4 + 4M4
2 +

(
Hḟ − f̈

)
M2
p

]
m̄2

5

− 2f2M4
p

(
m̄2

4 + 2Hm̄5

)
+ 4

(
m3

3 − 4Hm2
4 − ḟM2

p

)
m̄5m̃

2
4

+ 2fM2
p m̄5

[
m3

3 − 4Hm2
4 − ḟM2

p +H2(3 + ε)m̄5

]
− 8fM2

p

(
m̄2

4 +Hm̄5

)
m̃2

4 − 8m̄2
4m̃

4
4

}
. (A.17)

As for the tensorial part, we have N = 1, Ni = 0 and ζ = 0. It is also straightforward

to obtain

R(3) = −1

4
a−2γkl,iγkl,i +O(γ3) , (A.18)

Kij = a2

[
Hδij +Hγij +

1

2
γ̇ij +

1

2
Hγikγ

k
j +

1

4
(γ̇ikγ

k
j + γikγ̇

k
j )

]
+O(γ3) , (A.19)

δKij =
a2

2

[
γ̇ij +

1

2
(γ̇ikγ

k
j + γikγ̇

k
j )

]
+O(γ3) . (A.20)

Kij = a−2

[
Hδij +

1

2
γ̇ij −Hγij − 1

4
(γ̇ilγ

lj + γil γ̇
lj) +

1

2
Hγjeγie

]
+O(γ3) , (A.21)

δKij =
a−2

2

[
γ̇ij − 1

2
(γ̇ilγ

lj + γil γ̇
lj)

]
+O(γ3) , (A.22)

K = 3H +O(γ3) . (A.23)

Note that δK = K−3H contains only scalars up to the quadratic order, as well as the last

term in eq. (A.4). Substituting the above results into action (2.2), we obtain the quadratic

action of tensor perturbation, which is displayed in eq. (2.8).
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