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1 Introduction

A hallmark of renormalizable supersymmetric (SUSY) theories is that quartic scalar cou-

plings are not free parameters, but fixed in terms of gauge and (in some models) Yukawa

couplings. As a result, predictions of the Standard Model (SM)-like Higgs mass are re-

stricted to a limited range and precise calculations are very important for testing SUSY

models. Since the discovery of a 125 GeV Higgs boson at the LHC [1, 2], the need for precise

predictions within SUSY models has increased in several ways. First, the measurement is
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already far more precise than existing theory predictions, motivating significant improve-

ments in both theory predictions and their associated uncertainty estimates. Second, the

non-observation of new physics at the LHC, may imply heavier masses of new particles, so

predictions should be reliable both for light or heavy SUSY masses. Third, the heavy Higgs

boson mass provokes naturalness questions that motivate non-minimal SUSY models and

improving precision Higgs mass calculations there.

Here we present FlexibleEFTHiggs, a new method for calculating the Higgs mass

that can improve the precision of the Higgs mass prediction in minimal and non-minimal

SUSY models. This method uses effective field theory (EFT) techniques, which improve

the precision when the SUSY masses are much heavier than the electroweak (EW) scale.

However, FlexibleEFTHiggs also includes terms which are important at low SUSY scales,

previously only included in fixed-order calculations. This hybrid approach combines the

virtues of both worlds to give precise predictions at both high and low SUSY scales. We

also present an extensive analysis of the remaining theory uncertainty and discuss in detail

the differences to other calculations, shedding light on the theory uncertainties of existing

calculations. The method and uncertainty estimates are applied to the MSSM and three

non-minimal models, the NMSSM, the E6SSM, and the MRSSM.

The fixed-order and EFT approaches have both been used extensively in the litera-

ture, for a complete picture, see e.g. the recent review [3]. In a fixed-order, or Feynman

diagrammatic computation, a perturbative expansion is performed to a specified order in

the gauge or Yukawa couplings. In the MSSM, the dominant 2-loop corrections were added

long ago [4–15]. Recent progress for the MSSM includes incorporating electroweak gauge

couplings [16], a genuine calculation of leading 3-loop effects [17, 18], and momentum-

dependent 2-loop contributions [19–21]. Many public codes for MSSM Higgs mass calcula-

tions are available, see e.g. [22–26]. There are also dedicated calculations and public codes

for the NMSSM, see e.g. [25–30]. For any user-defined model, SARAH/SPheno performs

an automatic 2-loop calculation at zero momentum in the gauge-less limit [31, 32].

Fixed-order calculations are particularly reliable when the new particle masses are

around the EW scale. If the new physics scale is too high, large logarithms appear at each

order in perturbation theory, and the result can suffer from a large truncation error. Re-

cently, therefore, refs. [30, 33, 34] combined fixed-order calculations with the resummation

of the leading and next-to-leading logarithms without double counting, reducing the theory

uncertainty at high SUSY masses.

EFT calculations use a matching-and-running procedure. In the simplest case, all non-

SM particles are integrated out at some high SUSY scale. The running SM parameters at

the high scale are then determined by matching, run down to the EW scale using renor-

malization group methods, and the Higgs mass is computed at the weak scale in the SM.

Since the early works in this approach [35–41], developments include the analytical evalu-

ation of 3-loop terms [42], next-to-next-to-leading logarithm (NNLL) accuracy [34, 43–45],

non-SM EFTs potentially for additional thresholds [44, 46–50]. The RGEs can be solved

either numerically as in this work or perturbatively as done to two loops [38–41] and three

loops [42] (see also appendix B). Public programs implementing this EFT-type calculation

(for MSSM only) are SusyHD [45], FlexibleSUSY/HSSUSY [51] and the MhEFT [52].
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As discussed e.g. in ref. [45], the disadvantage of pure EFT-type calculations is that

they miss non-logarithmic contributions that are suppressed by powers of the SUSY mass

scale already at the tree-level and 1-loop level. Hence, the theory uncertainty increases

strongly if the SUSY masses are close to the EW scale.

FlexibleEFTHiggs is an EFT calculation with specially chosen matching conditions,

such that the Higgs mass calculation is exact at the tree-level and 1-loop level. This ensures

that the theory uncertainty remains bounded at both high and low SUSY scales, as we

will show. We have implemented FlexibleEFTHiggs into FlexibleSUSY [26], a spectrum

generator generator for BSM models based on SARAH [53–58] and SOFTSUSY [23, 25] so

that this method can be used in a huge variety of models. The level of precision currently

implemented is 1-loop mass matching and 3-loop running in the SM. Currently a limiting

assumption is that the SM is the correct low-energy EFT at the EW scale and all non-SM

particles are integrated out at a heavy scale.

This paper is structured as follows: in section 2 we give an overview of the pure EFT

and the fixed-order approaches and describe the FlexibleEFTHiggs method in more detail.

In section 3 we apply FlexibleEFTHiggs to the MSSM and compare the results with those

from publicly available MSSM spectrum generators. In addition, we analyse the origin of

the most significant deviations between the DR fixed-order calculations in FlexibleSUSY,

SOFTSUSY and SPheno. We then present several possibilities to estimate the theoret-

ical uncertainty of the Higgs mass prediction in the DR fixed-order approaches and in

FlexibleEFTHiggs. In section 4 we summarize and combine the uncertainty estimates and

give an order of magnitude for the SUSY scale above which we expect FlexibleEFTHiggs

to lead to a more precise prediction than the DR fixed-order programs. In sections 5–7

we apply FlexibleEFTHiggs to the NMSSM, E6SSM and the MRSSM and perform an

uncertainty estimation. We conclude in section 8.

2 Procedure of the calculation

The new FlexibleEFTHiggs approach presented here is an EFT-type calculation of the

SM-like Higgs mass in the MSSM or any other non-minimal SUSY or BSM model, where

we assume the Standard Model is a valid EFT. FlexibleEFTHiggs is implemented into

FlexibleSUSY [26], a C++ and Mathematica framework to create modular spectrum gen-

erators for SUSY and non-SUSY models. Before introducing FlexibleEFTHiggs, we de-

scribe the SM and MSSM to fix our notation and then describe fixed-order and “pure

EFT” calculations implemented in several public programs all of which use the DR scheme.

There are also very accurate calculations in the on-shell renormalization scheme, for ex-

ample FeynHiggs [6, 19, 22, 33, 59–62] and NMSSMCALC [29, 63, 64], but we will not

go into the details of the on-shell calculations. In the following we use the programs

FlexibleSUSY 1.5.1, SOFTSUSY 3.6.2, SARAH 4.9.0, SPheno 3.3.8, FeynHiggs 2.12.0,

SusyHD 1.0.2 and NMSSMTools 4.8.2, if not stated otherwise.
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2.1 The Standard Model and its minimal supersymmetric extension

The Standard Model is invariant under local gauge transformations of the group,

GSM = SU(3)C × SU(2)L ×U(1)Y , (2.1)

where the gauge couplings associated with SU(3)C , SU(2)L and U(1)Y are g3, g2 and g1,

respectively, with g1 under the SU(5) GUT normalization. Sometimes it is more convenient

to write expressions in terms of the U(1)Y gauge coupling, which we denote gY =
√

3/5 g1.

As usual, we also use e2 = g2
Y g

2
2/(g

2
Y + g2

2), αe.m. = e2/4π and αs = g2
3/4π.

The spontaneous breakdown of electroweak symmetry SU(2)L×U(1)Y → U(1)e occurs

when the coefficient of the bilinear term in the Higgs potential,

V (φ) = µ2|Φ|2 + λ|Φ|4, (2.2)

is negative. This causes the neutral component of the Higgs field, Φ, which is a SU(2)L
doublet, to develop a vacuum expectation value (VEV), v =

√
−µ2/(2λ). The Standard

Model fermions are the left handed SU(2)L quark and lepton doublets Qi and Li, and the

right handed SU(2)L singlets for up-type and down-type quarks and charged leptons, uRi,

dRi, eRi. They obtain mass through their Yukawa interactions with the Higgs field,

LYukawa
SM = (Yu)ij Qi · Φ† uRj + (Yd)ij Qi Φ dRj + (Ye)ij Li Φ eRj + h.c., (2.3)

when the neutral Higgs field develops a VEV. Here i, j denote generation indices, and we

define the SU(2)L dot product, A ·B := A1B2−A2B1. To simplify the notation we denote

the third generation Yukawa couplings as yt, yb, yτ which are the largest singular values of

Yu, Yd, Ye, respectively.

The minimal supersymmetric extension of the Standard Model (MSSM) has the su-

perpotential,

WMSSM = µ Ĥu · Ĥd + (Yu)ij Q̂i · Ĥu û
c
j + (Yd)ij Q̂i · Ĥd d̂

c
j + (Ye)ij L̂i · Ĥd ê

c
j , (2.4)

where all superfields appear with a hat. The chiral superfields have the GSM quantum

numbers

Q̂ :
(
3,2, 1

6

)
, ûc :

(
3̄,1,−2

3

)
, d̂c :

(
3̄,1, 1

3

)
, L̂ :

(
1,2,−1

2

)
, êc : (1,1, 1) ,

Ĥd :
(
1,2,−1

2

)
, Ĥu :

(
1,2, 1

2

)
,

(2.5)

where the first and second symbol in the parentheses denotes the representation of the

corresponding superfield with respect to SU(3)C and SU(2)L and the third component

is the hypercharge in standard normalization. The neutral components of the up-type

Higgs field, Hu, and down-type Higgs field, Hd, develop the VEVs, vu/
√

2 and vd/
√

2,

respectively. As usual we define,

v =
√
v2
u + v2

d, tanβ =
vu
vd
, (2.6)
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where v ≈ 246 GeV. The soft breaking Lagrangian is given by

Lsoft
MSSM = −1

2

[
M1

¯̃B0B̃0+M2
¯̃WW̃+M3

¯̃gg̃
]
−m2

Hu
|Hu|2−m2

Hd
|Hd|2− [BµHu ·Hd + h.c.]

−
[
Q̃†i (m

2
Q)ijQ̃j + d̃†Ri(m

2
d)ij d̃Rj + ũ†Ri(m

2
u)ij ũRj + L̃†i (m

2
L)ijL̃j + ẽ†Ri(m

2
e)ij ẽRj

]
+
[
(Tu)ijQ̃i ·Huũ

†
Rj + (Td)ijQ̃i ·Hdd̃

†
Rj + (Te)ijL̃i ·Hdẽ

†
Rj + h.c.

]
. (2.7)

In the following, we trade the soft-breaking trilinear couplings for the customary Xf pa-

rameters as

(Yf )ij(Xf )ij = (Tf )ij − (Yf )ij

{
µ∗ tanβ

µ∗ cotβ

}
, for

{
f = d, e,

f = u,
(2.8)

with the appearing matrices given in the super-CKM basis [65, 66]. For the third generation

fermions we define Xt := (Xu)33, Xb := (Xd)33, Xτ := (Xe)33. The gauginos have the

following GSM quantum numbers:

B̃ : (1,1, 0), W̃ : (1,3, 0), g̃ : (8,1, 0). (2.9)

In the scenarios studied in the following we set the dimensionful running DR superpotential

and soft-breaking parameters to the common value of the SUSY scale, MSUSY, if not stated

otherwise:

(m2
f )ij(MSUSY) = δijM

2
SUSY, (f = Q, u, d, L, e)

Mi(MSUSY) = MSUSY, (i = 1, 2, 3)

µ(MSUSY) = MSUSY,

m2
A(MSUSY) =

Bµ(MSUSY)

sinβ(MSUSY) cosβ(MSUSY)
= M2

SUSY,

(Xf )ij(MSUSY) = 0.

(2.10)

Sometimes we will go beyond the last equation and keep Xt as a free parameter and set it

to a non-zero value.

In our numerical evaluations we will choose the numerical values α
MS,SM(5)
e.m. (MZ) =

1/127.944 for the running fine structure constant, Mt = 173.34 GeV, Mτ = 1.777 GeV,

MZ = 91.1876 GeV for the top quark, τ lepton and Z boson pole masses, and

m
MS,SM(5)
b (mb) = 4.18 GeV for the running b-quark mass, if not stated otherwise.

2.2 Fixed-order calculations in FlexibleSUSY, SOFTSUSY and

SARAH/SPheno

We now discuss the fixed-order approach for calculating the Higgs mass that is implemented

in FlexibleSUSY, SOFTSUSY and SARAH/SPheno. There are two major steps in this

calculation:

1. Find all DR parameters at the SUSY scale.

2. Calculate the Higgs pole mass from the DR parameters.

– 5 –
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The first step is rather complicated and involves an iteration. One complication is

that some parameters may be set at a higher-scale and the values at the SUSY scale only

obtained through the RG running, though here we will simply set all non-SM parameters

at the SUSY scale. Nonetheless this is still non-trivial because some of the DR parameters

must be chosen to fulfill the EWSB equations or are determined by experimental data.

For the EWSB conditions we will fix the soft Higgs masses in this work, which is an

option available in all of the codes we use. The VEV, v is fixed from the DR running

mZ , leaving tan β as a free parameter at the SUSY scale. The gauge couplings, g1, g2 and

g3 and Yukawa couplings, Yu, Yd and Ye can be extracted from data. This can be done

using the measured values of the running MS electromagnetic and strong couplings, the

Weinberg angle or an equivalent quantity, and the quark and lepton masses. Specifically

FlexibleSUSY, SOFTSUSY and SPheno all use the following,

αDR,SUSY
s (MZ) =

α
MS,SM(5)
s (MZ)

1−∆αSM
s (MZ)−∆αSUSY

s (MZ)
, (2.11)

mDR,SUSY
Z (MZ) =

√
M2
Z + Re ΠT,SUSY

ZZ (M2
Z), (2.12)

where MZ is the Z-boson pole mass, ΠT
ZZ(p2) is the transverse part of the 1-loop Z self

energy and α
MS,SM(5)
s (MZ) is the MS strong coupling in the SM with 5-flavours. Using

these and further similar relations, all DR gauge couplings and EWSB parameters of the

fundamental SUSY theory can be determined at the low scale Q = MZ . The Yukawa

couplings are determined similarly from the running vacuum expectation values and fermion

masses, but specific corrections beyond the 1-loop level are taken into account. Most

importantly, the running top quark mass in FlexibleSUSY and SOFTSUSY is given by

mDR
t = Mt + Re

[
Σ̃

(1),S
t (Mt)

]
+Mt Re

[
Σ̃

(1),L
t (Mt) + Σ̃

(1),R
t (Mt)

]
+Mt

[
Σ̃

(1),qcd
t (mDR

t ) +
(

Σ̃
(1),qcd
t (mDR

t )
)2

+ Σ̃
(2),qcd
t (mDR

t )

]
, (2.13)

where Mt denotes the top pole mass, Σ̃
(1),S
t (p), Σ̃

(1),L
t (p) and Σ̃

(1),R
t (p) denote the scalar,

left-handed and right-handed part of the 1-loop top self energy without SM-QCD contribu-

tions, evaluated at p = Mt, and Σ̃
(1,2),qcd
t (mDR

t ) denote SM-QCD self energy contributions,

with a factor /p removed, evaluated at p = mDR
t [67, 68]:

Σ̃
(1),qcd
t (mDR

t ) = − g2
3

12π2

[
5− 3 ln

(
(mDR

t )2

Q2

)]
, (2.14)

Σ̃
(2),qcd
t (mDR

t ) = − g4
3

4608π4

[
396 ln2

(
(mDR

t )2

Q2

)
− 1476 ln

(
(mDR

t )2

Q2

)
− 48ζ(3)

+ 2011 + 16π2(1 + ln 4)

]
. (2.15)
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Eq. (2.13) is evaluated at the scale MZ and yields the running top mass mDR
t (MZ). SPheno

treats the top quark mass differently and requires

mDR
t = Mt + Re

[
Σ̃

(1),S
t (mDR

t )
]

+mDR
t Re

[
Σ̃

(1),L
t (mDR

t ) + Σ̃
(1),R
t (mDR

t )
]

+mDR
t

[
Σ̃

(1),qcd
t (mDR

t ) + Σ̃
(2),qcd
t (mDR

t )
]
. (2.16)

We will later comment on this difference between eqs. (2.13) and (2.16). Both these equa-

tions determine the running top mass implicitly and are solved by an iteration, resulting

in slightly different solutions.

In the second step, the Higgs boson mass is computed numerically by solving

0 = det

[
p2δij − (m2

φ)ij + Re Σφ,ij(p
2)−

tφ,i
vi

]
, (2.17)

where m2
φ denotes the CP-even Higgs tree-level mass matrix, Σφ and tφ are the DR-

renormalized CP-even Higgs self energy and tadpole, respectively, and v1 ≡ vd, v2 ≡ vu.

In the MSSM, FlexibleSUSY, SOFTSUSY and SPheno use the full 1-loop self energy and

2-loop corrections of the order O((αt + αb)
2 + (αt + αb)αs + α2

τ ) from [9, 11–14]. For non-

minimal SUSY models, FlexibleSUSY uses the full 1-loop self energy (optionally extended

by the 2-loop MSSM or NMSSM contributions). SARAH/SPheno uses the 2-loop self

energy in the gauge-less limit and at zero momentum in any given model [31, 32].

2.3 Pure EFT calculation in SusyHD and FlexibleSUSY/HSSUSY

EFT calculations have the virtue of resumming potentially large logarithms of the generic

heavy SUSY mass scale beyond any finite loop level. The calculation is based on the

approximation that all non-SM particles, i.e. all SUSY particles and the extra Higgs states,

have a common heavy mass of order MSUSY, and that the SM is the correct low-energy

EFT below MSUSY.

The determination of DR parameters and the computation of the Higgs mass is then

done in three steps, carried out iteratively, until convergence is reached:

1. Integrate out all SUSY particles at the SUSY scale, and determine the SM parameter

λ at MSUSY by a matching of the SUSY theory to the SM.

2. Use the SM renormalization group equations to run the SM parameters down to the

EW scale.

3. Match the SM parameters to experiment at the EW scale, and compute the Higgs

pole mass.

In the pure EFT approach, the threshold corrections at the SUSY scale are expressed

as perturbative functions of the SM parameters at MSUSY, dimensionless (combinations

of) SUSY parameters and at most logarithms of SUSY masses. No terms suppressed by

powers of MSUSY appear. The known 1- and 2-loop threshold correction to λ from the

– 7 –
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MSSM read [44, 45]

λpure EFT =
1

4

(
g2
Y + g2

2

)
cos2 2β + ∆λ(1) + ∆λ(2), (2.18)

(4π)2∆λ(1) = 3(ySM
t )2

[
(ySM
t )2 +

1

2

(
g2

2 −
g2
Y

3

)
cos 2β

]
ln

m2
Q3

Q2
match

+ 3(ySM
t )2

[
(ySM
t )2 +

2

3
g2
Y cos 2β

]
ln

m2
U3

Q2
match

+ 6(ySM
t )4X̃t

[
F̃1 (xQU )− X̃t

12
F̃2 (xQU )

]
+

3

4
(ySM
t )2X̃t cos 2β

[
g2
Y F̃3 (xQU ) + g2

2F̃4 (xQU )
]

− 1

4
(ySM
t )2X̃t cos2 2β

(
g2
Y + g2

2

)
F̃5 (xQU )

+O(g4
Y , g

4
2, g

2
Y g

2
2),

(2.19)

where X̃t = X2
t /(mQ3mU3) and xQU = mQ3/mU3 . In eqs. (2.18)–(2.19) gY , g2 and ySM

t

denote the Standard Model electroweak gauge and top Yukawa couplings at the SUSY

scale, respectively, all defined in the MS scheme. With Qmatch we denote the matching

scale, which we identify with MSUSY, if not stated otherwise. The loop functions F̃i(x) as

well as ∆λ(2) can be found in [44, 45]. Since λ is directly expressed in terms of running

SM parameters and fundamental SUSY input parameters, no other threshold corrections

are needed.

This pure EFT approach to calculate the Higgs pole mass is implemented in

SusyHD [45] and FlexibleSUSY/HSSUSY [51].1 HSSUSY is now part of the public

FlexibleSUSY distribution and has the same essential features and method of SusyHD

within a C++ framework. Both programs use the same definition2 (2.18) for λ and 3-loop

RGEs to evolve λ to the Mt scale [69, 70]. At the Mt scale, both programs determine

the SM gauge and Yukawa couplings by matching to experiment. HSSUSY extracts the

SM gauge and Yukawa couplings at the 1-loop level from α
MS,SM(5)
s (MZ), α

MS,SM(5)
e.m. (MZ)

and GF and quark and lepton masses using the approach described in [26], thereby taking

into account 1-loop and leading 2-loop corrections. For the extraction of the top Yukawa

coupling also the known 2-loop and 3-loop QCD corrections are taken into account [71, 72].

SusyHD includes several further subleading corrections, e.g. fit formulas for 2-loop thresh-

old corrections to the EW gauge couplings [69]. Finally, the Higgs pole mass is calculated at

the scale Mt. HSSUSY employs full 1-loop and leading 2-loop corrections of O(αtαs +α2
t );

SusyHD uses a numerical fit formula approximating the full 2-loop corrections.

1The FlexibleSUSY/HSSUSY model file has been written by Emanuele Bagnaschi, Georg Weiglein and

Alexander Voigt and will be presented and studied in more detail by these authors in an upcoming publi-

cation.
2In HSSUSY we used analytical Mathematica expressions for the 2-loop threshold corrections ∆λ(2) of

O(αtαs) provided by the authors of [44] and O(α2
t ) provided by the authors of SusyHD.
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2.4 EFT calculation in FlexibleEFTHiggs

The calculation of FlexibleEFTHiggs follows the same logic as the EFT calculation of

SusyHD and HSSUSY. The difference lies in the choice of the matching conditions. In

FlexibleEFTHiggs, λ(MSUSY) is determined implicitly by the condition

(MSM
h )2 = (MMSSM

h )2 at Qmatch, (2.20)

i.e. by the condition that the lightest CP-even Higgs pole masses, computed in the effective

and the full theory at the SUSY scale in fixed-order perturbation theory in the MS/DR

schemes, agree. The Standard Model Higgs pole mass is calculated at the scale MSUSY as

(MSM
h )2 = (mMS,SM

h )2 − Re ΣMS,SM
h ((MSM

h )2) + tMS,SM
h /v, (2.21)

where mMS,SM
h is the running MS Higgs mass in the Standard Model, ΣMS,SM

h is the MS-

renormalized Standard Model Higgs self energy and tMS,SM
h is the corresponding tadpole.

Using this, the quartic Higgs coupling in the SM reads

λ(MSUSY) =
1

v2

[
(MMSSM

h )2 + Re ΣMS,SM
h ((MSM

h )2)−
tMS,SM
h

v

]
. (2.22)

In the current implementation, only 1-loop self energies and tadpoles are used in this

matching condition; in the future it is planned to take into account 2-loop corrections.

Likewise, the gauge couplings and the Z-boson and top quark mass, are implicitly fixed

by the conditions

αDR,SUSY
x (MSUSY) =

αMS,SM
x (MSUSY)

1−∆αSUSY
x (MSUSY)

, x = e.m., s, (2.23)

(mMS,SM
Z )2 − Re ΠT,SM

ZZ (M2
Z) = (mDR,SUSY

Z )2 − Re ΠT,SUSY
ZZ (M2

Z), (2.24)

mMS,SM
t − Re

[
Σ̃

(1),SM
t (Mt)

]
−mMS,SM

t

[
Σ̃

(1),SM-qcd
t (mMS,SM

t ) + Σ̃
(2),SM-qcd
t (mMS,SM

t )
]

= mDR
t − Re

[
Σ̃

(1)
t (Mt)

]
−mDR

t

[
Σ̃

(1),qcd
t (mDR

t ) + Σ̃
(2),qcd
t (mDR

t )
]
,

(2.25)

at the SUSY scale, where Σ̃
(1)
t again denote the 1-loop top self-energy contributions without

the SM QCD part, and Σ̃
(1,2),SM-qcd
t (mMS,SM

t ) denote SM QCD self energy contributions in

the MS scheme, with a factor /p removed, evaluated at p = mMS,SM
t [71]:

Σ̃
(1),SM-qcd
t (mMS,SM

t ) = − g2
3

12π2

[
4− 3 ln

(
(mMS,SM

t )2

Q2
match

)]
, (2.26)

Σ̃
(2),SM-qcd
t (mMS,SM

t ) = − g4
3

4608π4

[
396 ln2

(
(mMS,SM

t )2

Q2
match

)
− 1452 ln

(
(mMS,SM

t )2

Q2
match

)

− 48ζ(3) + 2053 + 16π2(1 + ln 4)

]
.

(2.27)
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Here quantities with the superscript SM are SM quantities, renormalized in the MS scheme.

Three-loop RGEs are used to run the SM parameters to the EW scale, as is done in SusyHD

and FlexibleSUSY/HSSUSY. The matching to experimental quantities is done at Q = MZ

in exactly the same way as for FlexibleSUSY/HSSUSY described in the previous subsection,

except that only 2-loop SM-QCD corrections are used to extract ySM
t (MZ). Finally, the

Higgs pole mass is calculated in the Standard Model at the scale Mt using the full MS-

renormalized 1-loop self energy. The crucial advantage of this choice of matching conditions

is that the resulting Higgs boson mass is exact at the 1-loop level and contains resummed

leading logarithms to all orders. In particular, FlexibleEFTHiggs does not neglect terms

of O(v2/M2
SUSY). This is in contrast to the pure EFT approach, where already at the

tree-level terms suppressed by powers of MSUSY originating from the mixing of the light

with the heavy Higgs are missing. Thus, FlexibleEFTHiggs has no “EFT uncertainty” [45],

which is present in SusyHD and HSSUSY.

For completeness and illustration, the equivalence of the two choices of matching con-

ditions, eqs. (2.19) and (2.22), up to power-suppressed terms is proven analytically at the

1-loop level in appendix A.

3 Numerical results in the MSSM and differences between calculations

In the present section we discuss numerical results for the lightest, SM-like Higgs boson in

the MSSM. The results of FlexibleEFTHiggs are compared to the results of SOFTSUSY,

SARAH/SPheno and SusyHD and variants of the original FlexibleSUSY. We focus mainly

on analysing the differences between the calculations and their origins as well as on dis-

cussing theory uncertainties.

3.1 MSSM for Xt = 0

3.1.1 Results of FlexibleEFTHiggs and fixed-order calculations

We begin with the special case of zero DR stop mixing, Xt(MSUSY) = 0, and a common

value MSUSY for all DR SUSY mass parameters, as defined in eqs. (2.10). In this special

case it is known that the 2-loop threshold corrections ∆λ(2) are numerically very small, and

the leading 2-loop contributions of O(αsαt) even vanish [44]. As a result, FlexibleEFTHiggs

happens to be essentially as accurate as if 2-loop instead of 1-loop threshold corrections for

λ were implemented. Our comparisons to other calculations will therefore be sensitive to

differences which do not originate from missing 2-loop threshold corrections but from other,

more subtle effects. Figure 1 compares FlexibleEFTHiggs to SusyHD. It demonstrates the

validity of FlexibleEFTHiggs and shows the numerical impact of the various different design

choices made in FlexibleEFTHiggs and SusyHD. The red solid line shows Mh as a function

of MSUSY for FlexibleEFTHiggs with maximum precision, i.e. with 1-loop mass matching

conditions eqs. (2.20)–(2.25) at the scale MSUSY, 3-loop running in the Standard Model,

1-loop matching to the known low-energy parameters, including 2-loop QCD corrections

to ySM
t . The other lines correspond to SusyHD and variants of FlexibleEFTHiggs, where

the SusyHD-like calculation is transformed step by step into the FlexibleEFTHiggs-like

one. We will now explain each step in detail.
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Figure 1. Influence of switching on or off different contributions to the lightest CP-even Higgs

pole mass, Mh, in SusyHD and FlexibleEFTHiggs for tan β = 5, Xt = 0.

• The brown dashed line corresponds to SusyHD with maximum precision. The brown

pluses correspond to FlexibleEFTHiggs, where the calculation of all Standard Model

parameters is performed using the same expressions as in SusyHD. This means

in particular that the fit formulas of ref. [69] are used to obtain the running gauge

and Yukawa couplings at the Mt scale. Thus, both programs use 2-loop threshold

corrections to λ(MSUSY) from eq. (2.18), 3-loop running in the Standard Model,

calculation of αMS,SM
s (Mt) using 4-loop QCD and 2-loop electroweak running from

MZ to Mt plus 3-loop matching, and calculation of ySM
t (Mt) at NNNLO [69]. The

two programs agree exactly with each other.3

• The green crosses and the green dash-dotted line correspond to SusyHD and the

modified FlexibleEFTHiggs respectively with only 1-loop matching of λ at the high

scale MSUSY. The numerical difference from what would result from 2-loop matching

is very small for large MSUSY, namely below 50 MeV for MSUSY > 2 TeV. This

confirms the statement that the 2-loop threshold correction is negligible for Xt = 0

and a common SUSY mass scale.

• The black dotted line corresponds to replacing the λ-matching, eq. (2.18), by the

matching procedure of FlexibleEFTHiggs, eqs. (2.20)–(2.25), except that the equality

of the top pole masses at MSUSY has been required at the tree-level only. The

Higgs pole mass matching is the essential design choice of FlexibleEFTHiggs. The

line converges to the λ-matching curves for large MSUSY, confirming that the two

matching procedures become equivalent for MSUSY →∞. For MSUSY . 500 GeV the

SusyHD-approach becomes unreliable. The difference between the two matching

procedures is formally of O((tree-level, 1-loop) × v2/M2
SUSY). Terms of this order

are ignored in SusyHD, but correctly taken into account in FlexibleEFTHiggs, so

the difference between the two matching procedures is a measure of part of the

3For this reason the FlexibleEFTHiggs version modified in this way might be viewed as a replica of

SusyHD within the C++ framework of FlexibleSUSY.
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theory uncertainty of SusyHD. In ref. [45] this theory uncertainty was labelled “EFT

uncertainty”, and the numerical result of figure 1 is compatible with the uncertainty

estimate given in ref. [45]: for the scenario shown in figure 1 and MSUSY > 1 TeV the

difference is smaller than 200 MeV. For MSUSY < 500 GeV the difference can reach

up to 3 GeV.

• In the blue dashed-double-dotted line the low-scale computation of the running SM

top Yukawa coupling has been changed, and the leading 3-loop QCD terms included

so far have been switched off. Even though the impact on the Higgs mass is formally

of 4-loop order, the resulting numerical difference is rather sizeable, around 600 MeV.

The importance of the 3-loop corrections to the top Yukawa coupling was already

stressed in refs. [45, 69, 73]. The black circles represent the equivalent change in

SusyHD, where the 3-loop QCD corrections to the SM top Yukawa coupling are

switched off. In SusyHD the omission of this 3-loop correction leads to a change of

the same size.

• The red line shows the calculation in FlexibleEFTHiggs. It differs from the blue

dashed-double-dotted line in the following ways: (i) yMSSM
t (MSUSY) is calculated by

matching the top pole mass at the 1-loop level (including 2-loop SM-QCD corrections)

at MSUSY using eq. (2.25), (ii) Mh is calculated at the scale Mt by numerically solving

eq. (2.17) using the full momentum-dependent 1-loop Higgs self-energy, instead of

setting the momentum to the MS Higgs mass, p2 = m2
h, as done in SusyHD. The

inclusion of both changes leads to an approximately constant decrease of Mh of

about 1 GeV.

Figure 2 compares the results of FlexibleEFTHiggs and SusyHD/HSSUSY to the fixed-

order results of SOFTSUSY, SARAH/SPheno, and the original FlexibleSUSY. For com-

parison, also the results of FeynHiggs are shown; the differences between the recent versions

of FeynHiggs and other calculations have been discussed e.g. in Refs. [3, 20, 45]. In line

with the discussion of figure 1, SusyHD and FlexibleEFTHiggs agree up to 0.5 GeV at

high MSUSY, but SusyHD deviates more strongly at low MSUSY due to the missing terms

of O((tree-level, 1-loop) × v2/M2
SUSY).

Figure 2 shows in addition that FlexibleEFTHiggs agrees at low MSUSY with all fixed-

order calculations. This is the consequence of the choice of the pole-mass matching con-

dition eq. (2.20), and it reflects the fact that FlexibleEFTHiggs corresponds to an exact

1-loop calculation plus resummation of higher-loop logarithms.

3.1.2 Theory uncertainty estimations

The comparisons shown in the previous figures allow us to make several observations

about various ways to estimate theory uncertainties. Ref. [45] has divided the theory

uncertainty of SusyHD into three parts, one of which is the “EFT uncertainty” due to

truncating the low-energy EFT at the dimension-4 level (i.e. taking the renormalizable

SM as the EFT). This EFT uncertainty arises from missing power-suppressed terms of

O((tree-level, 1-loop) × v2/M2
SUSY); hence it becomes large for MSUSY . 500 GeV. As

– 12 –
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Figure 2. Comparison of predictions for Mh in the MSSM using the EFT with pole mass

matching method (FlexibleEFTHiggs/MSSM), the pure EFT calculation (FlexibleSUSY/HSSUSY

and SusyHD) and the diagrammatic calculations (FlexibleSUSY/MSSM, SARAH/SPheno,

SOFTSUSY and FeynHiggs) for tan β = 5 and Xt = 0. The green and brown bands show the

theory uncertainty as estimated by FeynHiggs and SusyHD, respectively.

mentioned in the context of figure 1, the choice of the Higgs pole mass matching condition

in FlexibleEFTHiggs avoids this uncertainty by construction. As a consequence, the differ-

ence between SusyHD and FlexibleEFTHiggs at low MSUSY can be regarded as a measure

of the EFT uncertainty of SusyHD.

In FlexibleEFTHiggs the Higgs mass prediction is exact at the 1-loop level due to the

1-loop Higgs pole mass matching condition. At the 2-loop level, power-suppressed as well

as non-power-suppressed (but non-logarithmic) terms are missing; these will be discussed

in the next subsection.

Now we turn to an extensive discussion of the differences between EFT and fixed-

order calculations at high MSUSY, and on the resulting theory uncertainty of the fixed-

order calculations. Figure 2 shows that at high MSUSY, the two fixed-order calculations

of SPheno and FlexibleSUSY/SOFTSUSY deviate significantly from each other, and that

FlexibleSUSY/SOFTSUSY agrees well with the EFT calculations. These differences orig-

inate from ≥ 3-loop terms, which are taken into account differently. For a deeper under-

standing and illustration, we derive the leading 3-loop logarithms for all these approaches:

• The all-order leading-log part of the EFT results of FlexibleEFTHiggs and SusyHD

can be obtained analytically by integrating 1-loop RGEs and using tree-level matching

at the high and low scales.

• SPheno, SOFTSUSY and FlexibleSUSY do a fixed-order 2-loop computation of Mh in

the DR-scheme at the scale MSUSY. Once the running parameters at the scale MSUSY

are replaced by their low-energy counterparts via the definitions of section 2.2, im-

plicit terms of ≥ 3-loop order are generated. These implicit higher-order terms are

different in FlexibleSUSY/SOFTSUSY and SPheno, because of the different defini-

tions of the top Yukawa coupling in eqs. (2.13), (2.16), respectively.
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m
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100 , Mτ = 1.777GeV
100 .

The leading logarithms in αs and αt up to 3-loop level obtained in these ways can be

written as

(M2
h)X = m2

h + v̂2ŷ4
t

[
12tSκL − 12t2Sκ

2
L

(
16ĝ2

3 − 3ŷ2
t

)
+ 4t3Sκ

3
L∆X

3LLL + · · ·
]
,

∆X
3LLL =


736ĝ4

3 − 240ĝ2
3 ŷ

2
t − 99ŷ4

t (X = EFT),
736
3 ĝ4

3 + 144ĝ2
3 ŷ

2
t − 351

2 ŷ4
t (X = FlexibleSUSY/SOFTSUSY),

992
3 ĝ4

3 + 240ĝ2
3 ŷ

2
t − 297

2 ŷ4
t (X = SPheno),

(3.1)

where X denotes the calculational approach (X = EFT denotes FlexibleEFTHiggs or

SusyHD) and κL = 1/(16π2), tS = ln(MSUSY/Mt), v̂ = vSM(Mt), ĝ3 = gSM
3 (Mt), ŷt =

ySM
t (Mt). We have worked in the large-tan β limit, and the details of this calculation

are shown in appendix B; for the EFT-case similar analytical results including subleading

logarithms are presented in refs. [42, 43].

By construction, all codes agree at the 2-loop level, and the EFT calculations contain

the correct 3-loop leading log. However, the implicit 3-loop leading logs of SPheno and

FlexibleSUSY/SOFTSUSY in (3.1) are both incorrect, and different.4 The analytical re-

sults show why FlexibleSUSY/SOFTSUSY and SPheno deviate from each other at high

MSUSY. They also make it clear that the difference between FlexibleSUSY/SOFTSUSY

and SPheno should be regarded as part of the theory uncertainty of both programs. In

fact, inspection of the coefficients of the 3-loop leading logs in eqs. (3.1) indicates that the

theory uncertainty of both FlexibleSUSY/SOFTSUSY and SPheno could be significantly

4In ref. [43], the EFT calculation was compared to “fixed-order calculations”. In that reference, “fixed-

order” was simulated via perturbative truncation of the full EFT result. Hence, even at the 3-loop order,

the “fixed-order” calculations of ref. [43] always agree with the EFT result. This is different from the

concrete fixed-order calculations implemented in SPheno, SOFTSUSY and FlexibleSUSY, which are 2-loop

codes but nonetheless include partial corrections at the ≥ 3-loop level.
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Figure 4. Illustration of the theory uncertainty estimate ∆M
(4×yt)
h of the fixed-order calculations

of FlexibleSUSY and SARAH/SPheno using four different ways to calculate yMSSM
t . We choose

tanβ = 5 and Xt = 0. The red band shows the variation of Mh when the coefficient C1 is

varied within the interval [−184/9, 184/9]. The yellow uncertainty band shows ∆M
(Q)
h , defined

as the variation of Mh when the renormalization scale at which Mh is calculated is varied within

[MSUSY/2, 2MSUSY].

larger than their difference. In this sense it is surprising that the EFT results are actually

close to FlexibleSUSY/SOFTSUSY but far away from SPheno in figure 2. The reason for

this is an accidental cancellation between the O(α2
sαt) terms in eqs. (3.1) and formally

subleading terms. This cancellation can be made more obvious, if one expresses Mh in

terms of the Standard Model MS parameters at MSUSY:

(M2
h)X = m2

h + v2y4
t

[
12tSκL + 12t2Sκ

2
L

(
16g2

3 − 9y2
t

)
+ 4t3Sκ

3
L∆̄X

3LLL + . . .
]
,

∆̄X
3LLL =


736g4

3 − 672g2
3y

2
t + 90y4

t (X = EFT),
736g43

3 − 288g2
3y

2
t +

27y4t
2 (X = FlexibleSUSY/SOFTSUSY),

992g43
3 − 192g2

3y
2
t +

81y4t
2 (X = SPheno),

(3.2)

where v = vSM(MSUSY), g3 = gSM
3 (MSUSY), yt = ySM

t (MSUSY). In the EFT result there

is an accidental, numerical cancellation between the different 3-loop terms which has been

observed and discussed in refs. [42, 43]. In spite of different numerical coefficients, a similar

cancellation happens in FlexibleSUSY/SOFTSUSY and (to a smaller extent) in SPheno.

As a consequence, the EFT results are closer to the fixed-order ones than what could be

expected.

To highlight this accidentality we show figure 3, which displays Mh in the three ap-

proaches for different values of α
MS,SM(5)
s (MZ). MSUSY is set to 20 TeV to amplify the

3-loop leading logarithms. The plot shows that accidentally the fixed-order FlexibleSUSY

and the EFT calculations agree around the true value of α
MS,SM(5)
s (MZ) ≈ 0.1184.

After these considerations we turn to the question of estimating the theory uncertainty

of the DR fixed-order calculations. As noted above, the difference between the fixed-
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order MSSM calculations in FlexibleSUSY/SOFTSUSY and SPheno is due to a different

treatment of the 3-loop leading logarithms, so it can be regarded as an estimate for part

of the theory uncertainty of the two calculations. On a more general level, we therefore

discuss two ways to estimate the theory uncertainty of these fixed-order calculations:

1. Using known MSSM higher-order results. In the MSSM, we know that the

leading 1-loop contributions are governed by the running top mass mt. On the other hand

the full 2-loop MSSM SUSY-QCD contributions to mt are known [68]. Evaluating eq. (2.13)

at the 2-loop leading log level taking into account the full 2-loop SUSY-QCD contributions

of [68] would shift the running top mass by

∆m
(2)
t (MZ) = −184

9

g4
3Mt

(4π)4
ln2 MSUSY

MZ
. (3.3)

Thus, to estimate the theory uncertainty, we can add the term

C1
g4

3Mt

(4π)4
ln2 MSUSY

MZ
(3.4)

to the r.h.s. of eq. (2.13) and vary the coefficient C1 within the interval [−184/9, 184/9].

This changes the 3-loop leading logarithms in the Higgs boson mass prediction by a mo-

tivated amount. The resulting uncertainty band is shown in red in figure 4. We find that

this uncertainty band contains both the FlexibleSUSY curve (green dash-dotted line) and

the SPheno curve (turquoise solid line).

2. Generating higher-order terms. Another option is to change the calculation of

yMSSM
t such that changes of higher-order are automatically induced. The different treat-

ment of yMSSM
t in FlexibleSUSY and SPheno, i.e. using eq. (2.13) or (2.16), provides two

examples. There are further motivated possibilities to define yMSSM
t , namely to employ

either eq. (2.13) or eq. (2.16) at the renormalization scale MSUSY instead of at MZ . All

four variants to calculate yMSSM
t are equal at the 1-loop level but different at the 2-loop

level, so the resulting Higgs masses differ by 3-loop terms. In figure 4 we show the four

corresponding Higgs mass predictions. The two new ones are shown as the black dashed

line and the brown dotted line, respectively. We find that the four approaches to calculate

yMSSM
t are distributed within the red uncertainty band. Their differences thus represent

an alternative way to estimate the theory uncertainty from the missing 3-loop leading

logarithms in the fixed-order calculations. We therefore define

∆M
(4×yt)
h = max

y
(i)
t , y

(j)
t ∈

{
y
(2.13)
t (MZ),y

(2.16)
t (MZ),y

(2.13)
t (MSUSY),y

(2.16)
t (MSUSY)

} ∣∣∣Mh(y
(i)
t )−Mh(y

(j)
t )
∣∣∣ ,

(3.5)

where y
(2.13)
t (Q) refers to the definition of eq. (2.13) and y

(2.16)
t (Q) refers to eq. (2.16)

evaluated at the scale Q. The advantage of this second way is that it can be applied also

in non-minimal models, where the 2-loop contributions to ySUSY
t are unknown.

Another frequently used way to estimate the theory uncertainty is to vary the renor-

malization scale Q at which Mh is calculated and the loop-corrected EWSB conditions
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Figure 5. Illustration of the theory uncertainty estimate ∆M
(Q)
h for the fixed-order calculations

of FlexibleSUSY and SARAH/SPheno (left panel) as well as FlexibleEFTHiggs (right panel). The

blue dashed line shows Mh in the MSSM for tan β = 5, Xt = 0, MSUSY = 2 TeV as a function

of the renormalization scale Q. The black vertical error bar is placed at the default value of the

renormalization scale, Q0, and the red horizontal line marks the corresponding Higgs pole mass,

Mh(Q0). The black error bar and the yellow band show the resulting uncertainty estimate ∆M
(Q)
h .

are solved. The variation interval is usually chosen to be [Q0/2, 2Q0], where Q0 is the

default renormalization scale to be used to calculate the Higgs pole mass in the chosen

approach. In the fixed-order programs Q0 = MSUSY is used, while in FlexibleEFTHiggs we

use Q0 = Mt. Figure 5 shows Mh as a function of Q in the MSSM calculated for tan β = 5,

Xt = 0, MSUSY = 2 TeV with FlexibleSUSY in the fixed-order approach (left panel) and

with FlexibleEFTHiggs (right panel). The renormalization scale has been varied within the

interval [Q0/2, 2Q0]. In each approach one can see that the sizes of the resulting upwards

and downwards variations of the Higgs pole mass is not equal and might even be highly

non-linear. Due to this effect, we define the uncertainty ∆M
(Q)
h to be

∆M
(Q)
h = max

Q∈[Q0/2,2Q0]
|Mh(Q0)−Mh(Q)| . (3.6)

Thus, in this scenario we obtain ∆M
(Q)
h = 1.0 GeV for the fixed-order approach, and

∆M
(Q)
h = 1.7 GeV for FlexibleEFTHiggs. The yellow band in figure 4 shows the variation

of Mh in the fixed-order approach when Q is varied within the interval [MSUSY/2, 2MSUSY].

By construction, the width of this band, i.e. the magnitude of 2 ×∆M
(Q)
h is given by

terms of O(3-loop× ln2(MSUSY/MZ)× ln(2)) or O(2-loop× ln(MSUSY/MZ)× ln(2)), where

in the latter case only 2-loop contributions beyond the O((αt+αb)
2 +(αt+αb)αs+α2

τ ) can

contribute. This should be contrasted with the magnitude of ∆M
(4×yt)
h from (3.5), which

is a measure of the leading missing/incorrect terms of O(3-loop× ln3(MSUSY/MZ)). Hence

the two uncertainty estimations are sensitive to different contributions, but particularly

∆M
(Q)
h alone would underestimate the theory uncertainty at high MSUSY.

3.2 MSSM for Xt 6= 0

3.2.1 Results of FlexibleEFTHiggs and fixed-order calculations

Now we turn to the MSSM with Xt 6= 0. The main new aspect is that the 2-loop threshold

correction for λ(MSUSY), which is not implemented in FlexibleEFTHiggs, is now non-
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Figure 6. Comparison of predictions for Mh in the MSSM using the EFT with pole mass

matching method (FlexibleEFTHiggs/MSSM), the pure EFT calculation (FlexibleSUSY/HSSUSY

and SusyHD) and the diagrammatic calculations (FlexibleSUSY/MSSM, SARAH/SPheno,

SOFTSUSY and FeynHiggs) for tan β = 5. The green and brown bands show the theory uncertainty

as estimated by FeynHiggs and SusyHD, respectively. In the left panel we fix Xt = −2MSUSY and

vary MSUSY. In the right panel we fix MSUSY = 2 TeV and vary Xt.

negligible. Hence, we can in particular discuss the theory uncertainty of FlexibleEFTHiggs

from these missing non-logarithmic 2-loop contributions. However, our analysis is intended

to be more general. It aims to be applicable also to the case of the non-minimal SUSY

models discussed in the subsequent sections, as well as in the future when the 2-loop

threshold correction is implemented in FlexibleEFTHiggs. It might also shed light on the

theory uncertainty of existing programs such as SusyHD.

In figure 6 we show Mh in the MSSM as a function of MSUSY for Xt = −2MSUSY

in the left panel, and Mh as a function of Xt for MSUSY = 2 TeV in the right panel, for

some publicly available spectrum generators. The Higgs boson mass is calculated using

FlexibleEFTHiggs (red solid line), FlexibleSUSY (green dash-dotted line), SOFTSUSY

(pink dashed-double-dotted line), SARAH/SPheno (turquoise solid line), FeynHiggs (light

green dash-dotted line) and SusyHD (brown dashed line).

The large difference between SPheno and FlexibleSUSY/SOFTSUSY in these two fig-

ures is again due to the different, incorrect ≥ 3-loop leading logs. As figure 6 shows, the

difference is increasing with MSUSY, and thus should be regarded as an estimate of part of

the theory uncertainty of SPheno and FlexibleSUSY/SOFTSUSY.

For Xt = 0, SusyHD and FlexibleEFTHiggs differ by around 1 GeV, which corre-

sponds mainly to the inclusion of higher-order terms in the matching of yt at MSUSY, to

1-loop terms suppressed by v2/M2
SUSY, which are missing in SusyHD, and to the differ-

ent definition of the running top mass at the low scale. As can be seen in figure 6, for

Xt 6= 0 the difference between SusyHD and FlexibleEFTHiggs can become larger, due to

the missing 2-loop Mh matching in FlexibleEFTHiggs. Still, in accordance with the non-

logarithmic nature of the 1-loop threshold corrections, the difference between SusyHD and

FlexibleEFTHiggs does not significantly increase with MSUSY.
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Figure 7. Uncertainty estimates for the fixed-order 2-loop calculations with FlexibleSUSY and

SARAH/SPheno and for FlexibleEFTHiggs. Left panels: fixed-order uncertainty estimates of

section 3.1.2 using renormalization scale variation, ∆M
(Q)
h (yellow) and from the different top

Yukawa definitions, ∆M
(4×yt)
h (red). Right panels: FlexibleEFTHiggs uncertainty estimations of

section 3.2.2 using renormalization scale uncertainty, ∆M
(Q)
h (yellow), matching scale variation,

∆M
(Qmatch)
h (pink) and the uncertainty from different loop orders for the top pole mass matching,

∆M
(yt 0L vs. 1L)
h (turquoise). In the top row tan β = 5 and Xt = −2MSUSY is used. In the bottom

row we set tan β = 5 and MSUSY = 2 TeV.

3.2.2 Theory uncertainty estimations

Now we turn to estimating the theory uncertainty of FlexibleEFTHiggs. As explained in

section 3.1.2 it has no “EFT uncertainty”, because power-suppressed terms are automati-

cally taken into account up to the 1-loop level. But FlexibleEFTHiggs is missing the 2-loop

threshold corrections in its current version, leading to a theory uncertainty. We propose

several methods to estimate the theory uncertainty of Mh in FlexibleEFTHiggs originating

from these missing 2-loop threshold corrections:

1. Using known MSSM higher-order results. Actually the leading MSSM 2-loop

threshold corrections for λ(MSUSY) are known and are of O(αtαs) and O(α2
t ) [44, 45]. They

have the form

∆λ
(2)
(αtαs) =

g2
3(ySM

t )4

(4π)4
× C2, ∆λ

(2)

(α2
t )

=
(ySM
t )6

(4π)4
× C3, (3.7)

where the coefficients C2 and C3 depend on Qmatch, Xt/MSUSY and tanβ in our common

SUSY mass scale scenario. If one sets Qmatch = MSUSY and varies Xt within the reasonably

large interval [−3MSUSY,+3MSUSY] and tan β within [1,∞], the coefficients vary within
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C2 ∈ [−314, 231] and C3 ∈ [−6, 489]. These minimal and maximal values for C2 and C3

can be used to estimate the maximal effect of the missing 2-loop threshold corrections to

λ(MSUSY) in FlexibleEFTHiggs by adding the terms (3.7) to the r.h.s. of eq. (2.22). The

uncertainty estimated in this way is shown as the dashed area in the panels on the r.h.s.

of figure 7. As can also be seen from figure 6, the variation of C2 and C3 does not reflect

the fact that the 2-loop threshold corrections are negligible for Xt = 0 and are large for

Xt ≈
√

6MSUSY. Therefore, the variation of C2 and C3 certainly leads to an overestimation

of the theory uncertainty of FlexibleEFTHiggs for small values of Xt. However, one can

expect that the theory uncertainty estimated in this way is reasonable for maximal mixing

scenarios.

2. Generating higher-order terms. Another option to estimate the uncertainty is to

change the calculation of λ(MSUSY) in FlexibleEFTHiggs such that changes of higher-order

are automatically induced. Here we have two quantities at our disposal, which we expect

to have a sizable impact on the value of λ(MSUSY): (i) the value of yMSSM
t , (ii) the choice

of the renormalization scale, Qmatch, at which λ is calculated.

(i) The dominant 1-loop threshold correction to λ is governed by the top Yukawa cou-

pling. Thus, changing yt by motivated 1-loop terms shifts λ by 2-loop terms. Such

motivated terms can be obtained by switching the yMSSM
t definition at the SUSY scale,

eq. (2.25), between the 1-loop level and the tree-level. The differences in yMSSM
t are

sensitive to αs, αt, Xt, and contain logarithmic as well as non-logarithmic terms. The

resulting shift in λ should therefore provide a good estimate of the magnitude of the

actual dominant 2-loop threshold corrections to λ. As an automatic way to evalu-

ate the theory uncertainty from the missing 2-loop threshold corrections we propose

to define

∆M
(yt 0L vs. 1L)
h =

∣∣∣MFlexibleEFTHiggs
h (y

MSSM,(1)
t )−MFlexibleEFTHiggs

h (y
MSSM,(0)
t )

∣∣∣ ,
(3.8)

where the two terms on the r.h.s. correspond to the FlexibleEFTHiggs prediction

using the yMSSM
t (MSUSY) definition (2.25) either at the 1-loop or at the tree-level.

The turquoise uncertainty band in the panels on the r.h.s. of figure 7 shows the

variation of Mh by ±∆M
(yt 0L vs. 1L)
h , i.e. the variation from using either the tree-level

or 1-loop top Yukawa coupling. The figures show that this estimated uncertainty is of

the same order as the uncertainty obtained from variation of C2 and C3 for most SUSY

scales. Furthermore, we find that the uncertainty estimate vanishes for Xt ≈ 0 and is

maximal for maximal mixing (Xt ≈ ±
√

6MSUSY). Thus, this estimated uncertainty

reflects the expectation that the missing 2-loop threshold corrections for λ(MSUSY)

are small for vanishing Xt and can be sizable for maximal mixing.

(ii) By variation of the matching scale Qmatch within the interval [MSUSY/2, 2MSUSY],

the size of logarithmic higher-order contributions to λ(MSUSY) can be estimated.

Varying Qmatch involves (a) RG running of all Standard Model parameters to Qmatch
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using 3-loop RGEs, (b) RG running of all MSSM parameters to Qmatch using 2-loop

RGEs and (c) calculation of λ, as well as the MSSM gauge and Yukawa couplings

and vMSSM at the scale Qmatch using eqs. (2.20)–(2.25). Thus, the matching scale

variation is sensitive to missing 2-loop renormalization scale-dependent logarithmic

contributions in the calculation of λ.

The effect of the matching scale variation is shown by the red band on the r.h.s.

of figure 7. We find that the uncertainty is nearly independent of Xt, which is in

agreement with the expectation: as can be seen from eq. (A.15), the renormalization

scale-dependent part of the 1-loop threshold correction, ∆λ(1), is not Xt-dependent.

Furthermore, the β functions of the MSSM parameters gMSSM
Y , gMSSM

2 , tanβ, vu
and vd, which determine λ at the tree-level, do not depend on Xt either [74, 75].

For this reason, the variation of Qmatch is not directly sensitive to Xt-dependent

terms. Therefore, one can expect that the variation of Qmatch alone is not sufficient

to estimate the theory uncertainty from missing 2-loop threshold corrections.5

Another source of uncertainty in FlexibleEFTHiggs comes from the missing 2-loop

contributions to Mh in the SM. As done above, one way to estimate the leading logarithmic

2-loop Mh contributions is to vary the renormalization scale Q, at which Mh is calculated,

within the interval [Mt/2, 2Mt]. This uncertainty estimate is shown in form of the yellow

band on the r.h.s. of figure 7. Comparing all uncertainty bands for FlexibleEFTHiggs, we

find that for this scenario the Higgs mass theory uncertainty is dominated by the missing

2-loop contributions to λ(MSUSY).

4 Combined MSSM uncertainty estimation

In the previous section we discussed many different ways to estimate contributions to theory

uncertainties, relevant for existing fixed-order calculations as well as for SusyHD and

FlexibleEFTHiggs. In this section we summarize and combine these various uncertainty

estimates, focusing on FlexibleEFTHiggs and the fixed-order codes (the discussion equally

applies to FlexibleSUSY, SOFTSUSY and SPheno). Figure 8 shows the Higgs pole mass

calculated with FlexibleEFTHiggs and the fixed-order FlexibleSUSY, including estimates

of theory uncertainties. The plots demonstrate that the new approach always has an

uncertainty of around 2–3 GeV and becomes more accurate for MSUSY in the few-TeV

range. We now provide the details of the uncertainty estimates.

FlexibleEFTHiggs calculation. Following the classification of the theory uncertainties

in ref. [45], FlexibleEFTHiggs has two basic sources of theory uncertainty: from missing

higher-order corrections in the matching procedure at the high scale (“high-scale uncer-

tainty”), and from missing higher-order corrections in the Higgs pole mass computation in

the EFT at the low scale (“low-scale uncertainty”).

5For ∆λ(2) this is no longer the case: the renormalization scale-dependent part of ∆λ(2) depends on Xt,

see eq. (21) in ref. [45].
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Figure 8. Predictions for Mh and combined theoretical uncertainty estimates for FlexibleSUSY

and FlexibleEFTHiggs in the MSSM for tan β = 5. The first three panels show Mh as a function

of MSUSY for Xt/MSUSY = 0, −2 and 2, respectively. The last three panels show Mh as a function

Xt for MSUSY = 1 TeV, 2 TeV and 30 TeV, respectively.

An important property of FlexibleEFTHiggs is the inclusion of all non-logarithmic

1-loop contributions to Mh due to the special choice of the matching procedure. As dis-

cussed in section 3, the resulting “EFT uncertainty” discussed in ref. [45] due to missing

power-suppressed tree-level or 1-loop terms is therefore not present in FlexibleEFTHiggs

by construction.

The high-scale uncertainty of FlexibleEFTHiggs is estimated in two ways, introduced

and discussed in detail in section 3.1.2:

1. Use of yMSSM
t (MSUSY), which has been obtained from the top pole mass matching

at the SUSY scale either at the tree-level or at the 1-loop level. We denote the

corresponding shift in the Higgs pole mass as ∆M
(yt 0L vs. 1L)
h , as defined in eq. (3.8).
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2. Variation of the matching scale Qmatch within the interval [MSUSY/2, 2MSUSY]. We

denote the corresponding Higgs pole mass uncertainty estimate by ∆M
(Qmatch)
h , see

eq. (3.6).

The low-scale uncertainty is estimated as follows:

3. Variation of the renormalization scale Q, at which the Higgs pole mass is calculated,

in the interval [Mt/2, 2Mt]. We denote the corresponding Higgs pole mass uncertainty

estimate by ∆M
(Q)
h , see eq. (3.6).

Since the two high-scale uncertainty estimates 1 and 2 are partially sensitive to the same

higher-order MSSM corrections, we combine ∆M
(yt 0L vs. 1L)
h and ∆M

(Qmatch)
h by taking

the maximum of the two for each parameter point. ∆M
(Q)
h is sensitive to logarithmic

higher-order Standard Model corrections, which is why we add it in quadrature to the

former:

∆MFlexibleEFTHiggs
h =

√(
max

{
∆M

(yt 0L vs. 1L)
h ,∆M

(Qmatch)
h

})2
+
(

∆M
(Q)
h

)2
. (4.1)

In figure 8 we find that for small values of Xt this combined uncertainty estimate is of

the order 2 GeV for FlexibleEFTHiggs. The uncertainty grows up to around 3 GeV for

maximal mixing. Since FlexibleEFTHiggs is an EFT calculation, its uncertainty does not

depend on the SUSY scale: even for large MSUSY ≈ 30 TeV the uncertainty is of the order

or below 3 GeV. Likewise, because there is no “EFT uncertainty”, the uncertainty does

not grow significantly for low MSUSY.

Fixed-order calculation. The theory uncertainty of the fixed-order calculations arises

from missing higher-order corrections. As described in section 3.1.2 we propose two mea-

sures of leading missing contributions:

1. Using the four different definitions of yMSSM
t , as described in section 3.1.2. We denote

the maximum difference between the Higgs masses obtained using these four defini-

tions as ∆M
(4×yt)
h , see eq. (3.5). This is particularly sensitive to the leading 3-loop

logarithms governed by the top Yukawa coupling.

2. Variation of the renormalization scale Q, at which the Higgs pole mass is calculated,

within the interval [MSUSY/2, 2MSUSY]. We denote the corresponding Higgs pole

mass uncertainty estimate by ∆M
(Q)
h , see eq. (3.6). This is particularly sensitive to

subleading logarithms governed by all couplings of the MSSM.

We have combined these two uncertainty estimates as

∆MFlexibleSUSY
h =

√(
∆M

(4×yt)
h

)2
+
(

∆M
(Q)
h

)2
. (4.2)

In figure 8, ∆MFlexibleSUSY
h grows logarithmically with MSUSY as expected. For small values

of Xt and SUSY scales below 1 TeV, the combined uncertainty estimate is below 1 GeV.

For larger SUSY scales and larger Xt values, the uncertainty can grow up to 9 GeV.
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We remark that further subleading effects, such as finite, non-logarithmic corrections

arising e.g. from going beyond the O((αt + αb)
2 + (αt + αb)αs + α2

τ ) approximation at

the 2-loop level, are not necessarily captured by the estimate (4.2); hence particularly at

low MSUSY, the true uncertainty of the fixed-order calculations might be larger than this

estimate.

5 Numerical results in the NMSSM

Here we consider the next-to-minimal supersymmetric standard model (NMSSM) [76, 77],

where the MSSM superfield content is extended by an extra gauge singlet superfield Ŝ.

In early calculations of higher-order corrections to NMSSM Higgs masses both effective

field theory techniques [78–83] and fixed-order calculations in the effective potential ap-

proximation [84–87] were employed. More recently DR calculations with full 1-loop cor-

rections [27, 88], 2-loop corrections of O(αs(αb + αt)) [27], and finally 2-loop corrections

involving all superpotential parameters were calculated [89]. Recent progress in a mixed

on-shell-DR scheme has also been made, with full 1-loop corrections [63, 64] and 2-loop

corrections of O(αsαt) [90].

We assume that there is a Z3 symmetry, which forbids the µ-term so that when the

new scalar singlet, S, develops a VEV and generates an effective µ-term, it solves the µ

problem of the MSSM. The superpotential is then,

WNMSSM =WMSSM(µ = 0) + λ Ŝ Ĥu · Ĥd +
1

3
κ Ŝ3. (5.1)

The soft breaking Lagrangian density is,

Lsoft
NMSSM = Lsoft

MSSM(Bµ = 0) + λAλSHuHd +
1

3
κAκS

3 +m2
S |S|2. (5.2)

The Higgs fields develop VEVs,

〈Hu〉 =
1√
2

(
0

vu

)
, 〈Hd〉 =

1√
2

(
vd
0

)
, 〈S〉 =

1√
2
vs. (5.3)

Here we implement our new method for predicting the Higgs mass, and our uncertainty

estimates for this and the FlexibleSUSY fixed-order calculation, to the NMSSM. We then

compare our FlexibleEFTHiggs calculation to the predictions using some of the publicly

available software. To keep our analysis simple we set the soft-breaking squared sfermion

mass parameters and gaugino masses to MSUSY, as defined in eqs. (2.10), tan β(MSUSY) =

5, and require that the two additional Yukawa couplings in the NMSSM are equal,

λ(MSUSY) = κ(MSUSY). (5.4)

We also require that vs is fixed so that µeff = MSUSY, i.e.

vs(MSUSY) =

√
2MSUSY

λ(MSUSY)
. (5.5)
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Figure 9. Higgs mass predictions and uncertainty estimates of section 3 applied to the fixed-order

calculations with FlexibleSUSY and to FlexibleEFTHiggs in the NMSSM. The top row shows

the Higgs mass predictions and the uncertainty estimates, the lower two rows only the uncertainty

estimates, as in figure 7. The values of the singlet Yukawa couplings are κ = λ = 0.01 or κ = λ = 0.4,

as indicated in the plots. In all panels we have fixed Xt = 0 and tan β = 5.

The new trilinears are fixed to,

Aλ(MSUSY) =
1

λ

(√
2 tanβM2

SUSY

vs(tan2 β + 1)
− κλ vs√

2

)
, Aκ(MSUSY) = −

√
2M2

SUSY

vs
, (5.6)

where all DR quantities on the right hand side are evaluated at MSUSY. The complicated

expression for Aλ ensures the mass of the MSSM-like CP-odd state, which appears in the

CP-odd mass matrix, is equal to MSUSY. The soft-breaking squared Higgs mass parameters

m2
Hu
,m2

Hd
,m2

S are fixed by the EWSB minimization conditions.

In figure 9 we compare the NMSSM predictions for the Higgs mass using the

FlexibleSUSY fixed-order calculation and the new FlexibleEFTHiggs calculation. In the
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Figure 10. Predictions for Mh and combined theoretical uncertainty estimates for FlexibleSUSY

and FlexibleEFTHiggs in the NMSSM, compared with results of other codes. We choose Xt = 0

and tanβ = 5 in all panels. The top panel shows λ = κ = 0.01 (left), which is close to the MSSM

limit and λ = κ = 0.2 (right). In both cases the situation is quite similar to the MSSM. Row 2

shows λ = κ = 0.4 (left) and λ = κ = 0.6 (right). Here we see significant deviation from the MSSM

pattern with the SPheno fixed-order calculation, which is due to the same infra-red divergences

behind the known Goldstone boson catastrophe [91–93].

top panels one can see that as in the MSSM the FlexibleSUSY prediction is remarkably

close to FlexibleEFTHiggs. However the uncertainty bands for fixed-order calculation in

the left panels of figure 9 show that nonetheless this is a coincidence and the true un-

certainty of the fixed-order calculation is much larger. Two different values of the new

singlet Yukawa couplings, λ and κ, are shown and one can see in this case increasing these

couplings reduces the Higgs mass due to increased singlet mixing, but has little impact on

the comparison between the two approaches.

The panels on the right of figure 9 show the uncertainty estimation bands for the

FlexibleEFTHiggs calculation. By comparing the plots in the middle panel one can see that

as MSUSY is increased, the fixed-order uncertainty rises rapidly while the FlexibleEFTHiggs

uncertainties have only a weak dependence on MSUSY, in line with our expectations and

in agreement with the results obtained in the MSSM.

If we combine these uncertainties in the manner described in section 4, we find that also

in the NMSSM FlexibleEFTHiggs becomes more precise than the fixed-order calculation

for values of MSUSY in the few-TeV region. However, by comparing the cases λ = κ = 0.01

and λ = κ = 0.4 (see figure 10) we find that the precise value of MSUSY at which this

happens depends on the singlet Yukawa couplings.
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We now turn to a comparison with the results of FlexibleEFTHiggs and various

public NMSSM codes: the fixed-order FlexibleSUSY calculation, NMSPEC [28] in the

NMSSMTools 4.8.2 package, the next-to-minimal extensions of SOFTSUSY 3.6.2 [25] and

an NMSSM module generated with SARAH 4.9.0 and compiled and run in SPheno 3.3.8.

We also include results from a modified version of SARAH/SPheno, which calculates the

top quark Yukawa coupling yNMSSM
t (MZ) using eq. (2.13) as is done in FlexibleSUSY

and SOFTSUSY, labeled as SARAH/SPheno FS-like. Here we omit the calculation of

NMSSMCALC [29], but one may see comparisons between NMSSMCALC calculating in

the DR scheme and the other fixed-order codes in ref. [94]. Note that the SARAH/SPheno

calculations take into account the full 2-loop corrections in the gaugeless limit and effective

potential approximation, while the other fixed-order codes include 2-loop NMSSM correc-

tions of O((αt + αb)αs) from ref. [27] but include only MSSM-like 2-loop corrections of

O((αt + αb)
2 + α2

τ ).

In figure 10 we show the Higgs mass against MSUSY for λ(MSUSY) = κ(MSUSY) ∈
{0.01, 0.2, 0.4, 0.6}. For small λ and κ the results are like in the MSSM. FlexibleEFTHiggs

agrees very well with the fixed-order FlexibleSUSY calculation. Among the fixed-order

codes, SARAH/SPheno FS-like agrees very well with SOFTSUSY and the fixed-order

FlexibleSUSY. Due to the different definition of the top Yukawa coupling, the Higgs mass

calculated with SPheno is slightly higher than all other fixed-order codes; NMSSMTools is

slightly lower. The agreement between all these codes shows in particular that the specific,

non-MSSM-like 2-loop corrections that are only included in SPheno are small.

In contrast, for larger λ = κ & 0.2 both SPheno results (both in its original form and in

the modified version with the FlexibleSUSY-like top Yukawa coupling definition) deviate

very strongly from all other results for large MSUSY & 2 TeV. This effect has not been

discussed in ref. [94], where only smaller MSUSY were considered. The discrepancy can be

traced back to singularities in the 2-loop effective potential calculation used in SPheno,6

briefly described in section 2.3 of ref. [31]. As also mentioned in this reference, these

singularities are not present in the corresponding MSSM calculations, and also not present

in the other NMSSM codes, since these codes do not take into account NMSSM-specific

2-loop corrections involving αλ and ακ. These singularities are similar to the ones related

to Goldstone bosons and discussed in refs. [91, 92], but are related to the smallness of

the physical Higgs boson mass compared to the renormalization scale. As explained in the

mentioned references, such singularities are spurious and appear only due to the truncation

of the perturbation series at fixed order. For this reason we regard the parameter region

with large λ, κ and large MSUSY as outside the range of validity of the SPheno calculation.7

The left panel of figure 11 confirms that FlexibleEFTHiggs and the fixed-order cal-

culations in FlexibleSUSY and SOFTSUSY agree remarkably well for all values of λ and

κ, indicating that these couplings do not disrupt this remarkable numerical cancellation

amongst the 3-loop logs, which yield results close to the correct ones calculated using effec-

6We gratefully acknowledge clarifying discussions with the authors of refs. [31, 32] about these discrep-

ancies and the expected range of validity of the SPheno results.
7Note: our estimation of various sources of uncertainty in the fixed-order calculation cannot account for

this kind of effect. So it is not surprising that the SPheno result lies outside this band.
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Figure 11. As figure 10, but for other parameter choices. We fix MSUSY = 10 TeV and tan β = 5

and plot Mh against i) (left panel) λ, where κ = λ, Xt = 0 and ii) (right panel) Xt where

κ = λ = 0.01.

tive field theory techniques. The same cancellation does not take place in the NMSSMTools

calculation and the deviation between this result and fixed-order FlexibleSUSY gives an

indication of the large uncertainty in these approaches. By contrast the right panel of

figure 11 shows that as with the MSSM, this cancellation depends on the value of Xt. The

results here are very similar to those of the MSSM, since we are in the MSSM limit. Interest-

ingly the fixed order calculation of NMSSMTools agrees very well with FlexibleEFTHiggs

when Xt ≈ −
√

6MSUSY.

6 Numerical results in the E6SSM

We now make a much bigger departure from minimality and consider an E6 inspired model,

with an extra U(1) gauge symmetry and matter filling complete multiplets of the funda-

mental 27 representation of E6. Specifically we consider the exceptional supersymmetric

standard model (E6SSM) [95–97] which has previously been shown to have very heavy

sfermions [97, 98] making effective field theory techniques very important for accurately

predicting the Higgs mass. In the past 2-loop expressions for the Higgs mass were ob-

tained [95] by generalising MSSM [40] and NMSSM [82] results from effective field theory

calculations that had been expanded to fixed 2-loop order. This was used in determining

the spectrum [97, 98] and showing consistency with a 125 GeV Higgs [99], though the ac-

curacy was strictly limited due to the very heavy spectra. A first attempt at improving

precision of calculations in the model was made when full 1-loop threshold corrections for

the gauge and Yukawa couplings were calculated [100], with the top Yukawa threshold cor-

rections having a significant impact on the Higgs mass. With SARAH the full 1-loop self

energy can be calculated for the first time in FlexibleSUSY and SPheno and both include

the option to use NMSSM and MSSM 2-loop corrections, though these will not be accurate

when the exotic couplings are large and must be used with care. SARAH/SPheno can

now calculate full fixed-order 2-loop order corrections.8 Finally, recently when studying

the phenomenology of an E6 inspired model [101], SusyHD was used to resum the logs

and obtain the Higgs mass after matching to the MSSM at tree level.

8Calculated in the gaugeless limit with the effective potential approximation, where p2 = 0.
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Here we investigate the impact of FlexibleEFTHiggs on the Higgs mass. We will

compare our results to the fixed-order calculations of FlexibleSUSY and also compare with

SARAH/SPheno.

The E6SSM extends the matter content of the MSSM with the following superfields:

Ĥd
α :
(
1,2,−1

2 ,−3
)
, Ĥu

α :
(
1,2, 1

2 ,−2
)
, D̂x

i :
(
3,1,−1

3 ,−2
)
, D̂x

i :
(
3,1, 1

3 ,−3
)
,

Ŝi : (1,1, 0, 5) , N̂ c
i : (1,1, 0, 0) , Ĥ ′ :

(
1,2,−1

2 , 2
)
, Ĥ ′ :

(
1,2, 1

2 ,−2
)
,

(6.1)

where we include generation indices i = 1, 2, 3 and α = 1, 2 and we specify the GE6SSM =

GSM × U(1)N gauge group quantum numbers with the quantities in brackets specifically

showing the SU(3) representation, the SU(2) representation, the U(1)Y charge without

GUT normalization and the U(1)N charge also without GUT normalization.9

The full E6 superpotential is rather complicated, but with some simplifying assump-

tions including a ZH2 symmetry to forbid flavour changing neutral currents and a ZB2
symmetry to forbid proton decay, the superpotential can be written as [97],

WE6SSM =WMSSM(µ = 0) + λŜ3ĤuĤd + λαŜ3Ĥ
u
αĤ

d
α + κiŜ3D̂

x
i D̂

x
i + µ′Ĥ ′Ĥ ′. (6.2)

The soft breaking Lagrangian then contains,

Lsoft
E6SSM = Lsoft

MSSM(Bµ = 0)−m2
Si
|Si|2 −m2

Hu
i
|Hu

i |2 −m2
Hd

i
|Hd

i |2 −m2
H′ |H ′|2 −m2

H′ |H ′|2

−m2
Di
|Di|2 −m2

Di
|Di|2 −

1

2
M ′1

¯̃B′B̃′

−
[
B′µ′H ′ ·H ′ + TλiS3H

d
i ·Hu

i + TκiS3DiDi + h.c.
]
, (6.3)

where B̃′ is the gaugino superpartner of the B′ gauge field, associated with the U(1)N
gauge symmetry, and we have defined Hd

3 := Hd and Hu
3 := Hu to write the soft trilinear

couplings more compactly. The third generation singlet S3 and the neutral components

of Hu and Hd doublets are the Higgs fields which develop the VEVs, vs/
√

2, vu/
√

2, and

vd/
√

2, respectively. In our analysis here we set the soft-breaking scalar and gaugino mass

parameters and µeff = λvs/
√

2 to MSUSY, as defined in eqs. (2.10). In addition, we fix

(m2
s)αβ(MSUSY) = δαβM

2
SUSY, (s = S,Hu, Hd)

m2
H′(MSUSY) = m2

H′(MSUSY) = M2
SUSY,

m2
Di

(MSUSY) = m2
Di

(MSUSY) = M2
SUSY, (i = 1, 2, 3)

B′µ′(MSUSY) = M2
SUSY,

M ′1(MSUSY) = MSUSY.

(6.4)

To ensure that the exotic quarks, the inert Higgsinos and the Z ′ boson all get DR masses

equal to MSUSY we set

κ(MSUSY) = λ1,2(MSUSY) = g′1(MSUSY)
5√
20

= λ(MSUSY). (6.5)

9The E6 GUT normalization for the U(1)N charges is 1√
40

, while the E6 GUT normalization for the

U(1)Y charges is the same as the usual SU(5) one,
√

3/5.
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We also require that vs is fixed so that µeff = MSUSY, i.e.

vs(MSUSY) =

√
2MSUSY

λ(MSUSY)
. (6.6)

The E6SSM-specific trilinear couplings are set to

Tλ3(MSUSY) =

√
2M2

SUSY sinβ cosβ

vs
,

Tκ1,2,3(MSUSY) = Tλ1,2(MSUSY) = 0.

(6.7)

and the soft scalar Higgs masses m2
Hu
,m2

Hd
, (m2

S)3,3 are fixed by the EWSB conditions. For

the scans we use tan β(MSUSY) = 5 and λ(MSUSY) = 0.1.

In figure 12 one can see that the fixed-order FlexibleSUSY result is quite different

from the FlexibleEFTHiggs result. In this case it seems that the cancellation between the

logarithms is spoiled, due to the substantially altered RGE running between the EW scale

and MSUSY caused by the additional colored matter which dramatically affect the RGE

trajectory of αs and then indirectly αt through the gauge coupling contributions to the

RGEs. The fact that we are shifted so far away from the cancellation is also reflected

in the enhancement of the fixed-order uncertainty estimate from extracting yt in different

ways, shown in red in the left panels. Figure 12 also shows our uncertainty estimates for

FlexibleEFTHiggs in the right panels. As with the MSSM and NMSSM we can see that

our estimation of the theory uncertainty (shown on the right) is not increasing significantly

with MSUSY, which is to be expected from the construction of this approach.

In figure 13 we show the SARAH/SPheno prediction, along with combined uncer-

tainty estimations for the fixed-order FlexibleSUSY and FlexibleEFTHiggs results. Here

the SPheno prediction is close to the FlexibleSUSY fixed-order prediction, particularly

when the top Yukawa is extracted in the same way. This should be expected since the

exotic couplings are all quite small in this scenario, making the 2-loop corrections that

are only in SPheno rather small. Therefore the main difference between the SPheno and

FlexibleEFTHiggs results appears to be due to the resummed logs, which in this case be-

come important at much lower MSUSY values. Notably at MSUSY = 1 TeV there is already

a 3 GeV gap between the FlexibleEFTHiggs prediction and the fixed-order predictions,

though the results are compatible within estimated uncertainties. It is noteworthy that

the estimated uncertainty of FlexibleEFTHiggs is in the range 2–3 GeV, like in the MSSM,

while the one of the fixed order results has significantly increased. To improve the pre-

cision further, adding 2-loop matching to the FlexibleEFTHiggs calculation will be very

important. It is also worth noting that we see no evidence of the problems due to infra-red

divergences in the E6SSM-specific SARAH/SPheno 2-loop correction here, which can be

understood due to the small values of the exotic couplings. We do not investigate varying

the exotic couplings here due to large dimensionality of the parameter space, but leave this

for dedicated studies of this model.
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Figure 12. Higgs mass predictions and uncertainty estimates of section 3 applied to the fixed-

order calculations with FlexibleSUSY and to FlexibleEFTHiggs in the E6SSM with fixed Xt = 0,

tanβ = 5 and λ = 0.1. The top row shows the Higgs mass predictions and the uncertainty estimates,

the lower row only the uncertainty estimates, as in figure 7.
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Figure 13. Predictions for Mh and combined theoretical uncertainty estimates for FlexibleSUSY

and FlexibleEFTHiggs in the E6SSM, compared with results of other codes. We fix Xt = 0,

tanβ = 5 and λ = 0.1.
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7 Numerical results in the MRSSM

As another example for a non-minimal model, we study the properties of FlexibleEFTHiggs

in the MRSSM, a minimal supersymmetric model with unbroken continuous R-

symmetry [102]. The model is motivated in a number of ways, and particularly the mass

of the SM-like Higgs boson has been shown to be compatible with experiment in a variety

of parameter scenarios in refs. [103–105]. In the following we employ the conventions of

these references. The MRSSM has the same field content as the MSSM, with the following

additional superfields:

R̂d :
(
1,2,−1

2

)
, R̂u :

(
1,2, 1

2

)
, Ŝ : (1,1, 0), T̂ : (1,3, 0), Ô : (8,1, 0). (7.1)

The superpotential of the MRSSM is given by

WMRSSM =WMSSM(µ = 0) + µdR̂d · Ĥd + µuR̂u · Ĥu

+ λdŜR̂d · Ĥd + λuŜR̂u · Ĥu + ΛdR̂d · T̂ Ĥd + ΛuR̂u · T̂ Ĥu.
(7.2)

As in the E6SSM and Z3-symmetric NMSSM, the µ term is forbidden in the MRSSM. New

µu,d terms and Yukawa-like interactions between the R̂ Higgs fields and Ĥu,d are allowed

in general. The soft-breaking trilinear couplings as well as the Majorana mass terms for

the gauginos are forbidden by the R-symmetry. The Lagrangian of the soft breaking scalar

mass terms reads

Lsoft,m2

MRSSM = Lsoft
MSSM(Bµ = Tu = Td = Te = M1 = M2 = M3 = 0)

−m2
Ru

(
|R0

u|2 + |R−u |2
)
−m2

Rd

(
|R0

d|2 + |R+
d |

2
)

−m2
S |S|2 −m2

T

(
|T 0|2 + |T+|2 + |T−|2

)
−m2

O|O|2.

(7.3)

The fermionic components of the Ŝ, T̂ and Ô fields mix with the gauginos B̃, W̃ and g̃

into Dirac fermions. The Dirac mass terms can be interpreted as being generated by the

soft breaking of a supersymmetric hidden sector model via spurions. The resulting part of

the soft-breaking MRSSM Langrangian reads

Lsoft,M
MRSSM = −MD

B (B̃S̃ −
√

2DBS)−MD
W (W̃ aT̃ a −

√
2DaWT a)

−MD
g (g̃aÕa −

√
2DagOa) + h.c.,

(7.4)

where the auxiliary D fields can be eliminated by their equations of motion, giving rise to

triple scalar interactions governed by the Dirac mass parameters. The Higgs fields Hu, Hd

and S develop VEVs as in eqs. (5.3). In addition, the electrically neutral linear combination

of the Higgs triplet develops a VEV as

〈T 0〉 =
vT√

2
. (7.5)

For the MRSSM study presented in this section, we impose the boundary conditions of

eqs. (2.10) as well as

m2
S = m2

T = m2
O = m2

Rd
= m2

Ru
= 10M2

SUSY,

MD
B = MD

W = MD
g = MSUSY,

µu = µd = 1 TeV, tanβ = 5,

Λu = Λd = −0.5, λu = λd = −0.01.

(7.6)
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Figure 14. Uncertainty estimates of section 3 for Mh, applied to the fixed-order approach with

SARAH/SPheno (left panel) and to FlexibleEFTHiggs/MRSSM (right panel) as a function of

MSUSY for the MRSSM parameter point (7.6).

at the scale MSUSY, which is inspired by BMP3′ from ref. [104]. The parameters m2
Hu

,

m2
Hd

, vS , vT are fixed at the scale MSUSY by the four electroweak symmetry breaking

conditions. In the fixed-order calculation, the MRSSM DR gauge and Yukawa couplings

as well as the Standard Model-like vacuum expectation value v =
√
v2
u + v2

d are calculated

from the known values of α
MS,SM(5)
e.m. (MZ), α

MS,SM(5)
s (MZ), GF , MW , MZ and from the

known Standard Model fermion masses at the 1-loop level at the low-energy scale MZ .10

In particular, the top Yukawa coupling is calculated as described in section 2.2, where the

2-loop SM-QCD corrections are taken into account.

In the left panel of figure 14 we show the two uncertainty estimate bands for the

fixed-order 2-loop calculation with SARAH/SPheno as described in section 3.1.2:

• The yellow uncertainty band shows ∆M
(Q)
h , i.e. the variation of Mh when the renor-

malization scale is varied, at which Mh is calculated. We find that for SPheno this

estimation of part of the uncertainty is of the order 0.5–2 GeV for most of the dis-

played MSUSY range, which is relatively small, because of the 2-loop Higgs mass

computation. In contrast, this uncertainty is between 1–3 GeV for FlexibleSUSY due

to the missing 2-loop Higgs mass contributions.

• The red band shows ∆M
(4×yt)
h , i.e. the variation of Mh in the 1-loop fixed-order

calculation with FlexibleSUSY when yMRSSM
t is calculated in the four different ways

presented in section 3.1.2. As discussed, it estimates a partial theory uncertainty of

the fixed-order 2-loop calculation from missing 3-loop terms. The red band would be a

clear underestimation of the theory uncertainty of FlexibleSUSY’s 1-loop calculation.

For both programs we find that this uncertainty estimate is dominant and can reach

up to 17 GeV for SUSY scales around 100 TeV.

10In SPheno, α
MS,SM(5)
e.m. (MZ) and the Fermi constant GF are used as input to calculate the DR gauge

couplings g1(MZ) and g2(MZ). This approach is a generalization of the one presented in [106] for the MSSM.

FlexibleSUSY, in contrast, uses the W and Z pole masses as input to calculate g1(MZ) and g2(MZ) in the

MRSSM at the 1-loop level.
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Figure 15. Predictions for Mh and combined theoretical uncertainty estimates for FlexibleSUSY

and FlexibleEFTHiggs in the MRSSM, compared with results of other codes as a function of MSUSY

for the parameter point specified in eqs. (7.6).

In the right panel of figure 14, the three uncertainty bands introduced in section 3.2 for

FlexibleEFTHiggs are shown:

• The turquoise uncertainty band shows ∆M
(yt 0L vs. 1L)
h , which has been obtained by

calculating yMRSSM
t (MSUSY) using either a tree-level or a 1-loop top quark pole mass

matching. For this scenario the resulting estimated uncertainty is below 0.5 GeV for

all values of MSUSY. This uncertainty is smaller in the MRSSM than in the MSSM for

maximal mixing, partially because yMRSSM
t (MSUSY) is smaller than yMSSM

t (MSUSY),

for example y
MRSSM,(1)
t (100 TeV) = 0.81, y

MSSM,(1)
t (100 TeV) = 0.87.

• The red band shows ∆M
(Qmatch)
h , i.e. the variation of Mh when the matching scale

Qmatch is varied within the interval [MSUSY/2, 2MSUSY]. We find that this uncertainty

is between 0.5–2.5 GeV and thus dominates in the scenario considered here.

• The yellow band shows ∆M
(Q)
h in FlexibleEFTHiggs. This estimated uncertainty is

below 2 GeV for all SUSY scales above 1 TeV, similarly to the results in the other

non-minimal SUSY models.

Based on these estimated theoretical uncertainties, we conclude that for the scenario stud-

ied here FlexibleEFTHiggs leads to a more precise prediction of Mh than the fixed-order

calculation for SUSY scales above a few TeV.

In figure 15, the lightest CP-even Higgs pole mass in the MRSSM is shown as a function

of MSUSY for the parameter point (7.6), together with the combined uncertainty estimates.

The green dash-dotted line shows the fixed-order 1-loop calculation with FlexibleSUSY.

The difference between FlexibleSUSY’s and SARAH/SPheno’s 1-loop calculations origi-

nates again from the different definition of the running top mass in the MRSSM at MZ .

The turquoise solid line shows SPheno’s fixed-order 2-loop Higgs pole mass calculation. We

find that the pure 2-loop corrections enhance the Higgs mass significantly, up to 12 GeV
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Point SPheno SPheno SPheno SPheno FlexibleSUSY FlexibleEFT-

1L 2L 1L, (2.13) 2L, (2.13) 1L Higgs 1L

BM1′ 120.4 125.6± 1.3 120.0 125.1± 1.3 120.6 122.1± 1.7

BM2′ 120.8 126.0± 1.1 120.4 125.6± 1.1 120.2 121.7± 1.8

BM3′ 121.0 125.7± 1.3 120.5 125.2± 1.3 120.4 121.9± 1.9

Table 1. Lightest CP-even Higgs pole mass in GeV for the MRSSM benchmark points BM1′–BM3′

of ref. [104]. The given uncertainty estimates have been obtained using eqs. (4.1) and (4.2).

for MSUSY = 10 TeV, compared to the 1-loop result.11 Such large 2-loop corrections in

the DR scheme have been found and studied already in [104] and have been compared to

the on-shell scheme in [107]. The turquoise dashed line again shows SPheno’s fixed-order

2-loop calculation, but using the definition (2.13) for the running top Yukawa coupling. We

find that in this scenario all fixed-order curves become linear for MSUSY & 1 TeV, which

indicates that in this scenario Mh is dominated by the leading logarithm for large SUSY

scales. The red solid line shows Mh as calculated with FlexibleEFTHiggs in the MRSSM.

Since in FlexibleEFTHiggs a 1-loop Higgs mass matching and 3-loop renormalization group

running is performed, FlexibleEFTHiggs resums the leading logarithmic contributions to

all orders. Since FlexibleEFTHiggs resums large logarithms, and since these logarithmic

contributions dominate for SUSY scales above 1 TeV in this scenario, we again expect

FlexibleEFTHiggs to give a more precise Higgs mass prediction for SUSY scales above

a few TeV.

In addition, we show in figure 15 the combined uncertainty estimates introduced in

section 4. In the MRSSM, SPheno is the only publicly available program which can perform

a (partial) 2-loop calculation. Since ∆MFlexibleSUSY
h is a partial estimation of missing 3-

loop corrections, we can reasonably draw it only around SPheno’s 2-loop curve. The

corresponding combined uncertainty for FlexibleSUSY’s 1-loop calculation is expected to

be significantly larger than the shown size of ∆MFlexibleSUSY
h and would require a separate

uncertainty estimation of the missing 2-loop contributions. As expected, ∆MFlexibleSUSY
h

grows logarithmically with MSUSY and can be as large as 10 GeV for MSUSY = 10 TeV.

In contrast, the uncertainty estimate for FlexibleEFTHiggs, ∆MFlexibleEFTHiggs
h , remains

nearly constant and around 3 GeV for MSUSY & 2 TeV.

For comparison to the study of the 2-loop Higgs pole mass contributions in ref. [104],

we show in table 1 the lightest CP-even Higgs pole mass in the MRSSM for the benchmark

points BM1′–BM3′ together with combined uncertainties from eqs. (4.1) and (4.2).12 The

first two data columns show Mh calculated with SARAH and SPheno at the 1- and 2-loop

level, respectively. These computations use the definition (2.16) to calculate yMRSSM
t (MZ).

In the third and fourth data columns Mh has been calculated with a modified version

11We see no evidence for infra-red divergences in SPheno’s 2-loop corrections for this MRSSM scenario.

However, we find numerical instabilities for MSUSY > 10 TeV, which is why we do not draw the SPheno

2-loop curve above this scale.
12The values of the lightest CP-even Higgs masses for BM1′–BM3′ presented in [104] have been obtained

with SARAH 4.5.3 and SPheno 3.3.6. In addition, the authors have modified the generated SPheno code

to predict the W mass with higher precision, as described in [103], eqs. (4.8)–(4.13).
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of SARAH/SPheno, where eq. (2.13) is used to calculate yMRSSM
t (MZ). These different

Yukawa coupling definitions amount to 0.4–0.5 GeV shift in Mh for these benchmark points.

The fifth data column shows Mh calculated with FlexibleSUSY at the 1-loop level, where

by default eq. (2.13) is used to calculate yMRSSM
t (MZ), and gMRSSM

1,2 (MZ) are calculated

using MZ and MW as input (instead of MZ and GF as done in SPheno). The difference

between the fixed-order FlexibleSUSY and SPheno 1-loop calculations using eq. (2.13)

(data columns 3 and 5) originates from the different definitions of the electroweak gauge

couplings, which affect the Higgs pole mass already at the tree-level. The last column

shows the calculation of Mh with FlexibleEFTHiggs, which resums the leading logarithms

to all orders. The result of FlexibleEFTHiggs lies between the 1- and 2-loop calculations.

8 Conclusions

We have presented FlexibleEFTHiggs, an EFT calculation of the SM-like Higgs mass in any

SUSY or non-SUSY model, that can make precise predictions for both high and low new

physics scales. A judicious choice of matching conditions, equating pole masses, ensures

that terms of O(v2/M2
SUSY) are included, which are missed by “pure EFT” calculations

such as SusyHD and FlexibleSUSY/HSSUSY. Thus large logarithms can be resummed,

while ensuring that the Higgs pole mass calculation is exact at the 1-loop level. Since this

choice of matching requires only self energies and tadpoles, it is also very easy to automate

and apply to any SUSY (or even non-SUSY) model, where the Standard Model is the valid

low energy effective field theory. This method has been implemented in FlexibleSUSY, and

we have used this to obtain results in the MSSM, NMSSM, E6SSM and MRSSM.

We discussed several ways to estimate the theoretical uncertainty of FlexibleEFTHiggs

and the fixed-order approaches of FlexibleSUSY/SOFTSUSY and SPheno. These estimates

show the expected behaviour, i.e. the fixed-order uncertainty rises with MSUSY while our

FlexibleEFTHiggs estimate does not. For example in the MSSM when MSUSY is larger than

a few TeV our combined uncertainty estimate for FlexibleEFTHiggs is smaller than our

combination of various fixed-order uncertainty estimates, and similar results are obtained in

the NMSSM, E6SSM and MRSSM. Moreover, even for SUSY scales close to the EW scale

we observe that the uncertainty of FlexibleEFTHiggs is around 2–3 GeV and is thus not

much larger than the fixed-order calculations, even for cases where the 2-loop contributions

to the Higgs mass are large.

We also compared FlexibleEFTHiggs to other spectrum generators in all four of these

models. In the MSSM we demonstrated that we understand all the differences between

FlexibleEFTHiggs and SusyHD and showed that the two codes agree well at high MSUSY

in scenarios where the 2-loop threshold corrections are negligible. In regions where the

2-loop threshold corrections are non-negligible, the codes disagree by non-logarithmic 2-

loop terms, which do not increase with MSUSY. However, in these regions the deviation of

the codes lies within our uncertainty estimate for FlexibleEFTHiggs. We also found that

the fixed-order calculations of FlexibleSUSY and SOFTSUSY agree surprisingly well with

the EFT results of FlexibleEFTHiggs, SusyHD and FlexibleSUSY/HSSUSY even at very
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large MSUSY, owing to an accidental cancellation among the 3-loop leading logarithms.

This cancellation however depends on which partial 3-loop corrections are included and

SPheno does not have the same tendency despite being accurate to the same formal 2-loop

order as FlexibleSUSY and SOFTSUSY. This cancellation also occurs in the NMSSM,

even for rather large values of the new singlet Yukawa couplings. There we see on the

other hand that the full fixed-order 2-loop calculation in SARAH/SPheno is not reliable

when both MSUSY and the exotic couplings are large, due to infrared divergences which

appear in the 2-loop functions, which are not present in the other fixed order codes as they

neglect these contributions.

In the E6SSM we studied cases where all exotic couplings are rather small. Nonetheless,

there is already a large impact of the exotic couplings on the fixed-order calculations at

large MSUSY and thus we find that there is no longer good agreement between the available

fixed-order calculations. The very different renormalization group flow in this model, where

the β-function of αs vanishes at 1-loop level, spoils the accidental cancellation between the

3-loop logarithms observed in the MSSM and NMSSM. We see that some of the sources

of uncertainty in the fixed-order calculation, specifically the uncertainty that is estimated

from different definitions of the Yukawa couplings, rises with MSUSY much more rapidly

than in the MSSM or NMSSM. Therefore, an effective field theory calculation in this model

is important presumably at lighter values of MSUSY than in the MSSM and NMSSM.

Finally, we applied FlexibleEFTHiggs to the MRSSM and compared the results with

the available 1- and 2-loop fixed-order calculations in a scenario with sizable triplet cou-

plings as well as with benchmark points from the literature. Similar to the E6SSM, we

find that the fixed-order programs no longer agree well with FlexibleEFTHiggs for SUSY

scales above a few TeV. One of the reasons is the different running of αs in the MRSSM,

which again spoils the accidental cancellation of higher-order logarithms. We also find that

the uncertainty of the fixed-order calculations, estimated by the different definitions of the

top Yukawa coupling, increases more rapidly with MSUSY than in the MSSM or NMSSM.

In contrast, the combined uncertainty estimate for FlexibleEFTHiggs is independent of

MSUSY, making the FlexibleEFTHiggs calculation more reliable already above a few TeV.

There are limitations of FlexibleEFTHiggs motivating further developments. The most

obvious is the use of 1-loop matching at the SUSY scale instead of 2-loop matching. As

a result, the implementation still misses 2-loop power-suppressed as well as non-power-

suppressed (but non-logarithmic) terms in the Higgs pole mass. This is complementary to

SARAH/SPheno, the only publicly available code that can include these 2-loop terms for

all models, which can however become unreliable for large SUSY scales due to the lack of

large higher-order logarithms. It is planned to extend FlexibleEFTHiggs by using the Higgs

pole mass matching condition at the 2-loop level for a higher accuracy. Another possible

extension of FlexibleEFTHiggs is to allow for more diverse mass hierarchies leading to

additional intermediate scales at which subsets of particles are sequentially integrated out.

In this way further types of potentially large logarithms can be resummed.
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A Equivalence of Mh-matching to ∆λ(1)

We show the equivalence of FlexibleEFTHiggs’ matching procedure, set forth in section 2.4,

to the 1-loop threshold corrections to λ at O(αt) from the MSSM presented in the literature

such as eq. (10) in [44]. For this, we apply the matching condition (2.20) at the 1-loop level

which requires that the Higgs pole mass calculated in the SM be equal to the lightest Higgs

pole mass in the MSSM. In this appendix, the matching scale Qmatch shall be abbreviated

to Q. In the Standard Model Higgs pole mass in eq. (2.21), both ΣMS,SM
h and tMS,SM

h are

evaluated at the 1-loop level. The lightest MSSM Higgs pole mass MMSSM
h is calculated at

the renormalization scale Q = MSUSY iteratively by eq. (2.17) as

(MMSSM
h )2 = (mMSSM

h )2 − ΣDR,MSSM
h + tDR,MSSM

h /v, (A.1)

where mMSSM
h is the running DR Higgs mass in the MSSM, ΣDR,MSSM

h is the DR-renormali-

zed 1-loop self-energy of the SM-like Higgs in the MSSM, and tDR,MSSM
h is the corresponding

tadpole, given by

ΣDR,MSSM
h = c2

αΣDR,MSSM
huhu

+ s2
αΣDR,MSSM

hdhd
− 2sαcαΣDR,MSSM

huhd
, (A.2)

tDR,MSSM
h

v
= c2

α

tDR,MSSM
hu

vu
+ s2

α

tDR,MSSM
hd

vd
. (A.3)

In the SM coupling limit, the Higgs mixing angle α is given by α = β− π
2 , and the SM-like

Higgs self-energy and the tadpole become

ΣDR,MSSM
h = s2

βΣDR,MSSM
huhu

+ c2
βΣDR,MSSM

hdhd
+ 2sβcβΣDR,MSSM

huhd
, (A.4)

tDR,MSSM
h

v
= s2

β

tDR,MSSM
hu

vu
+ c2

β

tDR,MSSM
hd

vd
. (A.5)
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Keeping only the O(ynt ) terms, the 1-loop corrections to the SM-like Higgs in the MSSM

is given by

−ΣDR,MSSM
h + tDR,MSSM

h /v =− ΣMS,SM
h + tMS,SM

h /v

− 3(ySM
t )2

(4π)2

{
X2
t c

2
2θB0(p2,m2

t̃1
,m2

t̃2
)

+ 2 (mt + s2θXt/2)2
[
B0(p2,m2

t̃1
,m2

t̃1
) +B0(p2,m2

t̃2
,m2

t̃2
)
]

− Xts2θ

2mt

[
A0(m2

t̃1
) +A0(m2

t̃2
)
]}

, (A.6)

where θ is the stop mixing angle as defined in eq. (19) of ref. [9] and s2θ = sin 2θ, c2θ =

cos 2θ, Xt = At − µ/ tanβ, mt = ySM
t v/

√
2. The MSSM top quark Yukawa coupling

has been replaced by the corresponding SM Yukawa coupling using the tree-level relation

yMSSM
t = ySM

t /sβ . By making use of the relation

sin 2θ =
2mtXt

m2
t̃1
−m2

t̃2

, (A.7)

and inserting eq. (A.6) into (2.20), one obtains the running Higgs mass in the Standard

Model as

(mSM
h )2 = (mMSSM

h )2 + ∆m2
h, (A.8)

with the 1-loop correction

(4π)2∆m2
h = −3X2

t (ySM
t )2

{
2(ySM

t )2v2
[
B0(p2,m2

t̃1
,m2

t̃1
)−B0(p2,m2

t̃2
,m2

t̃2
)
]

m2
t̃1
−m2

t̃2

+B0(p2,m2
t̃1
,m2

t̃2
) +

A0(m2
t̃2

)−A0(m2
t̃1

)

m2
t̃1
−m2

t̃2

}

− 3X4
t (ySM

t )4v2

(m2
t̃1
−m2

t̃2
)2

[
B0(p2,m2

t̃1
,m2

t̃1
) +B0(p2,m2

t̃2
,m2

t̃2
)− 2B0(p2,m2

t̃1
,m2

t̃2
)
]

− 3(ySM
t )4v2

[
B0(p2,m2

t̃1
,m2

t̃1
) +B0(p2,m2

t̃2
,m2

t̃2
)
]
. (A.9)

By inserting the stop masses in terms of the soft-breaking parameters and Xt,

m2
t̃1,2

= m2
t +

1

2

(
m2
Q3

+m2
U3
∓
√(

m2
Q3
−m2

U3

)2
+ 4(mtXt)2

)
, (A.10)
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evaluating the B0 functions at the momentum p2 = λv2, and expanding in powers of

v2/M2
SUSY up to O(v2/M2

SUSY), one obtains at O(y4
t )

(4π)2

(ySM
t )4v2

∆m2
h = 3 ln

m2
Q3

Q2
+ 3 ln

m2
U3

Q2
−
p2
(
m2
Q3

+m2
U3

)
2m2

Q3
m2
U3

+X2
t

[ 6 ln
m2

Q3

m2
U3

m2
Q3
−m2

U3

+
p2

m2
Q3
m2
U3

(
m2
Q3
−m2

U3

)3

(
m6
Q3
− 6m4

Q3
m2
U3

+ 6m2
Q3
m4
U3

+
3

2
m2
Q3
m2
U3

(
m2
Q3

+m2
U3

)
ln
m2
Q3

m2
U3

−m6
U3

)]

+X4
t

{
−

3

[(
m2
Q3

+m2
U3

)
ln

m2
Q3

m2
U3

− 2m2
Q3

+ 2m2
U3

]
(
m2
Q3
−m2

U3

)3

+
p2

2m2
Q3
m2
U3

(
m2
Q3
−m2

U3

)5

[
−m8

Q3
+ 17m6

Q3
m2
U3
− 17m2

Q3
m6
U3

+ 3m2
Q3
m2
U3

(
m4
Q3

+ 8m2
Q3
m2
U3

+m4
U3

)
ln

(
m2
U3

m2
Q3

)
+m8

U3

]}
. (A.11)

Using the relations

(mSM
h )2 = λv2, (A.12)

(mMSSM
h )2 =

1

4
(g2
Y + g2

2)(v2
u + v2

d)c
2
2β , (A.13)

and exploiting that ∆m2
h = v2∆λ at the 1-loop O(y4

t ), one obtains from eq. (A.8) in the

limit p2 → 0

λ =
1

4
(g2
Y + g2

2)c2
2β + ∆λ(1) (A.14)

with

(4π)2∆λ(1) = 3(ySM
t )4

(
ln
m2
Q3

Q2
+ ln

m2
U3

Q2

)
+

6(ySM
t )4X2

t ln
m2

Q3

m2
U3

m2
Q3
−m2

U3

−
3(ySM

t )4X4
t

[(
m2
Q3

+m2
U3

)
ln

m2
Q3

m2
U3

− 2m2
Q3

+ 2m2
U3

]
(
m2
Q3
−m2

U3

)3 , (A.15)

which is equivalent to the O(y4
t ) terms of eq. (10) of ref. [44]. We conclude that in the

MSSM FlexibleEFTHiggs’ approach is equivalent to the 1-loop threshold corrections to λ

from ref. [44] in the SM coupling limit α = β − π
2 and p2 �M2

SUSY.
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B Leading logarithms in the EFT, FlexibleSUSY, and SPheno-

calculations

Here we derive the leading L-loop logarithms of the form tS ≡ ln(MSUSY/Mt) governed by

the two most important couplings αs = g2
3/4π and yt, which are contained in the MSSM

Higgs mass calculations in FlexibleSUSY and SPheno. We compare them to the correct

leading logarithms, which are contained in the EFT calculation. For simplicity we work

in the approximation of large tan β and identify sin β = 1, vu = v in the definition of the

MSSM top Yukawa coupling. In the present section, we use the following notation for the

required running couplings in the SM and MSSM at scale t ≡ ln(Q/Mt):

SM: g3(t), yt(t), v(t), λ(t); (B.1)

MSSM: g̃3(t), ỹt(t), ṽ(t). (B.2)

As an abbreviation, we write the quantities at the top-mass scale and the SUSY scale as

SM, low: ĝ3 = g3(0), ŷt = yt(0), v̂ = v(0), λ̂ = λ(0); (B.3)

SM, high: g3 = g3(tS), yt = yt(tS), v = v(tS), λ = λ(tS); (B.4)

MSSM, low: ḡ3 = g̃3(0), ȳt = ỹt(0), v̄ = ṽ(0); (B.5)

MSSM, high: g̃3 = g̃3(tS), ỹt = ỹt(tS), ṽ = ṽ(tS). (B.6)

The relevant β functions are the 1-loop β functions for these parameters, βX(t) ≡ dX(t)
dt .

The relevant terms can be written as

βg3(t) = βg3,g23g
3
3(t), βyt(t) = yt(t)

(
βyt,g23g

2
3(t) + βyt,y2t y

2
t (t)

)
,

βv(t) = βv,y2t v(t)y2
t (t), βλ(t) = βλ,y4t y

4
t (t) + βλ,y2t λy

2
t (t)λ(t) + βλ,λ2λ

2(t) .
(B.7)

The values of the appearing coefficients depend on the model. In the SM, they read

βg3,g23 = −7κL, βyt,g23 = −8κL, βyt,y2t =
9

2
κL, βv,y2t = −3κL,

βλ,y4t = −12κL, βλ,y2t λ = 12κL, βλ,λ2 = 12κL.
(B.8)

Here we use the common loop factor constant κL = 1/(16π2). In the MSSM, we denote

the corresponding coefficients with a tilde; their values are

β̃g3,g23 = −3κL, β̃yt,g23 = −16

3
κL, β̃yt,y2t = 6κL, β̃v,y2t = −3κL. (B.9)
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As is well known, the leading logarithms can be obtained in the EFT approach by inte-

grating the RGEs in the SM. In a first step this yields the running couplings

g3(t) =

√
1

1
ĝ23
− 2βg3,g23 t

= ĝ3 − 7tκLĝ
3
3 +

147

2
t2κ2

Lĝ
5
3 −

1715

2
t3κ3

Lĝ
7
3 + . . . , (B.10)

yt(t) = ŷt + t
(
βyt,g23 ĝ

2
3 ŷt + βyt,y2t ŷ

3
t

)
+

1

2
t2ŷt

(
2βg3,g23βyt,g23 ĝ

4
3 + β2

yt,g23
ĝ4

3 + 4βyt,g23βyt,y2t ĝ
2
3 ŷ

2
t + 3β2

yt,y2t
ŷ4
t

)
+ . . . (B.11)

= ŷt + tκL

(
9ŷ3
t

2
− 8ĝ2

3 ŷt

)
+ t2κ2

Lŷt

(
88ĝ4

3 − 72ĝ2
3 ŷ

2
t +

243

8
ŷ4
t

)
+ . . . , (B.12)

v(t) = v̂

(
1 + βv,y2t tŷ

2
t + t2

(
β2
v,y2t

ŷ4
t

2
+ βv,y2t βyt,g23 ĝ

2
3 ŷ

2
t + βv,y2t βyt,y2t ŷ

4
t

))
(B.13)

= v̂
(
1− 3tκLŷ

2
t + t2κ2

L

(
24ĝ2

3 ŷ
2
t − 9ŷ4

t

))
. (B.14)

As indicated, the running couplings on the left-hand side are taken at scale t, while the

couplings without argument on the right-hand side are running couplings at the fixed low

scale t = 0, i.e. at Q = Mt. In a second step these results can be used to integrate the

RGE for λ, to express λ̂ as a function of λ(t),

λ̂ = λ(t)− βλ,y4t tŷ
4
t +

1

2
βλ,y4t t

2ŷ4
t

(
(βλ,y2t λ − 4βyt,y2t )ŷ2

t − 4βyt,g23 ĝ
2
3

)
− 1

6
βλ,y4t t

3ŷ4
t

[
(8βg3,g23βyt,g23 + 16β2

yt,g23
)ĝ4

3 − 10βyt,g23 (βλ,y2t λ − 4βyt,y2t )ĝ2
3 ŷ

2
t

+
(

2βλ,λ2βλ,y4t + β2
λ,y2t λ

− 10βλ,y2t λβyt,y2t + 24β2
yt,y2t

)
ŷ4
t

]
(B.15)

In this equation, terms of higher-order in λ(t) have been neglected. In leading-logarithmic

approximation, the high-scale coupling λ(tS) is given by matching the SM to the tree-level

MSSM Higgs boson mass m2
h at the SUSY scale. The EFT prediction for the Higgs boson

mass is then, in this approximation,

M2
h = v̂2λ̂ (B.16)

= m2
h + v̂2ŷ4

t

[
12tSκL − 12t2Sκ

2
L

(
16ĝ2

3 − 3ŷ2
t

)
+ 4t3Sκ

3
L

(
736ĝ4

3 − 240ĝ2
3 ŷ

2
t − 99ŷ4

t

)
+ . . .

]
. (B.17)

The previous equations agree with eq. (11) from ref. [60] and eq. (A.17) from ref. [42].

Now we compare these results with the leading logarithms contained in the “fixed-

order” calculations. The most important difference is the definition of the Yukawa coupling.

In the original FlexibleSUSY (and SOFTSUSY) or SPheno, the low-scale MSSM Yukawa

coupling is defined by eq. (2.13) or eq. (2.16), respectively. These equations contain leading

logarithms within the self energy parts Σ̃
(1),L,R
t , and the coefficients of these logarithms is

given by the difference of the SM and MSSM β functions for the Yukawa coupling. Hence,
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to the leading logarithmic level, these equations imply

ȳFlexibleSUSY
t = ŷt

[
1 +

(
(βyt,g23 − β̃yt,g23 )ḡ2

3 + (βyt,y2t − β̃yt,y2t )(ȳFlexibleSUSY
t )2

)
tS

]
, (B.18)

ȳSPheno
t =

ŷt

1−
(

(βyt,g23 − β̃yt,g23 )ḡ2
3 − (βyt,y2t − β̃yt,y2t )(ȳSPheno

t )2
)
tS
, (B.19)

which has to be iterated to find the solutions for the low-scale Yukawa couplings in terms

of ŷt. The strong gauge coupling is determined by low-scale matching to the SM, but the

matching condition is such that, at the leading logarithmic level, we obtain g̃3 = g3, and

ḡ2
3 =

[
1

ĝ2
3

− 2(βg3,g23 − β̃g3,g23 )tS

]−1

. (B.20)

The low-scale Yukawa couplings are then run up to the SUSY scale with the MSSM β func-

tion. For the running eq. (B.11) applies, with the replacement of SM by MSSM quantities.

Plugging in the values of all coefficients, the final result for the SUSY-scale MSSM Yukawa

couplings used in the fixed-order calculations is therefore

ỹFlexibleSUSY
t = ŷt + tSκL

(
9ŷ3
t

2
− 8ĝ2

3 ŷt

)
+ t2Sκ

2
L

(
976ĝ4

3 ŷt
9

− 96ĝ2
3 ŷ

3
t +

63ŷ5
t

2

)
+ . . . ,

(B.21)

ỹSPheno
t = ŷt + tSκL

(
9ŷ3
t

2
− 8ĝ2

3 ŷt

)
+ t2Sκ

2
L

(
1040ĝ4

3 ŷt
9

− 88ĝ2
3 ŷ

3
t +

135ŷ5
t

4

)
+ . . . ,

(B.22)

which agrees at the 1-loop level with the EFT result but disagrees at the 2-loop level. The

fixed-order calculations of the MSSM Higgs boson mass then plug the SUSY-scale MSSM

parameters into the DR-Higgs self energy. At the leading logarithmic level, this gives

M2
h = m2

h + ṽ2ỹ4
t

(
tSc1 + t2S(c21g̃

2
3 + c22ỹ

2
t )
)
, (B.23)

c1 = −βλ,y4t = 12κL, (B.24)

c21 = 2βλ,y4t βyt,g23 = 192κ2
L, (B.25)

c22 = βλ,y4t

(
βλ,y2t λ/2 + 2βv,y2t + 2βyt,y2t

)
= −108κ2

L, (B.26)

where mh is the running tree-level Higgs mass and where the values of the coefficients

c follow from the agreement of the 2-loop leading logarithms with the correct EFT re-

sult. Hence, plugging in number, we obtain the leading logarithms up to the 3-loop level,

contained in the fixed-order calculations,

(M2
h)FlexibleSUSY = m2

h + v̂2ŷ4
t

[
12tSκL − 12t2Sκ

2
L

(
16ĝ2

3 − 3ŷ2
t

)
+ 4t3Sκ

3
L

(
736

3
ĝ4

3 + 144ĝ2
3 ŷ

2
t −

351

2
ŷ4
t

)]
, (B.27)

(M2
h)SPheno = m2

h + v̂2ŷ4
t

[
12tSκL − 12t2Sκ

2
L

(
16ĝ2

3 − 3ŷ2
t

)
+ 4t3Sκ

3
L

(
992

3
ĝ4

3 + 240ĝ2
3 ŷ

2
t −

297

2
ŷ4
t

)]
. (B.28)
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So far, all results are expressed in terms of low-scale SM couplings, which are connected

to low-energy observables without large logarithms. It is useful to record here the equivalent

results, in which these low-scale SM couplings are replaced by SUSY-scale running SM

parameters, which are connected to the fundamental high-scale SUSY parameters without

large logarithms. For this purpose, eqs. (B.10), (B.12) can be inverted. The results for the

high-scale Yukawa couplings used in FlexibleSUSY and SPheno are then

ỹFlexibleSUSY
t = yt + t2Sκ

2
L

(
184

9
g4

3yt − 24g2
3y

3
t +

9

8
y5
t

)
+ . . . , (B.29)

ỹSPheno
t = yt + t2Sκ

2
L

(
248

9
g4

3yt − 16g2
3y

3
t +

27

8
y5
t

)
+ . . . , (B.30)

and the results for the Higgs boson mass in the EFT, FlexibleSUSY, and SPheno are

(M2
h)EFT = m2

h + v2y4
t

[
12tSκL + 12t2Sκ

2
L

(
16g2

3 − 9y2
t

)
+ 4t3Sκ

3
L

(
736g4

3 − 672g2
3y

2
t + 90y4

t

)
+ . . .

]
, (B.31)

(M2
h)FlexibleSUSY = m2

h + v2y4
t

[
12tSκL + 12t2Sκ

2
L

(
16g2

3 − 9y2
t

)
+ 4t3Sκ

3
L

(
736g4

3

3
− 288g2

3y
2
t +

27y4
t

2

)
+ . . .

]
, (B.32)

(M2
h)SPheno = m2

h + v2y4
t

[
12tSκL + 12t2Sκ

2
L

(
16g2

3 − 9y2
t

)
+ 4t3Sκ

3
L

(
992g4

3

3
− 192g2

3y
2
t +

81y4
t

2

)
+ . . .

]
. (B.33)

The EFT result here agrees with ref. [42], eq. (A.22).

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model

Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1

[arXiv:1207.7214] [INSPIRE].

[2] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS

experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

[3] P. Draper and H. Rzehak, A Review of Higgs Mass Calculations in Supersymmetric Models,

Phys. Rept. 619 (2016) 1 [arXiv:1601.01890] [INSPIRE].

[4] S. Heinemeyer, W. Hollik and G. Weiglein, QCD corrections to the masses of the neutral

CP-even Higgs bosons in the MSSM, Phys. Rev. D 58 (1998) 091701 [hep-ph/9803277]

[INSPIRE].

[5] S. Heinemeyer, W. Hollik and G. Weiglein, Precise prediction for the mass of the lightest

Higgs boson in the MSSM, Phys. Lett. B 440 (1998) 296 [hep-ph/9807423] [INSPIRE].

– 44 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.physletb.2012.08.020
https://arxiv.org/abs/1207.7214
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7214
http://dx.doi.org/10.1016/j.physletb.2012.08.021
https://arxiv.org/abs/1207.7235
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7235
http://dx.doi.org/10.1016/j.physrep.2016.01.001
https://arxiv.org/abs/1601.01890
http://inspirehep.net/search?p=find+EPRINT+arXiv:1601.01890
http://dx.doi.org/10.1103/PhysRevD.58.091701
https://arxiv.org/abs/hep-ph/9803277
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9803277
http://dx.doi.org/10.1016/S0370-2693(98)01116-2
https://arxiv.org/abs/hep-ph/9807423
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9807423


J
H
E
P
0
1
(
2
0
1
7
)
0
7
9

[6] S. Heinemeyer, W. Hollik and G. Weiglein, The Masses of the neutral CP-even Higgs bosons

in the MSSM: Accurate analysis at the two loop level, Eur. Phys. J. C 9 (1999) 343

[hep-ph/9812472] [INSPIRE].

[7] R.-J. Zhang, Two loop effective potential calculation of the lightest CP even Higgs boson

mass in the MSSM, Phys. Lett. B 447 (1999) 89 [hep-ph/9808299] [INSPIRE].

[8] J.R. Espinosa and R.-J. Zhang, MSSM lightest CP even Higgs boson mass to O(αsαt): The

Effective potential approach, JHEP 03 (2000) 026 [hep-ph/9912236] [INSPIRE].

[9] G. Degrassi, P. Slavich and F. Zwirner, On the neutral Higgs boson masses in the MSSM

for arbitrary stop mixing, Nucl. Phys. B 611 (2001) 403 [hep-ph/0105096] [INSPIRE].

[10] J.R. Espinosa and R.-J. Zhang, Complete two loop dominant corrections to the mass of the

lightest CP even Higgs boson in the minimal supersymmetric standard model, Nucl. Phys. B

586 (2000) 3 [hep-ph/0003246] [INSPIRE].

[11] A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the O(α2
t ) two loop corrections to

the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 631 (2002) 195

[hep-ph/0112177] [INSPIRE].

[12] A. Dedes and P. Slavich, Two loop corrections to radiative electroweak symmetry breaking in

the MSSM, Nucl. Phys. B 657 (2003) 333 [hep-ph/0212132] [INSPIRE].

[13] A. Brignole, G. Degrassi, P. Slavich and F. Zwirner, On the two loop sbottom corrections to

the neutral Higgs boson masses in the MSSM, Nucl. Phys. B 643 (2002) 79

[hep-ph/0206101] [INSPIRE].

[14] A. Dedes, G. Degrassi and P. Slavich, On the two loop Yukawa corrections to the MSSM

Higgs boson masses at large tanβ, Nucl. Phys. B 672 (2003) 144 [hep-ph/0305127]

[INSPIRE].

[15] S. Heinemeyer, W. Hollik, H. Rzehak and G. Weiglein, High-precision predictions for the

MSSM Higgs sector at O(αbαs), Eur. Phys. J. C 39 (2005) 465 [hep-ph/0411114]

[INSPIRE].

[16] S.P. Martin, Complete two loop effective potential approximation to the lightest Higgs scalar

boson mass in supersymmetry, Phys. Rev. D 67 (2003) 095012 [hep-ph/0211366] [INSPIRE].

[17] R.V. Harlander, P. Kant, L. Mihaila and M. Steinhauser, Higgs boson mass in

supersymmetry to three loops, Phys. Rev. Lett. 100 (2008) 191602 [arXiv:0803.0672]

[INSPIRE].

[18] P. Kant, R.V. Harlander, L. Mihaila and M. Steinhauser, Light MSSM Higgs boson mass to

three-loop accuracy, JHEP 08 (2010) 104 [arXiv:1005.5709] [INSPIRE].

[19] S. Borowka, T. Hahn, S. Heinemeyer, G. Heinrich and W. Hollik, Momentum-dependent

two-loop QCD corrections to the neutral Higgs-boson masses in the MSSM, Eur. Phys. J. C

74 (2014) 2994 [arXiv:1404.7074] [INSPIRE].

[20] S. Borowka, T. Hahn, S. Heinemeyer, G. Heinrich and W. Hollik, Renormalization scheme

dependence of the two-loop QCD corrections to the neutral Higgs-boson masses in the

MSSM, Eur. Phys. J. C 75 (2015) 424 [arXiv:1505.03133] [INSPIRE].

[21] G. Degrassi, S. Di Vita and P. Slavich, Two-loop QCD corrections to the MSSM Higgs

masses beyond the effective-potential approximation, Eur. Phys. J. C 75 (2015) 61

[arXiv:1410.3432] [INSPIRE].

– 45 –

http://dx.doi.org/10.1007/s100529900006
https://arxiv.org/abs/hep-ph/9812472
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9812472
http://dx.doi.org/10.1016/S0370-2693(98)01575-5
https://arxiv.org/abs/hep-ph/9808299
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9808299
http://dx.doi.org/10.1088/1126-6708/2000/03/026
https://arxiv.org/abs/hep-ph/9912236
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9912236
http://dx.doi.org/10.1016/S0550-3213(01)00343-1
https://arxiv.org/abs/hep-ph/0105096
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0105096
http://dx.doi.org/10.1016/S0550-3213(00)00421-1
http://dx.doi.org/10.1016/S0550-3213(00)00421-1
https://arxiv.org/abs/hep-ph/0003246
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0003246
http://dx.doi.org/10.1016/S0550-3213(02)00184-0
https://arxiv.org/abs/hep-ph/0112177
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0112177
http://dx.doi.org/10.1016/S0550-3213(03)00173-1
https://arxiv.org/abs/hep-ph/0212132
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0212132
http://dx.doi.org/10.1016/S0550-3213(02)00748-4
https://arxiv.org/abs/hep-ph/0206101
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0206101
http://dx.doi.org/10.1016/j.nuclphysb.2003.08.033
https://arxiv.org/abs/hep-ph/0305127
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0305127
http://dx.doi.org/10.1140/epjc/s2005-02112-6
https://arxiv.org/abs/hep-ph/0411114
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0411114
http://dx.doi.org/10.1103/PhysRevD.67.095012
https://arxiv.org/abs/hep-ph/0211366
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0211366
http://dx.doi.org/10.1103/PhysRevLett.101.039901
https://arxiv.org/abs/0803.0672
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.0672
http://dx.doi.org/10.1007/JHEP08(2010)104
https://arxiv.org/abs/1005.5709
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.5709
http://dx.doi.org/10.1140/epjc/s10052-014-2994-0
http://dx.doi.org/10.1140/epjc/s10052-014-2994-0
https://arxiv.org/abs/1404.7074
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.7074
http://dx.doi.org/10.1140/epjc/s10052-015-3648-6
https://arxiv.org/abs/1505.03133
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.03133
http://dx.doi.org/10.1140/epjc/s10052-015-3280-5
https://arxiv.org/abs/1410.3432
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.3432


J
H
E
P
0
1
(
2
0
1
7
)
0
7
9

[22] S. Heinemeyer, W. Hollik and G. Weiglein, FeynHiggs: A Program for the calculation of the

masses of the neutral CP even Higgs bosons in the MSSM, Comput. Phys. Commun. 124

(2000) 76 [hep-ph/9812320] [INSPIRE].

[23] B.C. Allanach, SOFTSUSY: a program for calculating supersymmetric spectra, Comput.

Phys. Commun. 143 (2002) 305 [hep-ph/0104145] [INSPIRE].

[24] A. Djouadi, J.-L. Kneur and G. Moultaka, SuSpect: A Fortran code for the supersymmetric

and Higgs particle spectrum in the MSSM, Comput. Phys. Commun. 176 (2007) 426

[hep-ph/0211331] [INSPIRE].

[25] B.C. Allanach, P. Athron, L.C. Tunstall, A. Voigt and A.G. Williams, Next-to-Minimal

SOFTSUSY, Comput. Phys. Commun. 185 (2014) 2322 [arXiv:1311.7659] [INSPIRE].
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