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1 Introduction

Scattering amplitudes have many theoretical and phenomenological applications in (non-)

abelian gauge theories and gravity, whilst also revealing how different theories are related.

When studying amplitudes, it can be useful to consider particular kinematic limits of scat-

tering processes, which allow all-order insights into the structure of perturbative quantum

field theory. One such limit is the Regge limit, in which the centre of mass energy of the

scattering far exceeds the momentum transfer. In nonabelian gauge theories, it is known

that propagators for exchanged gauge bosons become dressed by a power-like growth in

the centre of mass energy, a phenomenon known as Reggeisation (see e.g. [1]), leading to

compact all-order forms for amplitudes. More recently, the Regge limit has been studied

using Wilson lines [2–6], known factorisation properties of soft and collinear gluons [7–10],

and effective field theory [11]. Reggeisation has also been examined in (super)-gravity

(see e.g. [5] and references therein), where it is found to be kinematically subleading with

respect to other contributions at high energy.

There are a number of motivations for studying the Regge limit in different theories.

In QCD, the physics of Reggeisation (including non-linear corrections) has potential ap-

plications in parton physics (see e.g. [12–15]), multijet processes [16–28], and heavy ion

physics [29]. In gravity, the Regge limit can be used to probe scattering at transplanckian
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energies [30–36], allowing one to address crucial conceptual issues of quantum gravity, such

as the impact of non-renormalisability, the existence of a well-defined S-matrix, black hole

physics [37–41], and connections to string theory [42–45]. As well as studying each type

of field theory individually, there has been much recent interest in relating (non)-abelian

gauge and gravity theories, motivated in part by the conjectured double copy underlying

their respective scattering amplitudes [46–48]. The Regge limit (as well as more general

soft limits) can be used to provide all-order insights into this correspondence [5, 49–52], as

well as showing how qualitatively different physics in the two types of theory are related.

To this end, it is useful to develop languages and techniques for gauge theories and gravity,

that make their common traits particularly clear.

An elegant picture for describing the Regge limit of 2→ 2 scattering has been provided

in refs. [2, 3]. When the momentum transfer is much less than the centre of mass energy, the

incoming particles barely glance off each other, and thus follow approximately straight-line

(classical) trajectories. They can thus be described by Wilson line operators, which take

into account the gauge-covariant phase suffered by each particle as it exchanges soft (low-

momentum) gauge bosons with the other. References [2, 3] considered 4-point scattering

in QCD, and showed that known properties of the Regge limit (namely the one-loop Regge

trajectory, and infrared singular part of the two-loop trajectory) can indeed be obtained

from vacuum expectation values of Wilson line operators separated by a transverse distance

|~z|, representing the impact parameter. In ref. [5] this setup was generalised to gravity, using

appropriate gravitational Wilson line operators, introduced and studied in refs. [53–55]

(see also ref. [56]). Existing results regarding the Regge limits of QCD and gravity were

rederived in such a way as to make the relationship between them especially clear, and the

same method also provided a proof of graviton Reggeisation in 2→ n processes.

The aim of this paper is to extend the results of ref. [5] by systematically including all

corrections that are suppressed by a single power of momentum transfer. Given the soft

nature of the exchanged gauge bosons in the leading Regge limit (equivalently, the eikonal

approximation for the incoming and outgoing particles), such corrections are referred to as

next-to-soft, or next-to-eikonal. There are a number of motivations for doing this. Firstly,

there has recently been a large amount of attention to amplitudes dressed by additional real

emissions up to next-to-soft level (see e.g. [57–78]), as well as previous work from a more

phenomenological point of view [79–86]. The present analysis provides an interesting testing

ground for these methods and results. Secondly, corrections to the eikonal approximation in

transplanckian scattering may have a role to play in furthering our knowledge of quantum

gravity (e.g. regarding issues of black hole production [34, 36]). Thirdly, by calculating

such corrections both in QCD and gravity, one may further probe the relationship between

these two theories.

Next-to-soft corrections to the Regge limit in gravity have been previously considered

in detail for massless particles [32–35], and also for the case of one particle asymptotically

massive, and the other massless [87, 88]. Here we will consider a general situation in which

both incoming particles have (possibly different) masses. The advantage of the massive sit-

uation relative to the completely massless case is that corrections to the eikonal approxima-

tion are enhanced, in that they are suppressed by fewer powers of the momentum transfer.

The kinematic limits adopted in the previous literature will emerge as special cases.
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Figure 1. Particle labels used throughout for 2→ 2 scattering.

The structure of our paper is as follows. In the following section, we review the analysis

of ref. [5] for obtaining the Regge limit from Wilson lines in position space. In section 3,

we summarise the structure of next-to-soft corrections, before calculating these in both

QCD and gravity. In section 4 we discuss and interpret our results, before concluding in

section 5.

2 Eikonal analysis

Throughout, we consider 2 → 2 scattering with momenta defined as in figure 1, where we

take m3 = m1, m4 = m2. One may then define the Mandelstam invariants

s = (p1 + p2)
2; t = (p1 − p3)2; u = (p1 − p4)2, (2.1)

satisfying the momentum conservation constraint

s+ t+ u = 2(m2
1 +m2

2). (2.2)

When nonzero masses are present, there is a choice regarding how to define the Regge

limit. Following refs. [2, 3], we consider the ordering

s� m2
i � −t. (2.3)

When the centre of mass energy dominates the momentum transfer, particles (1,2) and

(3,4) become spacelike collinear to a first approximation. As discussed in the introduction

and in detail in refs. [2, 3, 5], one may then represent the incoming and outgoing particles as

two Wilson line operators separated by a transverse vector ~z, where the latter constitutes

the impact factor. This setup is depicted in figure 2, and results in the QCD amplitude

A = AE ALO, (2.4)

where ALO is the leading order (Born) amplitude taken in the Regge limit, which becomes

dressed by the eikonal amplitude (in position space)

AE = 〈0 |Φ(p1, 0)Φ(p2, z)| 0〉 . (2.5)

Here

Φ(p, x) = P exp

[
−igsTapµ

∫
dsAaµ(sp+ x)

]
(2.6)
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Figure 2. The Regge limit as two Wilson lines separated by a transverse distance ~z.
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Figure 3. One-loop diagrams entering the calculation of eikonal amplitude AE .

is a Wilson line operator describing the emission of soft gluons from a straightline contour

of momentum pµ, and a constant offset xµ. Equation (2.5) is then a vacuum expectation

value of two Wilson lines, the second of which is displaced with respect to the first by the

constant 4-vector z, which is taken to have non-zero components only in the transverse

direction to the incoming particles. That is, one has1

z2 = −~z2. (2.7)

Were the impact parameter to be zero, eq. (2.5) would correspond to the Regge limit of

the soft function describing IR singularities in a scattering amplitude. As is well known,

this soft function is exactly zero in dimensional regularisation, due to the cancellation of

UV and IR singularities (see e.g. [89] for a review). The nonzero impact parameter acts as

a UV regulator, so that any remaining singularities are manifestly of infrared origin.

One-loop diagrams2 for the eikonal amplitude AE are shown in figure 3. Diagrams

(a)–(d) are regulated by the impact parameter, whereas diagrams (e)–(f) are rendered zero

by the presence of an unregulated UV pole, which cancels the IR behaviour. One may

impose a cutoff to regulate the UV region which, up to logs of the momentum scale choice,

can be chosen to coincide with the same distance scale |~z| that regulates the remaining

1We use the metric (+,–,–,–) throughout.
2As in reference [5], we do not include external self-energies, which lead to constant pieces irrelevant for

the following discussion.
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graphs. Upon making this choice, the graphs of figure 3 evaluate (in d = 4−2ε dimensions,

and taking the leading behaviour in s) to [5]3

A(1)
E =

g2s Γ(1− ε)
4π2−ε

(µ2~z2)ε

2ε

{
iπ [T1 ·T2 + T3 ·T4]

+ log

(
s

m1m2

)
[−T1 ·T2 −T3 ·T4 + T1 ·T4 + T2 ·T3]

+T1 ·T3 log

(
− t

m2
1

)
+ T2 ·T4 log

(
− t

m2
2

)}
, (2.8)

where Ti denotes a colour generator on line i, following the notation of refs. [90, 91], and

satisfying the colour conservation condition

T1 + T2 = T3 + T4. (2.9)

Here the log(−t/m2
i ) terms in eq. (2.8) originate from diagrams (e)–(f) in figure 3: had

we chosen not to regulate the UV poles in these diagrams, the amplitude would contain

logarithms of s/(m1m2), rather than the expected combination s/(−t) in the limit of

eq. (2.3) (see e.g. ref [1]). That this combination indeed results upon keeping the diagrams

involving only a single particle leg can be seen by defining the quadratic colour operators

T2
s = (T1 + T2)

2 = (T3 + T4)
2,

T2
t = (T1 −T3)

2 = (T2 −T4)
2,

T2
u = (T1 −T4)

2 = (T2 −T3)
2, (2.10)

which, from eq. (2.9), satisfy

T2
s + T2

t + T2
u = 2C1 + 2C2, T2

1 = T2
3 = C1, T2

2 = T2
4 = C2. (2.11)

Equation (2.8) then becomes

A(1)
E =

g2s Γ(1− ε)
4π2−ε

(µ2~z2)ε

2ε

{
iπT2

s + T2
t log

(
s

−t

)
− iπ(C1 + C2)

+ C1 log

(
−t
m2

1

)
+ C2 log

(
−t
m2

2

)}
, (2.12)

thus one indeed sees that the colour non-diagonal terms involve a logarithm of s/(−t).
Given that vacuum expectation values of Wilson line operators exponentiate (see e.g. [89]

for a review), one may immediately replace eq. (2.12) with

AE = exp

{
g2s Γ(1− ε)

4π2−ε
(µ2~z2)ε

2ε

[
iπT2

s + T2
t log

(
s

−t

)
− iπ(C1 + C2)

+C1 log

(
−t
m2

1

)
+ C2 log

(
−t
m2

2

)]}
. (2.13)

3Reference [5] treats the case of m1 = m2 ≡ m only. Here we modify the result slightly to encompass

the unequal mass case.
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As discussed in refs. [5, 7, 8], the term in T2
t acts as a Reggeisation operator on the Born

amplitude in eq. (2.4), dressing the exchanged t-channel gluon by a power-like growth

in s/(−t), where the associated power involves the quadratic Casimir of the exchanged

particle. The first term in the exponent in eq. (2.13) is a pure phase, and is associated

with the formation of bound states in the s-channel [92, 93]. However, it dominates only

if the quadratic Casimir associated with the t-channel exchange is zero (e.g. for photon

exchange), given that the Reggeisation term is logarithmically enhanced in s. Note that

eq. (2.13) has (logarithmic) singularities as either of the particle masses tends to zero.

These are collinear singularities associated with the incoming and outgoing particles, and

are usually absorbed into impact factors coupling the Reggeised gluon to the upper and

lower particle lines (see e.g. [1]).

It is straightforward to generalise the above analysis to gravity [5]. By analogy with

eq. (2.4), one defines a gravity amplitude

M =MEMLO. (2.14)

Now

ME = 〈0 |Φg(p1, 0)Φg(p2, z)| 0〉 (2.15)

is a vacuum expectation value of two gravitational Wilson line operators, defined by [53–55]

Φg(p, x) = exp

[
iκ

2
pµ pν

∫
dshµν(sp+ x)

]
, κ2 = 32πGN , (2.16)

where GN is Newton’s constant, and we have defined the graviton according to

gµν = ηµν + κhµν . (2.17)

Upon calculating the diagrams of figure 3 (including UV regularisation of graphs (e)–(f)

as before), the gravitational eikonal function in the limit of eq. (2.3) is

ME = exp

{
−
(κ

2

)2 Γ(1− ε)
4π2−ε

(µ2~z2)ε

2ε

[
iπs+ t log

(
s

−t

)]}
+O(ε0). (2.18)

This can also be obtained directly from eq. (2.13) by making the replacements

gs →
κ

2
, T2

s → s, T2
t → t, Ci → m2

i , (2.19)

where terms ∝ m2
i then vanish in the Regge limit.4 As noted in ref. [5], these replacements

are consistent with the double copy of refs. [46–48]. Note that in the gravity result one may

take either mass smoothly to zero, consistent with the absence of collinear singularities in

this theory [94–96]. Due to the replacements of quadratic colour Casimirs (in QCD) with

Mandelstam invariants (gravity), the s-channel phase dominates over the Reggeisation

term, which is power-suppressed. Indeed, the first term in the exponent of eq. (2.18) is the

4Reference [5] considered the limit s� −t� m2
i rather than that of eq. (2.3). In either case, one may

neglect m2
i relative to s.
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well-known gravitational eikonal phase, discussed in detail in refs. [30–36], so that in the

limit of eq. (2.3) one may write

ME = eiχE , χE = −sGN
ε

(µ2~z2)ε +O(ε0), (2.20)

in agreement with e.g. ref. [87].5

One may connect eqs. (2.14) and (2.20) more directly with the literature as follows.
The gravitational Born amplitude consists of a single t-channel graviton exchange, which
in momentum space gives

M̃LO =− iκ
2µ2ε

2

(p1 · p2)(p3 · p4)+(p1 · p4)(p2 · p3)−(p1 · p3)(p2 · p4)+m2
1p2 · p4 +m2

2p1 · p3−2m2
1m

2
2

(p1 − p3)2

= −8πiGNµ
2ε s

2

t
+ . . . , (2.21)

where the ellipsis denotes subleading terms as s � −t,m2
i . In the Regge limit, the mo-

mentum transfer has components only in the transverse directions (see e.g. ref. [93]):

t ' −~q2, (2.22)

where ~q is the (d − 2)-dimensional transverse momentum vector conjugate to the impact

parameter ~z. The Born amplitude in impact parameter space is then

MLO =

∫
dd−2~q

(2π)d−2
M̃LOe

i~q·~z = 2isχE (2.23)

where

χE = −4πsGNµ
2ε

∫
dd−2~k

(2π)d−2
ei
~k·~z

−~k2
. (2.24)

Carrying out the integral with d = 4 − 2ε shows that eq. (2.24) is in agreement with

eq. (2.20). One may then expand ME = eiχE and use eq. (2.24) to write6

M =MEMLO =

[ ∞∑
m=0

(−4πisGNµ
2ε)m

m!

m∏
i=1

∫
d2~ki

(2π)d−2
ei
~ki·~z

−~k2i

]
MLO

= 2s
∞∑
n=1

(−4πisGNµ
2ε)n

n!

n∏
i=1

∫
d2~ki

(2π)d−2
ei
~ki·~z

−~k2i
= 2s(eiχE − 1), (2.25)

in agreement with ref. [93].

5A similar result is provided in ref. [93], but using a fictitious mass for the graviton as an infrared

regulator.
6Care must be taken with combinatorial factors here: in the second line of eq. (2.25), n represents the

number of gluons being exchanged, including the Born gluon. An additional factor of n−1 is then needed

in each term due to the fact that the symmetric product of integrals introduces an overcounting, by the

number of ways one can choose which gluon is the Born one.
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Figure 4. (a) External emisson of a (next-to) soft gluon; (b) Internal emission of a soft gluon.

3 Beyond the eikonal approximation

Having reviewed the eikonal calculation of QCD and gravity scattering in the Regge limit,

we now turn to corrections beyond the leading soft approximation. To the best of our

knowledge, this has not been previously studied in QCD. In gravity, refs. [32–35] consid-

ered corrections to the eikonal approximation when both incoming particles are strictly

massless. A dimensional argument can then be used to show that such corrections are

doubly subleading in the impact factor |~z|. First, one notes that GNE is the only classical

length scale that one can form, where E ∼
√
s is the energy of one of the incoming parti-

cles in the centre-of-mass frame. Then, analyticity of the amplitude requires only integer

powers of s, so that the first subleading corrections

∼
G2
Ns

|~z|2
, (3.1)

with subsequent corrections also involving only even powers of the impact parameter. The

corrections considered by the above references thus begin at two-loop order, and are beyond

the scope of this paper.

Reference [87] considered the case of one strictly massless particle, and the other in-

finitely massive. In this case one evades the above dimensional argument due to the presence

of an extra mass scale, such that the first subleading corrections to the eikonal are O(|~z|−1).
Here, we will consider the general situation of two scalar particles with potentially different

nonzero masses, such that the results of [87] emerge as a special case.7

To classify next-to-soft corrections, we will use the framework of refs. [54, 82] (see also

ref. [97] for similar work in the eikonal approximation). The starting point is to consider

an amplitude with n external hard particles (i.e. here the four-point amplitude of figure 1),

to which an additional gluon or graviton emission is added. There are two possibilities,

as shown in figure 4: (i) external emission contributions, in which the additional boson is

emitted from one of the external legs, and (ii) internal emission contributions, where the

boson lands inside the nonradiative amplitude. We now deal with each of these in turn.

7The deflection of massless particles with different spins was also considered recently in ref. [88], with

the spinless result agreeing with ref. [87].
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3.1 External emissions in QCD

As shown in detail in refs. [54, 82], external emission contributions are described by gen-

eralised Wilson line operators associated with the hard particle lines. For outgoing boson

momentum k, they are given in position space in QCD and gravity by8

ΦNE(pi, z) = P exp

{
−igsTi

∫ ∞
0

ds

[
piµA

µ +
i

2
∂µA

µ +
i

2
tpiµ∂

2Aµ
]

+O(g2s)

}
(3.2)

and

Φg,NE(pi, z) = exp

{
iκ

2

∫ ∞
0

ds

[
piµpiνh

µν +
i

2
pi(µ∂ν)

(
hµν − h

2
ηµν
)

+
i

2
spiµpjν∂

2hµν
]

+O(κ2)

}
, (3.3)

where we have introduced the commonly used notation

a(µbν) = aµbν + aνbµ. (3.4)

Here pi is the momentum of the hard emitting particle, whose trajectory is given, as

before, by xµi = tpµi + z in general. We neglect terms quadratic in the coupling constant

here, as we will not need these in the one-loop calculations required for this paper. The

first terms in the exponents of eqs. (3.2), (3.3) are the usual eikonal Wilson line exponents

of eqs. (2.6). Subsequent terms involve derivatives with respect to the momentum of the

gluon or graviton field, and are thus indeed subleading in momentum space. They give rise

to next-to-eikonal Feynman rules coupling the bosons to the external particle lines, and we

will see explicit examples of their use in the following.

Diagrams contributing at next-to-soft level are shown in figures 5 and 6. They can be

obtained from the diagrams of figure 3 by replacing at most one eikonal vertex with one

of the next-to-soft Feynman rules from eq. (3.2). There are two types, which in Feynman

diagram language have two different origins: the second term in eq. (3.2) arises from

corrections to the numerators associated with gluon emissions on the external lines, and

the third from corrections to the external particle propagator denominators. In fact, the

latter does not contribute, which can be seen as follows. When embedded in any of the

diagrams of figures 5 and 6, the d’Alembertian acts on the soft gluon propagator to give

∂2Dµν(x− y) = ηµνδ
d(x− y) (3.5)

(i.e. the propagator is a Green’s function). The right-hand side implies a non-zero result

only if the distance between the two ends of the soft gluon vanishes. Thus, graphs involving

the denominator correction can potentially contribute only in the absence of a UV regulator,

which acts to remove the short distance region. We will therefore not have to worry about

them in what follows. Note that a similar conclusion was reached in ref. [87], which

separated denominator correction terms into those containing a single gluon momentum

8Note that ref. [54] uses an alternative field definition for the graviton. Here we stick to the canonical

choice of eq. (2.17).
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Figure 5. External emission contributions from the generalised Wilson line operator of eq. (3.2),

where • represents a next-to-soft vertex, and all other vertices are eikonal.
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Figure 6. External emission contributions from the generalised Wilson line operator of eq. (3.2),

where • represents a next-to-soft vertex, and all other vertices are eikonal.

(corresponding to the Feynman rule in eq. (3.2)), and those involving a pair of gluon

momenta. The former were argued to vanish for nonzero impact parameter, as here. The

latter are absent in our calculation, as they correspond to effective Feynman rules involving

two or more gauge bosons, which are absent at one-loop order in the generalised Wilson

line calculation. This corresponds to the fact that such corrections were also found not to

affect the next-to-eikonal phase in ref. [87], due to being higher loop order.

It remains to calculate the graphs involving the next-to-soft vertex in the second term

of eq. (3.2). As an example, diagram (b1) is given by

Ab1 = − ig
2
s(µ

2)ε

2
T3 ·T4 p4ν

∫ ∞
0

ds3

∫ ∞
0

ds4
∂

∂xµ3
Dµν(x3 − x4), (3.6)

where

xµ3 = s3p
µ
3 + zµ, xµ4 = s4p

µ
4 , (3.7)

and

Dµν(x) = −gµν
Γ(d/2− 1)

4πd/2
[
−x2 + iε

]1−d/2
(3.8)

is the position space gluon propagator in d = 4− 2ε dimensions, such that

∂

∂xµ3
Dµν(x3 − x4) = −Γ(d/2)

2πd/2
(x3 − x4)ν [−(x3 − x4)2 + iε]−d/2. (3.9)
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One may then write eq. (3.6) as

Ab1 = ig2sµ
2εΓ(d/2)

4πd/2
T3 ·T4 p4µ V

µ
NE(p3,−p4), (3.10)

where we have defined the master integral

V µ
NE(σipi, σjpj) =

∫ ∞
0
dsi

∫ ∞
0
dsj (σi si pi + σj sj pj + z)µ

[
−(σipi + σjpj)

2 + ~z2 + iε
]−d/2

,

(3.11)

and σi,j = ±1. One can obtain diagram (b1) by relabelling p3 → −p1, p4 → −p2 in

eq. (3.10). Similarly, diagram (c1) is given by

Ac1 = ig2sµ
2εΓ(d/2)

4πd/2
T1 ·T4 p4µ V

µ
NE(p1, p4), (3.12)

with (d1) obtained by relabelling p1 → −p3, p4 → −p2. One may also switch momenta to

obtain the diagrams (a2)–(d2), and the integral of eq. (3.11) is calculated in appendix A.

Combining all diagrams, the total is

Aa−d =
g2sµ

2ε

8πd/2
Γ

(
3

2

)
Γ

(
d−3

2

)
|~z|3−d (T1 ·T2 + T3 ·T4 −T1 ·T4 −T2 ·T3)

(
1

m1
+

1

m2

)
= −g

2
sµ

2ε

8πd/2
Γ

(
3

2

)
Γ

(
d− 3

2

)
|~z|3−d

(
1

m1
+

1

m2

)
T2
t , (3.13)

where we have used the quadratic Casimir operators of eq. (2.10).

There are a number of noteworthy features of this result. Firstly, it is IR finite in

d = 4, but contains a pole in d = 3. The latter is the analogue of the pole in d = 4 in

the eikonal result of eq. (2.8). In Feynman diagram language, the (next-to)-eikonal ap-

proximation amounts to linearising denominator factors. At eikonal level, this introduces

a spurious logarithmic UV divergence. Without any additional regulator, all soft integrals

are scaleless, and thus vanish in dimensional regularisation. The UV pole in eq. (2.8) is,

however, regulated by the impact parameter, leaving a remaining IR pole. At next-to-soft

level the story is similar, except for the fact that going to subleading order in the soft mo-

mentum means that the spurious UV divergence is linear rather than logarithmic. Without

an additional regulator, next-to-soft integrals would be scaleless and thus vanishing in di-

mensional regularisation. In this case, however, one can understand this cancellation as

arising between logarithmic singularities in d = 3. Regulating the UV divergence with the

impact parameter leaves an (IR) pole in d = 3, manifest in eq. (3.13).

Another property of eq. (3.13) is that one cannot take the massless limit mi → 0 for

either of the incoming particles, and the reason for this can again be understood by com-

paring with the eikonal result of eq. (2.8). If only diagrams (a)–(d) in figure 3 are included,

the one-loop amplitude contains logarithms of s/(m1m2), rather than the conventional

combination s/(−t). The remaining diagrams (e) and (f) are not regulated by the physical

impact parameter ~z, and vanish in dimensional regularisation. As discussed in ref. [5] and

here in section 2, one may choose to also regulate (e) and (f) with the impact parameter,

which amounts to using this as a scale at which to remove the UV divergence in these
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diagrams. Whether or not to include diagrams (e) and (f) thus amounts to a renormali-

sation scheme choice. The effect of doing so, as can be seen in eq. (2.13), is to shift the

logarithms of mass away from the Regge trajectory and into the colour-diagonal terms.

The physical interpretation of these terms is that they are collinear singularities associated

with the incoming and outgoing particles, where the mass acts as a regulator. The scheme

dependence corresponds to the well-known ambiguity as to whether such singularities are

part of the Regge trajectory, or absorbed into impact factors associated with the upper

and lower particle lines (see e.g. ref. [1]).

The above discussion allows us to interpret the behaviour as mi → 0 of eq. (3.13): the

divergence is associated with the virtual next-to-soft gluon becoming collinear with one

of the external lines. This divergence is power-like in d = 4 but logarithmic in d = 3,

as expected from a divergence which is both next-to-soft and collinear. Here, as in the

eikonal case, we have the option of including the diagrams (ei) and (fi) in figure 6, which

amounts to a renormalisation scheme choice. We instead take the viewpoint of previous

studies [32–36, 87, 93], namely that the impact factor implements a physically motivated

cutoff where applicable, and thus only regulate those diagrams in which the gluons straddle

both lines.

The power of the generalised Wilson line approach is that, just as in the eikonal

calculation of refs. [2, 3, 5], the one-loop amplitude formally exponentiates [54, 82]. Keeping

only diagrams (a)–(d) in the eikonal calculation, one may thus write the generalised Wilson

line amplitude as

AE+NE = exp

{
g2

8π2−ε
(µ2~z2)ε

[
Γ(1− ε)

ε

(
iπ(T2

s − C1 − C2) + T2
t log

(
s

m1m2

))
−π

2

T2
t

|~z|

(
1

m1
+

1

m2

)
+O(s−1)

]}
(3.14)

The colour non-diagonal terms in the eikonal piece (first line) contain an imaginary piece

∝ T2
s, and a real part ∝ T2

t . As discussed above, the latter corresponds to the Reggeisation

of the gluon, and the former to the eikonal phase (leading to s-channel bound states). In

eq. (3.14) we see that at next-to-soft level (second line), there is no imaginary piece, and

thus no next-to-soft correction to the eikonal phase from external emission contributions.

Instead, there is a power-suppressed correction to the Regge trajectory. This takes the form

of pure collinearly divergent terms, which can be absorbed in the impact factors associated

with the upper and lower lines.

Having examined the external emission contributions in QCD, we now turn to their

calculation in gravity.

3.2 External emissions in gravity

The diagrams needed for the gravity calculation are again those of figures 5 and 6, where

now we must use the generalised Wilson line operator of eq. (3.3). As in the QCD case,

the third term involving the d’Alembertian operator would contribute only at zero impact

parameter, and thus can be neglected. It is convenient to rewrite the remaining next-to-soft
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term via

iκ

2

∫ ∞
0

ds
i

2
pi(µ∂ν)

(
hµν − h

2
ηµν
)
→ iκ

2

∫ ∞
0

ds
i

2
piµ∂ν

(
ηµαηνβ + ηµβηνα − ηµνηαβ

)
hαβ ,

(3.15)

where we have used the symmetry of the graviton hαβ = hβα. Diagram (b1) then gives

Mb1 =− i
2

(κ
2

)2
µ2εpα4 p

β
4p3µ

(
ηµσηντ+ηµτηνσ− ηµνηαβ

)∫ ∞
0
ds3

∫ ∞
0
ds4

∂

∂xν3
〈hστ (x3)hαβ(x4)〉

= −iµ2ε
(κ

2

)2 Γ(d/2)

4πd/2
(2p3 · p4)p4µV µ

NE(p3,−p4), (3.16)

where we have used the position-space de Donder gauge graviton propagator

〈hστ (x)hαβ(y)〉 = Pσταβ
Γ(d2 − 1)

4πd/2
[
−(x− y)2 + iε

]1−d/2
,

Pσταβ =
1

2

(
ησαητβ + ησβητα −

2

d− 2
ηστηαβ

)
, (3.17)

as well as the master integral of eq. (3.11). The form of eq. (3.16) is extremely similar to the

QCD result of eq. (3.10), and can be obtained from the latter by making the replacements

gs →
κ

2
, Ta

i → pµ, (3.18)

as well as including an additional factor of 2. As in the eikonal case, this is precisely

consistent with the double copy [46–48]. The additional factor is combinatorial in nature,

and follows from the fact that numerators of gravitational integrands result from combining

two copies of a gauge theory numerator. In a given diagram i in which an additional virtual

gluon dresses the Born amplitude (where the latter may be taken to already be in double

copy form), one may expand the extra contribution to the numerator in the momentum k

of the virtual gluon:

ni = n
(0)
i + n

(1)
i +O(k2), (3.19)

where n
(m)
i is the contribution to the numerator at O(km). The gravity numerator for the

same graph is then given by

nini = n
(0)
i n

(0)
i +

(
n
(0)
i n

(1)
i + n

(1)
i n

(0)
i

)
+O(k2), (3.20)

and the fact that there are two terms in the O(k) contribution is the origin of the additional

factor of 2 in eq. (3.16) relative to the QCD case. One also sees that no additional factor

is present in the leading (eikonal) term, consistent with the results of ref. [5].

The remaining diagrams can be obtained by relabelling eq. (3.16), or by making the

replacements of eq. (3.18) and including the above noted factor of 2. The sum of diagrams

(ai)–(di) is then

Ma−d =
µ2ε

4πd/2

(κ
2

)2
Γ

(
3

2

)
Γ

(
d− 3

2

)
|~z|3−d

(
1

m1
+

1

m2

)
t. (3.21)
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Combining this with the eikonal result and exponentiating gives (cf. eq. (3.14))

ME+NE = exp

{
−
(κ

2

)2 (µ2~z2)ε

8π2−ε

[
Γ(1−ε)

ε

(
iπs+ t log

(
s

m1m2

))
− πt

|~z|

(
1

m1
+

1

m2

)]}
.

(3.22)

The effect of the individual colour matrix replacements of eq. (3.18) is to replace the t-

channel quadratic Casimir appearing in eq. (3.13) with the Mandelstam invariant t, as in

the previously found eikonal replacements of eq. (2.19). Similarly to the QCD calculation

of the previous section, one finds a next-to-soft correction to the Regge trajectory only

which, being kinematically subleading in gravity, can be neglected in the Regge limit. This

is consistent with the fact that external emission contributions (in the present terminology)

could be ignored in ref. [87], owing to their being doubly suppressed in mass and momentum

transfer.

3.3 Off-shell internal emissions

Having calculated the external emission contributions in both QCD and gravity, we now

turn to those soft gluons and gravitons that arise from inside the hard interaction. For

on-shell bosons, these are given respectively in QCD and gravity by [54, 79–82]9

Aνint. = gs
∑
i

Ti

(
ηαν − ηip

ν
i k

α

ηipi · k + iε

)
∂An({pi})

∂pαi
= igs

∑
i

Ta
i

L
(i)
µν

pi · k
An({pi}) (3.23)

and

Mµν
int. = −κ

2
pµi
∑
i

(
ηαν − ηip

ν
i k

α

ηipi · k + iε

)
∂Mn({pn})

∂pαi
= − iκ

2

∑
i

piµk
ρL

(j)
ρν

pj · k
Mn({pi}),

(3.24)

where ηi = ±1 according to whether line i is outgoing or incoming, and we have recognised

the orbital angular momentum generator associated with line i:

L(i)
µν = xiµpiν − xiνpiµ = i

(
piµ

∂

∂pνi
− piν

∂

∂pµi

)
. (3.25)

This is the same as the total angular momentum for scalar external particles, and

thus eqs. (3.23), (3.24) form a special case of the recently studied next-to-soft theo-

rems [57–77, 98], as pointed out in more detail in ref. [78]. In the present work, all emitted

soft bosons are virtual, and thus off-shell. For the external emission contributions, this

is not a problem, as the generalised Wilson line operators of eqs. (3.2), (3.3) are derived

fully generally. Equations (3.23), (3.24), however, are not guaranteed to work for off-shell

bosons. The aim of this section is to demonstrate that the next-to-soft theorems are in-

deed broken by off-shell effects, and to present an alternative way to calculate the internal

emission contributions, motivated by ref. [87].

9Our sign in the QCD result matches our convention for the scalar-scalar-gluon vertex (see eq. (3.36)).
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Figure 7. Born diagram for 2→ 2 scattering in QCD.
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Figure 8. NLO corrections to the Born interaction of figure 7.

Let us begin by considering the QCD Born interaction for 2 → 2 scattering of figure 7,

in which a hard gluon exchange provides the separation between the incoming particles

that gives rise to the impact factor ~z in the Regge limit. It is given by

ÃLO = ig2sT
a
U Ta

L

(p1 + p3) · (p2 + p4)

(p1 − p3)2
, (3.26)

where Ta
U,L is a colour generator on the upper or lower line respectively, and the tilde

denotes a momentum space expression. One may now add an additional off-shell gluon

emission which, if not working in an effective next-to-soft approach, involves the diagrams

of figure 8. These can be evaluated to give10

ÃNLO =− ig3s
{

1

(p1 − p3 − k)2

[
Ta
U Tb

U Ta
L

(2p1 − k)ν

−2p1 · k + k2
(p1 + p3 − k) · (p2 + p4)

+Tb
U Ta

U Ta
L

(2p3 + k)ν

2p3 · k + k2
(p1 + p3 + k) · (p2 + p4)− {Ta

U ,T
b
U}Ta

L(p2 + p4)
ν

]
+

1

(p1 − p3)2

[
Ta
U Ta

L Tb
L

(2p2 − k)ν

−2p2 · k + k2
(p1 + p3) · (p2 + p4 − k)

+Ta
UTb

LTa
L

(2p4 + k)ν

2p4 · k + k2
(p1 + p3) · (p2 + p4 + k)−Ta

U{Tb
L,T

a
L}(p1 + p3)

ν

]
+if cbaTc

U Ta
L

(p1 + p3)µ(p2 + p4)ρ
(p1 − p3)2(p1 − p3 − k)2

(
(p1 − p3 + k)ρηµν + (−2k + p1 − p3)µηνρ

+(−2p1 + 2p3 + k)νηµρ
)}

. (3.27)

10We have here suppressed the Feynman iε prescription for brevity.
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Expanding in the additional gluon momentum k up to next-to-soft level yields

ÃNLO = −ig3s
{

Ta
U Tb

U Ta
L

[
(p1 + p3) · (p2 + p4)

(p1 − p3)2

(
− pν1
p1 · k

+
kν

2p1 · k
− pν1k

2

2(p1 · k)2

)
+

pν1
p1 · k

(
k · (p2 + p4)

(p1 − p3)2
− 2k · (p1 − p3)(p1 + p3) · (p2 + p4)

(p1 − p3)4

)]
+Tb

U Ta
U Ta

L

[
(p1 + p3) · (p2 + p4)

(p1 − p3)2

(
pν3
p3 · k

+
kν

2p3 · k
− pν3k

2

2(p3 · k)2

)
+

pν3
p3 · k

(
k · (p2 + p4)

(p1 − p3)2
+

2k · (p1 − p3)(p1 + p3) · (p2 + p4)

(p1 − p3)4

)]
+Ta

U Ta
L Tb

L

[
(p1+p3) · (p2+p4)

(p1 − p3)2

(
− pν2
p2 · k

+
kν

2p2 · k
− pν2k

2

2(p2 · k)2

)
+

pν2
p2 · k

k · (p1+p3)

(p1 − p3)2

]
+ Ta

U Tb
L Ta

L

[
(p1+p3) · (p2+p4)

(p1 − p3)2

(
pν4
p4 · k

+
kν

2p4 · k
− pν4k

2

2(p4 · k)2

)
+

pν4
p4 · k

k · (p1+p3)

(p1 − p3)2

]
−{Ta

U ,T
b
U}Ta

L

(p2 + p4)
ν

(p1 − p3)2
−Ta

U{Ta
L,T

b
L}

(p1 + p3)
ν

(p1 − p3)2

−2if cbaTc
U Ta

L

(p1 + p3) · (p2 + p4)

(p1 − p3)4
(p1 − p3)ν

}
. (3.28)

We can recognise some of the terms in this expression (the first group of terms in each

square bracket) as the Born amplitude of eq. (3.26), dressed by eikonal and next-to-eikonal

Feynman rules obtained by Fourier transforming the exponent of eq. (3.2) to momentum

space. Thus, these are external emission contributions, so that the remaining contributions

must correspond to internal emissions. One may then directly check whether or not they

are reproduced from eq. (3.23): an explicit calculation of the latter gives

Ãb νint. = −ig3s
{

Ta
U Tb

U Ta
L

pν1
p1 · k

(
k · (p2 + p4)

(p1 − p3)2
− 2k · (p1 − p3)(p1 + p3) · (p2 + p4)

(p1 − p3)4

)
+Tb

U Ta
U Ta

L

pν3
p3 · k

(
k · (p2 + p4)

(p1 − p3)2
+

2k · (p1 − p3)(p1 + p3) · (p2 + p4)

(p1 − p3)4

)
+Ta

U Ta
L Tb

L

pν2
p2 ·k

k ·(p1+p3)

(p1 − p3)2
+ Ta

U Tb
L Ta

L

pν4
p4 ·k

k ·(p1+p3)

(p1−p3)2
−Ta

U {Ta
L,T

b
L}

(p1+p3)
ν

(p1−p3)2

−{Ta
U ,T

b
U}Ta

L

(p2 + p4)
ν

(p1 − p3)2
− [Tb

U ,T
a
U ]Ta

L

2(p1 − p3)ν(p1 + p3) · (p2 + p4)

(p1 − p3)4

}
. (3.29)

After using the relation

[Tb
U ,T

a
U ] = if bacTc

U , (3.30)

eq. (3.29) precisely reproduces the internal emission terms in eq. (3.28), regardless of the

fact that eq. (3.29) is manifestly derived for on-shell gluons. It is instructive to classify

the anatomy of this result in more detail. The final three terms in eq. (3.29) (those with

no explicit dependence on k) originate from the first term in eq. (3.23), as must be the

case given that the latter also has no explicit k dependence. In the full NLO calculation,

these correspond to the seagull and three-gluon vertex graphs, evaluated with k → 0. The

remaining terms in eq. (3.29) then correspond to the second term in eq. (3.23). Comparison
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with the full NLO calculation shows that they have the form of eikonal Feynman rules

dressing terms obtained from the Born interaction by shifting the external momenta in

accordance with the extra gluon emission. This interpretation also follows directly from

the form of eq. (3.23), and we will therefore refer to these contributions as momentum-shift

terms in what follows.

One may carry out a similar analysis for gravity, in which the gluons in figures 7 and 8

are replaced with gravitons, and where the Born interaction is now given by eq. (2.21).

The gravitational Feynman rules, including the three-graviton vertex, may be found in e.g.

ref. [99] (see also refs. [100, 101]). Due to the cumbersome nature of these rules, the full

result for the NLO amplitude, even truncated to next-to-soft order in k, is rather lengthy.

We focus only on the non-momentum shift contributions, stemming from the seagull and

three-graviton vertex graphs in figure 8. The sum of these contributions as k → 0 is given by

M̃µν =− iκ3

8t

[
(m2

1 +m2
2 − s)

(
p
(µ
1 p

ν)
2 + p

(µ
3 p

ν)
4

)
+ (m2

1 +m2
2 − s− t)

(
p
(µ
1 p

ν)
4 + p

(µ
2 p

ν)
3

)
−t(p(µ1 p

ν)
3 + p

(µ
2 p

ν)
4 )
]

+ κ

[
(p1 − p3)µ(p1 − p3)ν

(p1 − p3)2
+
ηµν

2

]
M̃LO. (3.31)

As in the QCD case, this should be compared with the first term of eq. (3.24), and the

result is

M̃µν =− iκ3

8t

[
(m2

1 +m2
2 − s)

(
p
(µ
1 p

ν)
2 + p

(µ
3 p

ν)
4

)
+ (m2

1 +m2
2 − s− t)

(
p
(µ
1 p

ν)
4 + p

(µ
2 p

ν)
3

)
−t(p(µ1 p

ν)
3 + p

(µ
2 p

ν)
4 )
]

+ κ

[
(p1 − p3)µ(p1 − p3)ν

(p1 − p3)2

]
M̃LO, (3.32)

which agrees with eq. (3.31) apart from a term involving ηµν , and proportional to the Born

amplitude. This contribution vanishes when contracted with a physical graviton polari-

sation tensor, and hence eq. (3.24) indeed reproduces all internal emission contributions

provided the additional graviton emission is on-shell. For off-shell gravitons, however, it

constitutes an explicit breaking of the next-to-soft theorem. The absence of this breaking

in the QCD case is perhaps not surprising — there is no invariant tensor with one index

that could contribute such a term in a vector theory.

3.4 Seagull and vertex contributions in QCD

The above analysis implies that we must calculate internal emission effects by a more direct

method. To this end it is useful, as in the above discussion, to separate the contributions

from the seagull and three-boson vertex graphs, from the momentum-shift contributions

obtained by dressing the shifted Born amplitude with eikonal Feynman rules. For on-shell

emissions, these two types of internal emission correspond exactly to the first and second

terms in eqs. (3.23), (3.24) respectively, and we begin by examining the former. The

relevant Feynman diagrams are shown in figure 9, and we may write the first of these as

Ã(A) =

∫
ddk1
(2π)d

cA nA({pi}, k1)
(k21 + iε)[(p1 − p3)2 + iε][(p2 + k1)2 −m2

2 + iε][(p1 − p3 − k1)2 + iε]
,

(3.33)
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Figure 9. Seagull and triangle diagrams entering the QCD internal emission corrections.

where the colour factor and kinematic numerator are

cA = fabc Ta
U Tb

L Tc
L (3.34)

and

nA({pi}, k1) = iV α1
φφg(p1,−p3)Pα1α2 V

α2β2γ2
ggg [p1 − p3,−(p1 − p3 − k1),−k1]

× Pγ2γ1 Pβ2β1 V
γ1
φφg[p2,−(p2 + k1)]V

β1
φφg(p2 + k1,−p4) (3.35)

respectively. Here

V µ
φφg(p1, p2) = igs(p

µ
1 − p

µ
2 ) (3.36)

and

V αβγ
ggg (p1, p2, p3) = gs

[
ηαβ(p1 − p2)γ + ηβγ(p2 − p3)α + ηαγ(p3 − p1)β

]
(3.37)

are the scalar-scalar-gluon and three-gluon vertices with all momenta incoming, and we

have defined

Pαβ = −iηαβ (3.38)

to be the numerator of the Feynman gauge gluon propagator. To extract the next-to-soft

contribution from eq. (3.33), one may introduce an additional delta function as in ref. [87]

to rewrite this as

Ã(A) = (2π)d
∫

ddk1
(2π)d

∫
ddk2
(2π)d

δ(d)(k1 + k2 − q) cA nA
(k21 + iε)(k22 + iε)[(k1 + k2)2 + iε][(p2 + k1)2 −m2

2 + iε]
,

(3.39)

such that k1 and k2 are now the momenta of the lower two gluons in figure 9(A), and we

have introduced the momentum transfer 4-vector (conjugate to zµ)

qµ = (p1 − p3)µ. (3.40)

The momenta k1 and k2 are on an equal footing, so that to isolate next-to-soft contributions,

one must expand in both of these momenta. Returning to the original integral of eq. (3.33),

this can be achieved by writing

p3 = p1 − q, p4 = p2 + q, (3.41)
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before scaling

q → λq, k1 → λk1, (3.42)

and expanding to next-to-soft order in λ. Finally, one may set λ→ 1. The result may be

written

Ã(A) =− 4ig4sµ
4εcA

q2

{
q2(s−m2

1−m2
2)S(p2) +

[
2pµ2 (s−m2

1−m2
2)− 4m2

2p
µ
1 + 2m2

2q
µ
]
Vµ(p2)

+ [−2pµ1p
ν
2 + (s−m2

1 −m2
2)η

µν ]Tµν(p2)
}
, (3.43)

where we have defined the scalar, vector and tensor integrals

S(pi) =

∫
ddk

(2π)d
1

(k2 + iε)[(q − k)2 + iε](2pi · k + iε)
;

V µ(pi) =

∫
ddk

(2π)d
kµ

(k2 + iε)[(q − k)2 + iε](2pi · k + iε)
;

Tµν(pi) =

∫
ddk

(2π)d
kµkν

(k2 + iε)[(q − k)2 + iε](2pi · k + iε)
. (3.44)

We calculate these in appendix B, and the final result for diagram (A) is

Ã(A) =
g4scA(m2

1 +m2
2 − s)

16m2|~q|
+O(ε), (3.45)

where ~q is the (two-dimensional) momentum transfer defined in eq. (2.22). Diagram (B)

can be obtained by flipping diagram (A), yielding

Ã(B) =
g4scB(m2

1 +m2
2 − s)

16m1|~q|
+O(ε), cB = fabcTb

UTc
UTa

L. (3.46)

Next, one has the seagull graph of figure 9(C). We may write this as

Ã(C) =

∫
ddk1
(2π)d

cC nC({pi}, k1)
(k21 + iε)[(p1 − p3 − k1)2 + iε][(p2 + k1)2 −m2

2 + iε]
, (3.47)

where the colour factor and kinematic numerator are

cC = {Ta
U ,T

b
U}Ta

LTb
L (3.48)

and

nC({pi}, k1) = iV α1β1
φφgg Pα1α2Pβ1β2V

α2
φφg[p2,−(p2 + k1)]V

β2
φφg(p2 + k1,−p4), (3.49)

where

V µν
φφgg = ig2sη

µν (3.50)

is the kinematic part of the seagull vertex. One may expand this according to the procedure

of eqs. (3.41) and (3.42), and the result is

Ã(C) = −4g4s cC m
2
2 S(p2) =

ig4s cC m2

8|~q|
+O(ε). (3.51)
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Likewise, one has

Ã(D) =
ig4s cDm1

8|~q|
+O(ε), cD = Ta

U Tb
U{Ta

L,T
b
L}. (3.52)

In order to further interpret these results, it is useful to rewrite the colour factors in terms

of the Born colour factor Ta
UTa

L, and the quadratic Casimir operators of eq. (2.10). One has

T2
sT

a
UTa

L = (C1 + C2)T
a
UTa

L + 2Tb
UTa

UTb
LTa

L;

T2
uT

a
UTa

L = (C1 + C2)T
a
UTa

L − 2Tb
UTa

UTa
LTb

L;

T2
tT

a
UTa

L = CATa
UTa

L, (3.53)

such that the various colour factors above can be written

cA = cB =
i

2
T2
tT

a
UTa

L, cC = cD =
(T2

s −T2
u)

2
Ta
UTa

L. (3.54)

The total contribution from the diagrams of figure 9 is then

ÃA−D =
ig4s

32|~q|

[
(m2

1 +m2
2 − s)

(
1

m1
+

1

m2

)
T2
t + 2(m1 +m2)(T

2
s −T2

u)

]
Ta
UTa

L +O(ε)

→ − ig
4
s

|~q|
s

32

(
1

m1
+

1

m2

)
T2
tT

a
UTa

L +O(ε), (3.55)

where we have taken the Regge limit in the second line. One may Fourier transform this

result back to impact parameter space, where it becomes

AA−D = − ig
4
s

|~z|
s

64π

(
1

m1
+

1

m2

)
T2
tT

a
UTa

L +O(ε). (3.56)

Comparing this with eq. (3.14), we see that the form of eq. (3.56) is the same as that of the

external emission correction, namely a t-channel Casimir acting on the Born colour factor,

with a real coefficient. Were one able to exponentiate eq. (3.56), it would thus correspond

to a power-suppressed correction to the Regge trajectory, rather than the eikonal phase.

For the external emission contributions, exponentiation follows immediately from the fact

that such terms are described by generalised Wilson line operators [54, 82]. For the internal

emission contributions, there is no such argument for exponentiation. However, one can

still choose to exponentiate them: expanding the exponential will result in higher powers

of next-to-soft terms, which are then higher order in the momentum expansion, and thus

of the same formal accuracy as the non-exponentiated result.

3.5 Seagull and vertex contributions in gravity

We may repeat the above analysis for gravity, by replacing the gluons in figure 9 with

gravitons. Given that intermediate results are a great deal more cumbersome, we here

report the final results only. Diagrams (A) and (C) are found to be given in momentum

space by

M̃(A) = − iκ4m2

2048|~q|
[
(m2

1 +m2
2 − s)2 + 12m2

1m
2
2

]
+O(ε);

M̃(C) =
iκ4m2

128|~q|
[
m2

1 +m2
2 − s

]2
+O(ε). (3.57)
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As before, diagrams (B) and (D) can be obtained by relabelling m1 ↔ m2. The sum of all

contributions is then

M̃A−D =
iκ4(m1 +m2)

2048|~q|
[
15(m2

1 +m2
2 − s)2 − 12m2

1m
2
2

]
+O(ε)

→ 15iκ4s2(m1 +m2)

2048|~q|
+O(ε), (3.58)

where we have taken the Regge limit in the second line.

It is interesting to compare eq. (3.58) with its counterpart in QCD, eq. (3.55). Up to

colour diagonal terms, the QCD result has a term involving a t-channel Casimir that dom-

inates in the Regge limit, and a suppressed contribution involving the s-channel Casimir

(n.b. one may eliminate T2
u in eq. (3.55) using eq. (2.11)). One expects something like the

replacements of eq. (2.19) in moving to the gravity result, so that the t-channel result is

subleading, and the s-channel term dominant. Indeed the form of the second term in the

brackets of eq. (3.55) is qualitatively the same as eq. (3.58) under eq. (2.19), together with

the additional replacements

Ta
U,L → pµ1,2, (3.59)

consistent with colour generators on the upper and lower lines corresponding to momenta

of these lines in gravity (n.b. one may equally choose p3 and p4 in this correspondence,

given that p1 ' p3 and p2 ' p4 up to subleading corrections). This is analogous to how, at

eikonal level, Reggeisation is the leading effect in QCD, whereas the eikonal phase is more

important in gravity. Note that the coefficient of the s-channel term in QCD is not simply

related to that in gravity, which näıvely suggests that there is no double copy relationship

between these quantities. This is misleading for a number of reasons. Firstly, the double

copy only formally applies at integrand level, rather than after integrating over the loop

momentum. Secondly, for the double copy to work for the seagull and vertex contributions,

one must choose a (generalised) gauge such that BCJ duality is manifest in QCD. Here we

have used the Feynman and de Donder gauges in QCD and gravity respectively, which may

obscure a direct double copy. That a double copy is possible for these graphs, however,

follows from the results of ref. [102].

3.6 Momentum shift contributions

According to the discussion of section 3.3, the remaining internal emission contributions

comprise the Born interaction evaluated with shifted momentum, dressed by an additional

eikonal emission. Again regarding as nonzero only those diagrams which are regulated

by the impact factor, the relevant diagrams are those of figure 3(a)–(d), where the Born

amplitude is shifted appropriately.

Focusing first on the case of QCD, the momentum shift contribution from diagram (a)

is given by

Ãmom.
a = −ig2sµ2εT1 ·T2p1 · p2

∫
ddk

(2π)d
ÃLO(p1 − k, p2 + k)

(k2 + iε)(−p1 · k + iε)(p2 · k + iε)

∣∣∣∣∣
O(k)

, (3.60)
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where the numerator contains the Born amplitude of eq. (3.26), and taking the O(k) piece

isolates the effect of including a single momentum shift (i.e. terms O(k2) are next-to-next-

to-soft). Substituting eq. (3.26) into eq. (3.60), the latter becomes

Ãmom.
a =

g4sµ
4ε

2
[T1 ·T2T

a
UTa

L] p1 · p2 (p1 + p3 − p2 − p4)µV µ
box(−p1, p2), (3.61)

where we have defined the vector box integral

V µ
box =

∫
ddk

(2π)d
kµ

(k2 + iε)[(k − q)2 + iε](σipi · k + iε)(σjpj · k + iε)
. (3.62)

We calculate this integral in appendix B, and the result for diagram (a) is (taking the

Regge limit)

Ãmom.
a =

ig4ss[T1 ·T2T
a
UTa

L](m1 +m2)

16|~q|m1m2
. (3.63)

A similar analysis for diagram (c) yields

Ãmom.
b = −

ig4ss[T1 ·T4T
a
UTa

L](m1 +m2)

16|~q|m1m2
, (3.64)

where we have expanded about d = 4. Diagrams (b) and (d) are equal to (a) and (c)

respectively (n.b. they can be simply obtained by relabelling masses and colour generators),

so that the final result for the sum of all diagrams is

Ãmom.
a−d = − ig

4
ss(m1 +m2)

16|~q|m1m2
T2
tT

a
UTa

L. (3.65)

It is straightforward to carry the above analysis over to gravity e.g. in eq. (3.60) one

simply replaces the prefactors with those arising from the gravitational eikonal Feynman

rules, and the Born amplitude in the integrand with that of eq. (2.21). The final result for

the momentum shift contribution upon summing all diagrams is

M̃mom.
a−d = − iκ

4s2t(m1 +m2)

256|~q|m1m2
. (3.66)

Similarly to the external emisson contributions in section 3.2, this result can be obtained

from the QCD expression by the replacements of eq. (3.18), (3.59). There is an additional

factor of 2 in eq. (3.66) relative to eq. (3.65) after making the replacements, which factor

has also been explained in section 3.2.

In both QCD and gravity, the momentum shift contributions contain a t-channel

Casimir, and thus correspond to shifts in the Regge trajectory of the gluon / graviton.

In gravity, this contribution is subleading in t and can be discarded. In QCD, the result

involves power-like collinear divergences which can be absorbed into the impact factors

coupling the incoming particles to the Reggeised gluon. That the momentum shift con-

tributions have the same form as the external emission contributions of section 3.2 is not

surprising. Here we have drawn a distinction between the gluon entering the Born am-

plitude, and the external gluons described by generalised Wilson line operators. Another
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approach is to consider all exchanged gluons symmetrically, in which case the momentum

shift and external emission contributions are on an equal footing. The latter approach is

taken in ref. [87], which indeed neglects the momentum shift contributions in gravity as

being subleading.

This now completes our calculation of all contributions to 2 → 2 scattering in the

high energy limits of QCD and gravity that are of first subleading order in the momentum

transfer. The more detailed interpretation of these results is the subject of the following

section.

4 Discussion

In this section, our aim is to draw together the various results of this paper and dis-

cuss their implications in more detail, making contact with previous calculations in the

literature. The complete next-to-soft corrections in either QCD or gravity are obtained

by summing the external and internal emission contributions. As discussed above and

in refs. [54, 82], the former formally exponentiate, as a direct consequence of being de-

scribed by generalised Wilson line operators. The internal emission contributions can be

chosen to exponentiate, given that higher order terms generated by the exponentiation are

progressively subleading in the impact factor expansion. Upon doing so, all of the QCD

contributions in eqs. (3.13), (3.56), (3.65) correspond to subleading corrections to the Regge

trajectory of the gluon. As already noted in section 3, this correction consists of purely

singular terms as mi → 0, associated with the exchanged gluons becoming collinear with

one of the external lines. These divergences are not problematic in practice, as according

to the Regge limit of eq. (2.3), one cannot take mi → 0 whilst keeping t fixed. One way

around this is to consider the alternative Regge limit

s� −t� m2
i , (4.1)

and to include diagrams such as figure 3(e) and (f), with a suitable regulator to remove the

short-distance singularity. In the eikonal calculation of ref. [5] (reviewed here in section 2),

the inclusion of the additional diagrams explicitly removes collinear singularities from the

Regge trajectory, such that they can be absorbed in so-called impact factors associated

with the external lines. Their inclusion in the Regge trajectory is then a rather unphysical

scheme choice, and thus there is little merit in interpreting the QCD calculation further.

The situation in gravity is more interesting. As already remarked in sections 3.2

and 3.6, the external emission and momentum shift contributions are kinematically sub-

leading, mimicking the suppression of the Regge trajectory at eikonal level. The only

surviving contribution then comes from the seagull and vertex graphs, and is given in

eq. (3.58). Combining this with the eikonal amplitude of eq. (2.25), one may write [87]

M(~z) = 2s
[
eiχE(~z) (1 + iχNE(~z))− 1

]
= 2s

[
ei(χE(~z)−i ln[1+iχNE(~z)]) − 1

]
, (4.2)
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where we have defined

χNE =
15κ4s2(m1 +m2)

4096π|~z|
, (4.3)

obtained by Fourier transforming eq. (3.58) to position space. In the second line of eq. (4.2)

we have written the NE contribution as the exponential of its own logarithm. Provided

that χNE is small, however, one may expand the logarithm so that the amplitude assumes

the simpler form of eq. (2.25), but with a total phase

χ = χE + χNE = GNsµ
2ε

[
−|~z|

2ε

ε
+

15πGN (m1 +m2)

8|~z|

]
. (4.4)

This approximation is valid provided the impact parameter is large, or conversely if the

momentum transfer is small relative to the centre of mass energy. This is precisely the

Regge limit of eq. (2.3). One may now consider the momentum space amplitude

M̃(~q) =

∫
dd−2~z e−i~z·~qM(~z), (4.5)

where the exponential integral will be dominated by the saddle point, leading to the sta-

tionary phase condition

~q =
∂χ

∂|~z|
~z

|~z|
. (4.6)

To interpret this result, let us first consider the case that m2 � m1. This is the situation

considered in ref. [87], and one may then parametrise

pµ1 = E1(1, 0, 0, 1), pµ2 = (m2, 0, 0, 0), zµ = (0, 0, |~z|, 0). (4.7)

The 4-momentum of the first particle after scattering is

p′1
µ

= E1(1, 0, sin θ, cos θ), (4.8)

where θ is the scattering angle. This in turn implies

qµ = p′1
µ − pµ1 = E1(0, 0, sin θ, 1− cos θ) ⇒ ~q · ~z = −E1|~z| sin θ ' −E1|~z|θ, (4.9)

with the small angle approximation justified by the Regge limit. Equation (4.6) then gives

θ = − 1

E1

∂χ

∂|~z|
=

2R2

|~z|
+

15π

16

(
R2

|~z|

)2

+ . . . (4.10)

where R2 = 2GNm2 is the Schwarzschild radius associated with the mass m2, and we

have used s ' 2E1m2. The ellipsis denotes higher order terms in the inverse impact

parameter, which mix with corrections to the next-to-soft approximation and can therefore

be neglected. Equation (4.10) does indeed correspond to the classical deflection angle

experienced by a light test particle scattering on a black hole (see e.g. ref. [42],11 and

ref. [88] for a recent derivation). Moreover, the simple form of eq. (4.3) is independent of

11We are very grateful to Rodolfo Russo for providing unpublished notes relating to the specific case of

the Schwarzschild black hole in four dimensions.
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whether the mass m2 is small or asymptotically large relative to s. Thus, it applies equally

to the case of a test particle scattering off a black hole, or from a boosted mass, the extremal

case of which is an Aichelburg-Sexl shockwave [103]. This can be further understood from

the fact that at O(GN ) one can form two independent dimensionless combinations from

mi, s and |~z|:
GNmi

|~z|
,

m2
i

s
, (4.11)

where the first is fixed by the requirement that one expands to next-to-soft level in the

impact parameter only. In the Regge limit, the second combination is zero, which uniquely

fixes the next-to-eikonal phase to be linear in the mass of each particle. The symmetry of

eq. (4.3) under interchange of the two masses shows that the same deflection angle would

be experienced by particle 2 treated as a test particle scattering off particle 1. Thus, the

ultimate interpretation of our general next-to-soft calculation is that it reproduces the two

independent classical deflections experienced by each incoming particle, treated as a test

particle in the field of the other particle.

The above discussion relates directly to the investigation of ref. [36], which reconsid-

ered transplanckian scattering in a variety of supersymmetric extensions of gravity, arguing

that additional particle content (and thus the presence or absence of UV renormalisability)

is irrelevant at leading power in the transplanckian regime. It was pointed out that the

complete geometry corresponding to two colliding shockwaves is not known, and conjec-

tured that at first subleading level in the momentum expansion of exchanged gravitons,

each incoming shockwave should experience a classical deflection angle due to the gravita-

tional field of the other shock. The present analysis precisely confirms this view. It is also

consistent with the known fact that the scattering angle at eikonal level is the same for

a Schwarzschild black hole as for a shockwave (see e.g. [104]), and indeed generalises this

result to subleading order in the impact parameter.

Some further comments are in order regarding the fact that we have expanded the

logarithm in eq. (4.2). This approximation is justified when the impact parameter is large,

and amounts to exponentiating the full NE phase. This has been argued to be correct even

for smaller impact parameters, given that at sufficiently large s the NE correction to the

fixed order scattering amplitude violates unitarity [42]. Reference [87] suggested that the

seagull and vertex graphs formed part of the gravitational Wilson line operator, and thus

could be exponentiated. This is not immediately borne out in our approach. However, it

may well be that the O(κ2) terms in the generalised Wilson operator of eq. (3.3) generate

multiple copies of the seagull and vertex graphs, in which case a full exponentiation of

these contributions could be formally proven.

5 Conclusion

In this paper, we have examined the high energy (Regge) limit of 2 → 2 scattering in QCD

and gravity, extending previous results to include corrections subleading by a single power

of the impact factor. This generalises previous gravity results for massless particles [32–35],

and for the case in which only one particle is taken to be highly massive [87, 88]. To the

best of our knowledge, no analogous calculations have been carried out in QCD.
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Our calculational approach builds upon a well-known description of the Regge limit (at

eikonal level) as two Wilson lines separated by a transverse distance, developed for QCD

in refs. [2, 3], and applied to gravity in ref. [5]. The generalisation to next-to-soft level

uses the generalised Wilson line approach of refs. [54, 82], which has a number of signifi-

cant advantages. Firstly, vacuum expectation values of generalised Wilson line operators

automatically exponentiate, completely circumventing the combinatorial complexities of

diagrammatic analyses such as that of ref. [87] (although, of course, the latter approach

remains useful in its own right). Secondly, the language of generalised Wilson lines re-

veals that the calculations in QCD and gravity are extremely similar, even if the physical

interpretation of the results is completely different. This hints at a deeper underlying rela-

tionship between the two theories, and indeed our results (as discussed in detail throughout)

are entirely consistent with the double copy of refs. [46–48].

In QCD, we have found a correction to the Regge trajectory of the gluon, suppressed

by a power of the impact parameter, and which is also purely collinearly singular. This

can be removed from the Regge trajectory by absorbing this correction into impact factors

associated with the incoming particles. However, it would be interesting to see whether

similar methods to those in this paper could be used to study further power-suppressed

terms (in t/s) in the Regge limit of supergravity theories, whose classification remains

elusive (see ref. [5] for a recent discussion).

In gravity, we have found a general correction to the eikonal phase, valid for arbitrary

masses of the incoming particles. The interpretation of this correction is that it describes

the deflection angle associated by each particle, considered as a test particle in the gravita-

tional field of the other. This precisely confirms the picture conjectured recently in ref. [36],

which discussed possible interpretations of corrections to eikonal scattering in supergravity

theories.

In calculating contributions stemming from soft gluons or gravitons emanating from

inside the hard interaction, we have found that the gravity next-to-soft theorem of eq. (3.24)

is not sufficient, but must be supplemented by an additional term proportional to the metric

tensor (and which would vanish upon contraction with a physical polarisation tensor). This

seems at odds with the fact that the result of our gravity calculation is to reproduce a purely

classical effect. It may be that the correction term is a purely gauge-dependent artifact, but

in any case the generalisation of next-to-soft theorems for off-shell gauge bosons perhaps

deserves further study.

Finally, we hope that our paper motivates the further use of (generalised) gravita-

tional Wilson lines, which have been relatively unexplored. We believe that they provide

an elegant, and panoramic insight into non-abelian gauge theories and gravity, and our

investigation of further applications is in progress.
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A Calculation of the master integral V µ
NE

In this appendix, we calculate the integral of eq. (3.11). One may first set

si =

√
~z2

mi
st, sj =

√
~z2

mj
s, (A.1)

so that eq. (3.11) becomes

V µ
NE(σipi, σjpj) =

|~z|3−d

mimj

∫ ∞
0

dt

∫ ∞
0

ds s

(
ẑµ + stσi

pµi
mi

+ sσj
pµj
mj

)
×
[
1− s2(t2 + 2σt cosh γij + 1− iε) + iε

]−d/2
, (A.2)

where ẑµ = zµ/|~z| and σ = σiσj . For convenience, let us now rewrite this as

V µ
NE(σipi, σjpj) =

|~z|3−d

mimj

[
ẑµVz +

σip
µ
i

mi
Vi +

σjp
µ
j

mj
Vj

]
. (A.3)

We will not need to calculate the coefficient Vz, due to the fact that the master integral

is only ever contracted with one of the external lines, and pi · z = 0. The coefficient Vj is

given by

Vj =

∫ ∞
0

dt

∫ ∞
0

ds s2
[
1− s2(t2 + 2σt cosh γij + 1− iε) + iε

]−d/2
= sinh γij

∫ ∞
σ coth γij

dx

∫ ∞
0

ds s2
[
1− s2 sinh2 γij(x

2 − 1− iε) + iε
]−d/2

, (A.4)

where we have set t = x sinh γij−σ cosh γij in the second line. Upon making the substitution

s =

√
u

1− u
, ds =

1

2

√
1

u(1− u)3
, (A.5)

the s integral in eq. (A.4) becomes

1

2

∫ 1

0
u1/2(1− u)(d−5)/2

[
1− u(1 + sinh2 γij(x

2 − 1− iε) + iε)
]−d/2

=
Γ(32)Γ

(
d
2 −

3
2

)
2Γ
(
d
2

) 2F1

(
d

2
,

3

2
;
d

2
; 1 + sinh2 γij(x

2 − 1− iε) + iε

)
=

Γ
(
3
2

)
Γ
(
d
2 −

3
2

)
2Γ
(
d
2

) 1

[− sinh2 γij(x2 − 1− iε) + iε]3/2
, (A.6)
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where we have used the identity

2F1(a, b; a; z) = (1− z)−b. (A.7)

Equation (A.4) now becomes

Vj =
Γ
(
3
2

)
Γ
(
d
2 −

3
2

)
2Γ
(
d
2

)
sinh2 γij

∫ ∞
σ coth γij

dx

(1− x2 + iε)3/2
. (A.8)

A careful contour integration gives∫ ∞
σ coth γij

dx

(1− x2 + iε)3/2
= i(σ cosh γij − 1), (A.9)

so that

Vj =
iΓ
(
3
2

)
Γ
(
d
2 −

3
2

)
2Γ
(
d
2

)
(1 + σ cosh γij)

. (A.10)

Symmetry of eq. (A.2) under i ↔ j implies that Vi = Vj in eq. (A.3) (n.b. we have also

confirmed this by explicit calculation). One thus finally obtains

V µ
NE(σipi, σjpj) =

iΓ
(
d
2 −

3
2

)
8π(d−1)/2

|~z|3−d

mimj

(
σip

µ
i

mi
+
σjp

µ
j

mj
+ . . .

)
1

(1 + σ cosh γij)
. (A.11)

where the ellipsis denotes terms ∝ zµ.

B Calculation of internal emission integrals

In this appendix, we calculate the scalar, vector and tensor integrals of eq. (3.44), and

the vector box integral of eq. (3.62). Beginning with the scalar case, one may introduce

Schwinger parameters according to∫ ∞
0

dseis(x+iε) =
i

x+ iε
, (B.1)

yielding12

S(pi) = i

∫
ddk̃

(2π)d

∫ ∞
0

dα1

∫ ∞
0

dα2

∫ ∞
0

dα3 exp

[
i

(
(α1 + α2)k̃

2 − α2
3m

2
i

α1 + α2
+
α1α2q

2

α1 + α2

)]
,

(B.2)

where we have also shifted the momentum variable according to

k̃µ = kµ +
(α3pi − α2q)

µ

α1 + α2
. (B.3)

12Note that we have ignored a term ∼ pi · q in the exponent of eq. (B.2). Keeping this term introduces

corrections subleading by two powers of |~q| in the final result, which can therefore be neglected.
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Carrying out the momentum integral gives

S(pi) = − 1

(4πi)d/2
I

(
d

2
, 0, 0

)
, (B.4)

where

I(l,m, n) =

∫ ∞
0

dα1

∫ ∞
0

dα2

∫ ∞
0

dα3(α1 + α2)
−lαm2 α

n
3 exp

[
− i

α1 + α2

(
α2
3m

2
i − α1α2q

2
)]

(B.5)

is a master integral that will be convenient in what follows. The α3 integral is Gaussian,

and can be carried out to give

I(l,m, n) =
i−(n+1)/2

2mn+1
i

Γ

(
1 + n

2

)∫ ∞
0

dα1

∫ ∞
0

dα2 α
m
2 (α1 + α2)

−l+(n+1)/2 exp

[
iα1α2q

2

α1 + α2

]
.

(B.6)

One may now transform

α1 = αx, α2 = α(1− x), dα1dα2 = αdαdx, (B.7)

followed by

α =
iβ

x(1− x)q2
(B.8)

to get

I(l,m, n)=
i−n+l−m−3

2mn+1
i

Γ

(
1 + n

2

)
(−q2)l−(n+1)/2−m−2

∫ ∞
0

dββm+1−l+(n+1)/2e−β (B.9)

×
∫ 1

0
dxxl−(n+1)/2−m−2(1− x)l−(n+1)/2−2

=
i−n+l−m−3

2mn+1
i

Γ
(
1+n
2

)
Γ
(
m−l+ n

2 + 5
2

)
Γ
(
l− n

2−
3
2

)
Γ
(
l− n

2−m−
3
2

)
Γ(2l − n−m− 3)

|~q|2l−n−2m−5,

where we have defined the square of the two-dimensional momentum transfer via (cf.

eq. (2.22))

q2 ' −~q2. (B.10)

Substituting eq. (B.9) into eq. (B.4), the final result for the scalar integral is

S(pi) = − i
√
π

2(4π)d/2
|~q|d−5

mi

Γ
(
5−d
2

)
Γ2
(
d−3
2

)
Γ(d− 3)

. (B.11)

One may carry out the momentum integrals for the vector and tensor cases in a similar

manner. They are given in terms of the master integral of eq. (B.5) as follows:

V µ(pi) =− 1

(4πi)d/2

[
−pµi I

(
d

2
+ 1, 0, 1

)
+ qµI

(
d

2
+ 1, 1, 0

)]
;

Tµν(pi) =− 1

(4πi)d/2

[
pµi p

ν
i I

(
d

2
+ 2, 0, 2

)
− q(µpν)i I

(
d

2
+ 2, 1, 1

)
+qµqνI

(
d

2
+ 2, 2, 0

)
+
i

2
ηµνI

(
d

2
+ 1, 0, 0

)]
. (B.12)
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Let us now turn to the vector box integral of eq. (3.62). Introducing Schwinger parameters,

this is given by

V µ
box = 4

∫
ddk

(2π)d

∫ ∞
0

dα1

∫ ∞
0

dα2

∫ ∞
0

dα3

∫ ∞
0

dα4 k
µ

× exp

[
iα1k

2 + iα2(q − k)2 + 2iσiα3pi · k + 2iσjα4pj · k −
∑
i

αiε

]

= −4i1−d/2

(4π)d/2

∫ ∞
0
dα1

∫ ∞
0
dα2

∫ ∞
0
dα3

∫ ∞
0
dα4 (σiα3pi + σjα4pj − α2q)

µ (α1 + α2)
−1−d/2

× exp

[
iα1α2q

2

α1 + α2
+
i(−α2

3m
2
i − α4m

2
j − 2α3α4σmimj cosh γij + iε)

α1 + α2

]
, (B.13)

where we have carried out the momentum integration in the second equality, defined σ =

σiσj , and absorbed positive definite factors into ε where necessary. Here the term in qµ

may be ignored, as it will vanish upon contraction with any external momenta. For the

term in pµi , one may rescale α3 → α3
√
α1 + α2/mi, α4 → α4

√
α1 + α2/mj , then make the

transformations of eqs. (B.7), (B.8) to carry out the (α1, α2) integrals, leaving

V µ
box

∣∣
pµi

= − 4i−3/2

(4π)d/2
σip

µ
i

m2
imj

Γ
(
5
2 −

d
2

)
Γ2
(
d
2 −

3
2

)
Γ(d− 3)

|~q|d−5
∫ ∞
0

dα3

∫ ∞
0

dα4 α3

× exp
[
i(−α2

3 − α2
4 − 2α3α4σ cosh γij + iε)

]
. (B.14)

After setting α4 → α3α4, the α3 integral may be carried out to give

V µ
box

∣∣
pµi

= −
√
π

(4π)d/2
σip

µ
i

m2
imj

Γ
(
5
2 −

d
2

)
Γ2
(
d
2 −

3
2

)
Γ(d− 3)

|~q|d−5
∫ ∞
0

dα4

(−1− α2
4 − 2α4σ cosh γij + iε)3/2

,

(B.15)

and the transformation α4 = x sinh γij − σ cosh γij subsequently yields

V µ
box

∣∣
pµi

= −
√
π

(4π)d/2
σip

µ
i

m2
imj sinh2 γij

Γ
(
5
2 −

d
2

)
Γ2
(
d
2 −

3
2

)
Γ(d− 3)

|~q|d−5
∫ ∞
σ coth γij

[1− x2 + iε]−3/2.

(B.16)

The x integral has already been carried out in eq. (A.9). Furthermore, symmetry allows

the coefficient of pµj in eq. (B.13) to be straightforwardly obtained from that of pµi . The

final result for the box integral is

V µ
box = − i

√
π

(4π)d/2
1

mimj(1 + σ cosh γij)

Γ
(
5
2 −

d
2

)
Γ2
(
d
2 −

3
2

)
Γ(d− 3)

|~q|d−5
(
σip

µ
i

mi
+
σjp

µ
j

mj

)
+ . . . ,

(B.17)

where the ellipsis denotes the term in qµ that can be ignored.
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