
J
H
E
P
0
1
(
2
0
1
7
)
0
4
3

Published for SISSA by Springer

Received: November 28, 2016

Accepted: December 28, 2016

Published: January 11, 2017

New classes of bi-axially symmetric solutions to

four-dimensional Vasiliev higher spin gravity

Per Sundell and Yihao Yin

Departamento de Ciencias F́ısicas, Universidad Andres Bello,

Republica 220, Santiago de Chile, Chile

E-mail: per.anders.sundell@gmail.com, yinyihao@gmail.com

Abstract: We present new infinite-dimensional spaces of bi-axially symmetric asymptot-

ically anti-de Sitter solutions to four-dimensional Vasiliev higher spin gravity, obtained by

modifications of the Ansatz used in arXiv:1107.1217, which gave rise to a Type-D solu-

tion space. The current Ansatz is based on internal semigroup algebras (without identity)

generated by exponentials formed out of the bi-axial symmetry generators. After having

switched on the vacuum gauge function, the resulting generalized Weyl tensor is given by

a sum of generalized Petrov type-D tensors that are Kerr-like or 2-brane-like in the asymp-

totic AdS4 region, and the twistor space connection is smooth in twistor space over finite

regions of spacetime. We provide evidence for that the linearized twistor space connection

can be brought to Vasiliev gauge.

Keywords: Higher Spin Gravity, Higher Spin Symmetry

ArXiv ePrint: 1610.03449

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP01(2017)043

mailto:per.anders.sundell@gmail.com
mailto:yinyihao@gmail.com
https://arxiv.org/abs/1107.1217
https://arxiv.org/abs/1610.03449
http://dx.doi.org/10.1007/JHEP01(2017)043


J
H
E
P
0
1
(
2
0
1
7
)
0
4
3

Contents

1 Introduction 2

2 Bosonic Vasiliev model 4

2.1 Master field equations 5

2.2 Star product, twisted central element and traces 7

2.3 Equations in components and deformed oscillators 9

2.4 Lorentz covariance, Fronsdal fields and Weyl tensors 10

2.5 Internal star product algebras and solution spaces 12

3 New class of biaxially symmetric solutions 13

3.1 Gauge function 13

3.2 Exact solutions in holomorphic gauge from abelian group algebras 14

3.3 Twistor space connection in Weyl order in holomorphic gauge 16

3.4 Singularities in L-gauge from T~0 17

3.5 Abelian group algebra from Cartan subalgebra of sp(4;R) 17

3.6 New exact biaxially symmetric solutions in holomorphic gauge 19

4 Weyl zero-form and Weyl tensors 20

4.1 The Weyl zero-form in L-gauge 20

4.2 Petrov types of the Weyl tensors 23

4.3 Asymptotic behaviour of the Weyl tensors 24

4.4 Zero-form charges 25

5 Twistor space connection 25

5.1 Generating function for twistor space connection in L-gauge 25

5.2 Singular twistor space connection in L-gauge from T0,0 26

5.3 Regularity of twistor space connection in L-gauge for non-unital AE,J 27

5.4 Linearized twistor space connection in Vasiliev gauge 29

6 Conclusion 31

A The ⋆-exponent 33

B Van der Waerden symbols and gamma matrices 36

B.1 Pauli matrices 36

B.2 Gamma matrices 37

C Spacetime gauge function 38

D Determination of Petrov type of spin-2 Weyl tensor 39

– 1 –



J
H
E
P
0
1
(
2
0
1
7
)
0
4
3

1 Introduction

Vasiliev’s equations [1] (for a recent review, see [2]) provide a fully nonlinear description of

higher spin gauge fields in four dimensions coupled to gravity and matter fields. The basic

feature of Vasiliev’s theory is that the full field configurations are captured by master fields

that live on an extension of spacetime by a noncommutative twistor space. The equations

admit an exact solution given by the direct product of anti-de Sitter spacetime and an

undeformed twistor space. In a specific gauge, certain linearized perturbations of the non-

commutative twistor space structure give rise to Fronsdal fields. This suggests a holographic

relationship to three-dimensional conformal field theories [3–5]; see also [6–8]. In [9, 10] this

relation was examined under the assumption that the Gubser-Klebanov-Polyakov-Witten

(GKPW) prescription [11, 12] for on-shell computations of Witten diagrams can be applied

to classical field configurations obtained from Vasiliev’s equations.

However, the Fronsdal fields embedded into Vasiliev’s master fields have non-local in-

teractions [13–15]1 that belong to a functional class widely separated [17] from that of the

quasi-local Fronsdal theory [18], which is built by applying the canonical Noether approach

to Fronsdal fields in anti-de Sitter spacetime. The GKPW prescription applies to the quasi-

local theory by construction, as its action has self-adjoint kinetic terms, and the resulting

holographic correlation functions indeed correspond to free three-dimensional conformal

field theories.2 Recent work [22] shows that there exists an explicit field redefinition that

maps Vasiliev’s theory to a quasi-local theory on-shell, obtained by carefully fine-tuning

the perturbative expansion on the Vasiliev side, though it remains to be seen whether it

coincides with that of [18]. Moreover, as later shown in [23] the required field redefinition

is large, and hence it is unclear to what extent the method can be used to actually com-

pute any holographic correlation functions. Thus, to our best understanding, the issue of

whether holographic amplitudes can be extracted by applying the GKPW prescription to

the Fronsdal fields embedded into Vasiliev’s master fields remains an open problem.

An alternative approach, pursued in [24], is to seek a weaker relation between the two

theories, namely at the level of two distinct effective actions, derived in their own rights

following different principles, and then evaluated subject to suitable dual boundary condi-

tions. To this end, one starts from Hamilton’s principle applied to a covariant Hamiltonian

action formulated using Weyl order on a noncommutative manifold whose boundary is given

by the direct product of spacetime and twistor space [24, 25]; the Weyl order is required

for the noncommutative version of the Stokes’ theorem to hold and for the imposition of

boundary conditions. The resulting variational principle yields Vasiliev’s equations in Weyl

order, that can be mapped back to Vasiliev’s normal order for special classes of initial data

in twistor space following the perturbative scheme set up in [26, 27]. The resulting form

of the higher spin amplitudes [28–30] is closely related to first-quantized topological open

1For a review, see [16].
2The functional class encountered in the quasi-local Fronsdal theory in [18] (within the AdS/CFT con-

text) has not yet been identified completely; for a discussion, see [17, 19] and section 7 of [20]. At the cubic

order, the separation between the functional classes of this theory and the Vasiliev theory has been spelled

out in [21].
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string amplitudes [31], but nonetheless reproduce exactly the same correlation functions as

the Witten diagrams computed in the quasi-local theory. We would like to stress the fact

that the Hamiltonian form of the action implies that the dependence of the classical Vasiliev

master fields on classical sources are of a different type than for fields obeying equations of

motion following from an action with self-adjoint kinetic terms. Indeed, instead of applying

the GKPW prescription, the higher spin amplitudes are obtained from functionals given

by topological boundary terms added to the Hamiltonian action [24, 29, 32], whose on-shell

values are given by higher spin invariants, as we shall comment on further below.

In this paper, we shall construct new perturbatively defined solution spaces to Vasiliev’s

equations in Weyl order, by taking into account classes of functions that resemble closely

those used in [26]. We shall then demonstrate explicitly that they can be mapped to

Vasiliev’s normal order, at least at the linearized level, thus providing further evidence in

favour of the covariant Hamiltonian approach outlined above.

To this end, we recall that at the linearized level, the fluctuations in the master fields

that are asymptotic to anti-de Sitter spacetime form various representation spaces of the

anti-de Sitter isometry algebra, including lowest-weight spaces as well as spaces associated

to linearized solitons [33] and generalized Petrov type-D solutions [26, 33, 34]. Nonlinear

completions of various Type-D solution spaces were constructed in [26, 33, 34]; for a review,

see [35]. Of direct relevance for the work in this paper is the subspace that contains the

the black-hole-like solutions,3 including spherically symmetric solutions. In these solutions,

each individual Fronsdal field has a point-like source at the origin, showing up as a diver-

gence in its Weyl tensor. However, upon packing all curvatures into a master zero-form,

one obtains the symbol of a quantum-mechanical operator that approaches a delta function

distribution at the origin [26], which defines a smooth state as seen via classical observables

given by zero-form charges [29, 30, 37]. In this sense, the black-hole-like Type-D solutions

to Vasiliev’s theory are source free at the origin.4 Furthermore, it is possible to dress these

solutions with lowest-weight space modes [27] at the fully nonlinear level; in doing so, the

latter modes induce Type-D modes already at the second order of classical perturbation

theory.5

Clearly, the full extent of the moduli space of the theory yet remains to be determined.

In this paper, we shall present a new infinite-dimensional class of bi-axially symmetric exact

solutions that are asymptotic to anti-de Sitter spacetime and singularity free at the level

of zero-form charges. We shall furthermore propose a super-selection mechanism based

on requiring that the solutions can be brought to Vasiliev gauge (where the asymptotic

linearized fluctuations are in terms of Fronsdal fields).

Our construction method follows closely the one devised in [26] using gauge functions

and separation of twistor space variables, which is in effect equivalent to starting from an

Ansatz in Weyl order. The key difference is that we shall expand the master fields over a

3This subspace is related to the massless spectrum by means of a Z2-operation [26], reminiscent of a

U-duality transformation [36].
4It remains to be examined whether additional topological two-forms describing Dirac strings need to

be activated in the dynamical two-form [24, 38].
5This phenomena resembles some of the scattering processes in U-duality covariant field theory [36].
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new set of elements in the associative fiber algebra, thus adding a branch to the existing

moduli space. In a generic gauge, the expansion coefficients are functions on the base man-

ifold. However, in the holomorphic gauge of [26] the Weyl zero-form is a constant while the

twistor space one-form is given by a universal set of functions, related to Wigner’s deformed

oscillators, originally derived within the context of three-dimensional matter coupled higher

spin gravity [39]. The resulting solution space is then mapped to Vasiliev gauge in which

the spacetime one-form consists of nonlinear Fronsdal tensors (after a suitable field redefi-

nition in order to reinstate manifest Lorentz covariance). This map is achieved by means of

two consecutive (large) gauge transformations: first, one uses a vacuum gauge function in

SO(2,3)/SO(1,3).6 Provided that the resulting twistor space connection is smooth at the

origin of the base of the twistor space, Vasiliev gauge can be reached by means of a second

perturbatively defined gauge transformation. As we shall see, the real-analyticity require-

ment constrains the initial data in the Weyl zero-form already at the linearized level.7

More specifically, the new sector of the fiber algebra is isomorphic to the group algebra

C[Z × Z] where Z × Z is generated by two elements in Sp(4;C) given by exponentials of

a pair of Cartan generators of sp(4;R). These correspond to linear symmetries of the

two-dimensional harmonic oscillator, and generate the Killing symmetries of the solutions

(including higher spin symmetries). As we shall see, the aforementioned super-selection

rule amounts to restricting the master fields to a subalgebra of the group algebra not

containing the unity.

The paper is organized as follows: in section 2 we review parts of Vasiliev’s bosonic

higher spin gravity model that we shall use in constructing and interpreting the exact

solutions. Solution spaces based on (semi)group algebras are constructed in section 3 using

the aforementioned method; the singular nature of the contribution from the identity is

pointed out in section 3.4. In section 4, we show that the Weyl tensor is given by a sum of

Petrov type-D tensors that are Kerr-like or 2-brane-like in the asymptotic AdS4 region, and

we compute higher spin curvature invariants. In section 5, we show in special cases that

the twistor space one-form is real-analytic in twistor space over finite regions of spacetime,

and that its linearized part can be brought to Vasiliev gauge. We conclude in section 6.

2 Bosonic Vasiliev model

In this section, we describe the non-minimal bosonic higher spin gravity model of Vasiliev

type [1],8 for which we shall present exact solutions in the next section. The model is

characterized by the fact that it admits a linearization consisting of real Fronsdal fields in

four-dimensional anti-de Sitter spacetime of spins s = 0, 1, 2, . . . with each spin occurring

once; for further details, we refer to [13, 26] and the review [2].

6Whether a more general vacuum gauge function can introduce additional classical moduli remains an

open problem.
7An optional criterion is that the fiber algebra is a unitarizable representation of the higher spin algebra

and hence the anti-de Sitter isometry algebra; we expect this property to arise at higher orders of classical

perturbation theory by requiring positivity of a suitable free energy functional.
8For recent reformulations containing the original Vasiliev system as consistent truncations, see [24, 38].
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We first provide the formal definition in terms of master fields on the direct product

of a commuting space and a noncommutative twistor space. We then spell out the compo-

nent form of the equations, including their reformulation in terms of deformed oscillators.

Finally, we remark on choices of bases for the internal algebra, and the Lorentz covariant

weak field expansion scheme leading to Fronsdal fields, stressing the role of Vasiliev gauge

and smoothness in twistor space.

2.1 Master field equations

Vasiliev’s original formulation of higher spin gravity is given in terms of two master fields Φ

and A of degrees 0 and 1, respectively, and two closed and twisted-central elements I and

I of degree 2, all of which are elements of a differential graded associative algebra Ω(M)

of forms on a non-commutative manifold M, valued in an internal associative algebra A.

Letting ⋆ denote the associative product of Ω(M)⊗A, which is assumed to be compatible

with d, the fully nonlinear master field equations read

F + B ⋆ Φ ⋆ I − B ⋆ Φ ⋆ I = 0 , (2.1)

DΦ = 0 , (2.2)

where

F := dA+A ⋆ A , DΦ := dΦ+A ⋆ Φ− Φ ⋆ π (A) , (2.3)

and π denotes an automorphism of the differential graded associative algebra. The two-

forms are characterised by the subsidiary constraints

dI = 0 , I ⋆ f = π(f) ⋆ I , (2.4)

for any f ∈ Ω(M)⊗A, idem I. Finally, the star functions

B :=
∞∑

n=0

bn(Φ ⋆ π(Φ))⋆n , B :=
∞∑

n=0

b̄n(Φ ⋆ π(Φ))⋆n , (2.5)

where bn, b̄n ∈ C. It follows that Φ ⋆ π(Φ) and hence B is covariantly constant, viz.

dB +A ⋆ B − B ⋆ A = 0 , (2.6)

idem B. As Φ ⋆ I and Φ ⋆ I are covariantly constant as well, it follows that the constraint

on F is compatible with its Bianchi identity. The integrability of the constraint on DΦ, on

the other hand, requires F ⋆ Φ− Φ ⋆ π(F ) to vanish, which is indeed a consequence of the

constraint on F . The resulting Cartan integrability, i.e. consistency with d2 ≡ 0, holds for

any dimension of M and any star functions B and B, which are hence not fixed uniquely

by the requirement of higher spin symmetry alone.

In the context of higher spin gravity, it is usually assumed that

M = X4 ×Z4 , (2.7)

where X4 is a four-dimensional real commuting manifold, with coordinates xµ, and Z4 is

a four-dimensional real non-commutative symplectic manifold, with canonical coordinates

– 5 –
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Zα. The compatibility between the star product and the differential amounts to the Leibniz’

rule

d(f ⋆ g) = df ⋆ g + (−1)deg(f)f ⋆ dg . (2.8)

The differential star product algebra is assumed to be trivial in strictly positive degrees,

in the sense that dΞM := (dxµ, dzα, dz̄α̇) are taken to be graded anti-commuting elements

obeying

dΞM ⋆ f = dΞM ∧ f , f ⋆ dΞM = f ∧ dΞM , (2.9)

which are consistent with associativity. The algebra Ω(M) ⊗ A is also assumed to be

equipped with an anti-linear anti-automorphism †, for which we use the convention

(f1 ⋆ f2)
† = (−1)deg(f1)deg(f2)f †

2 ⋆ f †
1 , (df)† = d(f †) . (2.10)

In case of the basic bosonic models, without internal Yang-Mills symmetries, the inter-

nal algebra A consists of classes of functions on yet one more four-dimensional real non-

commutative symplectic manifold, that we shall denote by Y4, with canonical coordinates

Y α. We shall refer to Y4×Z4 as the full twistor space, and Y4 and Z4, respectively, as the

internal and external twistor spaces.9 The Sp(4;R) quartets are split into SL(2;C) doublets,

viz.10

Y α = (yα, ȳα̇) , Zα = (zα, z̄α̇) , (2.11)

obeying

ȳα̇ = (yα)† , z̄α̇ = − (zα)† , (2.12)

The automorphism π and its hermitian conjugate π̄ are defined by

π
(
xµ; yα, ȳα̇; zα, z̄α̇

)
=

(
xµ;−yα, ȳα̇;−zα, z̄α̇

)
, (2.13)

π̄
(
xµ; yα, ȳα̇; zα, z̄α̇

)
=

(
xµ; yα,−ȳα̇; zα,−z̄α̇

)
, (2.14)

and π ◦ d = d ◦ π idem π̄. Imposing

Φ† = π (Φ) , A† = −A , I† = I , (2.15)

and

B† = B , (2.16)

that is, (bn)
† = b̄n, and

ππ̄ (Φ) = Φ , ππ̄ (A) = A , ππ̄ (I) = I , ππ̄
(
I
)

= I (2.17)

yields a model with a perturbative expansion around four-dimensional anti-de Sitter space-

time in terms of Fronsdal fields of all integer spins.

The equations given so far provide a formal definition of the basic bosonic model.

9Taking the master fields to be smooth functions of Y4 yields an anti-de Sitter analog of the Penrose-

Newman transformation; to our best understanding, the precise relation between Y4 ×Z4 and the original

(commuting) twistor space of Penrose remains to be spelled out in detail.
10The doublet indices are raised and lowered using fα = εαβfβ and fβ = fαεαβ idem f α̇.
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2.2 Star product, twisted central element and traces

In what follows, we shall use Vasiliev’s original realization of the ⋆-product given by

f1 (y, ȳ, z, z̄) ⋆ f2 (y, ȳ, z, z̄) (2.18)

=

∫
d2ud2ūd2vd2v̄

(2π)4
eiv

αuα+iv̄α̇ūα̇f1 (y+u, ȳ+ū; z+u, z̄−ū) f2 (y+v, ȳ+v̄; z−v, z̄+v̄) .

We shall encounter ⋆-product compositions leading to Gaussian integrals involving indef-

inite bilinear forms. To define these we use the fact that the auxiliary integration is a

formal representation of the original Moyal-like contraction formula, which means that the

integration must be performed by means of analytical continuations of the eigenvalues of

the bilinear forms.

Symbol calculus. The star product rule implies that

[f1 (y, ȳ) , f2 (z, z̄)]⋆ = 0 , (2.19)

that is, the variables Y α and Zα are mutually commuting. Moreover, from

yα⋆yβ = yαyβ+iεαβ , yα⋆zβ = yαzβ−iεαβ , zα⋆yβ = zαyβ+iεαβ , zα⋆zβ = zαzβ−iεαβ ,

(2.20)

it follows that

a±α :=
1

2
(yα ± zα) , (2.21)

obey [
a−α , a

+
β

]

⋆
=

[
a+α , a

−
β

]

⋆
= iεαβ ,

[
a+α , a

+
β

]

⋆
=

[
a−α , a

−
β

]

⋆
= 0 . (2.22)

Letting OWeyl and ONormal denote the Wigner maps that send a classical function f to the

operator with symbol f in the Weyl and normal order, respectively, where an operator is

said to be in normal order if all ONormal(a
+
α ) stand to the left of all ONormal(a

−
α ). As a

result, one has

ONormal(f1 (y, z) ⋆ f2 (y, z)) = ONormal(f1 (y, z))ONormal(f2 (y, z)) . (2.23)

One also has

OWeyl(f(y)) = ONormal(f(y)) , OWeyl(f(z)) = ONormal(f(z)) , (2.24)

resulting in that

OWeyl(f1 (y) ⋆ f2 (y)) = OWeyl(f1 (y))OWeyl(f2 (y)) , (2.25)

OWeyl(f1 (z) ⋆ f2 (z)) = OWeyl(f1 (z))OWeyl(f2 (z)) , (2.26)

and also

ONormal(f1 (y) ⋆ f2 (z)) = OWeyl(f1 (y) f2 (z)) = OWeyl(f1 (y))OWeyl(f2 (z)) . (2.27)

– 7 –
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Twisted central element. The condition (2.4) can be solved by

I = jz ⋆ κy , jz =
i

4
dzα ∧ dzβεαβκz , κy = 2πδ2 (y) , κz = 2πδ2 (z) , (2.28)

where κy is an inner Klein operator obeying

κy ⋆ f(y) ⋆ κy = f(−y) , κy ⋆ κy = 1 , (2.29)

idem κz. Thus, one may write

I =
i

4
dzα ∧ dzβεαβκ , κ := κy ⋆ κz = exp(iyαzα) , (2.30)

where thus

κ ⋆ f(y, z) = κf(z, y) , f(y, z) ⋆ κ = κf(−z,−y) , (2.31)

κ ⋆ f(y, z) ⋆ κ = π(f(y, z)) , κ ⋆ κ = 1 . (2.32)

By hermitian conjugation one obtains

I = −I† =
i

4
dz̄α̇ ∧ dz̄β̇εα̇β̇κ̄ . (2.33)

The two-forms jz and j z̄ can be extended to globally defined forms on a non-commutative

space Z4 having the topology of a direct product of two complexified two-spheres [24, 26],

with nontrivial flux ∫

Z4

jz ⋆ j z̄ = −1

4
. (2.34)

In this topology, it is furthermore assumed that Φ belongs to a section that is bounded at

infinity, while the twistor-space one-form is a connection whose curvature two-form falls

off at infinity.

We note that the form of I given in eq. (2.30) is useful in deriving the perturbative ex-

pansion in terms of Fronsdal fields in Vasiliev gauge, while the factorized form in eq. (2.28)

is useful in finding exact solutions.

Trace operations. The detailed form of the symbol of an operator depends on the basis

with respect to which it is defined. Its trace, on the other hand, is basis independent, and

in addition gauge invariant. The star product algebra admits two natural trace operations.

The basic operation is given by the integral over phase space using the symplectic measure,

viz.

Trf :=

∫

Z4×Y4

jy ⋆ j ȳ ⋆ κy ⋆ κ̄ȳ ⋆ f , f ∈ Ω(Z4)⊗A , (2.35)

where jy is given by replacing zα by yα in jz defined in eq. (2.28). An alternative trace oper-

ation, of relevance to higher spin gauge theory, can be defined ifA admits the decomposition

A =
⊕

n,n̄=0,1

An,n̄ ⋆ (κy)
n ⋆ (κ̄ȳ)

n̄ , (2.36)

– 8 –



J
H
E
P
0
1
(
2
0
1
7
)
0
4
3

where An,n̄ consist of operators whose symbols in Weyl order are regular at the origin of

Y4. One may then define the trace operation

Tr′f :=

∫

Y4

jy ⋆ j ȳ ⋆ f1,1̄ = −1

4
f1,1̄|y=0=ȳ , (2.37)

using the decomposition (2.36), with the convention that

κy ⋆ κ̄ȳ ⋆ f = ±f ⇒ Tr′f = ∓1

8
f |y=0=ȳ . (2.38)

One may view Tr′ as a regularized version of Tr in the sense that if f admits a decomposition

of the form (2.36) then

Trf =
∑

n,n̄=0,1

Trfn,n̄ ⋆ (κy)
n ⋆ (κ̄ȳ)

n̄ (2.39)

= Tr′f +Tr(f0,0̄ + f1,0̄ ⋆ κy + f0,1̄ ⋆ κ̄ȳ) , (2.40)

that is,

Tr′f = Trf − Tr(f0,0̄ + f1,0̄ ⋆ κy + f0,1̄ ⋆ κ̄ȳ) . (2.41)

Indeed, in several applications it turns out that Trf is ill-defined while Tr′f is well-defined,

as for example in the case that f is a polynomial on Y4.

2.3 Equations in components and deformed oscillators

We decompose the master one-form into locally defined components as follows:

A = Uµdx
µ + Vαdz

a + Vα̇dz̄
α̇ , (2.42)

The reality condition (2.15) and the bosonic projection (2.17) imply

U †
µ = −Uµ , V †

α = V̄α̇ , (2.43)

ππ̄ (Uµ) = Uµ , ππ̄ (Vα) = −Vα . (2.44)

Decomposing master equations into components using inner derivatives ı∂µ , ı∂α and ı∂α̇ ,

where ∂α ≡ ∂/∂zα idem ∂α̇, one has

∂[µUν] + U[µ ⋆ Uν] = 0 , (2.45)

∂µΦ+ Uµ ⋆ Φ− Φ ⋆ π (Uµ) = 0 , (2.46)

the mixed components

∂µVα − ∂αUµ + [Uµ, Vα]⋆ = 0 , ∂µV̄α̇ − ∂α̇Uµ +
[
Uµ, V̄α̇

]
⋆
= 0 , (2.47)

which are related by hermitian conjugation, and

∂[αVβ] + V[α ⋆ Vβ] +
i

4
εαβB ⋆ Φ ⋆ κ = 0 , ∂[α̇V̄β̇] + V̄[α̇ ⋆ V̄β̇] +

i

4
εα̇β̇B ⋆ Φ ⋆ κ̄ = 0 , (2.48)

∂αΦ+ Vα ⋆ Φ− Φ ⋆ π̄ (Vα) = 0 , ∂α̇Φ+ V̄α̇ ⋆ Φ− Φ ⋆ π
(
V̄α̇

)
= 0 , (2.49)

∂αV̄α̇ − ∂α̇Vα +
[
Vα, V̄α̇

]
⋆
= 0 , (2.50)

– 9 –
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where the two equations in eq. (2.48) are related by hermitian conjugation idem eq. (2.49).

The twistor space equations (2.48)–(2.50) can be rewritten by introducing Vasiliev’s

deformed oscillators [1]

Sα = zα − 2iVα , S̄α̇ = z̄α̇ − 2iV̄α̇ , (2.51)

for which the reality condition and the bosonic projection take the form:

(Sα)
† = −S̄α̇ , (2.52)

ππ̄ (Sα) = −Sα . (2.53)

In terms of the new fields, the aforementioned equations read

[Sα, Sβ ]⋆ = −2iεαβ (1− B ⋆ Φ ⋆ κ) and h.c. , (2.54)

Sα ⋆ Φ+ Φ ⋆ π (Sα) = 0 and h.c. , (2.55)
[
Sα, S̄β

]
⋆
= 0 , (2.56)

as can be seen using

[zα, f ]⋆ = −2i∂αf , [z̄α̇, f ]⋆ = −2i∂α̇f , (2.57)

[zα, zβ]⋆ = −2iεαβ ,
[
z̄α̇, z̄β̇

]

⋆
= −2iεα̇β̇ , (2.58)

[zα, z̄α̇]⋆ = 0 . (2.59)

As we shall see below, the deformed oscillators are useful in defining the field redefinition

to Lorentz covariant basis. They also provide a useful basis for finding exact solutions as

they convert the differential equations on Z4 into algebraic equations that can be solved

using Laplace transformation methods [39]; for related details, see [26].

2.4 Lorentz covariance, Fronsdal fields and Weyl tensors

To arrive at a perturbative formulation in terms of Fronsdal fields on X4, one first solves

eqs. (2.47)–(2.50) subject to an initial datum for Φ and Uµ at Zα = 0 in a perturbative

expansion in the zero-form initial data in Vasiliev gauge11

zαVα = 0 . (2.60)

In this gauge, initial data for the zero-form given by generic smooth symbols on Y4 yields

twistor space configurations that are smooth functions on Y4×Z4. Letting ωαβ
µ denote the

canonical Lorentz connection, one can show that [42] Φ, Vα and12

Wµ := Uµ − 1

4i

(
ωαβ
µ Mαβ + ω̄α̇β̇

µ Mα̇β̇

)
, (2.61)

11At the linearized level, this gauge yields the canonical basis for unfolded linearized Fronsdal fields [1]; for

further details, see [13] and the review [2]. Beyond the linearized approximation, it has been used in ampli-

tude computations [9, 10, 28, 29] and related recent works [38, 40]. Most exact solutions found so far, how-

ever, have been given in other gauges argued to be equivalent to Vasiliev gauge; for example, see [26, 37, 41].
12The resulting manifestly Lorentz covariant form of the master field equations can be found in [26, 28].
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where

Mαβ := yαyβ − zαzβ + Sα ⋆ Sβ , (2.62)

have Taylor expansions in (Y α, Zα) around Y α = Zα = 0 in terms of Lorentz tensors. The

redefinition induces a shift symmetry that can be used to set the coefficient of yαyβ in Wµ

to zero, such that

Wµ|Z=0 = eµ +W ′
µ , eµ =

1

2i
eαα̇µ yαȳα̇ , (2.63)

where W ′
µ consists of a spin-one field and a tower of higher spin gauge fields with s =

3, 4, . . . . Proceeding by assuming that eαα̇µ defines a vierbein, and taking Φ|Z=0 and W ′
µ to

be weak fields in which the couplings in eqs. (2.45)–(2.46) can be expanded perturbatively,

one can show that the resulting algebraically independent fields are given by the Lorentz

scalar

ϕ := Φ|Y=Z=0 , (2.64)

the metric

gµν := eaµeν,a , (2.65)

and the tower of doubly traceless tensor gauge fields

ϕa1...as := (e−1)(a1
µW ′

µ,a2...as)
, s = 1, 3, 4, . . . , (2.66)

where W ′
µ,a1...an

is the coefficient in W ′
µ of (σa1)αα̇y

αȳα̇ · · · (σan)αα̇y
αȳα̇. These fields obey

equations of motion on the Lorentzian manifold (X4, gµν) with second-order kinetic terms,

critical masses and dynamical metric.13

The virtue of Vasiliev gauge is that the metric and the gauge fields (2.66) are identical

to the Fronsdal tensors that can be obtained at the linearized level by integrating the

generalized Weyl tensor

Cα1...α2s =

(
∂2s

∂yα1 · · · ∂yα2s
Φ

)∣∣∣∣
Y=Z=0

, s = 1, 2, 3, . . . , (2.67)

using the generalized Poincare lemma (for example, see [43–45]). In other words, an asymp-

totic observer who sources the bulk using a linearized spin-s Fronsdal field will activate the

corresponding component field given above, whose boundary value can thus be identified

with a dual conformal field theory source coupled to a conserved spin-s current.

The higher order couplings depend on the choice of gauge as well as the initial data

for Φ and Wµ; as proposed by Vasiliev [22], these initial data can be fine-tuned at higher

orders in order to obtain quasi-local equations of motion in the gauge (2.60).

An alternative approach, which we shall follow here, is to restrict the initial data for the

zero-form to specific classes of functions on Y4, corresponding to associative subalgebras of

A leading to well-defined field configurations obeying physical boundary conditions on M.

13Whether the resulting system admit any consistent truncation to a pure higher-derivative gravity theory

remains an open problem.
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2.5 Internal star product algebras and solution spaces

A parameterised set (Φ(ν,G), U(ν,G), V (ν,G), V̄ (ν, L)), where ν belongs to a parameter

space and G is a gauge function, obeying the master field equations form an admissible

solution space if they generate a free differential algebra together with I and I (for each

fixed value of ν). To construct such spaces we use associative star product algebras14

AS =
⊕

λ∈S

Tλ ⊗ C , (2.68)

that are closed under the actions of π, π̄, † and star multiplication by κy and κ̄ȳ, and whose

basis elements Tλ, labeled by λ in a discrete set S, have finite traces. We say that AS is

contained in AS′ if there exists a monomorphism ρ : AS′ → AS such that Tr′ ◦ ρ = Tr′ i.e.

if the elements in AS can be expanded in terms of the elements in AS′ in a way compatible

with the trace operation.

Expanding the master fields over AS yields a set of modes on X4 and Z4 that forms

a free differential algebra together with jz and its hermitian conjugate. Using Cartan

integration methods, the modes can be expressed locally in terms of zero-form integration

constants, which define the ν parameters, and gauge functions. These data can then be

adapted to boundary conditions, which may require a change of basis from AS to a basis

AS′ containing AS ; for example, in asymptotically anti-de Sitter spacetimes, it makes sense

to impose boundary conditions in a Lorentz covariant basis adapted to a dual conformal

field theory. We shall say that a subalgebra AS yields a higher spin gravity solution space

if the resulting Lorentz covariant master fields in Vasiliev gauge have symbols defined in

normal order that can be expanded over finite regions of X4 in terms of the set of monomials

on Y4 ×Z4 that vanish at the origin of Y4 ×Z4, i.e. they are real-analytic at this point.

The resulting moduli spaces can be coordinatized by higher spin invariant functionals,

playing the role of classical higher spin observables [28, 32, 38, 40]. By choosing a structure

group [32] and fixing a topology for the base manifold, one may extend the locally defined

solutions to globally defined higher spin geometries supporting various types of topologi-

cally nontrivial observables. Working locally on X4, the accessible observables are on-shell

closed zero-forms on X4 given by combined integrals over Z4 and traces over Y4 of adjoint

constructs built from (Φ, Vα, V̄α̇; I, I;κ, κ̄), referred to as zero-form charges. Evaluated on

solutions that are asymptotical to anti-de Sitter spacetime, these observables have been

shown to have a physical interpretation as generating functionals for correlation functions

of holographically dual conformal field theories.

We remark that various subalgebras of A can be obtained from different quantum me-

chanical systems in four-dimensional phase space. It is an interesting problem to examine

which of these are admissible in the above sense, and to furthermore distinguish between

these systems using higher spin invariant observables.

14The multiplication table of AS may involve fusion rules [26, 46], which stipulate which pairs of basis

elements that have nontrivial star products and which basis elements that are to be used to expand the result.
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3 New class of biaxially symmetric solutions

In this section, we construct a new class of exact solutions to Vasiliev’s equations on a

direct product manifold of the form (2.7) using a gauge function and expansions in terms

of exponentials of two Cartan generators of sp(4;C), which leads to biaxial symmetry.

3.1 Gauge function

From eq. (2.45) and the fact that X4 is commuting, it follows that Uµ can be expressed in

terms of a gauge function G defined locally on X4 ×Z4 . Thus, setting15

U (G)
µ = G−1 ⋆ ∂µG , (3.1)

Φ(G) = G−1 ⋆ Φ′ ⋆ π (G) (3.2)

V (G)
α = G−1 ⋆ ∂αG+G−1 ⋆ V ′

α ⋆ G , V̄
(G)
α̇ = G−1 ⋆ ∂α̇G+G−1 ⋆ V̄ ′

α ⋆ G , (3.3)

eqs. (2.46) and (2.47) reduce to

∂µΦ
′ = 0 , ∂µV

′
α = 0 , ∂µV̄

′
α = 0 , (3.4)

i.e. the primed fields are constant on X4, and eqs. (2.48)–(2.50) take the form

∂[αV
′
β] + V ′

[α ⋆ V ′
β] +

i

4
εαβB′ ⋆ Φ′ ⋆ κ = 0 and h.c. , (3.5)

∂αΦ
′ + V ′

α ⋆ Φ′ − Φ′ ⋆ π̄
(
V ′
α

)
= 0 and h.c. , (3.6)

∂αV̄
′
α̇ − ∂α̇V

′
α +

[
V ′
α, V̄

′
α̇

]
⋆
= 0 , (3.7)

where B′ :=
∑∞

n=0 bn(Φ
′ ⋆ π(Φ′))⋆n.

In order to obtain solutions that are asymptotic to AdS4, we choose16

G = L ⋆ H , (3.8)

where L, which we shall refer to as the vacuum gauge function, is a locally defined map

from X4 to SO(2,3)/SO(1,3) that is constant on Z4, i.e.

∂αL = ∂α̇L = 0 , (3.9)

and H is determined by imposing the Vasiliev gauge condition (2.60), viz.

zαV (G)
α = 0 , z̄α̇V̄

(G)
α̇ = 0 , (3.10)

in a perturbative expansion

H = 1 +
∞∑

n=1

H(n) , (3.11)

15We denote the star product inverse of G by G−1, that is, G ⋆ G−1 = 1.
16The reality condition and bosonic projection of a gauge function G takes the form G† = G−1 and

ππ̄ (G) = G.
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where the superscript (n) denotes an n-linear function of Φ′. Thus, the master fields in

Vasiliev gauge are given by perturbative corrections of

U (L)
µ = L−1 ⋆ ∂µL , (3.12)

Φ(L) = L−1 ⋆ Φ′ ⋆ π (L) (3.13)

V (L)
α = L−1 ⋆ ∂αL+ L−1 ⋆ V ′

α ⋆ L , V̄
(L)
α̇ = L−1 ⋆ ∂α̇L+ L−1 ⋆ V̄ ′

α ⋆ L , (3.14)

where the Maurer-Cartan form U
(L)
µ consists of the frame field and Lorentz connection on

the anti-de Sitter background spacetime, for which we shall use the explicit form in stereo-

graphic coordinates given in appendix C. As for H, its existence requires that V
(L)
α admits

a power series expansion on Z4 around Zα = 0, to be examined in more detail in section 5.

Thus, the dependence on X4 arises via the gauge function, leaving X4-independent

equations (3.5)–(3.7), to which we turn next.

3.2 Exact solutions in holomorphic gauge from abelian group algebras

One class of solution spaces arise from star product algebras

AΛ =
⊕

n,n̄=0,1

⊕

~λ∈Λ

(
T~λ ⋆ κ n

y ⋆ κ̄ n̄
ȳ

)
⊗ C , (3.15)

where ~λ = (λ1, . . . , λN ) belongs to an N -dimensional lattice Λ and

T~λ ⋆ T~λ′ = T~λ+~λ′ , [T~λ, κy ⋆ κ̄ȳ]⋆ = 0 , (T~λ)
† = T

c(~λ)
, π(T~λ) = T

π(~λ)
, (3.16)

for c, π : Λ → Λ. The second relation, which is equivalent to the bosonic projection

ππ̄
(
T~λ

)
= T~λ, makes it possible to decompose under

Πσ :=
1

2
(1 + σκy ⋆ κ̄ȳ) =

1

2
(1 + σκyκ̄ȳ) , (3.17)

by expanding

Φ′ =
∑

σ;~λ

T~λ ⋆Πσ ⋆ (ν
σ;~λ

κy + ν̌
σ;~λ

) , ν
σ;~λ

, ν̌
σ;~λ

∈ C , (3.18)

V ′
α =

∑

σ;~λ

T~λ ⋆Πσ ⋆
(
a
σ;~λ;α

+ ǎ
σ;~λ;α

⋆ κy

)
, (3.19)

where a
σ;~λ;α

and ǎ
σ;~λ;α

are holomorphic functions on Z4 and are constant over Y4, which

may be viewed as a gauge choice (for given zero-form initial data). Expanding17

B′ ⋆ Φ′ ⋆ κy =
∑

σ;~λ

T~λ ⋆Πσ ⋆ (µ
σ;~λ

+ µ̌
σ;~λ

κy) , µ
σ;~λ

, µ̌
σ;~λ

∈ C , (3.20)

and introducing

µ̊σ(~ζ) :=
∑

~λ

µ
σ;~λ

(~ζ)
~λ , ˚̌µσ(~ζ) :=

∑

~λ

µ̌
σ;~λ

(~ζ)
~λ , (3.21)

åσ(~ζ) :=
∑

~λ

dzαa
σ;~λ;α

(~ζ)
~λ , ˚̌aσ(~ζ) :=

∑

~λ

dzαǎ
σ;~λ;α

(~ζ)
~λ , (3.22)

17We use a convention such that if B′ = b0 then µ
σ;~λ = b0νσ;~λ and µ̌

σ;~λ = b0ν̌σ;~λ.
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where ~ζ := (ζ1, . . . , ζN ) ∈ C
N and (~ζ)

~λ := (ζ1)
λ1 · · · (ζN )λN , the remaining equations on Z4

take the form

d̊aσ + åσ ⋆ åσ +˚̌aσ ⋆ γ ⋆˚̌aσ ⋆ γ + jzµ̊σ = 0 , (3.23)

d̊ǎσ ⋆ γ + åσ ⋆˚̌aσ ⋆ γ +˚̌aσ ⋆ γ ⋆ åσ + jz˚̌µσ ⋆ γ = 0 , (3.24)

where the element γ obeys

γ ⋆ (~ζ)
~λ ⋆ γ = (~ζ)π(

~λ) , [γ, zα]⋆ = 0 . (3.25)

Defining

µ̊±
σ = µ̊σ ± ˚̌µσ ⋆ γ , å±σ = åσ ±˚̌aσ ⋆ γ , (3.26)

we obtain two decoupled systems of the form

d̊a±σ + å±σ ⋆ å±σ + jzµ̊
±
σ = 0 , (3.27)

that can be solved using the method of [26] (see also [35]), drawn from the original method

devised in [39]. Omitting discrete moduli which arise via projector algebras on Z4, two

particular solutions that we label by ς = ±1, are given by

(
å±σ;ς

)
α
= 2izα

∫ 1

−1

dτ

(τ + 1)2
jσ

(
ςµ̊±

σ ; τ
)
exp

[
ςc (τ)Uβγzβzγ

]
, (3.28)

where

jσ
(
ςµ̊±

σ ; τ
)
:= − ςµ̊±

σ

4
1F1

[
1

2
; 2;

ςµ̊±
σ

2
log τ2

]
, c (τ) := i

τ − 1

τ + 1
, (3.29)

and

Uβγ :=
(
u+

)(β (
u−

)γ)
, (3.30)

where u+ and u− are a set of spinor basis vectors obeying

(
u+

)α (
u−

)
α
= 1 ,

(
u+

)α (
u+

)
α
=

(
u−

)α (
u−

)
α
= 0 . (3.31)

Using (B.4), we can choose

(
u+

)α
=

[
0

1

]
,

(
u−

)α
=

[
1

0

]
. (3.32)

The original twistor space connection can thus be obtained by expanding the confluent

hypergeometric function in a power series, followed by identifying powers of ~ζ and γ,

though in what follows we shall mainly work directly with the generating functions.
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3.3 Twistor space connection in Weyl order in holomorphic gauge

The twistor space connection V ′
α is given in the holomorphic gauge by (3.19). From

eq. (2.27), it follows that

ONormal



∑

σ;~λ

T~λ ⋆Πσ ⋆
(
a
σ;~λ;α

+ ǎ
σ;~λ;α

⋆ κy

)



= OWeyl



∑

σ;~λ

(
(T~λ ⋆Πσ)aσ;~λ;α + (T~λ ⋆Πσ ⋆ κy)ǎσ;~λ;α

)

 , (3.33)

that is, the symbol in Weyl order of V ′
α is given by the argument of the Wigner map on

the right-hand side. This quantity contains singular distributions on Y4, which we shall

examine in more detail later, and on Z4, which we shall examine in what follows. To this

end, we observe that the integrand in (3.28) has potential divergences at τ = 0, where

log(τ2) goes to infinity, and at τ = −1, where denominators vanish.

As for the potential divergence at τ = 0, it does not lead to any non-real-analyticity

in Z4 to any finite order in perturbation theory as follows from the fact that18

∣∣∣∣1F1

[
1

2
; 2;

ςµ̊±
σ

2
log

(
τ2
)]∣∣∣∣ ≤

∣∣∣τ ςµ̊
±
σ

∣∣∣ , Re(ςµ̊±
σ ) < 0 , (3.34)

for τ ∈ [−1, 1], while the same quantity is bounded for τ ∈ [−1, 1] if Re(ςµ̊±
σ ) > 0. Thus, at

τ = 0 there is no singularity as long as µ̊±
σ lies inside the unit disc; indeed, for µ̊±

σ sufficiently

close to zero, the power series expansion of the confluent hypergeometric function yields

a basis of functions of τ that can be used to convert the integral equation, obtained by

inserting eq. (3.28) into the deformed oscillator equation, into an algebraic equation for

symbols (for details, see [26, 39]). Thus, in order for (3.28) to provide a solution, there has

to exist an annulus of convergence in the ~ζ-space for the Laurent series defining µ̊±
σ where

its modulus is less than one, which can be achieved by tuning the overall strength of the

ν- and bn-parameters. In other words, the contribution to (3.28) from the region around

τ = 0 is real-analytic on Z4 to any finite order in perturbation theory.

Turning to the divergence at τ = −1, it induces a simple pole å±α |pole in å±α at zα = 0,

which can be extracted using the formula

∫ 1

−1

dτ

(τ + 1)2
e

τ−1
τ+1

p =
1

2p
, Re p > 0 , (3.35)

18The confluent hypergeometric function 1F1(a; b;x) :=
∑∞

n=0
(a)nxn

(b)nn!
obeys 0 < 1F1(a; b;x) < ex for

b > a > 0 and x > 0. Its asymptotic form for large |x| is given by 1F1(a; b;x) ∼
Γ(b)
Γ(a)

xa−bex+ Γ(b)
Γ(b−a)

(−x)−a.
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and analytical continuation of Uβγzβzγ . It follows that

(̊a±σ;ς)α|pole = 2izα

∫ 1

−1

dτ

(τ + 1)2
jσ

(
ςµ̊±

σ ; τ
)
exp

[
ςi(τ − 1)

τ + 1
Uβγzβzγ

]∣∣∣∣
pole

= −izα
ςµ̊±

σ

2

∫ 1

−1

dτ

(τ + 1)2
exp

[
ςi(τ − 1)

τ + 1
Uβγzβzγ

]∣∣∣∣
pole

= − µ̊±
σ zα

4Uβγzβzγ
for Re

(
2ςiUβγzβzγ

)
> 0 . (3.36)

Indeed, taking the exterior derivative of the right-hand side one obtains a delta function

on the holomorphic slice of Z4 that cancels the linear source term in eq. (3.27). As for

the higher order corrections to åα in the ν-expansion, they are finite but not analytic at

zα = 0, given by combinations of positive powers and logarithms of zα.

As we shall see in section 5, the nature of the twistor space connection as a distribution

on Y4 × Z4, changes drastically once the vacuum gauge function is switched on and the

connection is given in normal order.

3.4 Singularities in L-gauge from T~0

We note that if the unity T~0 of the star product algebra AΛ in (3.15) is represented by

the constant symbol on Y4, then its contributions to both V
(L)
α and Φ(L) that are not

real-analytic at the origin of Y4 ×Z4 for generic points in X4. More precisely, the singular

contributions to V
(L)
α are given by Πσ ⋆ aσ;~0;α, where aσ;~0;α is given by ~ζ-independent

contribution to (3.28); and those to Φ(L) are given by νσ;~0Πσ ⋆κy. They are hence singular

at Zα = 0 and Y α = 0, respectively. Thus, in order for a star product algebra to give rise

to proper higher spin gravity configurations, it cannot contain the constant symbol on Y4;

in the case of a group algebra this can be achieved by a truncation to a proper semigroup

algebra (without the unity), as we shall analyse in more detail in sections 4 and 5.

In the remainder of this section, however, we shall proceed with the construction of

solution spaces in the holomorphic gauge without truncating the underlying group algebras.

3.5 Abelian group algebra from Cartan subalgebra of sp(4;R)

In what follows, we shall give an explicit example of a solution space of the type introduced

above in the case when the lattice is two-dimensional, i.e. ~λ = (m, m̃) with m, m̃ ∈ Z. The

underlying group algebra C[Z× Z] is realized as

AE,J :=
⊕

σ=±

AE,J ;σ , AE,J ;σ :=
⊕

m,m̃∈Z

(Tm,m̃ ⋆Πσ)⊗ C , (3.37)

in terms of group elements

Tm,m̃ := e−4mθE
⋆ ⋆ e−4m̃θ̃J

⋆ , (3.38)
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generated by the anti-de Sitter energy and spin operators19

E =
1

8
EαβY

α ⋆ Y β =
1

8
EαβY

αY β , (3.39)

J =
1

8
JαβY

α ⋆ Y β =
1

8
JαβY

αY β , (3.40)

respectively, using sp(4;R) valued matrices obeying20

(E2)α
β = (J2)α

β = −δα
β , (3.41)

(EJ)α
β = (JE)α

β , (EJ)αβ + (JE)βα = 0 , (EJ)α
α = 0 , (3.42)

from which it follows that

det
(
δα

β + aEα
γJγ

β
)
=

(
1− a2

)2
. (3.43)

As for the parameters, we take

θ ∈ R ∪ iR , iZθ ∩
(π
2
+ Zπ

)
= ∅ , (3.44)

idem θ̃. The basis elements obey (3.16), viz.

Tm,m̃ ⋆ Tn,ñ = Tm+n,m̃+ñ , [Tm,m̃,Πσ]⋆ = 0 , π(Tm,m̃) = T−m,m̃ . (3.45)

To compute the symbol of Tm,m̃ in Weyl order, we first use (A.25) with N = 4 to

compute

e−4mθE
⋆ = S2 e−4TE , e−4m̃θ̃J

⋆ = S̃2 e−4T̃J , (3.46)

where

S := sech (mθ) , T := tanh (mθ) , S̃ := sech
(
m̃θ̃

)
, T̃ := tanh

(
m̃θ̃

)
. (3.47)

In what follows, we make the convention that all boldfaced quantities depend on mθ and

m̃θ̃. The symbol of Tm,m̃ is thus given by

Tm,m̃ =
[
S2e−4TE

]
⋆
[
S̃2e−4T̃J

]

=
(
SS̃

)2
∫

d4Ud4V

(2π)4
exp

{
i (V α − Y α)

(
Uα − Yα

)}

×exp

{
−1

2

[
TEαβU

αUβ + T̃JαβV
αV β

]}
. (3.48)

By performing the Gaussian integrals, we obtain

Tm,m̃ = Aexp

{
−1

2
KαβY

αY β

}
, Kαβ := BEαβ +CJαβ , (3.49)

19Inequivalent exact solution spaces can be obtained by replacing E and J by Cartan subalgebra gener-

ators in sp(4;C), which we leave for future work.
20We have suppressed the dummy indices, which are contracted using the north-west to south-east con-

vention.
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where

A :=

(
SS̃

)2

1−
(
TT̃

)2 , B :=
T
(
1− T̃2

)

1−
(
TT̃

)2 , C :=
T̃
(
1−T2

)

1−
(
TT̃

)2 . (3.50)

We also need the symbol of Tm,m̃ ⋆ κyκ̄ȳ, which is given by

Tm,m̃ ⋆ κyκ̄ȳ = (2π)2Aexp

{
−1

2
KαβY

αY β

}
⋆ δ4 (Y )

= A

∫
d4Ud4V

(2π)2
eiV

αUαe−
1
2
Kαβ(Y

α+Uα)(Y β+Uβ)δ4 (Y + V )

= A

∫
d4Ud4V

(2π)2
e−iY αUαe−

1
2
KαβU

αUβ

=
A√

det (K)
exp

{
−1

2

(
K−1

)αβ
YαYβ

}
, (3.51)

where

Kαβ

(
K−1

)βγ
:= δα

γ . (3.52)

3.6 New exact biaxially symmetric solutions in holomorphic gauge

The above construction of AE,J thus allows us to solve equations (3.5)–(3.7) using the

Ansatz (3.18)–(3.19). In order to keep matters simple, we shall assume that ν̌ = α̌ = 0,

and work with the following reduced version:

Φ′ =
∑

σ;m,m̃

νσ;m,m̃Tm,m̃ ⋆Πσ ⋆ κy , (3.53)

V ′
α =

∑

σ;m,m̃

Tm,m̃ ⋆Πσ ⋆ (aσ;m,m̃(z))α , (3.54)

V̄ ′
α̇ = (V ′

α)
† =

∑

σ;m,m̃

T †
m,m̃ ⋆Πσ ⋆ (āσ;m,m̃(z̄))α̇ , (3.55)

where thus νσ;m,m̃∈C and we recall that the twistor space connection is (anti-)holomorphic,

as indicated above. From

θ ∈ R θ ∈ iR

θ̃ ∈ R T †
m,m̃ = Tm,m̃ T †

m,m̃ = T−m,m̃

θ̃ ∈ iR T †
m,m̃ = Tm,−m̃ T †

m,m̃ = T−m,−m̃

(3.56)

it follows that the reality condition (Φ′)† = π(Φ′) implies that

θ ∈ R θ ∈ iR

θ̃ ∈ R ν∗σ;m,m̃ = σνσ;m,m̃ ν∗σ;m,m̃ = σνσ;−m,m̃

θ̃ ∈ iR ν∗σ;m,m̃ = σνσ;m,−m̃ ν∗σ;m,m̃ = σνσ;−m,−m̃

. (3.57)

We note that the Ansatz (3.53)–(3.55) identically obeys (3.6) and (3.7) since

[
(aσ;m,m̃)α , (āσ;m,m̃)α̇

]
⋆
= 0 , (3.58)
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while (3.5) reduces to

∂[α (aσ;m,m̃)β] +
∑

n,ñ

(aσ;n,ñ)[α ⋆ (aσ;m−n,m̃−ñ)β] +
i

4
εαβµσ;m,m̃κz = 0 and h.c. , (3.59)

where µσ;m,m̃ are defined as in (3.20). Finally, multiplying (3.59) with ζmζ̃m̃, where ζ, ζ̃ ∈
C, and summing over m and m̃, yields the equivalent equation

∂[α (̊aσ)β] + (̊aσ)[α ⋆ (̊aσ)β] +
i

4
εαβµ̊σκz = 0 and h.c. , (3.60)

where the generating functions

(̊aσ)α

(
ζ, ζ̃

)
:=

∑

m,m̃

(aσ,m,m̃)α ζ
mζ̃m̃ , µ̊σ

(
ζ, ζ̃

)
:=

∑

m,m̃

µσ;m,m̃ζmζ̃m̃ , (3.61)

for which we shall use the particular solutions in (3.28) with ν̌ = ǎ = 0.

By definition, the symmetries of the solution are generated by generalized Killing gauge

parameters ǫ(G) leaving (Φ(G), U
(G)
µ , V

(G)
α ) invariant. Locally, the space of such parameters

is given by

ǫ(G) = G−1 ⋆ ǫ′ ⋆ G , ǫ′ = ǫ′(E, J) , (3.62)

where the parameters are arbitrary star polynomials in E and J ; and globally, a Killing

parameter belongs to an adjoint section obeying suitable boundary conditions, and we

shall assume that ǫ(G) is real-analytic on Y4 × Z4 and falls off at infinity of X4, such that

they leave the background spacetime invariant. This implies that the solutions have time-

translational and rotational symmetries generated by E and J , respectively. Furthermore,

if the Ansatz is expanded over only Tm,0 or T0,m̃, respectively, then the symmetry is further

enhanced to the enveloping algebras of so(2)E ⊕ so(3) or so(1, 2) ⊕ so(2)J , where so(3) is

the subalgebras of sp(4;R) commuting to E idem so(1, 2) and J . Acting on the solutions

with the full higher spin algebra leads to an orbit that forms a higher spin representation

space. The trace operation Tr′ equips this space with an indefinite sesqui-linear form, as

we shall comment on below in the context of higher spin invariant functionals.

4 Weyl zero-form and Weyl tensors

In this section we compute the Weyl zero-form, Weyl tensors and higher spin invariants

formed out of them.

4.1 The Weyl zero-form in L-gauge

The Weyl tensors in the L-gauge are contained in the zero-form master field. From (3.13)

and (3.53) it follows that

Φ(L) =
1

2

∑

σ,m,m̃

νσ,m,m̃L−1 ⋆ Tm,m̃ ⋆ (κy + σκ̄ȳ) ⋆ π (L) ,

=
1

2

∑

σ,m,m̃

νσ,m,m̃

(
L−1 ⋆ Tm,m̃ ⋆ L

)
⋆ (κy + σκ̄ȳ)

=
∑

m,m̃

(
ν1,m,m̃TL

m,m̃ ⋆ κy + ν2,m,m̃TL
m,m̃ ⋆ κ̄ȳ

)
, (4.1)
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where

TL
m,m̃ := L−1 ⋆ Tm,m̃ ⋆ L , (4.2)

and the parameters

ν1,m,m̃ :=
1

2
(ν+,m,m̃ + ν−,m,m̃) , ν2,m,m̃ :=

1

2
(ν+,m,m̃ − ν−,m,m̃) , (4.3)

obey the reality conditions

θ ∈ R θ ∈ iR

θ̃ ∈ R ν∗1,m,m̃ = ν2,m,m̃ ν∗1,m,m̃ = ν2,−m,m̃

θ̃ ∈ iR ν∗1,m,m̃ = ν2,m,−m̃ ν∗1,m,m̃ = ν2,−m,−m̃

(4.4)

To compute TL
m,m̃ we use the lemma

L−1 ⋆ f
(
Yα

)
⋆ L = f

(
Lα

βYβ

)
, (4.5)

where Lα
β is a matrix that depends on the spacetime coordinates (see appendix C for an

explicit expression). It follows from (3.49) that

TL
m,m̃ = Aexp

{(
−1

2

)
KL

αβY
αY β

}
, (4.6)

where

KL
αβ := BEL

αβ +CJL
αβ , EL

αβ := EγδL
γ
αL

δ
β , JL

αβ := JγδL
γ
αL

δ
β . (4.7)

Under Y α =
{
yα, ȳα̇

}
, the above matrices decompose into

EL
αβ =:

(
(κLE)αβ (vLE)αβ̇

(v̄LE)α̇β (κ̄LE)α̇β̇

)
, (4.8)

idem JL
αβ , whose components obey21

vL
αβ̇

= v̄L
β̇α

,
(
vL

)
αβ̇

(
v̄L

)β̇γ
=

(
vL

)2
δα

γ ,
(
v̄L

)
α̇β

(
vL

)βγ̇
=

(
vL

)2
δα̇

γ̇ , (4.9)

where
(
vL

)2
:= 1

2

(
vL

)
αβ̇

(
vL

)αβ̇
, and

(
κL

)2
:=

1

2

(
κL

)
αβ

(
κL

)αβ
= det

(
κL

)
,

(
κL

)
αβ

(
κL

)βγ
=

(
κL

)2
δα

γ , (4.10)

idem κ̄L, which are derived from general properties of any 2×2 symmetric matrix. Fur-

thermore, from (3.41) it follows that

(
κL

)
αβ

(
vL

)βγ̇
+
(
vL

)
αβ̇

(
κ̄L

)β̇γ̇
= 0 ,

(
κL

)2
+
(
vL

)2
=

(
κ̄L

)2
+
(
vL

)2
= 1 , (4.11)

21Eqs. (4.9)–(4.12) hold, if we label all components with either “E” or “J” (not a mixture of both).
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which in its turn implies

(
κ̄L

)2 (
κL

)
αβ

−
(
κ̄L

)α̇β̇ (
vL

)
αα̇

(
vL

)
ββ̇

=
(
κL

)
αβ

, (4.12)

which will be useful later when we determine the Petrov type.

Returning to (4.6), we thus have

KL
αβ =

(
Fαβ Gαβ̇

Gα̇β Hα̇β̇

)
:=


B

(
κLE

)
αβ

+C
(
κLJ

)
αβ

B
(
vLE

)
αβ̇

+C
(
vLJ

)
αβ̇

B
(
v̄LE

)
α̇β

+C
(
v̄LJ

)
α̇β

B
(
κ̄LE

)
α̇β̇

+C
(
κ̄LJ

)
α̇β̇


 , (4.13)

where Gα̇β = Gβα̇, and correspondingly

TL
m,m̃ = Aexp

{(
−1

2

)[
yαFαβy

β + ȳα̇Hα̇β̇ ȳ
β̇ + 2yαGαβ̇ ȳ

β̇
]}

. (4.14)

Finally, for (m, m̃) 6= (0, 0), by performing Gaussian integrals we obtain22

TL
m,m̃ ⋆ κy (4.15)

=
A√
F2

exp

{
1

2F2

[(
FαβGαα̇Gββ̇ − F2Hα̇β̇

)
ȳα̇ȳβ̇ − Fαβy

αyβ + 2iFα
βGββ̇y

αȳβ̇
]}

,

and

TL
m,m̃ ⋆ κ̄ȳ (4.16)

=
A√
H2

exp

{
1

2H2

[(
HαβGαα̇Gββ̇ −H2Fα̇β̇

)
yαyβ −Hα̇β̇ ȳ

α̇ȳβ̇ + 2iHα̇
β̇Gββ̇ ȳ

α̇yβ
]}

,

while TL
0,0̃

⋆ κy = κy and TL
0,0̃

⋆ κ̄ȳ = κ̄ȳ.

Substituting the above formulae into (4.1), we obtain

Φ(L) (4.17)

= ν1,0,0κy + ν2,0,0κ̄ȳ +

+
∑

(m,m̃) 6=(0,0)

A

(
ν1,m,m̃√

F2
exp

{
1

2F2

[(
FαβGαα̇Gββ̇−F2Hα̇β̇

)
ȳα̇ȳβ̇−Fαβy

αyβ+2iFα
βGββ̇y

αȳβ̇
]}

+
ν2,m,m̃√

H2
exp

{
1

2H2

[(
Hα̇β̇Gαα̇Gββ̇−H2Fαβ

)
yαyβ−Hα̇β̇ ȳ

α̇ȳβ̇+2iHα̇
β̇Gββ̇ ȳ

α̇yβ
]})

.

The expression H2Fαβ −Hα̇β̇Gαα̇Gββ̇ can be factorized as

H2Fαβ −Hα̇β̇Gαα̇Gββ̇ =
(
B2 −C2

)
F̆αβ , (4.18)

where F̆αβ satisfies

F̆2 = H2 . (4.19)

Then, assuming that

ν1,0,0 = 0 = ν2,0,0 , (4.20)

22We note the useful relations F2 := 1
2
Fαβ(F)

αβ = det (F) and FαβF
βγ = F

2δα
γ , idem H.
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the resulting generalized spin-s Weyl tensor in the L-gauge reads

Cα1···α2s

:=

[
∂

∂yα1
· · · ∂

∂yα2s
Φ(L)

]

Y=0

=
(2s)!

s!

∑

(m,m̃) 6=(0,0)

A

{
ν1,m,m̃√

F2

( −1

2F2

)s

F(α1α2
· · ·Fα2s−1α2s)

+
(
B2 −C2

)s ν2,m,m̃√
F̆2

( −1

2F̆2

)s

F̆(α1α2
· · · F̆α2s−1α2s)

}
, (4.21)

where there are two separate generalized Petrov type-D tensors summed for each (m, m̃)

for positive s.23

4.2 Petrov types of the Weyl tensors

In what follows, we analyze in a few special cases whether the Weyl tensor as the sum (4.21)

is of Petrov type D.

The case θθ̃ = 0. If θ 6= 0 and θ̃ = 0, then S̃ = 1, T̃ = 0 and

A = S2 , B = T , C = 0 . (4.22)

It follows that (
Fαβ Gαβ̇

Gα̇β Hα̇β̇

)
= T




(
κLE

)
αβ

(
vLE

)
αβ̇(

v̄LE
)
α̇β

(
κ̄LE

)
α̇β̇


 . (4.23)

Furthermore, using (4.12) we obtain

F̆αβ = T
(
κLE

)
αβ

. (4.24)

The resulting spin-s Weyl tensor reads24

Cα1···α2s |θ̃=0 (4.25)

=
(2s)!

s!

∑

m 6=0

S2

√
T2

(
κLE

)2
1[

−2
(
κLE

)2]s
(
ν1,mT−s + ν2,mTs

) (
κLE

)
(α1α2

· · ·
(
κLE

)
α2s−1α2s)

,

where ν1,m =
∑

m̃ ν1,m,m̃ and ν2,m =
∑

m̃ ν2,m,m̃, which we assume to be finite and vanishing

for m = 0.

If instead θ = 0 and θ̃ 6= 0, then S = 1, T = 0, and

A = S̃2 , B = 0 , C = T̃ . (4.26)

23A generalized spin-s Petrov type-D tensor is defined as a symmetric rank-2s tensor with spinor indices

that can be decomposed into the products of two spinors, each of which has the power s [26].
24One can show that

(

κL
E

)2
= −λ2r2. The analytical continuation involves the choice of sign in front

of the square roots. These must be correlated to analogous choices in the expression for the twistor space

connection.
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Then we have (
Fαβ Gαβ̇

GT
α̇β Hα̇β̇

)
= T̃




(
κLJ

)
αβ

(
vLJ

)
αβ̇(

v̄LJ
)
α̇β

(
κ̄LJ

)
α̇β̇


 , (4.27)

and hence using (4.12) it follows that

F̆αβ = −T̃
(
κLJ

)
αβ

, (4.28)

and the spin-s Weyl tensor becomes

Cα1···α2s |θ=0 (4.29)

=
(2s)!

s!

∑

m̃ 6=0

S̃2

√
T̃2

(
κLJ

)2
1[

−2
(
κLJ

)2]s
(
ν1,m̃T̃−s + ν2,m̃T̃s

) (
κLJ

)
(α1α2

· · ·
(
κLJ

)
α2s−1α2s)

,

where ν1,m̃ =
∑

m ν1,m,m̃ and ν2,m̃ =
∑

m ν2,m,m̃, which we assume to be finite and vanishing

for m̃ = 0.

Thus, to summarize, if the Weyl zero-form depends on either E or J , but not both,

in the holomorphic gauge, then Weyl tensors in L-gauge become proportional to direct

products of κL’s, which means they are of generalized Petrov type D.

The case θθ̃ 6= 0. If both θ and θ̃ are non-zero, i.e. if both E and J are present in the

Weyl zero-form in the holomorphic gauge, then we can simplify the analysis by substituting

the explicit expressions provided in appendices B and C into the spin-s Weyl tensor (4.21)

in L-gauge.

If B2 − C2 = 0 i.e. mθ = ±m̃θ̃, then the second set of terms in (4.21) vanishes, and

in the first set of terms Fαβ = B
[(
κLE

)
αβ

±
(
κLJ

)
αβ

]
. This means that if θ/θ̃ is a rational

number, and if furthermore we turn on only the terms with mθ = ±m̃θ̃, then the Weyl

tensors become proportional to direct products of
(
κLE ± κLJ

)
’s, i.e. they are of generalized

Petrov type D.25 However, for generic values of θ/θ̃, (4.21) is not of type D,26 though it is

a sum of type-D tensors.

4.3 Asymptotic behaviour of the Weyl tensors

By using the gamma matrix realization in appendix B and the global coordinates in ap-

pendix C, we can investigate the asymptotic behaviour of the Weyl tensors. When r → ∞,

we have

F2|r→∞ = F̆2|r→∞ = λ2r2
[
−B2 +C2sin2(ϑ)

]
, (4.30)

Then the terms in (4.21) of spin-s Weyl tensor at large radius, by a simple power counting,

scale as {
λ2r2

[
−B2 +C2sin2(ϑ)

]}− 1
2
(s+1)

, (4.31)

and hence each term is either Kerr-like (when B2 6= C2) or 2-brane-like (when B2 = C2) in

the asymptotic region. The Weyl tensor as the sum of these terms falls off as 1
rs+1 , which

is the regular boundary condition of asymptotically AdS4 solutions.

25Note, however, the matrixKαβ ≡
[

BEαβ +CJαβ

]

in this special case has determinant
(

B
2 −C

2
)2

= 0,

which has consequences for the twistor space connection; see eq. (5.7).
26See appendix D for details on spin-2.
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4.4 Zero-form charges

Although the separate spin-s Weyl tensors blow up at the origin of spacetime, the limit

of the full Weyl zero-form remains well-defined as the symbol of an operator. From this

operator, it is possible to obtain higher spin gauge invariant quantities given by

I2p :=
∫

Z4

Tr′
{
I ⋆ Ī ⋆ [Φ ⋆ π (Φ)]⋆p

}
, (4.32)

which are referred to as zero-form charges [37] and that are related to higher spin ampli-

tudes [28–30]. On our exact solutions, i.e. by substituting (3.13) and (3.53), these charges

are given by

I2p|on-solution :=
1

32

∑

σ,
m1,m2,··· ,m2p,
m̃1,m̃2,··· ,m̃2p

A∑2p
j=1(−1)j+1mj ,

∑2p
j=1 m̃j

∏2p

j=1
νσ,mj ,m̃j

, (4.33)

where

Am,m̃ :=

[
sech(mθ) sech(m̃θ̃)

]2

1−
[
tanh(mθ) tanh(m̃θ̃)

]2 . (4.34)

The simplest case is p = 1:

I2|on-solution =
1

32

∑

σ,m,m̃,n,ñ

Am−n,m̃+ñνσ,m,m̃νσ,n,ñ . (4.35)

In [24], this zero-form charge has been proposed to be one of the contributions to the

effective action for higher spin gravity in asymptotically anti-de Sitter spacetimes. As

noted at the end of section 3.6, the resulting contribution to the free energy functional is

not positive definite.

5 Twistor space connection

In this section, we first compute the twistor space connection V
(L)
α , and show in special

cases that it admits a regular power series expansion on Z4 around Zα = 0 over finite

regions of spacetime provided that the group algebra C[Z × Z] is truncated down to a

non-unital subalgebra. We then demonstrate the existence of the linearized gauge function

H(1) taking the linearized twistor space connection to Vasiliev gauge in a special case.

5.1 Generating function for twistor space connection in L-gauge

In order to facilitate the analysis, we write

V (L)
α = L−1 ⋆ V ′

α ⋆ L

=
∑

σ,m,m̃

L−1 ⋆ Tm,m̃ ⋆Πσ ⋆ L ⋆ (aσ,m,m̃)α

=
∑

σ,m,m̃

∮

0

dζ

2πiζm+1

∮

0

dζ̃

2πiζ̃m̃+1

1

2

(
V̊

(L)
0;σ,m,m̃ + σV̊

(L)
1;σ,m,m̃

)

α
, (5.1)
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in terms of the generating functions (n = 0, 1)

(
V̊

(L)
n;σ,m,m̃

)

α
:= 2i

∂

∂ρα

∫ 1

−1

dτjσ(τ)

(τ + 1)2
TL
m,m̃ ⋆ (κyκ̄ȳ)

n ⋆
{
exp

[
ςc (τ)Uβγzβzγ + ρβzβ

]}

ρ=0
,

(5.2)

where ρα is an auxiliary commuting spinor, and we denote jσ(τ) ≡ jσ (ςµ̊σ; τ). Thus,

if these two integrals are finite for bounded µ̊σ and finite ρα, then Vα is real-analytic in

Y4 ×Z4.

5.2 Singular twistor space connection in L-gauge from T0,0

From the discussion in section 3.3 and the fact that TL
0,0 = 1, it follows that (5.1) contains

a term given by (aσ,0,0)α, which is not real-analytic in Z4. Thus, real-analyticity of V
(L)
α

in Z4 requires

(aσ,0,0)α = 0 . (5.3)

This can be achieved by a consistent truncation of the Ansatz (3.53)–(3.55) by taking AE,J

to be a semigroup without identity.27

If θθ̃ 6= 0 this can be achieved by taking

νσ,m,m̃ = (aσ,m,m̃)α = 0 for m 6 0 and/or m̃ 6 0 . (5.4)

In other words, in the original Ansatz we sum over m, m̃ ∈ Z, but due to the requirement

of real-analyticity, we instead sum over only positive m and/or positive m̃. Furthermore,

as can be seen from the table (3.57), for compatibility with the reality condition, along

with the truncation we must set θ and/or θ̃ to be real.

If θ = 0 (or θ̃ = 0) then we need to restrict m̃ ∈ Z
+, θ̃ ∈ R (or m ∈ Z

+, θ ∈ R).

θ and θ̃ cannot be both zero.

To summarize, in the following table, we give notations to the consistent truncations,

and “×” means that the situation either includes the unity or is inconsistent with the

reality condition.

θ ∈ R\{0} θ ∈ R\{0} θ ∈ iR\{0} θ ∈ iR\{0} θ = 0

m ∈ Z m ∈ Z
+ m ∈ Z m ∈ Z

+

θ̃ ∈ R\{0} m̃ ∈ Z × A+,± × × ×
θ̃ ∈ R\{0} m̃ ∈ Z

+ A±,+ A+,+ A±i,+ × A0,+

θ̃ ∈ iR\{0} m̃ ∈ Z × A+,±i × × ×
θ̃ ∈ iR\{0} m̃ ∈ Z

+ × × × × ×
θ̃ = 0 × A+,0 × × ×

(5.5)

27Removing the unity from the presentation of A also removes a singularity from Φ(L).
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5.3 Regularity of twistor space connection in L-gauge for non-unital AE,J

Under the assumption that AE,J does not contain the unity, we proceed by investigat-

ing (5.2). From (3.51) it follows that

Tm,m̃ ⋆ κyκ̄ȳ =
A√

det (K)
exp

{
−1

2

(
K−1

)αβ
YαYβ

}
, (5.6)

where
(
K−1

)αβ
=

1

B2 −C2

[
BEαβ −CJαβ

]
, det (K) =

(
B2 −C2

)2
. (5.7)

Thus the case of n = 1 is equivalent to the case of n = 0 by replacing B and C with
B

B2−C2 and −C
B2−C2 , respectively, and multiplying an overall factor 1√

(B2−C2)2
, which is

possible provided that B2 6= C2 i.e. if mθ 6= ±m̃θ̃ for all allowed values of m and m̃ (in the

non-unital case). This can be achieved by a suitable choice of θ and θ̃.

For n = 0 we performing the ⋆-products between TL
m,m̃ and the Z-dependent exponen-

tial in (5.2), which yields

(
V̊

(L)
0;m,m̃

)

α
(5.8)

=2i

∫ 1

−1

dτjσ (τ)

(τ+1)2
A√

F2M2(τ)
exp

{
−izβyβ−

1

2
ȳα̇Hα̇β̇ ȳ

β̇+
Fγδ

2F2

(
izγ+Gγα̇ȳ

α̇
)(
izδ+Gδβ̇ ȳ

β̇
)}

× ∂

∂ρα

{
exp

{
Mβγ(τ)

2M2(τ)

[
iyβ−ρβ+

iFβδ

F2

(
izδ+Gδα̇ȳ

α̇
)][

iyγ−ργ+
iFγξ

F2

(
izξ+Gξβ̇ ȳ

β̇
)]}}

ρ=0

= 2i

∫ 1

−1

dτjσ (τ)

(τ + 1)2
−AMαβ(τ)√
F2M2(τ)M2(τ)

[
iyβ +

iFβγ

F2

(
izγ +Gγα̇ȳ

α̇
)]

× exp

{
−izβyβ − 1

2
ȳα̇Hα̇β̇ ȳ

β̇ +
Fγδ

2F2

(
izγ +Gγα̇ȳ

α̇
) (

izδ +Gδβ̇ ȳ
β̇
)

+
Mβγ(τ)

2M2(τ)

[
iyβ +

iFβδ

F2

(
izδ +Gδα̇ȳ

α̇
)] [

iyγ +
iFγξ

F2

(
izξ +Gξβ̇ ȳ

β̇
)]}

,

where

Mαβ(τ) ≡
Fαβ

F2
− 2ςc (τ)Uαβ , (5.9)

The integrand has potential divergencies at τ = 0, τ = −1 and any value for τ where F2

or M2(τ) vanishes. As analysed in section 3.3, the potential divergencies in jσ (τ) at τ = 0

do not spoil the convergence of the integral provided that the ν- and bn-parameters are

sufficiently small. Furthermore, since Mαβ(τ) ∼ (τ + 1)−1 as (τ + 1) → 0, it follows that

both the prefactor and the exponent are bounded at τ = −1.

To facilitate the investigation of F2 and M2(τ), which are thus functions of mθ, m̃θ̃,

X4 and τ , we use the gamma matrix realization in appendix B and the coordinates for L

in appendix C. We have not succeeded in a complete analysis, but we have been able to

cover a few important special cases as follows:
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The case A+,0. In this case, we have θ ∈ R\{0}, θ̃ = 0, m ∈ Z
+, and hence A =

sech2mθ, B = tanhmθ, C = 0. Using the explicit matrices and spherical coordinates

defined in the appendices, we obtain

F2 = −B2λ2r2 , (5.10)

M2(τ) = −
[
ςc (τ)Bλr + eiϑ

] [
ςc (τ)Bλr + e−iϑ

]

B2λ2r2
. (5.11)

From mθ 6= 0 it follows that B 6= 0, and hence F2 does not vanish except at r = 0.

Moreover, since c(τ) is purely imaginary, the quantity ςc (τ)Bλr is purely imaginary as

well. Thus M2(τ) vanishes iff

ϑ =
π

2
, τ ∈

{
−1 +Bλr

1−Bλr
,−1−Bλr

1 +Bλr

}
. (5.12)

Thus, in this case the twistor space connection is real-analytic everywhere away from the

equatorial plane in the spherical coordinates.28

The case θ̃ 6= 0. When θ̃ 6= 0, we resort to case-by-case investigation. We will only

show two examples below.

For example, if we consider the region of small r, i.e. a small spatial sphere around the

origin point, we have

F2 = C2 − 2iBCλr cos (ϑ) +O
(
r2
)
, (5.13)

M2(τ) = −C−2 [ςc (τ)C− i]2 − 2BC−3 [ςc (τ)C− i]λr cos (ϑ) +O
(
r2
)
. (5.14)

A valid choice of the parameters is θ ∈ R\{0}, θ̃ ∈ iR\{0} and m ∈ Z
+, i.e. the truncation

A+,±i. With this choice, we have B ∈ R\{0}, C ∈ iR. Then for C 6= 0 i.e. m̃ 6= 0, both

first leading terms of F2 and M2(τ) are non-zero. For m̃ = 0, the discussion is the same

as the above θ̃ = 0 case. To summarize, the one-form field in this case is real-analytic in

the small sphere except on the equatorial plane.

For another example, we consider the region of small ϑ, i.e. a narrow cone around the

axis of symmetry ϑ = 0, we have

F2 = (C− iBλr)2 +O
(
ϑ2

)
, (5.15)

M2(τ) =

[
1

C− iBλr
− iςc (τ)

]2
+O

(
ϑ2

)
. (5.16)

A valid choice of the parameters is θ ∈ R\{0}, θ̃ ∈ R\{0} and m ∈ Z
+ i.e. the trun-

cation A+,±. With this choice, we have B ∈ R\{0}, C ∈ R. Then for r 6= 0 we have

C − iBλr /∈ R, and thus, with iςc (τ) ∈ R, both first leading terms of F2 and M2(τ) are

non-zero. The one-form field in this case is real-analytic in the narrow cone around the

axis ϑ = 0 excluding the origin point.

28On the equatorial plane, for a certain value of τ between the integration limits, zero-denominators

appear in the integrand of (5.8) both on the exponent and in the factor in the front. We leave the

consequence of this for future work.
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5.4 Linearized twistor space connection in Vasiliev gauge

Finally, let us check in a special case that it is indeed possible to bring the linearized

twistor space connection to Vasiliev gauge by means of a linearized gauge transformation,

as described in section 3.1, viz.

V (G)(1)
α = V (L)(1)

α + ∂αH
(1) , (5.17)

where H(1) is formally given by

H(1) = H(1)|Z=0 −
1

zβ∂β

(
zαV (L)(1)

α

)
. (5.18)

Note that, as explained around eq. (5.12), in the case θ̃ = 0 with the truncation A+,0,

the regularity of the twistor space connection at ϑ = π
2 has not yet been verified in the

L-gauge. However, we expect that this problem would not exist in Vasiliev gauge.

To perform the check, we set ϑ = π
2 , t = φ = 0, yα = ȳα̇ = 0 and λ = 1. The resulting

expression of the generating function for the L-gauge twistor space connection reads

(
V̊

(L)
n=0;σ,m

)

α

∣∣∣
λ=1; ϑ=π

2
, t=φ=0; y=ȳ=0

= −2iA

∫ 1

−1

dτjσ (τ)

(τ + 1)2
Pαβz

βexp
{
Qαβz

αzβ
}
, (5.19)

where

Pαβ = −
[
1 +B2c2 (τ) r2

]− 3
2

(
Bςc (τ) r −1

1 Bςc (τ) r

)
, (5.20)

Qαβ = −1

2
ςc (τ)

[
1 +B2c2 (τ) r2

]−1

(
−Bςc (τ) r 1

1 Bςc (τ) r

)
. (5.21)

Going to Vasiliev gauge, we obtain

(
V̊

(G)(1)
n=0;σ,m

)

α

∣∣∣
λ=1; ϑ=π

2
, t=φ=0; y=ȳ=0

= − iςb0ν̊σ
2

Azα

∫ 1

−1

dτ

(τ + 1)2

{
PeQ(z) +

eQ(z) − 1−Q(z)eQ(z)

Q2(z)
zαSα

βQβγz
γ

}
, (5.22)

where

Q(z) := Qαβz
αzβ , (5.23)

and we have decomposed

Pαβ =: Pεαβ + Sαβ , S[αβ] = 0 , (5.24)

i.e.

P =
[
1 +B2c2 (τ) r2

]− 3
2 , Sαβ = −

[
1 +B2c2 (τ) r2

]− 3
2 Bςc (τ) r

(
1 0

0 1

)
. (5.25)
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The integrand of (5.22) can be converted into a total derivative of τ :
(
V̊

(G)(1)
n=0;σ,m

)

α

∣∣∣
λ=1; ϑ=π

2
, t=φ=0; y=ȳ=0

= − ςb0ν̊σ
2

Azα

∫ 1

−1
dτ

∂

∂τ

{
(eQ(z) − 1)(Q(z)P − zαSα

βQβγz
γ)

∂Q2(z)
∂c

}
, (5.26)

where, more explicitly,

(eQ(z) − 1)(Q(z)P − zαSα
βQβγz

γ)
∂Q2(z)

∂c

= −

√
1 +B2c2 (τ) r2

[
1− exp

(
Bc(τ)2r(z1+z2)(z1−z2)−2ςc(τ)z1z2

2[1+B2c2(τ)r2]

)]

Bςc (τ) r (z1 + z2) (z1 − z2)− 2z1z2
. (5.27)

Thus, assigning the singularity in the interior of the integration domain its principal value,

and using separate analytical continuations above and below the singularity, one finds that

it does not contribute, and hence

(
V̊

(G)(1)
n=0;σ,m

)

α

∣∣∣
λ=1; ϑ=π

2
, t=φ=0; y=ȳ=0

=
b0ν̊σ
2

zαA
1− exp

[
1

2Br

(
z1 + z2

) (
z1 − z2

)]

(z1 + z2) (z1 − z2)
.

(5.28)

We note that the limit zα → 0 must be taken after the integration over τ has been

performed. This yields a well-defined limit, such that the twistor space connection is

indeed real-analytic at zα = 0. If one instead takes the limit zα → 0 under the integral,

one ends up with a divergent integral; this divergence cannot, however, be interpreted as

any pole or other singularity at zα = 0. Thus, the prescription that we use is the unique

one leading to a sensible result.29 We note, however, that in the holomorphic gauge the

corresponding operations commute, and, correspondingly, the twistor space connection is

non-real-analytic at zα = 0 in this gauge; see section 3.3.

Similarly, we can also calculate for n = 1:

(
V̊

(G)(1)
n=1;σ,m

)

α

∣∣∣
λ=1; ϑ=π

2
, t=φ=0; y=ȳ=0

=
b0ν̊σ
2

zαA
1− exp

[
B
2r

(
z1 + z2

) (
z1 − z2

)]

B2 (z1 + z2) (z1 − z2)
. (5.29)

Finally, using the analog of eq. (5.1) in Vasiliev gauge, i.e. replacing the label (L) with

(G)(1) and substituting (5.28) and (5.29), we obtain

V̊ (G)(1)
α

∣∣∣
λ=1; ϑ=π

2
, t=φ=0; y=ȳ=0

=
b0
4
zα

∑

σ,m,m̃

Aνσ,m,m̃

[
1− exp

[
1

2Br

(
z1 + z2

) (
z1 − z2

)]

(z1 + z2) (z1 − z2)

+σ
1− exp

[
B
2r

(
z1 + z2

) (
z1 − z2

)]

B2 (z1 + z2) (z1 − z2)

]
. (5.30)

29This suggests that in more general perturbatively defined solutions to Vasiliev’s equations obtained by

repeated homotopy integration [1, 13] (see also [2]), the resulting auxiliary integrals should be performed

prior to taking the limit zα → 0; whether this prescription is actually unique and correct, remains to be

investigated.
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Indeed, starting in Vasiliev gauge, one can integrate the equations of motion for the

linearized twistor space connection directly without factorizing the inner Klein operator κ,

with the result [1]

V (G)(1)
α = − ib0

2
zα

∫ 1

0
dτ τeiy

αzατ

(
Φ(G)(1)

∣∣∣
y→−zτ

)
. (5.31)

We note that, unlike the solution for the twistor space connection obtained starting in

the holomorphic gauge, which refers to a splitting of zα into z± as in section 3.2, the

above expression does not refer to any auxiliary spinor frame in Z space. From Φ(G)(1) =

Φ(L)(1) = Φ(L) it follows that (5.31) implies that

V̊ (G)(1)
α

∣∣∣
λ=1; ϑ=π

2
, t=φ=0; y=ȳ=0

=
b0
2
zα

∑

m,m̃

A

[
ν1,m,m̃

1− exp
[

1
2Br

(
z1 + z2

) (
z1 − z2

)]

(z1 + z2) (z1 − z2)

+ν2,m,m̃

1− exp
[
B
2r

(
z1 + z2

) (
z1 − z2

)]

B2 (z1 + z2) (z1 − z2)

]
, (5.32)

which one can readily identify with (5.30) upon using (4.3).

6 Conclusion

In this paper, we have given a new class of bi-axially symmetric solutions to Vasiliev’s

bosonic higher spin gravity model using an Ansatz based on gauge functions and separation

of the dependence on the coordinates in twistor space.

This facilitates the construction of perturbatively exact solutions in a holomorphic

gauge. In this gauge, the spacetime connection vanishes, the Weyl zero-form is constant,

i.e. it depends only on the fiber coordinates, while the twistor space connection depends

on the twistor space via a universal holomorphic function on Z-space with singularties at

zα = 0 that we have exhibited in the Weyl order in section 3.3, and on the fiber coordinates

via the zero-form integration constants. We have then expanded the dependence on the

fiber coordinates in terms of the basis of a group algebra generated by the exponents of θE

and θ̃J , where E and J are the generators the time-translational and rotational symmetries

of the solutions.

We have then switched on the spacetime dependence using a vacuum gauge function L.

In the resulting gauge, which we refer to as L-gauge, the spacetime connetion describes an

anti-de Sitter spacetime. The terms containing the unity of the internal algebra need to be

removed, in order for the Weyl zero-form in L-gauge to be real-analytic on twistor space.

The resulting generalized spin-s Weyl tensor, which thus obeys the Bargmann-Wigner

equation, is given by a sum of generalized Petrov type-D tensors that are asymptotically

Kerr-like or 2-brane-like. For special values of the parameters, including the symmetry

enhanced cases, the spin-s Weyl tensor is of generalized Petrov type D.
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We have also shown that the twistor space connection in L-gauge, provided that the

group algebra is truncated to a non-unital semigroup algebra as summarized in the ta-

ble (5.5), is real-analytic in finite spacetime regions for a number of choices of parameters.

In particular, in the spherically symmetric case, it is real-analytic everywhere away from

the equatorial plane. The Ansatz introduces a fixed frame in Z-space that breaks the

manifest spherical symmetry upon going to the normal order in master fields with a Z-

dependence. At this plane, singularities may appear in auxiliary integrals, whose treatment

requires analytical continuations in twistor space. We have not spelled out the nature of

the resulting contributions to the twistor space connection in L-gauge in this work.

Finally, we have examined the problem of transforming the master fields from the L-

gauge to Vasiliev gauge at the linearized level. It is trivial in the case of the Weyl zero-form.

As for the linearized twistor space connection, we have argued that the transformation

exists at spacetime points where the connection is real-analytic in twistor space in L-gauge.

Among the remaining cases, we have focused on the potential divergence at the equatorial

plane in the spherically symmetric case, which should be removed by the transformation,

as the twistor space connection in Vasiliev’s gauge does not refer to any fixed frame in

Z-space. Indeed we have verified that this is the case at the origin of the fiber space (i.e.

at Y α = 0), for general zα, and consequently we have found agreement with the expression

for the twistor space connection in Vasiliev gauge obtained by direct integration.

Thus, more briefly, we have found families of exact bi-axially symmetric solutions in

the holomorphic and L-gauges, and we have verified that they can be brought to Vasiliev

gauge at the linearized level in a special case, leaving the more general case as well as

higher order perturbation for future study.

We end our conclusions by commenting on future directions. We have left a number

of technical details unattended, that we would like to examine more carefully. Besides the

issues related to real-analyticity of the linearized master fields in Vasiliev gauge, there is

the intriguing degenerate case B = C. Moreover, by taking limits for θ and ν-parameters

it is possible to make contact with the solutions found in [26], and more general Kerr-like

extensions thereof by expanding the fiber subalgebra using a combination of group algebra

elements and endomorphisms in Fock spaces.

More generally, we recall that the importance of Vasiliev’s gauge at linearized level is

that, when combined with normal order, the linearized spacetine connection W
(G)(1)
µ has a

Y -expansion at Z = 0 in terms of unfolded Fronsdal tensors and the initial data H(1)|Z=0

modulo gauge transformations.30 Exact solutions, however, are easier to find in Weyl order

using the gauge function method. As far as we can see from the results here and elsewhere,

we expect there to be an agreement at the linearized level between the holomorphic and

Vasiliev gauges for a fairly large class of linearized zero-form initial data Φ′(1)(Y ), and

it would be desirable to establish this correspondence more precisely, e.g. by expanding

Φ′(1)(Y ) in terms of twistor space plane waves.

30If H(1)|Z=0 and the gauge parameters belong to the same class of functions then H(1)|Z=0 describes

pure gauge degrees of freedom.
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Turing to higher order perturbations, the next step is to compute the first subleading

corrections to all master fields in Vasiliev gauge, and examine whether real-analyticity

in twistor space for generic spacetime points constrains the initial data Φ′(n)(Y ) for the

zero-form and H(n)|Z=0 for the gauge function, for n = 1, 2. This may lead to modified

asymptotic boundary conditions in AdS4 and corresponding corrections to the zero-form

charges. In particular, as proposed in [24], the zero-form charge I2 is a contribution to

the free energy functional. The corresponding sesqui-linear form is not definite on the

representation space of the underlying higher spin symmetry algebra containing the initial

data of our solutions. There are additional contributions to the free energy, however, that

may lead to an interesting phase diagram.

The above analysis can also be performed for the closely related Kerr-like solutions

outlined above. More generally, one may consider relaxing the Vasiliev gauge as well as

the smoothness conditions in twistor space, which may lead to more general noncommutive

geometries with interesting properties.
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A The ⋆-exponent

Let Y α, α = 1, . . . , N , be oscillator variables obeying

[Y α, Y β ]⋆ = 2iCαβ , (A.1)

where N is even and Cαβ is invertible. Denote

w =
1

4
KαβY

α ⋆ Y β , (A.2)

where Kαβ is a constant matrix obeying

Kαβ = Kβα , KαβK
βγ = δα

γ , (A.3)

where indices are raised and lowered using the conventions Y α = CαβYβ , Yβ = Y βCβα,

and CαβCαγ = δγ
β. The ⋆-exponent is defined by the Taylor series of exponential function

with ⋆-products replacing ordinary products. In what follows we will compute the symbol

in Weyl order of the ⋆-exponent

g ≡ e−2tw
⋆ . (A.4)

From (A.4) we can derive

w ⋆ g = −1

2

∂g

∂t
, (A.5)
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and to proceed we will compute the symbol of w ⋆ g. To do so we use the identity

Yα ⋆ f (Y ) = Yαf (Y ) + i
∂

∂Y α
f (Y ) . (A.6)

Thus

Y α ⋆ Y β = Y αY β + iCαβ . (A.7)

Hence (A.2) can also be written as

w =
1

4
KαβY

αY β . (A.8)

Using this, we can show that

w ⋆ g = wg − N

8

∂g

∂w
− 1

4
w
∂2g

∂w2
. (A.9)

Proof.

w ⋆ g =
1

4
KαβYα ⋆ Yβ ⋆ g

=
1

4
KαβYα ⋆

(
Yβg + i

∂g

∂Y β

)

=
1

4
Kαβ

(
YαYβg + iYα

∂g

∂Y β
+ i

∂ (Yβg)

∂Y α
− ∂2g

∂Y α∂Y β

)

= wg +
i

2
KαβYα

∂g

∂Y β
− 1

4
Kαβ ∂2g

∂Y α∂Y β
.

The last two terms can be further converted:

i

2
KαβYα

∂g

∂Y β
=

i

2
KαβYα

∂g

∂w

∂w

∂Y β

=
i

2
KαβYα

(
1

2
KβγY

γ

)
∂g

∂w

=
i

4
YαY

α ∂g

∂w
= 0 ,

−1

4
Kαβ ∂2g

∂Y α∂Y β
= −1

4
Kαβ ∂

∂Y α

(
∂g

∂w

∂w

∂Y β

)

= −1

4
Kαβ ∂

∂Y α

(
1

2
KβγY

γ ∂g

∂w

)

= −1

8

∂

∂Y α

(
Y α ∂g

∂w

)

= −1

8
δα

α ∂g

∂w
− 1

8
Y α ∂2g

∂w2

∂w

∂Y α

= −N

8

∂g

∂w
− 1

8
Y α

(
1

2
KαβY

β

)
∂2g

∂w2

= −N

8

∂g

∂w
− 1

4
w
∂2g

∂w2
.

Thus (A.9) is proven.
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By substituting (A.9), (A.5) can be converted to

wg − N

8

∂g

∂w
− 1

4
w
∂2g

∂w2
= −1

2

∂g

∂t
. (A.10)

This differential equation can be solved by substituting the Ansatz

g = a (t) eb(t)w , (A.11)

which gives

a (t)web(t)w−N

8
a (t) b (t) eb(t)w− 1

4
a (t) b2 (t)web(t)w = −1

2
a′ (t) eb(t)w− 1

2
a (t) b′ (t)web(t)w ,

(A.12)

and this equation requires the following set of ordinary differential equations for a (t) and

b (t) to be satisfied:

−1

2
a′ (t) = −N

8
a (t) b (t) , (A.13)

−1

2
a (t) b′ (t) = a (t)

(
1− 1

4
b2 (t)

)
. (A.14)

The general solution is given by

a (t) = C2 [sech (t+ C1)]
N
2 , (A.15)

b (t) = −2tanh (t+ C1) , (A.16)

where C1 and C2 are constants. These are determined by requiring that (A.11) and (A.4)

stand for the same solution of (A.10). It is obvious that

g|t=0 = e0w⋆ = 1 , (A.17)

and hence (
wg − N

8

∂g

∂w
− 1

4
w
∂2g

∂w2

)∣∣∣∣
t=0

= w ⋆ g|t=0 = w . (A.18)

Consequently we have

a (0) eb(0)w = 1 , (A.19)

a (0)web(0)w − N

8
a (0) b (0) eb(0)w − 1

4
a (0) b2 (0)web(0)w = w . (A.20)

Therefore,

a (0) = 1 and b (0) = 0 . (A.21)

By substituting them into (A.15) and (A.16) we can determine that

C1 = 0 and C2 = 1 . (A.22)

Then we derive that

a (t) = [sech (t)]
N
2 , (A.23)

b (t) = −2tanh (t) . (A.24)

In this way we conclude

e−2tw
⋆ = g = [sech (t)]

N
2 e−2tanh(t)w . (A.25)
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B Van der Waerden symbols and gamma matrices

To simplify some of the calculations in this paper, one can use a set of explicit matrix expres-

sions of Pauli matrices and gamma matrices, which for example is given in this appendix.

B.1 Pauli matrices

We define the σ-matrices with two lower spinor indices

(σ0)αα̇ =

(
1 0

0 1

)
, (σ1)αα̇ =

(
0 1

1 0

)
, (σ2)αα̇ =

(
0 −i

i 0

)
, (σ3)αα̇ =

(
1 0

0 −1

)
,

(B.1)

where σ0 is the identity matrix and σ1,2,3 are the usual Pauli matrices. We also define their

complex conjugate:

(σ̄0)α̇α =

(
1 0

0 1

)
, (σ̄1)α̇α =

(
0 1

1 0

)
, (σ̄2)α̇α =

(
0 i

−i 0

)
, (σ̄3)α̇α =

(
1 0

0 −1

)
.

(B.2)

Then obviously we have

(σa)αα̇ = (σ̄a)α̇α . (B.3)

Furthermore, we use

εαβ = εαβ = εα̇β̇ = εα̇β̇ =

(
0 1

−1 0

)
(B.4)

to raise or lower indices (by NW-SE rules).

We also define

(σab)αβ = − (σba)αβ =
(
σ[a

) γ̇

α

(
σ̄b]

)
γ̇β

, (B.5)

(σ̄ab)α̇β̇ = − (σ̄ba)α̇β̇ =
(
σ̄[a

) γ

α̇

(
σb]

)
γβ̇

. (B.6)

To write them explicitly:

(σ01)αβ =

(
−1 0

0 1

)
, (σ02)αβ =

(
i 0

0 i

)
, (σ03)αβ =

(
0 1

1 0

)
,

(σ12)αβ =

(
0 i

i 0

)
, (σ13)αβ =

(
1 0

0 1

)
, (σ23)αβ =

(
−i 0

0 i

)
,

(σ̄01)α̇β̇ =

(
−1 0

0 1

)
, (σ̄02)α̇β̇ =

(
−i 0

0 −i

)
, (σ̄03)α̇β̇ =

(
0 1

1 0

)
,

(σ̄12)α̇β̇ =

(
0 −i

−i 0

)
, (σ̄13)α̇β̇ =

(
1 0

0 1

)
, (σ̄23)α̇β̇ =

(
i 0

0 −i

)
. (B.7)

As shown above, the pair of spinor indices are symmetric.
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B.2 Gamma matrices

We construct the explicit expressions of gamma matrices in the following way:

(Γa)
β

α =

(
0 (σa)

β̇
α

(σ̄a)
β

α̇ 0

)
, (B.8)

whose explicit expressions are

(Γ0)
β

α =




0 0 0 −1

0 0 1 0

0 −1 0 0

1 0 0 0




, (Γ1)
β

α =




0 0 1 0

0 0 0 −1

1 0 0 0

0 −1 0 0




,

(Γ2)
β

α =




0 0 −i 0

0 0 0 −i

i 0 0 0

0 i 0 0




, (Γ3)
β

α =




0 0 0 −1

0 0 −1 0

0 −1 0 0

−1 0 0 0




, (B.9)

One can check the property that

(
Γ(a

) γ

α

(
Γb)

) β

γ
= ηabδα

β , (B.10)

where ηab = diag{−1, 1, 1, 1}.
We further use

Cαβ =

(
εαβ 0

0 εα̇β̇

)
and Cαβ =

(
εαβ 0

0 εα̇β̇

)
, (B.11)

to raise or lower the spinor indices of gamma matrices (by NW-SE rules). For example, by

lowering the second spinor index, we get

(Γa)αβ = (Γa)
γ

α Cγβ =

(
0 (σa)αβ̇

(σ̄a)α̇β 0

)
. (B.12)

One can check that in this way of construction, the pair spinor indices are symmetric, i.e.

(Γa)αβ = (Γa)βα.

We also define

(Γab)
β

α =
(
Γ[a

) γ

α

(
Γb]

) β

γ
. (B.13)

One can easily check that

(Γab)αβ =

(
(σab)αβ 0

0 (σ̄ab)α̇β̇

)
. (B.14)

In this way of construction, (Γab)αβ = (Γab)βα.
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Now we define

Eαβ = − (Γ0)αβ =




0 0 −1 0

0 0 0 −1

−1 0 0 0

0 −1 0 0




, (B.15)

Jαβ = − (Γ12)αβ =




0 −i 0 0

−i 0 0 0

0 0 0 i

0 0 i 0




. (B.16)

One can for instance check the properties (3.41)–(3.43) using the above explicit matrix

expressions.

C Spacetime gauge function

The four-dimensional anti-de Sitter spacetime, AdS4, of inverse radius λ, is the hyperbola

XAXBηAB = −λ−2 , (C.1)

in the five-dimensional space with coordinates XA, A = {0, 1, 2, 3, 0′} and flat metric

ηAB =diag{−1, 1, 1, 1,−1}. A set of global coordinates

(t, r, ϑ, φ) , 0 6 λt < 2π , r > 0 , 0 6 ϑ 6 π , 0 6 φ < 2π , (C.2)

can be introduced by taking

X0 = −
√
λ−2 + r2 sinλt , X0′ = −

√
λ−2 + r2 cosλt ,

X1 = r sinϑ cosφ , X2 = r sinϑ sinφ , X3 = r cosϑ . (C.3)

The resulting induced metric is

ds2 = −
(
1 + λ2r2

)
dt2 +

(
1 + λ2r2

)−1
dr2 + r2

(
dϑ2 + sin2ϑ dφ2

)
. (C.4)

The stereographic coordinates

xµ ≡ δµax
a =

Xa

1 + |X0′ | , (C.5)

where a = {0, 1, 2, 3}, ηab = diag{−,+,+,+} and x2 := xaxbηab, maps the two halves

X0′ > 0 and X0′ < 0 of AdS4 to the region −1 < λ2x2 < 1 of R3,1. From the inverse

relation given by

Xa =
2xa

1− λ2x2
, X0′ = ±λ−1 1 + λ2x2

1− λ2x2
, (C.6)
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it follows that X0′ → −X0′ corresponds to xa → −(λ2x2)−1xa. Thus, the extension of the

stereographic coordinates xa to the entire R
3,1 provides a global coordinate of AdS4; the

boundary of AdS4 is mapped to the hyperbola λ2x2 = 1 in R
3,1.

The gauge function

L (x; y, ȳ) =
2h

1 + h
exp

(
iλ

1 + h
xαα̇yαȳα̇

)
, xαα̇ := xa (σa)αα̇ , h :=

√
1− λ2x2 ,

(C.7)

which is defined in the region λ2x2 < 1, leads to

Uµ = L−1 ⋆ ∂µL = − i

2
eαα̇µ yαȳα̇ − i

4

(
ωαβ
µ yαyβ + ω̄α̇β̇

µ ȳα̇ȳβ̇

)
, (C.8)

where

eαα̇µ = −
λδaµ (σa)

αα̇

h2
, (C.9)

ωαβ
µ = −

λ2δaµx
b (σab)

αβ

h2
, ω̄α̇β̇

µ = −
λ2δaµx

b (σ̄ab)
α̇β̇

h2
, (C.10)

are the vierbein and Lorentz connection of AdS4 in stereographic coordinates, with flat

indices converted to spinor ones using van der Waerden symbols. One also has

L−1 ⋆ Yα ⋆ L = Lα
βYβ , (C.11)

with the matrix

Lα
β = h−1

[
δα

β λxα
β̇

λxα̇
β δα̇

β̇

]
. (C.12)

As an Sp(4;R) group element, L(x; y, ȳ) corresponds to the transvection in AdS4 that

sends all the information of the classical solution encoded at the origin of the stereographic

coordinate system to the point xµ.

D Determination of Petrov type of spin-2 Weyl tensor

In this appendix, we briefly explain how to check (only for spin-2) the Petrov type of a Weyl

tensor by using the eigenvalue method. For more details on this topic one can check [47].

The restricted Lorentz group SO+(3,1,R) is isomorphic to SO(3,C), and a Weyl tensor

can be converted into its equivalent form with SO(3,C) indices. We can convert the Weyl

tensor Cαβγδ with four symmetric SL(2;C) indices into an equivalent tensor QIJ with two

symmetric and traceless SO(3,C) indices, simply by using the Pauli matrices:

QIJ = (σI)
αβ (σJ)

γδ Cαβγδ , (D.1)

where (σI)
αβ = εαα

′
(σI)α′

β and we can explicitly choose

(σ1)α
β =

(
0 1

1 0

)
, (σ2)α

β =

(
0 −i

i 0

)
, (σ3)α

β =

(
1 0

0 −1

)
. (D.2)
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The indices I, J = 1, 2, 3 should be raised or lowered by the Kronecker delta, so whether

they are upper or lower indices does not make a difference.

If we treat Q as a 3×3 matrix, then observing its eigenvalues and eigenvectors is suffi-

cient for determining its Petrov type. Below we list all Petrov types and their corresponding

Q-matrix criteria:

Petrov types Q-matrix criteria

I [Q− λ1I] [Q− λ2I] [Q− λ3I] = 0

D
[
Q−

(
−1

2λ
)
I
]
[Q− λI] = 0

II
[
Q−

(
−1

2λ
)
I
]2

[Q− λI] = 0

N Q2 = 0

III Q3 = 0

O Q = 0

(D.3)

In the list, λ1,2,3, λ and
(
−1

2λ
)
are eigenvalues of Q, λ1 + λ2 + λ3 = 0 and I is the identity

matrix. In particular, being Petrov type D means the matrix Q has three independent

eigenvectors while two of them correspond to equal eigenvalues.

Using the explicit matrices and coordinates provided in appendices B and C, for spin

s = 2 we can evaluate the Weyl tensor (4.21) at a given spacetime point with a chosen set

of parameters, and then we can evaluate the corresponding Q matrix to check its Petrov

type. We have found that in general the Q matrix has three distinct eigenvalues (type I)

and thus is not of type D, unless we choose some special parameters or consider only some

special spacetime locations.
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