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1 Introduction

String compactifications with N = 2 supersymmetry has been extensively investigated as

an important testing ground for string dualities. The canonical example of such a compact-

ification is the heterotic string on K3×T 2. In the context of string dualities this theory was

first investigated in [1]. The various theories studied differed on how the spin connection

was embedded in the gauge connection. A simple method of explicitly constructing these

compactifications is to realize K3 as a T 4/Zν orbifold with ν = 2, 3, 4, 6. A comprehensive

list of these orbifold compactifications together with all possible embeddings of the spin

connection in the gauge connection is given in [2, 3]. Supersymmetric observables like the
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new supersymmetric index or the difference in one loop gauge threshold corrections can be

shown to be independent of the orbifold realization [2, 4, 5].

An important observable in these compactifications is the new supersymmetric in-

dex [4–9] which is defined by

Znew(q, q̄) =
1

η2(τ)
TrR

(
FeiπF qL0− c

24 q̄L̄0− c̄
24

)
. (1.1)

Here the trace is performed over the Ramond sector in the internal CFT with central

charges (c, c̄) = (22, 9). F refers to the world sheet fermion number of the right moving

N = 2 supersymmetric internal CFT. Recently it has been observed that the new su-

persymmetric index of K3 × T 2 which enumerates BPS states in these compactifications

admits Mathieu moonshine symmetry [10], see [11] for a review of aspects of moonshine.

This observation was generalized in [12] which considered orbifolds of K3× T 2 by g′ acted

as a ZN automorphism in K3 and and 1/N shift on one of the circles of T 2. It was observed

that for the standard embedding the new supersymmetric index admits a decomposition

in terms the elliptic genus of K3 twisted by g′. This ensures that the new supersymmetric

index admits an expansion in terms of the McKay Thompson series associated with g′ em-

bedded in the Mathieu group M24. It was also observed in [12] that the difference in one

loop gauge corrections to gauge couplings with Wilson lines for these compactifications can

be written in terms of Siegel modular forms corresponding to the theta lift of the twisted

elliptic genus of K3.

The g′ considered in these compactifications of [12] were restricted in the conjugacy

class pA of M24 with p = 2, 3, 5, 7. In fact only the class 2A was explicitly constructed,1

and the analysis was restricted to the standard embedding. In this paper we study com-

pactifications of the E8 × E8 heterotic string theory on orbifolds of K3 × T 2 by g′ in

more detail.

We show that for all g′ corresponding to the 26 conjugacy classes of M24 and for

compactifications which involve the standard embedding of the spin connection of K3 into

one of the E8’s the resultant new supersymmetric index always can be written in terms

of the elliptic genus of K3 but twisted by g′. The standard embedding breaks the gauge

group to E7 × U(1) × E8. The difference in one loop corrections of the gauge groups E7

and E8 are automorphic forms of SO(2 + s, s;Z) with s = 0, 1. For s = 0, the automorphic

forms are functions of Kähler, complex structure of the torus T 2 while for s = 1 they are

also functions of the Wilson line embedding in either of the gauge groups. We show that

these automorphic forms are obtained as theta lifts of the elliptic genus of K3 twisted by g′.

We demonstrate these statements explicitly for 2 examples. We first consider the situation

when K3 is realized as T 4/Z4 and then construct the corresponding g′ action corresponding

to the 2A conjugacy class. We show the new supersymmetric index is determined by the

corresponding twisted elliptic genus. This result is identical to that obtained in [12] when

K3 is realized as the orbifold T 4/Z2 which illustrates that the new supersymmetric index

is independent of the realization of K3. In the second example we consider the situation

when K3 is realized as a rational conformal field theory based on the affine algebra su(2)6

1We use the ATLAS naming for the conjugacy classes of M24 see [13].
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and for g′ belonging to the conjugacy class 2B studied in [14]. For this situation we show

that that the new supersymmetric index is determined by the elliptic genus of K3 twisted

by the 2B action.

We then examine non-standard embeddings of K3 × T 2 compactifications. This is

done by considering all the non-standard embeddings in which K3 is realized as a T 4/Z2

as well as T 4/Z4 orbifold and the action of g′ in the conjugacy class 2A. We study the

spectrum and then evaluate the new supersymmetric index for these compactifications.

The results for the spectrum are summarized in tables 6, 7, 8, 9, 10. We show that the

new supersymmetric index classifies all the models into 4 distinct types depending on the

difference of the number of hypermultiplets and vector multiplets, Nh −Nv of the model.

The result can be read off using the table 13 and equation (4.7) In each case we see that

the new supersymmetric index again admits a decomposition in terms of the elliptic genus

of K3 twisted by g′. However there is also a dependence in Nh − Nv. We then evaluate

the difference in one loop gauge coupling corrections for all these models with the Wilson

line and show that they result in SO(3, 2;Z) automorphic forms. The automorphic forms

for all the models are entirely determined by the instanton numbers of the embeddings as

well as Nh − Nv of these models. The result can be read off using the tables 14, 15 and

equation (4.19).

The organization of the paper is as follows. In section 2 we prove that for the standard

embedding , compactifications on orbifolds of K3×T 2 result in a new supersymmetric which

can always be written in terms of the elliptic genus of K3 twisted by g′. Section 3 works

out in detail for the situation when K3 is realized as T 4/Z4 with g′ ∈ 2A and when K3 is

realized as a rational conformal field theory based on the su(2)6 affine algebra with g′ ∈ 2B.

In section 4 we first introduce all the embeddings in which K3 is realized as a T 4/Zν orbifold

with ν = 2, 4 and g′ ∈ 2A and evaluate the spectrum, the new supersymmetric index and

the difference in one loop gauge thresholds. Section 5 contains our conclusions. Appendix A

contains the notations, conventions and a list of identities used in the paper, appendix B

contains the details of evaluating one loop threshold integrals. Finally the appendix C

summarises the content of mathematica files which were used to arrive at some of the

results in the paper.

2 Standard embedding

In this section we first define N = 2 supersymmetric compactifications of the E8 × E8

heterotic string theory on orbifolds of K3×T 2 by g′ in which the spin connection of K3 is

embedded in one of the E8’s in the standard manner. g′ acts as a ZN automorphism of K3

together with a 1/N shift along one of the circles of T 2. The automorphism g′ corresponds

to any of the 26 conjugacy classes associated with the Mathieu group M24 by which one

can twist the elliptic genus of K3 [15–17].

We define the standard embedding as follows. Let the current algebra of one of the

E8’s be realized in terms of left moving fermions λI , I = 1, · · · 16. The other E8 can be

realized in terms of its bosonic lattice or the fermions λ′I . The gauge connection is assumed
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to have the structure

G =

4∑
I,J=1

λIBIJ
a ∂XaλJ +

16∑
I,J=5

λIAIJi ∂X
iλJ +

16∑
I,J=1

λ′IA′IJi ∂X iλ′J . (2.1)

Here Ai, A
′
i is the flat connection on the T 2. Ba refers to the SU(2) spin connection of

K3. Thus we have embedded the spin connection in one of the SU(2)’s of the E8. This

E8 lattice splits into a D2 which is coupled to the spin connection of K3 and a free D6

lattice. The D6 lattice and the second E8 lattice which can contain the flat connections

Ai, A
′
i on T 2 are free. Thus we have the 16 − 4 = 12 free Majorana-Weyl fermions of

the D6 lattice coupled to the flat connection on the T 2 and 4 interacting Majorana-Weyl

fermions coupled to the spin connection of the K3. These left moving fermions with the

left moving bosons of the K3 as well as the right moving supersymmetric sector of K3

form a (6, 6) conformal field theory. Thus the internal CFT of the heterotic string in the

standard embedding splits as

Hinternal = H(6,6)
D2K3 ⊗H

(6,0)
D6 ⊗H

(8,0)
E8
⊗H(2,3)

T 2 . (2.2)

Here the second and third Hilbert spaces refer to the D6 lattice and the E8 lattice re-

spectively and the the last refer to the CFT on T 2. With this decomposition, we can now

specify the action of g′. The g′ acts as a ZN automorphism on the (6, 6) CFT H together

with a 1/N shift on one of the circles in H(2,3)
T 2 .

2.1 New supersymmetric index and twisted elliptic genus of K3

Let us now evaluate the new supersymmetric index on the internal CFT given in (2.2).

Znew =
1

η2
TrR

(
(−1)FFqL0−c/24q̄L̄0−c̄/24

)
. (2.3)

The right moving Fermion number F can be written as the sum of the Fermion number on

T 2 together with the Fermion number on K3

F = F T
2

+ FK3. (2.4)

Then it is easy to see that because of the right moving Fermion zero modes on T 2, the only

contribution to the index arises from

Znew =
1

η2
TrR

(
F T

2
eiπ(FT

2
+FK3)qL0−c/24q̄L̄0−c̄/24

)
. (2.5)

Again examining the trace we can see that the contributions from left moving bosonic and

fermionic oscillators on T 2 cancel. Thus it is only the zero modes on T 2 and the left moving

bosonic oscillators on T 2 which contribute to the index. With these arguments we see that

the trace reduces to

Znew =
1

η2(τ)

Γ
(r,s)
2,2 (q, q̄)

η2(τ)

[
θ6

2(τ)

η6(τ)
Φ

(r,s)
R +

θ6
3(τ)

η6(τ)
Φ

(r,s)
NS+ −

θ6
4(τ)

η6(τ)
Φ

(r,s)
NS−

]
E4(q)

η8(τ)
. (2.6)

The sum over the sectors (r, s) is implied and r, s run from 0 to N − 1. The origin and the

definition of each term in the index is as follows.
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1. The term
Γ

(r,s)
2,2

η2 arises from the lattice sum on T 2 together with the left moving bosonic

oscillators. The lattice sum is defined as

Γ
(r,s)
2,2 (q, q̄) =

∑
m1,m2,n2∈Z,
n1=Z+ r

N

q
p2L
2 q̄

p2R
2 e2πim1s/N , (2.7)

1

2
p2
R =

1

2T2U2
| −m1U +m2 + n1T + n2TU |2,

1

2
p2
L =

1

2
p2
R +m1n1 +m2n2 .

T, U are the Kähler and complex structure of the T 2. Note that the lattice sum is the

only part of the index that contains anti-holomorphic dependence. Furthermore the

insertion of g′ and the twisted sectors of g′ are taken care of by the phase e2πim1s/N

and the fact the winding modes are shifted from integers by r
N .

2. The terms in the square bracket arises from evaluating the index on the lattice D6

together with the combined D2K3. Note that the partition function on the D6 lattice

in the various sectors are given by

ZR(D6; q) =
θ6

2

η6
, ZNS+(D6; q) =

θ6
3

η6
, ZNS−(D6; q) =

θ6
4

η6
. (2.8)

While the indices on the combined D2K3, (6, 6) conformal field theory are given by

Φ
(r,s)
R =

1

N
TrRR,gr

[
gs(−1)FRqL0−c/24q̄L̄0−c̄/24

]
, (2.9)

Φ
(r,s)
NS+ =

1

N
TrNS R,gr

[
gs(−1)FRqL0−c/24q̄L̄0−c̄/24

]
,

Φ
(r,s)
NS− =

1

N
TrNS R,gr

[
gs(−1)FR+FLqL0−c/24q̄L̄0−c̄/24

]
.

We will relate them to the twisted elliptic genus of K3 below.

3. Finally the term E4(q)
η8(τ)

arises from the partition function of the second E8 which is

untouched in the standard embedding. E4 is the Eisenstein series of weight 4.

We now show that the indices in (2.9) are related to the twisted elliptic genus of K3

by g′. In indices given in (2.9) note that the spin connection of the K3 is coupled to the

fermions in D2 conformal field theory and therefore trace can be thought of as a trace in

the K3 super conformal field theory with central charge (6, 6). Let us examine the twisted

elliptic genus of K3 which is defined as

F (r,s)(τ, z) =
1

N
TrRRg′r

[
(−1)FK3+F̄K3g′se2πizFK3qL0−c/24q̄L̄0−c̄/24

]
. (2.10)

Here g′ belongs to automorphism related to the 26 conjugacy classes of M24. Since this

theory admits a N = 2 spectral flow we can relate the trace over the various sectors in (2.9)
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by the following equations

Φ
(r,s)
R = F (r,s)

(
τ,

1

2

)
, (2.11)

Φ
(r,s)
NS+ = q1/4F (r,s)

(
τ,
τ + 1

2

)
,

Φ
(r,s)
NS− = q1/4F (r,s)

(
τ,
τ

2

)
.

From (2.6) and (2.11) we see that the new supersymmetric index for compactifications

which involve the standard embedding admits a decomposition in terms of the elliptic

genus of K3 twisted by g′. This decomposition then can be used to show that the new

supersymmetric index can be expanded in terms of the MacKay-Thompson associated with

g′ embedded in M24 following the arguments of [10, 12].

New supersymmetric index in terms Eisenstein series. Let us further simplify the

expression the expression for the new supersymmetric index for the standard embedding.

The elliptic genus of K3 twisted by g′ in general can be written as

F (0,0)(τ, z) = α
(0,0)
g′ A(τ, z), (2.12)

F (0,1)(τ, z) = α
(0,1)
g′ A(τ, z) + β

(0,1)
g′ f

(0,1)
g′ (τ)B(τ, z),

where the Jacobi forms A(τ, z) and B(τ, z) are given by

A(τ, z) =
θ2

2(τ, z)

θ2
2(τ, 0)

+
θ2

3(τ, z)

θ2
3(τ, 0)

+
θ2

4(τ, z)

θ2
4(τ, 0)

, B(τ, z) =
θ2

1(τ, z)

η6(τ)
. (2.13)

The numerical coefficients α,g′βg′ and the form f
(0,1)
g′ (τ) depend on the twist g′. For example,

for the conjugacy class pA with p = 2, 3, 5, 7 of M24 we find

α
(0,0)
pA =

8

p
, α

(0,1)
pA =

8

p(p+ 1)
, β

(0,1)
pA = − 2

p+ 1
, (2.14)

and

f
(0,1)
g′ (τ) = Ep(τ) =

12i

π(p− 1)
∂τ log

η(τ)

η(pτ)
. (2.15)

A comprehensive list of the twisted elliptic genus for all the 26 conjugacy classes of M24

can be found in [16]. All the remaining elements of the twisted elliptic genus F (r,s)(τ, z)

can be obtained by modular transformations using the relation

F (r,s)

(
aτ + b

cτ + d
,

z

cτ + d

)
= exp

(
2πi

cz2

cτ + d

)
F (cs+ar,ds+br)(τ, z), (2.16)

with

a, b, c, d ∈ Z, ad− bc = 1. (2.17)

In (2.16) the indices cs+ ar and ds+ br are taken to be mod N where N is the order of g′.

Using this information of the twisted elliptic genus we can write the new supersymmetric
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index for the standard embedding given in (2.6) in terms of Eisenstein series. Substituting

the following identities

A

(
τ,

1

2

)
=

(
θ4

4θ
2
2 + θ4

3θ
2
2

)
4η6

, B

(
τ,

1

2

)
=
θ2

2

η6
, (2.18)

A

(
τ,
τ + 1

2

)
=
q−1/4

(
−θ4

4θ
2
3 + θ4

2θ
2
3

)
4η6

, B

(
τ,
τ + 1

2

)
=
q−1/4θ2

3

η6
,

A
(
τ,
τ

2

)
=
q−1/4

(
θ4

3θ
2
4 + θ4

2θ
2
4

)
4η6

, B
(
τ,
τ

2

)
= −q

−1/4θ2
4

η6
.

in (2.6) and using (2.11) we obtain

Znew(q, q̄) = −2
1

η24
Γ

(r,s)
2,2 E4

[
1

4
α

(r,s)
g′ E6 − β(r,s)

g′ f
(r,s)
g′ E4

]
. (2.19)

Recall that only the lattice sum is dependent on both (τ, τ̄) while the Eisenstein series

E6, E4 as well as f (r,s) are holomorphic in τ . Furthermore in the (2.19) sum over r, s from

0, · · ·N − 1 is understood.

2.2 Difference of one loop gauge thresholds

Now let us evaluate the gauge threshold corrections with Wilson line turned on in the

untouched E8 lattice, we call this gauge group G and the broken E8, G′. From the discussion

in [2, 5] and [12], we see that the new supersymmetric index with Wilson line becomes

Znew(q, q̄) = −2
1

η24
Γ

(r,s)
3,2 ⊗ E4,1

[
1

4
α

(r,s)
g′ E6 − β(r,s)

g′ f
(r,s)
g′ E4

]
. (2.20)

The presence of the Wilson line introduces an additional moduli V and with T, U . The

lattices sums now are given by

Γ
(r,s)
3,2 (q, q̄) =

∑
m1,m2,n2,b∈Z,
n1=Z+ r

N

q
p2L
2 q̄

p2R
2 e2πim1s/N , (2.21)

p2
R

2
=

1

4 detImΩ

∣∣−m1U +m2 + n1T + n2(TU − V 2) + bV
∣∣2 ,

p2
L

2
=
p2
R

2
+m1n1 +m2n2 +

1

4
b2,

Ω =

(
U V

V T

)
.

The product ⊗ and function E4,1 are defined in the appendix A. The one loop corrections

to the gauge coupling G is defined by the following integral over the fundamental domain

∆(T, U, V ) =

∫
F

d2τ

τ2
(BG − b(G)), (2.22)

where B can be written in terms of the new supersymmetric index with the Wilson line as

follows

BG = − 2

24η24
Γ

(r,s)
3,2 ⊗

{
Ẽ2E4,1 − E6,1

}[1

4
α

(r,s)
g′ E6 − β(r,s)

g′ f
(r,s)
g′ E4

]
, (2.23)
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where

Ẽ2 =

(
E2 −

3

πτ2

)
. (2.24)

The constant b(G) in (2.22) can be fixed by demanding that the integral is well defined in

the limit τ2 → ∞. The details which are involved in arriving at the integrand (2.23) are

given in [12] where the class 2A was discussed in detail. Essentially the action of BG is to

convert the lattice sum with the Wilson line E4,1 → Ẽ2E4,1 − E6,1. This occurs because

of is summing over the lattice weighted with the charge vectors. Similarly the one loop

corrections to the gauge coupling G′ is defined by an integral of the same form in (2.22),

with the integrand given by

BG′ = − 2

24η24
Γ

(r,s)
3,2 ⊗ E4,1

[
1

4
α

(r,s)
g′

{
Ẽ2E6 − E2

4

}
− β(r,s)

g′ f
(r,s)
g′

{
Ê2E4 − E6

}]
. (2.25)

Here note that E6 → Ẽ2E6 − E2
4 . Using the identities

1

η24
(E4,1(τ, z)E6 − E6,1(τ, z)E4) = −144B(τ, z), (2.26)

1

η24

(
E4,1(τ, z)E2

4 − E6,1(τ, z)E6

)
= 576A(τ, z),

we evaluate the difference in the one loop thresholds integrands which results in

BG − BG′ = −12Γ
(r,s)
3,2 ⊗ F

(r,s). (2.27)

Thus the difference in the one loop corrections to gauge couplings is given by

∆G(T, U, V )−∆G′(T, U, V ) = −12

∫
F

d2τ

τ2
Γ

(r,s)
3,2 ⊗ F

(r,s). (2.28)

There is a constant term that we have ignored in the integrand which is necessary to make

the integral well defined in the τ2 →∞ limit.

From (2.28) we conclude that for compactifications on the orbifold (K3 × T 2) by g′

involving the standard embedding, the difference in the one loop thresholds is the auto-

morphic form of SO(3, 2;Z) which is obtained by the theta lift of the elliptic genus of K3

twisted by g′. To obtain the threshold correction without the Wilson line one can take

the limit V → 0 in (2.28). Then the automorphic form SO(3, 2;Z) reduces to SO(2, 2;Z)

modular forms.

3 Standard embedding: 2 examples

In this section we will discuss in detail 2 examples that demonstrate the for standard

embeddings, the new supersymmetric index can be written in terms of the twisted elliptic

index. The first example deals with the 2A orbifold of K3 in which K3 is at its T 4/Z4

limit. The second example deals with the recent construction of the 2B orbifold of K3 [14].
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3.1 The 2A orbifold from K3 as T 4/Z4

In this section we will construct the orbifold of K3 by g′ where g′ belongs to the class 2A.

The well studied method of obtaining this orbifold is to realize the K3 CFT as a T 4/Z2

orbifold as discussed in [18]. Here we will consider the 2A orbifold when K3 is at the

orbifold limit T 4/Z4. As far as we are aware the construction is new. This will enable us to

investigate the spectrum and the threshold corrections of all the non-standard embeddings

of heterotic string at the orbifold T 4/Z4 discussed in [2] after the g′ action.

We define the orbifold of K3 by g′ as follows. Let us first consider T 4 × T 2 with

co-ordinates x1, x2 parameterizing T 2 and y1, y2, y3, y4 labelling T 4. Then K3 is realized

by the Z4 which is action given by

gs : (x1, x2, y1 + iy2, y3,+iy4) ∼ (x1, x2, e
2πi s/4(y1 + iy2), e−2πi s/4(y3 + iy4)),

s = 0, 1, 2, 3. (3.1)

This orbifold limit of K3 is well known and discussed in [19]. We now consider the g′

orbifold which is a Z2 action given by

g′ : (x1, x2, y1, y2, y3, y4) ∼ (x1 + π, x2, y1 + π, y2 + π, y3 + π, y4 + π). (3.2)

We will first show that the twisted elliptic genus remains the same as that when K3 is

realized as a T 4/Z2 orbifold. This result in fact a test that the orbifold action given in (3.1)

and (3.2) in fact K3 twisted by the element 2A. We will then evaluate the spectrum of

heterotic string compactified on this orbifold K3× T 2 for the standard embedding. Using

the orbifold action we will explicitly show that the new supersymmetric index admits a

decomposition in terms of the twisted elliptic genus. Therefore this is a verification of the

result in the previous section that the new supersymmetric index for compactifications on

orbifolds of K3 in any standard embedding just depends on the twisted elliptic genus of

K3. We then evaluate the difference in one loop gauge thresholds and show that indeed

the resulting modular form is the theta lift of the elliptic genus of K3 twisted by the

element 2A.

3.1.1 Twisted elliptic genus

The twisted elliptic genus under under the orbifold (3.1) and (3.2) is given by the index

F (r,s)(τ, z) =
1

8

3∑
a,b=0

Trga,g′r
(

(−1)FL+F̄Rgbg′se2πizFLqL0 q̄L̄0

)
.

Here the trace is taken over theory of 4 free bosonic coordinates y1, y2, y3, y4 and 4 free

fermions which form their superpartners, FL, FR are the left and right moving fermion

numbers respectively. We have suppressed the shifts L0 − 1/4, L̄0 − 1/4 in the definition

of the index. Let us further define the trace

F(a, r; b, s) =
1

8
Trga,g′r

(
(−1)FL+F̄Rgbg′se2πizFLqL0 q̄L̄0

)
. (3.3)
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Fixed points g′ g g2 g3 g′g g′g2 g′g3

g 0, (1+i)
2 × X X X × × ×

g2 0, (1+i)
2 × X X X × × ×

1
2 , i

2 × × X × X × X

g3 0, (1+i)
2 × X X X × × ×

gg′ 1
2 , i

2 × × X × X × X

g2g′ 1+i
4 , −1−i

4 × × × × × X ×
1−i

4 , −1+i
4 × × × × × X ×

g3g′ 1
2 , i

2 × × X × X × X

Table 1. Each row lists the property of fixed points along the y1, y2 direction under actions of

powers of g, g′. × indicates that the fixed point moves, while the X indicates the fixed point is

invariant. Positions are in units of 2π An identical table exists for the y3, y4 direction.

To evaluate each sector of the above twisted elliptic genus we will need the fixed point

under the elements gag′r and what elements preserve these fixed points. This information

is summarized in table 1.

Let us discuss the twisted elliptic genus for each of the sectors. The sector (0, 0) is

easiest to deal with. Since there are no twists in g′ or insertions of g′ to deal with we see

that the trace reduces to

F 0,0(τ, z) =
1

2
ZK3(τ, z) = 4A(τ, z). (3.4)

where ZK3 is the elliptic genus of K3.

Let us now examine the sector (0, 1). We see from table 1, that a single insertion of g′

does not preserve any of the fixed points. Thus we have

F(a, 0; b, 1) = 0, for a = 1, 3. (3.5)

Therefore we need to look at F(0, 0; b, 1) and F(2, 0; b, 1). Evaluating the trace in the

untwisted sector we see the contributions are

F(0, 0; 0, 1) = 0, (3.6)

F(0, 0; 1, 1) =
1

2

θ1

(
z + 1

4 , τ
)
θ1

(
−z + 1

4

)
θ2

1

(
1
4 , τ
) ,

F(0, 0; 2, 1) = 2
θ1

(
z + 1

2 , τ
)
θ1

(
−z + 1

2

)
θ2

1

(
1
2 , τ
) ,

F(0, 0; 3, 1) =
1

2

θ1

(
z + 3

4 , τ
)
θ1

(
−z + 3

4

)
θ2

1

(
3
4 , τ
) .
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The numerical coefficients in each of the traces occur due to the contribution of the

Fermionic zero modes. There are 4 Fermionic right moving zero modes when g2 is in-

serted in the trace while there are 2 right moving zero modes for the g and g3 insertions.

Evaluating the contributions to F(2, 0; b, 1) we obtain

F(2, 0; 0, 1) = 0, F(2, 0; 2, 1) = 0, (3.7)

F(2, 0; 1, 1) =
1

2

θ1

(
z + 2τ+1

4 , τ
)
θ1

(
−z + 2τ+1

4

)
θ2

1

(
2τ+1

4 , τ
) ,

F(2, 0; 3, 1) =
1

2

θ1

(
z + 2τ+3

4 , τ
)
θ1

(
−z + 2τ+3

4

)
θ2

1

(
2τ+3

4 , τ
) .

The vanishing of the first set of equations in (3.7) is due to the fact that the fixed points

in the relevant traces are not invariant under g′ or g2g′ insertions as can be seen from the

table 1. The numerical factors in the last line equations in (3.7) is due to presence of 4

fixed points in these twisted sectors. Now summing up the contributions we obtain

F (0,1)(τ, z) = F(0, 0; 1, 1) + F(0, 0; 2, 1) + F(0, 0; 3, 1) + F(2, 0; 1, 1) + F(2, 0; 3, 1),

= 4
θ2

2(z, τ)

θ2
2(0, τ)

, (3.8)

=
4

3
A(τ, z)− 2

3
E2(τ)B(τ, z).

The equality in the second line of the above equation is due to identities involving the theta

functions. Thus we see that the twisted elliptic genus of the orbifold given in (3.1), (3.2)

belongs to the class 2A.

Though the other sectors of the twisted elliptic genus can be obtained by modular

transformations, for completeness we provide some of the details. Lets examine contri-

butions to F (1,0). Due to the presence of right moving Fermionic zero modes we obtain

F(0, 1; 0, 0) = 0. Now the following vanish

F(0, 1, a, 0) = 0, for a = 1, 2, 3, (3.9)

This is because due to the insertions of powers of g the trace can contribute only if there

are zero modes in the winding sector. However since this sector is twisted in g′, the winding

modes are all half integer modded and cannot vanish. The only non-trivial contributions

arise from the following

F(a, 1; b, 0) =
1

2

θ1

(
z + b+aτ

4

)
θ1

(
−z + b+aτ

4

)
θ2

1

(
b+aτ

4 , z
) , for a = 1, 3, b = 0, 2, (3.10)

F(2, 1; 0, 0) = 2
θ1

(
z + τ

2 , τ
)
θ1

(
−z + τ

2 , τ
)

θ2
1

(
τ
2 , τ
) .

The rest of the indices vanish due to the fact that the fixed points in those sectors are not

invariant with the relevant insertions of g, g′ in the trace. Summing up the contributions
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it can be seen that

F (1,0) = 4
θ1

(
z + τ

2 , τ
)
θ1

(
−z + τ

2 , τ
)

θ1

(
τ
2 , τ
)2 (3.11)

= 4
θ4(z, τ)2

θ4(0, τ)2
.

Finally due to the same reasons we see that the only contributions to F (1,1) arise from

F(a, 1; b, 1) =
1

2

θ1

(
z + b+aτ

4

)
θ1

(
−z + b+aτ

4

)
θ2

1

(
b+aτ

4 , z
) , for a = 1, 3, b = 1, 3, (3.12)

F(2, 1; 2, 1) = 2
θ1

(
z + 1+1τ

4

)
θ1

(
−z + 1+1τ

4

)
θ2

1

(
1+1τ

4 , z
) .

Again summing up the contributions leads to

F (1,1) = 4
θ2

3(z, τ)

θ2
3(0, τ)2

. (3.13)

To conclude, from (3.4), (3.8), (3.11) and (3.13) we see that the twisted elliptic genus is

identical to the class 2A first evaluated in [18] using K3 in the T 4/Z2 orbifold limit.

3.1.2 Massless spectrum

In this section we will derive the massless spectrum of heterotic string theory compactified

on the orbifold given in g in (3.1) and g′ (3.2) with standard embedding. In orbifold

language the standard embedding of is achieved by accompanying the Z4 action (3.1)

together with the shift

V =
1

4

(
1,−1, 06; 08

)
, (3.14)

in the E8×E8 lattice. The spectrum of the T 4/Z4 with the standard shift was first studied

in [20]. We will follow the discussion of [21] which set up the general discussion for studying

orbifold compactifications of heterotic string theory which preserve N = 2 supersymmetry.

The orbifold action g′ (3.2) does not produce any fixed points and therefore preserves

N = 2 supersymmetry. Thus the massless spectrum organizes into the 4 dimensional

N = 2 gravity multiplet coupled to Nv vectors and Nh hypers. The massless states of the

theory in the gn twisted sector is determined by setting left and right masses to zero

m2
L = NL +

1

2
(P + nV )2 + En − 1 = 0, (3.15)

m2
R = NR +

1

2
(r + nv)2 + En −

1

2
= 0. (3.16)

Here P is the E8 × E8 lattice vector which is generically of the form

P =
(
PE8 ;PE′8

)
. (3.17)
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The 8 dimensional lattice vector PE8 can belong to either the vector or the spinor conjugacy

class which we denote by

λA = (n1, n2....n8) λB =

(
n1 +

1

2
, n2 +

1

2
, · · · , n8 +

1

2

)
, (3.18)

with
8∑
i=1

ni = even integer. (3.19)

En is the shift in the zero point energy on the ground state due to the twisting and is

given by

En =
1

42
n(ν − n), (3.20)

where ν = 4 for the T 4/Z4 orbifold and n = 0, 1, 3, 4. r is a SO(8) weight vector with

4∑
i=1

ri = odd, (3.21)

v is a 4 dimensional vector given by

v =
1

4
(0, 0, 1, 1). (3.22)

Further conditions on r, v, P so that we obtain massless states mL = mR = 0 will be

discussed below. The degeneracy of the massless states can be obtained from [21]

D(n) =
1

4

3∑
m=0

χ(n,m)∆(n,m), (3.23)

∆(n,m) = exp

{
2πi

[
(r + nv)mv − (P + nV )mV +

1

2
mn

(
V 2 − v2

)
+mρ

]}
,

and χ(n,m) refers to the number of fixed points in the gn twisted sector which are invariant

under the action of gm. ρ is the phase by which the oscillators in the T 4 are rotated by

the Z4 action. In the untwisted sector n = 0 we have

χ(0,m) = 1, (3.24)

and the phases in D(0) simply implement the projection of the spectrum under the action

of gm. From table 1 we see that

χ(1,m) = χ(3,m) = 4, (3.25)

χ(2, 0) = 16, χ(2, 1) = 4, χ(2, 2) = 16, χ(2, 3) = 4.

Our goal is to obtain the spectrum when there is a further action by the Z2 group g′

given in (3.2). The first thing to note is that there are no massless states arising from the

twisted sectors of g′. This is because all these states have half integer Kaluza-Klein modes
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on T 4 and therefore they are massive. Thus the only change in obtaining the massless

spectrum is that the degeneracy given in (3.23) changes to

D(n; g′) =
1

4

3∑
m=0

1

2

[
χ(n,m) + χ(g′)(n,m)

]
∆(n,m), (3.26)

where χ(g′) is the number for fixed points in the gn twisted sector invariant under the action

of gmg′. Essentially we have inserted the projection over g′. In the untwisted sector

χ(g′)(0,m) = χ(0,m) = 1, (3.27)

and again the phases in (3.26) just implement the projection of the spectrum under gm.

For the twisted sector, from the tabel 1 we obtain

χ(g′)(1,m) = χ(g′)(3,m) = 0, (3.28)

χ(2, 0)(g′) = 0, χ(2, 1)(g′) = 4, χ(2, 2)(g′) = 0, χ(2, 3)(g′) = 4.

We are now ready to obtain the spectrum of the model.

Untwisted sector. It is clear from (3.24), (3.27) and (3.26) we see that there is no

change in the spectrum for the untwisted sector. Thus the untwisted sector remains the

same as that worked out earlier in [21]. This sector contains the N = 2 gravity multiplet

and the N = 2 vectors. The gauge group breaks from E8 × E8 to E7 × U(1)× E8.2 Thus

the Non-Abelian N = 2 vector multiplets are in the 133 of E7 and the 248 of E8. In the

untwisted sector there are 2 singlet hypers under E7 ×E8 which we denote as (1,1) and 2

hypers charged as (56,1).

The twisted sector consists of only hypermultiplets

Twisted by g and g3. From (3.25), (3.28) and (3.26) we see that the degeneracies in the

g2 and g3 twisted sector becomes half of the theory on the orbifold (T 4/Z2) × T 2 worked

out in [21]. In fact the states in the g3 twisted sector form the anti-particles of the states

in the g twisted sector. The hypers for the g′ orbifold are 2(56,1) + 16(1,1).3

Twisted by g2. It in only in this sector we really need to explicitly work out the details

of the states and using the formula (3.26). For massless states in the twisted sector we

have the conditions

r2 = 1, r · v = −1

4
. (3.29)

Using the equations (3.20), (3.22 and (3.29) we see that pR given in (3.15) indeed vanishes

for NR = 0. Lets examine the condition pL = 0.

1. For NL = 0 in the g2 twisted sector we see pL = 0 results in the condition

(P + 2V )2 = 3/2. (3.30)

2We are ignoring the 2 vector multiplets from the one cycles of the T 2.
3We are not keeping track of the U(1) charges in our discussion.
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This condition can only be satisfied by two ways. Firstly we can take the lattice

vectors in both the E8’s in the vector conjugacy class. Thus we have(
n1 +

1

2

)2

+

(
n2 −

1

2

)2

+

16∑
j=3

n2
j =

3

2
, (3.31)

which in turn can be satisfied by n1 = 0, n2 = 1 or n1 = −1, n2 = 0 with one of the

nj = ±1, j = 3, 4, 5, 6, 7, 8. The restriction that these are in the first lattice comes

from the condition in the last line of (3.18). All together this results in 24 solutions.

Now the second choice of lattice vectors is, in which we have the spinor conjugacy

class in the first E8 and the vector class in the second E8. Therefore (3.30) reduces to(
n1 +

1

2
+

1

2

)2

+

(
n2 +

1

2
− 1

2

)2

+
8∑
j=3

(
nj +

1

2

)2

+
16∑
k=9

n2
k =

3

2
. (3.32)

Here we can have n1 = −1, n2 = 0 and any odd number of the 6 n′js as 0 or -1 which

can be achieved by 32 ways (6C1 +6 C3 +6 C5 = 32). The 24 + 32 = 56 solutions

of (3.31) and (3.32) form the (56,1) dimensional representation of E7 × E8. Let us

now evaluate the degeneracy of these states. They are solutions to the mass shell

condition and satisfy P ·V = −1/4, and have ρ = 0. Using (3.29) and the values of v

and V from (3.22) and (3.14) respectively We find that ∆(2, 1) = 1. Then from (3.26)

we see that the degeneracy of these states is D(2, g′) = 3, where we need to divide

by 2 to account for the anti-particles. Thus we have 3(56,1) hypers.4

2. Now lets look at the case of NL = 1/2, where the oscillators along the T 4 are excited.

For these states there is a pair of oscillators each with ρ = ±1/4. The mL = 0

condition reduces to

(P + 2V )2 = 1/2. (3.33)

This can be satisfied only when both the E8 lattice vectors are chosen in the vector

conjugacy class leading to(
n1 +

1

2

)2

+

(
n2 −

1

2

)2

+

16∑
j=3

n2
j =

1

2
. (3.34)

This equation admits two solutions: n1 = n2 = nj = 0 and n1 = −1, n2 = 1, nj = 0

which have P ·V = 0. Evaluating the phase ∆(2, 1) for ρ = ±1/4 we obtain ∆(2, 1) =

±1. The degeneracy from (3.26) for these states is given by 2 × (3 + 1) = 8, here

again we are not counting anti-particles. The 2 factor arises due to the 2 solutions

for (3.34) Finally since we have two pairs of oscillators with ρ = ±1/4 the total

number of states is given by have 2 × 8 = 16 These states are singlets with respect

to the E7 × E8, therefore.5

4For the model just on T 4/Z4 × T 2 we have D(2) = 5 for these states
5For the model without the g′ orbifold the number of such states is 32.
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Model Shift Sector Matter Nh −Nv

g0 (56,1) + 2(1,1) -12

(T 4/Z4 × T 2)/g′ E7 ×U(1)× E8 g + g3 2(56,1) + 16(1,1)

1
4(1,−1, 06; 08) g2 3(56,1) + 16(1,1)

Table 2. Hypermultiplet content of the g’ orbifold of T 4/Z4 × T 2 with the standard embedding.

Model Shift Sector Matter Nh −Nv

g0 (56,1) + 2(1,1) +244

T 4/Z4 × T 2 E7 ×U(1)× E8 g + g3 4(56,1) + 32(1,1)

1
4(1,−1, 06; 08) g2 5(56,1) + 32(1,1)

Table 3. Hypermultiplet content of T 4/Z4 × T 2 with the standard embedding.

To summarize the spectrum of the g′ orbifold of T 4/Z4 with the standard shift of (3.14)

consists of a N = 2 gravity multiplet with a gauge multiplet in the (133,1)⊕ (1,248) of

E7 × E8 and a U(1). The hypermultiplet content is summarized in table 2. Evaluating

Nh −Nv = −12. For comparison we have also summarized the hypermultiplet content of

the same model without the g′ model in table 3. The vector multiplet content is the same.

Nh−Nv = −244 for this model which is dictated by anomaly cancellation since this model

admits a lift to a chiral 6d theory unlike the g′ orbifold. This phenomenon of the vector

multiplet being invariant but the reduction of the number of hypers by the action of g′ was

also observed in [12]. In the subsequent section we will verify that the Nh −Nv = −12 for

the g′ orbifold by evaluating the new supersymmetric index.

3.1.3 The new supersymmetric index

In this section we will evaluate the new supersymmetric index for the orbifold defined by

the actions (3.1), (3.2) with the shift in (3.14) in E8×E8. We adapt the method developed

in [2] to incorporate the additional g′ orbifolding action. Evaluating the trace, the new

supersymmetric index given in (2.3) splits into the following sectors

Znew(q, q̄) = − 1

2η20(τ)

3∑
a,b=0

1∑
r,s=0

e−
2πiab

16 Z
(a,b)
E8

(τ)× E4(q)× 1

8
F (a, r, b, s; q)Γ

(r,s)
2,2 (q, q̄).

(3.35)

First note that the anti-holomorphic dependence in q occurs only in the lattice sum

Γ
(r,s)
2,2 (q, q̄) Let us define each of the component in (3.35). The trace over the T 4 direc-

tions is given by

F (a, r, b, s; q) = Trga g′sR

(
gbg′seiπF

T4

R qL0 q̄L̄0

)
. (3.36)

Here the left moving CFT consists of 4 free bosons with c = 4 and the right movers consists

of 4 free bosons and 4 free Fermions which is in the Ramond sector. The FR is the fermion
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number of the right moving states. The explicit expressions for this trace using the orbifold

action in (3.1), (3.2) is given by

F (a, r, b, s; q) = k(a,r,b,s)η2(τ)q
−a2

16
1

θ2
1

(
aτ+b

4 , τ
) . (3.37)

The coefficients k(a,r,b,s) for the various values of (r, s) are given by the following matrices

k(a,0,b,0) = 16


0 1 4 1

1 1 1 1

4 1 4 1

1 1 1 1

 , k(a,0,b,1) = 16


0 1 4 1

0 0 0 0

0 1 0 1

0 0 0 0

 , (3.38)

k(a,1,b,0) = 16


0 0 0 0

1 0 1 0

4 1 0 0

1 0 1 0

 , k(a,1,b,1) = 16


0 0 0 0

0 1 0 1

0 0 4 0

0 1 0 1

 .

Note that rows and columns are labelled by a and b respectively. The coefficients for

(r, s) = (0, 0) are identical to the situation without the g′ orbifolding. The remaining

coefficients can be easily obtained by using the same arguments discussed in section while

evaluating the twisted elliptic genus of this orbifold. The Eisenstein series E4(q) in (3.35)

results from the partition function of the untouched E8 lattice which is not coupled to the

spin connection of K3. The partition function of the first E8 lattice with the shifts are

given by

Z
(0,1)
E8

=
1

2

{
θ6

3θ
[

0
1/2

]
θ
[

0
−1/2

]
+ θ6

2θ
[

1
1/2

]
θ
[

1
−1/2

]
+ θ6

4θ
[

0
3/2

]
θ
[

0
−1/2

]}
= Z

(0,3)
E8

,

Z
(1,0)
E8

=
1

2

(
θ6

3θ
[

1/2
0

]
θ
[
−1/2

0

]
+ θ6

2θ
[

3/2
0

]
θ
[
−1/2

0

]
+ θ6

4θ
[

1/2
1

]
θ
[
−1/2

1

])
= Z

(3,0)
E8

,

Z
(1,1)
E8

=
1

2

(
θ6

3θ
[

1/2
1/2

]
θ
[
−1/2
−1/2

]
+ θ6

2θ
[

3/2
1/2

]
θ
[

1/2
−1/2

]
+ θ6

4θ
[

1/2
3/2

]
θ
[
−1/2
1/2

])
= −Z(3,3)

E8
,

Z
(1,2)
E8

=
1

2

(
θ6

3θ
[

1/2
1

]
θ
[
−1/2
−1

]
+ θ6

2θ
[

3/2
1

]
θ
[

1/2
−1

]
+ θ6

4θ
[

1/2
2

]
θ
[
−1/2

0

])
= −Z(3,2)

E8
,

Z
(1,3)
E8

=
1

2

(
θ6

3θ
[

1/2
3/2

]
θ
[
−1/2
−3/2

]
+ θ6

2θ
[

3/2
3/2

]
θ
[

1/2
−3/2

]
+ θ6

4θ
[

1/2
5/2

]
θ
[
−1/2
−1/2

])
= −Z(3,1)

E8
,

Z
(2,1)
E8

=
1

2

(
θ6

3θ
[

1
1/2

]
θ
[
−1
−1/2

]
+ θ6

2θ
[

2
1/2

]
θ
[

0
−1/2

]
+ θ6

4θ
[

1
3/2

]
θ
[
−1
−1/2

])
= Z

(2,3)
E8

. (3.39)

– 17 –



J
H
E
P
0
1
(
2
0
1
7
)
0
3
7

Also in the Z2 subgroup sector we have

Z
(0,2)
E8

=
1

2

(
θ6

3θ [ 0
1 ] θ

[
0
−1

]
+ θ6

4θ [ 0
2 ] θ [ 0

0 ]
)

(3.40)

=
1

2

(
θ6

3θ
2
4 + θ6

4θ
2
3

)
,

Z
(2,0)
E8

=
1

2

(
θ6

3θ [ 1
0 ] θ

[−1
0

]
+ θ6

2θ [ 2
0 ] θ [ 0

0 ]
)

=
1

2

(
θ6

3θ
2
2 + θ6

2θ
2
3

)
,

Z
(2,2)
E8

=
1

2

(
θ6

4θ [ 1
2 ] θ [ 1

0 ] + θ6
2θ [ 2

1 ] θ
[

0
−1

])
=

1

2

(
−θ6

4θ
2
2 + θ6

2θ
2
4

)
.

The definition of the generalized Jacobi theta functions is given by

θ [ ab ] (τ, z) =
∑
k∈Z

qπi(k+a
2

)2
eπi(k+a

2
)be2πiz(k+a

2
). (3.41)

Note that θ1(τ, z) = θ [ 1
1 ] (τ, z) In the above equation when the argument of the θ-function

is not explicitly mentioned, it is understood that it is evaluated at z = 0 and at τ .

We can now sum over (a, b) in the equation (3.35). After using (3.36) and (3.39) we

obtain the expected results

Znew(q, q̄) = − 2

η24(τ)

1∑
r,s=0

Γ
(r,s)
2,2 E4

[
1

4
α

(r,s)
2A E6 − βr,s2Af

(r,s)
2A (τ)E4

]
, (3.42)

α
(0,0)
2A = 4, β

(0,0)
2A = 0,

α
(0,1)
2A =

4

3
, β

(0,1)
2A = −2

3
,

α
(1,0)
2A = α

(1,1)
2A =

4

3
, β

(1,0)
2A = β

(1,1)
2A =

1

3
,

f
(0,1)
2A (τ) = E2(τ), f

(1,0)
2A (τ) = E2

(τ
2

)
, f

(1,1)
2A (τ) = E2

(
τ + 1

2

)
.

We performed the sum over (a, b) in (3.35) for each of the (r, s) sectors using Mathematica

to arrive at the result (3.42).

From (2.14) we see that the new supersymmetric index of the orbifold of T 4/Z4 × T 2

by g′ agrees with that of the 2A orbifold of K3 × T 2. This result was expected since

we have seen in section 3.1.1, that the twisted elliptic genus of the orbifold in (3.1), (3.2)

agrees with the 2A class. Then the general arguments in section 2.1 show that for standard

embeddings the new supersymmetric index can be written in terms of the twisted elliptic

genus. However it is indeed nice to see this using explicit computations.

As a consistency check of our calculations we will evaluate the Nh − Nv from the

new supersymmetric index. From the general arguments of [4] the q1/6 coefficient of the
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following expression which is related to the new supersymmetric index evaluates Nh −Nv.

Nh −Nv =
1

4
η4

(
N−1∑
s=0

Z(0,s)
new

)∣∣∣∣∣
q1/6

, (3.43)

where Z(0,s)
new is the corresponding sector of the new supersymmetric index without the

lattice factor Γ
(0,s)
2,2 . We focus on these terms to extract out the massless states contributing

to the new supersymmetric index. The 1
4 factor is introduced to take into account the

normalizations of the new supersymmetric index used in this paper. Substituting the new

supersymmetric index for the standard embedding of the 2A orbifold of K3×T 2 evaluated

in (3.42) we obtain

(Nh −Nv)|2A = −12. (3.44)

Note that this agrees with the explicit computation of the spectrum in table 2.6

Now turning on Wilson line in the unbroken E8 and evaluating the thresholds proceeds

identically to that discussed in section 2.2. We thus obtain the result that the difference in

one loop gauge thresholds for this orbifold compactification is the theta lift of the twisted

elliptic genus of K3 belonging to the class 2A.

3.2 The 2B orbifold from K3 based on su(2)6

Recently in [14], the K3 sigma model has been studied in terms of a rational conformal field

theory based on the affine algebra su(2)6. In this model of K3 the action of g′,7 an element

of order 4, which belongs to the conjugacy class 2B of M24 was explicitly constructed and

the twisted elliptic genus was evaluated. In this section we will use this realization of K3 to

evaluate the new supersymmetric index of heterotic compactified on K3×T 2 orbifolded by

the order 4 element g′. We will show that indeed as demonstrated by the general analysis of

section 2.1, that new supersymmetric index can be written in terms of the twisted elliptic

genus of K3 twisted by g′. Furthermore as discussed in section 2.2, this implies that the

difference in one loop gauge thresholds is determined by the theta lift of the corresponding

twisted elliptic genus.

3.2.1 Twisted elliptic genus

Let us evaluate the twisted elliptic genus as defined by the trace in (2.10). From the

definition of the trace we need the characters of the su(2)6 model in the Ramond section.

These were listed in [14], here we present them in the table 4. su(2)k characters of the

highest weight representation [a] with a = 0, ...k are given by

chk,a
2
(τ, z) = Tr[a]kq

L0−c/24e2πizJ0 . (3.45)

6We have evaluated (Nh −Nv) from the new supersymmetric index for all the pA orbifolds of K3 × T 2

with p = 3, 5, 7, 11. We obtain −134,−256,−317,−376 respectively which indicates that the number of

hypers is reduced by this orbifolding. It is also an important check on the compactification that we obtain

integers in all these situations.
7In [14], g′ was referred to as g, see section 6.1.
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R− [10 00 00, 10 00 00] -[01 11 11, 01 00 00]

[01 00 00, 01 00 00] -[10 11 11, 10 00 00]

[00 10 00, 00 10 00] -[11 01 11, 00 10 00]

[00 01 00, 00 01 00] -[11 10 11, 00 01 00]

[00 00 10, 00 00 10] -[11 11 01, 00 00 10]

[00 00 01, 00 00 01] -[11 11 10, 00 00 01]

Table 4. su(2)6 characters in the Ramond sector with the sign (−1)FL+FR .

Thus 0 in table 4 represents the su(2) character at level 1

ch1,0 =
θ3(2τ, 2z)

η(τ)
, (3.46)

while 1 represent the spinorial su(2) character given by

ch1, 1
2

=
θ2(2τ, 2z)

η(τ)
. (3.47)

The comma in the list of table 4 separates the left moving su(2) characters and the right

moving ones. The SU(2)L×SU(2)R R-symmetry of K3 is carried by the first su(2) character

among the left and right moving characters respectively. As shown in [14], the elliptic genus

with the characters given in the table reduces to that of K3.

The g′ orbifold on K3 is implemented by the action

g′ = ρL

[(
1 0

0 1

)(
−1 0

0 −1

)(
i 0

0 −i

)(
−i 0

0 i

)(
−i 0

0 i

)(
−i 0

0 i

)]
. (3.48)

Where ρL refers to the fact that the action of g′ is restricted to the left moving characters.

The SU(2) rotation matrices of g′ on the su(2) characters is given by

Tr[0]

[(
−1 0

0 −1

)
qL0− 1

24 e2πiJ0

]
=
θ3(2τ, 2z)

η(τ)
, (3.49)

Tr[1]

[(
−1 0

0 −1

)
qL0− 1

24 e2πiJ0

]
= −θ2(2τ, 2z)

η(τ)
,

Tr[0]

[(
i 0

0 −i

)
qL0− 1

24 e2πiJ0

]
=
θ4(2τ, 2z)

η(τ)
,

Tr[1]

[(
i 0

0 −i

)
qL0− 1

24 e2πiJ0

]
= −θ1(2τ, 2z)

η(τ)
.
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The F (0,0) component of the elliptic genus is easy to evaluate and we see that it is

given by

F 0,0(τ, z) =
1

2η6(τ)

[
θ2(2τ, 2z)θ3(2τ)5 − θ3(2τ, 2z)θ2(2τ)5 (3.50)

+5θ3(2τ, 2z)θ2(2τ)θ3(2τ)4 − 5θ2(2τ, 2z)θ3(2τ)θ2(2τ)4
]

= 2A(τ, z).

On evaluating the trace, the right movers contribute a factor of 2 since the zero modes

form a SU(2) doublet. Note that the F (0,0), component differs from the elliptic genus of

K3 by a 1/4 factor. Using the action of g′ on the characters we evaluate the following

components of the twisted elliptic genus to be

F (0,1)(τ, z) =
1

2η6(τ)

[
θ2(2τ, 2z)θ3(2τ)θ4(2τ)4 − θ3(2τ, 2z)θ2(2τ)θ4(2τ)4

]
=

1

2
[E2(τ)− 2E4(τ)]B(τ, z),

F (0,2)(τ, z) =
1

2η6(τ)

[
θ2(2τ, 2z)θ3(2τ)5 − θ3(2τ, 2z)θ2(2τ)5

−3θ3(2τ, 2z)θ2(2τ)θ3(2τ)4 + 3θ2(2τ, 2z)θ3(2τ)θ2(2τ)4
]

= −2

3
[A(τ, z) + E2(τ)B(τ, z)] . (3.51)

All the remaining components of the twisted elliptic genus can be obtained from modular

transform given in (2.16). Note that the twisted elliptic genus falls into the form given

in (2.12) with the identifications

α
(0,0)
2B = 2, α

(0,1)
2B = 0, α

(0,2)
2B = −2

3
, (3.52)

β
(0,1)
2B =

1

2
, f

(0,1)
2B = E2(τ)− 2E4(τ),

β
(0,2)
2B = −2

3
, f

(0,2)
2B = E2(τ).

3.2.2 New supersymmetric index

From the discussion in section 3.2.1 in which K3 is realized as a rational su(2)6 rational

conformal field theory we see that the R symmetry of the model is carried by the first

character among both the left and right movers. The new supersymmetric index given

in (2.3) involves the trace in which the right movers are always in the Ramond sector with

a (−1)FR . The right moving characters listed in the table 4 are indeed in the R− sector.

The standard embedding identifies R symmetry of the left movers carried by the first

character of in the su(2)6 model with the fermions of the D2 lattice in the first E8. Now

from the expression of the new supersymmetric index in (2.6) we see one needs this first

character in the R+, NS+ and NS− sectors. These sectors couple to the corresponding

sectors of the D6 lattice realized in terms of fermions. Table 5 lists the characters the

R+, NS+ and NS− of the su(2)6 CFT. Comparing tables (5) and (4) we can see how the
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R+ -[10 00 00, 10 00 00] -[01 11 11, 01 00 00]

[01 00 00, 01 00 00] [10 11 11, 10 00 00]

[00 10 00, 00 10 00] [11 01 11, 00 10 00]

[00 01 00, 00 01 00] [11 10 11, 00 01 00]

[00 00 10, 00 00 10] [11 11 01, 00 00 10]

[00 00 01, 00 00 01] [11 11 10, 00 00 01]

NS− [00 00 00, 10 00 00] -[11 11 11, 01 00 00]

[11 00 00, 01 00 00] -[00 11 11, 10 00 00]

[10 10 00, 00 10 00] -[01 01 11, 00 10 00]

[10 01 00, 00 01 00] -[01 10 11, 00 01 00]

[10 00 10, 00 00 10] -[01 11 01, 00 00 10]

[10 00 01, 00 00 01] -[01 11 10, 00 00 01]

NS+ -[00 00 00, 10 00 00] -[11 11 11, 01 00 00]

[11 00 00, 01 00 00] [00 11 11, 10 00 00]

[10 10 00, 00 10 00] [01 01 11, 00 10 00]

[10 01 00, 00 01 00] [01 10 11, 00 01 00]

[10 00 10, 00 00 10] [01 11 01, 00 00 10]

[10 00 01, 00 00 01] [01 11 10, 00 00 01]

Table 5. ŝu(2)6 characters in sectors relevant of evaluating Znew.

spinor representations of the first character in the left moving sector has become a scalar

character when the Ramond sector flows to the Neveu-Schwarz sector.

Let us first evaluate the component Φ(0,0) in various sectors. Using the character

table 5 and the rules in (3.46) and (3.47) we obtain

Φ
(0,0)
R+ =

1

2η(τ)6

(
4θ5

3(2τ)θ2(2τ) + 4θ5
2(2τ)θ3(2τ)

)
, (3.53)

=
1

2

[
θ2

2

η6
(θ4

3 + θ4
4)

]
,

Φ
(0,0)
NS− =

1

2η(τ)6

[
5θ2

2(2τ)θ4
3(2τ)− 5θ2

3(2τ)θ4
2(2τ) + θ6

3(2τ)− θ6
2(2τ)

]
,

=
1

2

[
θ2

4

η6
(θ4

3 + θ4
2)

]
,

Φ
(0,0)
NS+ =

1

2η(τ)6

[
5θ2

2(2τ)θ4
3(2τ) + 5θ2

3(2τ)θ4
2(2τ)− θ6

3(2τ)− θ2(2τ)6
]
,

=
1

2

[
θ2

3

η6
(θ4

2 − θ4
4)

]
.

Here we have used Riemann’s bilinear identities to simplify the resulting expressions and

obtain the result in terms of theta functions with argument τ . We can now multiply these
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along with the characters of the D6 lattice in the corresponding sectors as given in (2.6)

and we obtain the following result for the (0, 0) sector of the new supersymmetric index

Znew|(0,0) = −2
1

η24(τ)
Γ

(0,0)
2,2 ×

2

4
E4E6 . (3.54)

Note that this is 1
4 of the result expected for compactifications of heterotic on K3 × T 2.

Lets move now to the (0, 1) sector which represents a single insertion of g′. For Φ
(0,1)
R+ using

the results in (3.49) for the characters with a single insertion of g′ we see that the only

characters which survive are −[100000, 100000] and [010000, 010000]. This results in

Φ
(0,1)
R+ =

1

2η6(τ)

(
−2θ2(2τ)θ3(2τ)θ4

4(2τ)
)

= − 1

2η6(τ)
θ2

2(τ)θ4
4(2τ). (3.55)

In the Φ
(0,1)
NS− sector the characters which are present are [000000, 100000] and

[110000, 010000] lead to

Φ
(0,1)
NS− =

1

2η6(τ)

(
θ2

3(2τ)− θ2
2(2τ)

)
θ4

4(2τ), (3.56)

=
1

2η6(τ)
θ2

4(τ)θ4
4(2τ).

Finally the characters which survive the g′ insertion in Φ
(0,1)
NS− are −[000000, 100000] and

[110000, 010000] giving rise to

Φ
(0,1)
NS+ = − 1

2η6(τ)

(
θ2

3(2τ) + θ2
2(2τ)

)
θ4

4(2τ), (3.57)

= − 1

2η6(τ)
θ2

3(τ)θ4
4(2τ).

Now combining this along with the corresponding D6 characters as in (2.6) we obtain

Znew|(0,1) = −2
1

η24(τ)
Γ

(0,1)
2,2 × E4

[
−1

2
(E2(τ)− 2E4(τ)) .

]
E4 (3.58)

Here there we have used identities which relate the θ functions to Eisenstein series which

are provided in the appendix. Using the action of g′2 which is given by

(g′)2 = ρL

[(
1 0

0 1

)(
1 0

0 1

)(
−1 0

0 −1

)(
−1 0

0 −1

)(
−1 0

0 −1

)(
−1 0

0 −1

)]
, (3.59)

and the character list in table 5 the contributions for the Φ(0,2) are evaluated. This results in

Φ
(0,2)
R+ = − 1

2η6(τ)
4
(
θ5

2(2τ)θ3(2τ) + θ5
3(2τ)θ2(2τ)

)
= − 1

2η6(τ)
θ2

2

(
θ4

3 + θ4
4

)
,

Φ
(0,2)
NS− =

1

2η6(τ)

(
θ6

3(2τ)− θ6
2(2τ)− 3θ2

2(2τ)θ4
3(2τ) + 3θ4

2(2τ)θ2
3(2τ)

)
,

Φ
(0,2)
NS+ =

1

2η6(τ)

(
−θ6

3(2τ)− θ6
2(2τ)− 3θ2

2(2τ)θ4
3(2τ)− 3θ4

2(2τ)θ2
3(2τ)

)
. (3.60)
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Again combining these with the corresponding D6 characters and after using identi-

ties (A.21) which relate the theta functions to Eisenstein series we obtain

Znew|(0,2) = −2
1

η24(τ)
Γ

(0,2)
2,2 × E4 ×

(
−1

6
E6 +

2

3
E2(τ)E4

)
. (3.61)

All the remaining terms in the new supersymmetric index can be obtained by performing

modular transformations.

On comparing the coefficients of the twisted elliptic genus of the 2B orbifold given

in (3.52) with new supersymmetric index given in (3.54), (3.58), (3.61) we see that it agrees

with the expression derived in (2.19) using general arguments for the standard embedding.

It is important to realize that this agreement was due to non-trivial identities relating

the theta functions to Eisenstein series together with the function E2 and E4. Using the

expression (3.43) we obtain Nh −Nv = −380 for this model.

Now that we have shown the new supersymmetric index admits a decomposition in

terms of the twisted elliptic genus for standard embeddings, the rest of the analysis in

section 2.2 can be applied. Therefore we conclude that the difference in one loop gauge

thresholds when the Wilson line is embedded in the unbroken E8 is the theta lift of twisted

elliptic genus.

4 Non-standard embeddings

In this section we study the non-standard embeddings of heterotic compactifications of

K3 × T 2 orbifolded by g′ belonging to the conjugacy class 2A. We first realize K3 as

the Z2 orbifold of T 4 and consider the 2 non-standard embedding studied in [2]. We

then move one to the situation in which K3 is realized as the Z4 orbifold of T 4 and g′ is

implemented as given in equations (3.1) and (3.2). We consider all the 12 non-standard

embeddings studied in [2]. In these orbifold limits, the various embeddings are implemented

by different lattice shifts in the E8×E8. From the spectrum of these embeddings we show

that the they can be organized into 4 types depending on the difference Nh − Nv which

take values −12, 52, 84, 116 for these types. The value −12 as we have seen corresponds

to the standard type. The new supersymmetric index for all the embeddings also depends

only on Nh −Nv. After turning on the Wilson line we show that the new supersymmetric

index as well as the difference in one loop gauge thresholds depends on Nh −Nv and the

instanton numbers of the embedding.

4.1 Massless spectrum

We can evaluate the massless spectrum of the non-standard embeddings by following the

same method as discussed in section 3.1.2. The spectrum for various non-standard embed-

dings of K3×T 2 without the g′ orbifold were obtained in [3]. Essentially the orbifold by g′

changes the degeneracy formula given in (3.23) by changing the number of fixed points of

the various twisted sectors as discussed around (3.26) for the orbifold in (3.1), (3.2). The

various embeddings are determined by the lattice shifts in E8 × E8. In table 6, we first
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Gauge group, Shift (γ; γ̃) Sector Matter

E7 × SU(2)× E8 g0 (56; 2) + 4(1;1)

(1,−1, 06; 08) g1 4(56;1)+16(1;2)

E7 × SU(2)× SO(16) g0 (56,2;1)+4(1,1;1)

+(1,1;128)

(12, 06; 2, 07) g1 4(1,2;16)

Table 6. spectrum for different embeddings with K3 as T 4/Z2. The first shift realizes Nh −Nv =

−12, while the second shift realizes Nh −Nv = 116.

Gauge group, Shift (γ; γ̃) Sector Matter

E7 ×U(1)× E8 g0 (56; 1) + 2(1; 1)

g1 + g3 2(56; 1) + 4(1; 1) + 12(1; 1)

(1, 1, 06; 08) g2 3(56; 1) + 16(1; 1)

E7 ×U(1)× E7 × SU(2) g0 (56; 1,1) + 2(1; 1,1)

g1 + g3 6(1; 1,2) + 2(1; 1,2) + 2(1; 56,1)

(1, 1, 06; 2, 2, 06) g2 1(56; 1,1) + 16(1; 1,1)

SO(12)× SU(2)×U(1)× E8 g0 (12,2; 1) + (32,1; 1) + 2(1,1; 1)

g1 + g3 6(1,2; 1) + 4(12,1; 1)

(3, 1, 06; 08) 2(1,2; 1) + 2(32,1; 1)

g2 16(1,1; 1) + 3(12,2; 1) + (32,1; 1)

Table 7. Spectrum of 2A orbifold of K3× T 2 for different embeddings belonging to type 0 for K3

as T 4/Z4 with Nh −Nv = −12.

tabulate the spectrum for embeddings when K3 is realized as the T 4/Z2 orbifold and g′ as

half shift given by following orbifold actions

g : (x1, x2, y1, y2, y3, y4) ∼ (x1, x2,−y1,−y2,−y3,−y4), (4.1)

g′ : (x1, x2, y1, y2, y3) ∼ (x1 + π, x2, y1 + π, y2, y3, y4).

The spectrum for the 12 non-standard embeddings when for K3 is at the T 4/Z4 orbifold

limit with g′ as shifts given in (3.2) are listed in tables 7, 8 9 and 10. In these tables

the shifts are denoted by (γ; γ̃) where γ, γ̃ are 8 dimensional vectors in E8 × E8. We

observe from these tables that the the orbifold by g′ results in only 4 distinct values of

Nh −Nv given by −12, 52, 84, 116, the value −12 corresponds to the standard embedding.

We classify these embeddings as type 0, type 1, type 2 and type 3 respectively.

Finally in table 11 and 12 we group the shifts according to the type based on the value

of Nh −Nv.
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Gauge group, Shift (γ; γ̃) Sector Matter

E7 ×U(1)× SO(16) g0 (56; 1) + 2(1; 1)

g1 + g3 8(1; 16)

(1, 1, 06; 4, 07) g2 3(56; 1) + 16(1; 1)

SO(12)× SU(2)×U(1)× E7 × SU(2) g0 (12,2; 1,1) + (32,1; 1,1) + 2(1,1; 1,1)

g1 + g3 4(1,2; 1,2) + 2(12,1; 1,2)

(3, 1, 06; 2, 2, 06) g2 16(1,1; 1,1) + (12,2; 1,1) + 3(32,1; 1,1)

SO(12)× SU(2)×U(1)× SO(16) g0 (12,2; 1) + (32,1; 1) + 2(1,1; 1)

g1 + g3 2(1,2; 16)

(3, 1, 06; 4, 07) g2 16(1,1; 1) + 3(12,2; 10 + (32,1; 1)

Table 8. Spectrum of 2A orbifold of K3× T 2 for different embeddings in type 1 for K3 as T 4/Z4

with Nh −Nv = 52.

Gauge group, Shift (γ; γ̃) Sector Matter

E7 ×U(1)× SU(8)×U(1) g0 (56; 1) + (1; 8) + (1; 56) + 2(1; 1)

g1 + g3 6(1; 1) + 2(1; 1) + 2(1; 2̄8)

(1, 1, 06; 17,−1) +4(1,8)

g2 6(1; 8) + 2(1; 8)

g0 (27,2; 1) + (1,2; 1) + (1,1; 64)

E6 × SU(2)×U(1)× SO(14)×U(1) +2(1,1; 1)

g1 + g3 6(1,1; 1) + 4(1,2; 1)

(2, 1, 1, 05; 2, 07) +2(27,1; 1) + 2(1,1; 14)

g2 (1,2; 14) + 6(1,2; 1)

Table 9. Spectrum of 2A orbifold of K3× T 2 for different embeddings in type 2 for K3 as T 4/Z4

with Nh −Nv = 84.

4.2 New supersymmetric index

In this section we evaluate the new supersymmetric index for all the embeddings discussed

in section 4.1. We will show that for the when the Wilson line is not turned on, the index

Znew for the 2A orbifold of K3 × T 2 depends only on the 4 types of the lattice shifts

organized in tables 11 and 12. Znew is invariant for any lattice shift belonging to a given

type. When the Wilson line is turned on, then the index depends both on the type as well

as the instanton number corresponding to the lattice shift.
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Gauge group, Shift (γ; γ̃) Sector Matter

g0 (27,2; 1,1) + (1,2; 1,1) + (1,1; 16,4)

E6 × SU(2)×U(1); SO(10)× SO(6) +2(1,1; 1,1)

g1 + g3 4(1,1; 1,4) + 2(1,2; 1,4)

(2, 1, 1, 05; 23, 05) +2(1,1; 1̄6,1)

g2 3(1,2; 10,1) + (1,2; 1,6)

SU(8)× SU(2)× SO(10)× SO(6) g0 (28,2; 1,1) + (1,1; 16,4) + 2(1,1; 1,1)

g1 + g3 2(8,1; 1,4)

(3, 15, 02; 23, 05) g2 16(1,1; 1) + 3(12,2; 1,6) + (1,2; 10,1)

SU(8)× SU(2)× SO(14)×U(1) g0 (28,2; 1) + (1,1; 64) + 2(1,1; 1)

g1 + g3 4(8̄,1; 1) + 2(8,2; 1)

(3, 15, 02; 2, 07) g2 3(1,2; 14) + 2(1,2; 1)

SU(8)×U(1)× SO(12)× SU(2)×U(1) g0 (8; 1,1) + (56; 1,1) + (1; 12,1)

(1; 32,1) + 2(1; 1,1)

(17,−1; 3, 1, 0) g1 + g3 4(1; 1,2) + 2(1; 12,1) + 2(8; 1,2)

g2 6(8; 1,1) + 2(8; 1,1)

Table 10. Spectrum of 2A orbifold of K3×T 2 for different embeddings in type 3 for K3 as T 4/Z4

with Nh −Nv = 116.

γ γ̃ Type Nh −Nv

(1,1,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) Type 0 -12

(1,-1,0,0,0,0,0,0) (2,0,0,0,0,0,0,0) Type 3 116

Table 11. Lattice shifts in the 2A orbifold with K3 = T 4/Z2 and Nh −Nv.

Let us first discuss the case without the Wilson line. Evaluating the trace defined

in (2.3) we see that it reduces to

Znew(q, q̄) = − 1

2η20(τ)

ν−1∑
a,b=0

1∑
r,s=0

e−
2πiab
ν2 Z

(a,b)
E8

(τ)× Z(a,b)
E′8

(τ)× 1

2ν
F (a, r, b, s; q)Γ

(r,s)
2,2 (q, q̄),

(4.2)

where ν = 2, 4 depending on the whether K3 is realized as a T 4/Z2 or T 4/Z4 orbifold. The

partition function over the shifted E8 lattices are defined by

Za,bE8
(q) =

1

2

1∑
α,β=0

e−iπβ
a
ν

∑8
I=1 γ

I
8∏
I=1

θ

[
α+2 a

ν
γI

β+2 b
ν
γI

]
, (4.3)

Za,b
E′8

(q) =
1

2

1∑
α,β=0

e−iπβ
a
ν

∑8
I=1 γ̃

I
8∏
I=1

θ

[
α+2 a

ν
γ̃I

β+2 b
ν
γ̃I

]
, (4.4)
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where γ, γ̃ are the shifts in the two E8 lattices. The trace over the T 4 directions is as

defined in (3.36). However the g, g′ correspond to the actions in (4.1) for the Z2 orbifold

limit of K3 and to actions (3.1) and (3.2) for the Z4 orbifold limit of K3. This trace is

given by

F (a, r, b, s; q) = k
(a,r,b,s)
(ν) η2(τ)q

−a2

ν2
1

θ2
1(aτ+b

ν , τ)
, (4.5)

where the k’s are read out from the following matrices.

k
(a,0,b,0)
(2) = 64

(
0 1

1 e−πi(2−Γ2)/4

)
, k

(a,0,b,1)
(2) = 64

(
0 1

0 0

)
, (4.6)

k
(a,1,b,0)
(2) = 64

(
0 0

1 0

)
, k

(a,1,b,1)
(2) = 64

(
0 0

0 e−πi(2−Γ2)/4

)
,

k
(a,0,b,0)
(4) = 16


0 1 4 1

1 e−πi
1
16

(2−Γ2) e−πi
1
8

(2−Γ2) e−πi
3
16

(2−Γ2)

4 eπi
3
8

(2−Γ2) 4e−πi
1
4

(2−Γ2) eπi
1
8

(2−Γ2)

1 eπi
9
16

(2−Γ2) eπi
1
8

(2−Γ2) e−πi
9
16

(2−Γ2)

 ,

k
(a,0,b,1)
(4) = 16


0 1 4 1

0 0 0 0

0 eπi
3
8

(2−Γ2) 0 eπi
3
8

(2−Γ2)

0 0 0 0

 ,

k
(a,1,b,0)
(4) = 16


0 0 0 0

1 0 e−πi
1
8

(2−Γ2) 0

4 0 0 0

1 0 eπi
1
8

(2−Γ2) 0

 ,

k
(a,1,b,1)
(4) = 16


0 0 0 0

0 e−πi
1
16

(2−Γ2) 0 e−πi
3
16

(2−Γ2)

0 0 4e−πi
1
4

(2−Γ2) 0

0 eπi
9
16

(2−Γ2) 0 e−πi
9
16

(2−Γ2)

 ,

where Γ2 = γ2 + γ̃2. Using all this inputs we evaluate the new supersymmetric index for

the list of lattice shifts given in tables 11 and 12. This results in following general result

Znew = − 1

η24

{
2Γ

(0,0)
2,2 E4E6 (4.7)

+Γ
(0,1)
2,2

[
(E6 + 2E2(τ)E4)

(
b̂E2

2 (τ) +

(
2

3
− b̂
)
E4

)]
+Γ

(1,0)
2,2

[(
E6 − E2

(τ
2

)
E4

)( b̂
4
E2

2

(τ
2

)
+

(
2

3
− b̂
)
E4

)]

+Γ
(1,1)
2,2

[(
E6 − E2

(
τ + 1

2

)
E4

)(
b̂

4
E2

2

(
τ + 1

2

)
+

(
2

3
− b̂
)
E4

)]}
.
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γ γ̃ Type Nh −Nv

(1,-1,0,0,0,0,0,0) (0,0,0,0,0,0,0,0)

(1,1,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) Type 0 -12

(1,1,0,0,0,0,0,0) (2,2,0,0,0,0,0,0)

(3,1,0,0,0,0,0,0) (0,0,0,0,0,0,0,0)

(1,1,0,0,0,0,0,0) (4,0,0,0,0,0,0,0)

(3,1,0,0,0,0,0,0) (4,0,0,0,0,0,0,0) Type 1 52

(3,1,0,0,0,0,0,0) (2,2,0,0,0,0,0,0)

(2,1,1,0,0,0,0,0) (2,0,0,0,0,0,0,0)

(1,1,0,0,0,0,0,0) (1,1,1,1,1,1,1,-1) Type 2 84

(2,1,1,0,0,0,0,0) (2,2,2,0,0,0,0,0)

(3,1,1,1,1,1,0,0) (2,0,0,0,0,0,0,0) Type 3 116

(3,1,1,1,1,1,0,0) (2,2,2,0,0,0,0,0)

(1,1,1,1,1,1,-1) (3,1,0,0,0,0,0,0)

Table 12. Lattice shifts in the 2A orbifold with K3 = T 4/Z4 and Nh −Nv.

Type Type 0 Type 1 Type 2 Type 3

b̂ 0 4
9

2
3

8
9

Table 13. Value of b̂ for each type of lattice shift.

The value of b̂ for each of type of embeddings is given in table 13. Thus the values b̂

takes are discrete and just depends on the type of embedding or lattice shift. In fact since

Nh −Nv remains constant in each type of embedding we can relate it to b̂. This relation

can be found by using the equation in (3.43) and is given by

Nh −Nv = 144b̂− 12. (4.8)

Note that standard embedding belongs the case b̂ = 0, also note that the only non-standard

embedding of the 2A orbifold when K3 is realized as T 4/Z2 as seen in table 11 belongs to

type 3. One important point to emphasize is that the new supersymmetric index in (4.7)

still can be decomposed in terms of the twisted elliptic genus of K3. Comparing (2.19)

for the 2A orbifold with (4.7) the only difference is that the lattice sum E4 has been

replaced by
(
b̂E2

2 (τ) + (2
3 − b̂)E4

)
for the (0, 1) sector. The lattice sum

(
E6 − E2( τ2 )E4

)
associated by the 2A orbifold remains the same. Similar statements can be made for all

the other sectors.

Let us now turn on the Wilson line in the E′8 lattice and evaluate the new supersym-

metric index. To do this we follow the procedure in [2]. First the partition function in the
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E′8 lattice is evaluated with a chemical potential along one of U(1) directions. The lattice

sum then becomes

Za,b
E′8

(τ, z) =
1

2

1∑
α,β=0

e−iπβ
a
4

∑8
I=1 γ̃

I
6∏
I=1

θ

[
α+2a

4
γ̃I

β+2 b
4
γ̃I

]
(τ)

8∏
I=7

θ

[
α+2a

4
γ̃I

β+2 b
4
γ̃I

]
(τ, z). (4.9)

This modified lattice sum Za,b
E′8

(τ, z) is then coupled to the Γ3,2 lattice using the ⊗ product

defined in the appendix. It was shown in [2] that for all orbifold realizations of K3, the

new supersymmetric index just depends on instanton numbers of the embedding or the

lattice shifts. The result is given by the expression

Znew = − 1

6η24
Γ3,2(q, q̄)⊗ [n1E4,1E6 + n2E6,1E4] , (4.10)

where n1, n2 are the instanton numbers of the embedding and n1 + n2 = 24. For the

standard embedding n1 = 24, n2 = 0. Thus the new supersymmetric index with the

Wilson line is sensitive to the the instanton numbers.

For compactifications on (K3×T 2)/g′ with K3 realized either by T 4/Z2 or the T 4/Z4

and g′ in the 2A conjugacy class, the new supersymmetric index with the Wilson line

depends on b̂ which is related to Nh−Nv of the model by (4.8) and also the instanton number

of the embedding. The result for the index for all the embeddings can be summarized in

the following compact expression

Znew =− 1

η24

{
Γ

(0,0)
3,2 ⊗

1

12
[n1E4,1E6 + n2E6,1E4] (4.11)

+Γ
(0,1)
3,2 ⊗

[
âE4,1(E6+2E2(τ)E4)+b̂E2(τ)2(E6,1+2E2(τ)E4,1)+ĉE4(E6,1+2E2(τ)E4,1)

]
+Γ

(1,0)
3,2 ⊗ [ · ] + Γ

(1,1)
3,2 ⊗ [ · ]

}
.

Here the parameters â, ĉ depend on the instanton numbers n1, n2 of the embedding and

the value of b̂ by

â =
n1

36
− b̂

2
, ĉ =

2

3
− â− b̂ . (4.12)

The [ · ] denotes the corresponding term obtained by modular transformation of the

(0, 1) sector. For example in the (1, 0) sector, we replace the terms with E2(τ) of the (0, 1)

sector to −1
2E2( τ2 ). Similarly in the (1, 1) we have −1

2E2( τ+1
2 ). We summarize the values

of â, b̂, n1 for each of the shifts considered in the tables 14 and 15. Using these tables and

equation (4.11), the result for the new supersymmetric index with the Wilson line for these

orbifolds can be read out.

4.3 Difference of one loop gauge thresholds

We now evaluate the difference in one loop gauge thresholds for all models whose new

supersymmetric index is given by (4.11). The one loop threshold for the group G is given

by (2.22). We take the G to be the group the Wilson line is embedded in. Then using (4.11)
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Type γ γ̃ (n1, n2) â b̂ ĉ

Type 0 (1,-1,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) (24,0) 2/3 0 0

Type 3 (1,-1,0,0,0,0,0,0) (2,0,0,0,0,0,0,0) (8,16) -2/9 8/9 0

Table 14. Lattice shifts for ((T 4/Z2)× T 2)/g′ and their â, b̂, ĉ values.

Type γ γ̃ (n1, n2) â b̂ ĉ

Type 0 (1,-1,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) (24,0) 2/3 0 0

(1,1,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) (24,0) 2/3 0 0

(3,1,0,0,0,0,0,0) (0,0,0,0,0,0,0,0) (24,0) 2/3 0 0

(1,1,0,0,0,0,0,0) (2,2,0,0,0,0,0,0) (12,12) 1/3 0 1/3

Type 1 (1,1,0,0,0,0,0,0) (4,0,0,0,0,0,0,0) (16,8) 2/9 4/9 0

(3,1,0,0,0,0,0,0) (4,0,0,0,0,0,0,0) (16,8) 2/9 4/9 0

(3,1,0,0,0,0,0,0) (2,2,0,0,0,0,0,0) (20,4) 1/3 4/9 -1/9

Type 2 (2,1,1,0,0,0,0,0) (2,0,0,0,0,0,0,0) (12,12) 0 2/3 0

(1,1,0,0,0,0,0,0) (1,1,1,1,1,1,1,-1) (6,18) -1/6 2/3 1/6

Type 3 (2,1,1,0,0,0,0,0) (2,2,2,0,0,0,0,0) (12,12) -2/9 8/9 0

(3,1,0,0,0,0,0,0) (1,1,1,1,1,1,1,-1) (14,10) -1/18 8/9 -1/6

(3,1,1,1,1,1,0,0) (2,0,0,0,0,0,0,0) (12,12) -1/9 8/9 -1/9

(3,1,1,1,1,1,0,0) (2,2,2,0,0,0,0,0) (12,12) -1/9 8/9 -1/9

Table 15. Lattice shifts for ((T 4/Z4)× T 2)/g′ and their â, b̂, ĉ values.

we obtain

BG = − 1

η24

{
Γ

(0,0)
3,2 ⊗

1

288

[
n1

(
Ẽ2E4,1 − E6,1

)
E6 + n2

(
Ẽ2E6,1 − E4,1E4

)
E6

]
+Γ

(0,1)
3,2 ⊗

[
â

24

(
E4,1Ẽ2 − E6,1

)
(E6 + 2E2(τ)E4)

+
ĉ

24
E4

(
E6,1Ẽ2 − E4,1E4 + 2E2(τ)

(
E4,1Ẽ2 − E6,1

))
+

b̂

120

(
E4 + 4E4(2τ)

)(
E6,1Ẽ2 − E4,1E4 + 2E2(τ)E4,1Ẽ2 − 2E2(τ)E6,1

)]
+Γ

(1,0)
3,2 ⊗ [ · ] + Γ

(1,1)
3,2 ⊗ [ · ]

}
. (4.13)

where the terms in the [ · ] can be obtained by modular transformation from the corre-

sponding term in the (0, 1) sector. Note that we have used the identity

E2
2 (τ) =

1

5
(4E4(2τ) + E4) , (4.14)
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in the terms proportional to b̂. Similarly the terms for the gauge group G′ we obtain

BG′ = − 1

η24

{
Γ

(0,0)
3,2 ⊗

1

288

[
n1E4,1

(
Ẽ2E6 − E2

4

)
+ n2

(
Ẽ2E4 − E6

)]
(4.15)

+Γ
(0,1)
3,2 ⊗

[
â

24
E4,1

(
E6Ẽ2 − E2

4 + 2E2(τ)(E4Ẽ2 − E6)
)

+
ĉ

24

(
E4Ẽ2 − E6

)
(E6,1 + 2E2(τ)E4,1)

+
b̂

120

(
Ẽ2E4 − E6 + 8

(
Ẽ2(2τ)E4(2τ)− E6(2τ)

)(
E6,1 + 2E2(τ)E4,1

))]
+Γ

(1,0)
3,2 ⊗ [ · ] + Γ

(1,1)
3,2 ⊗ [ · ]

}
.

We now evaluate the difference in the threshold integrals. To simplify the expressions we

use the following identities

E2(τ) = 2Ẽ2(2τ)− Ẽ2, E6(2τ) =
E2(τ)

8
(11E2

2 (τ)− 3E4), (4.16)

together with (4.14) and

E2(τ)3 =
3

4
E4E2(τ) +

1

4
E6 . (4.17)

This results in the following expression for the threshold integral

∆G(T, U, V )−∆G′(T, U, V ) =

∫
F

d2τ

τ2
{BG − BG′} (4.18)

=

∫
F

d2τ

τ2

{
Γ(0,0) ⊗ 2(n2 − n1)A(z)

−Γ0,1 ⊗

[
24A(z)

(
n1−12

18

)
− 12B(z)E2(τ)

(
2

3
− b̂

2

)]

−Γ(1,0) ⊗

[
24A(z)

(
n1−12

18

)
+ 6B(z)E2

(τ
2

)(2

3
− b̂

2

)]

−Γ(1,1) ⊗

[
24A(z)

(
n1−12

18

)
+ 6B(z)E2

(
τ+1

2

)(
2

3
− b̂

2

)]}
,

where we have used the relations (2.26). Note that the integrands for all the embeddings

in table (14) and (15) just depend on the instanton number and the b̂ which is related to

the difference Nh − Nv. One simple check of our result is that on setting b = 0, n1 = 24,

the equation in (4.18) reduces to the standard embedding result for the 2A orbifold of K3.

The threshold integral in (4.18) over the fundamental domain can be performed using

the methods developed in [22]. The details are provided in the appendix B. Here we quote
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the final result.

∆G(T, U, V )−∆G′(T, U, V ) = 48

((
1

2
− 3b̂

8

)
log(det(Im(Ω))6 |Φ6(U,T,V)|2) (4.19)

+

(
n1

72
− 1

3
+
b̂

8

)
log(det

(
Im(Ω))10 |Φ10(U,T,V)|2

)
+

(
n1

72
− 1

3
+
b̂

8

)
log(det

(
Im(Ω))10 |Φ10(2U,T/2,V)|2

))

Here Φ10 is the unique cusp form of weight 10 under Sp(2,Z), while Φ6 is the Siegel modular

form of weight 6 which is obtained from the theta lift of the elliptic genus of K3 twisted

by the 2A orbifold action. Φ6 was first constructed as a theta lift in [18]. As expected for

the standard embedding b̂ = 0, n1 = 24 the threshold integral reduces to only Φ6.

5 Conclusions

We have explored N = 2 compactifications of heterotic string theory on orbifolds of K3×T 2

by g′ which acts as a ZN automorphism on K3 together with a 1/N shift on one of the circles

of T 2. g′ can correspond to any of the 26 conjugacy classes of the Mathieu group M24. We

showed that for the standard embedding of the spin connection in one of the E8 the new

supersymmetric index can be written in terms of the elliptic genus of K3 twisted by g′.

The difference in gauge thresholds are shown to be theta lifts of the twisted elliptic genus

of these compactifications. This generalizes the observation in [12] as well as [23, 24] who

observed similar behaviour for non-supersymmetric compactifications.8 We demonstrated

this by explicitly studying 2 examples. The first one considered the 2A orbifold of K3 when

K3 is realized as T 4/Z4. The result is same as that obtained in [12] where the 2A orbifold

of K3 is obtained by taking K3 to be T 4/Z2. We also studied the recently constructed [14]

2B orbifold of K3 when K3 is realized as su(2)6 rational conformal field theory. Finally

we considered non-standard embeddings for the 2A orbifold of K3 and showed that the

new supersymmetric index depends only on the difference Nh −Nv of the model and the

gauge threshold correction depends on the instanton number of the embedding as well as

Nh −Nv. The detailed spectrum of these compactifications has also be obtained.

There are a number of directions which are worth exploring. One is to generalize

the study of non-standard embedding to all the orbifold limits of K3, here we considered

only the limits T 4/Z2 and T 4/Z4. Another direction is to study the type II duals of these

theories. Not only this will teach us more about S-duality, but it will also involve the study

of new Calabi-Yau manifolds. However perhaps the most interesting extrapolation of the

observations of this paper is the fact that it is also possible to consider compactifications

of string theory of type II on (K3×T 2)/g′ where g′ corresponds to any of the 26 conjugacy

classes of M24. These compactifications preserve N = 4 supersymmetry. The theta lifts of

the twisted elliptic genus for all these cases should capture degeneracies of 1/4 BPS dyons.

8In the case of non-supersymmetric compactifications, the difference in the gauge threshold integrand

was the lattice sum Γ2,2 folded with a holomorphic function which resembled an index.
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The case of g′ in the conjugacy class pA, p = 1, 2, 3, 5, 7 was studied in [18, 25–31]. It will

be certainly interesting to generalize the results regarding dyon partition functions to all

the conjugacy classes of M24. This will possibly will teach us about black hole degeneracies

in N = 4 string theory and its relation to the symmetry M24.
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A Notations, conventions and identities

In this appendix we summarize the notations and conventions and properties of the modular

functions used in this paper. We define the generalized form of Jacobi theta functions as

θ [ ab ] (q, z) =
∑
k∈Z

q
1
2

(k+a
2

)2
eπi(k+a

2
)be(2πiz)(k+a

2
). (A.1)

If the variable z is not stated in the argument then it is understood to be the theta

function is at z = 0. We use q = e2πiτ and τ interchangeably in the arguments of the

modular functions. We also define

θ1(τ, z) = θ [ 1
1 ] (τ, z) θ2(τ, z) = θ [ 1

0 ] (τ, z), (A.2)

θ3(τ, z) = θ [ 0
0 ] (τ, z) θ4(τ, z) = θ [ 0

1 ] (τ, z).

In various manipulations the following Riemann bi-linear identities are useful

θ2
1(τ, z) = θ2(2τ)θ3(2τ, 2z)− θ3(2τ)θ2(2τ, 2z), (A.3)

θ2
2(τ, z) = θ2(2τ)θ3(2τ, 2z) + θ3(2τ)θ2(2τ, 2z),

θ2
3(τ, z) = θ3(2τ)θ3(2τ, 2z) + θ2(2τ)θ2(2τ, 2z),

θ2
4(τ, z) = θ3(2τ)θ3(2τ, 2z)− θ2(2τ)θ2(2τ, 2z).

At z = 0, these identities reduce to

θ2
2 = 2θ2(2τ)θ3(2τ), θ2

3 = θ2
2(2τ) + θ2

3(2τ), θ2
4 = −θ2

2(2τ) + θ2
3(2τ),

2θ2
2(2τ) = θ2

3 − θ2
4, 2θ2

3(2τ) = θ2
3 + θ2

4. (A.4)

The series representation of the Eisenstein series E2, E4 and E6 are given by

E2(q) = 1− 24
∞∑
n=1

nqn

1− qn
, (A.5)

E4(q) = 1 + 240
∞∑
n=1

n3qn

1− qn
,

E6(q) = 1− 504
∞∑
n=1

n5qn

1− qn
.
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The functions E4 and E6 can be written in terms of theta functions using the following

expressions

E4 =
1

2

(
θ8

3 + θ8
4 + θ8

2

)
, (A.6)

E6 =
1

2

(
−θ6

2

(
θ4

3 + θ4
4

)
θ2

2 + θ6
3

(
θ4

4 − θ4
2

)
θ2

3 + θ6
4

(
θ4

3 + θ4
2

)
θ2

4

)
.

Eisenstein series with the U(1) chemical potential are defined by

E4,1(z) =
1

2

(
θ6

3θ
2
3(z) + θ6

4θ
2
4(z) + θ6

2θ
2
2(z)

)
, (A.7)

E6,1(z) =
1

2

(
−θ6

2

(
θ4

3 + θ4
4

)
θ2

2 (z) + θ6
3

(
θ4

4 − θ4
2

)
θ2

3(z) + θ6
4

(
θ4

3 + θ4
2

)
θ2

4(z)
)
.

The decomposition of these series in terms of even and odd parts are defined by

E4,1 = Eeven
4,1 θeven + Eodd

4,1 (z)θodd(z), (A.8)

E6,1 = Eeven
6,1 θeven + Eodd

6,1 (z)θodd(z).

where

θeven(z) = θ3(2τ, 2z) θodd(z) = θ2(2τ, 2z). (A.9)

Any Jacobi form of index 1, fs,1(τ, z) such as E4,1, E6,1) can be decomposed as:

fs,1(τ, z) = f even
s,1 (τ)θeven(τ, z) + fodd

s,1 (τ)θodd(τ, z). (A.10)

Then the definition of Γ
(r,s)
3,2 ⊗ fs,1 is iven by

Γr,s3,2 ⊗ fs,1 = Γr,s3,2(even)f even
s,1 + Γr,s3,2(odd)fodd

s,1 , (A.11)

where

Γ
(r,s)
3,2 (even) =

∑
m1,m2,n2∈Z,
n1=Z+ r

N
,b∈2Z

q
p2L
2 q̄

p2R
2 e2πim1s/N (A.12)

Γ
(r,s)
3,2 (odd) =

∑
m1,m2,n2,∈Z,

n1=Z+ r
N
,b∈2Z+1

q
p2L
2 q̄

p2R
2 e2πim1s/N .

where pL, pR are given in (2.21) and N is the order of the g′ action.

We now list the set of identities relating E2 and Eisenstein series as well as theta

function which have been used to obtain the results in this paper. First we have the

identity

E2(τ)2 =
1

4

(
2θ8

3 + 2θ8
4 − θ8

2

)
, (A.13)
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and we define E2
2 in the presence of the U(1) chemical potential using the relation

E2,1(τ, z)2 =
1

4

(
2θ6

3θ3(z)2 + 2θ6
4θ4(z)2 − θ6

2θ2(z)2
)
. (A.14)

We have then the identity

E2,1(τ, z)2(E6 + 2E2(τ)E4) = E2(τ)2(E6,1 + 2E2(τ)E4,1). (A.15)

These are the following identities between E2 and Eisenstein series at 2τ .

E6(2τ) =
1

8
E2(τ)

(
11E2

2 (τ)− 3E4

)
, (A.16)

E4(2τ) =
1

4

(
5E2

2 (τ)− E4

)
.

We note that E3
2 can be rewritten in terms of Eisenstein series and a single power of E2

using the relation

E3
2 (τ) =

1

4
(E6 + 3E4E2(τ)). (A.17)

Their modular transformed versions can be simplified as:

E6(τ/2) = E2(τ/2)(−11E2
2 (τ/2) + 12E4), (A.18)

E4(τ/2) = (5E2
2 (τ/2)− 4E4),

E3
2 (τ/2) = (−2E6 + 3E4E2(τ/2)).

Finally we also quote the identities obtained in in [12] relating E2 and theta functions.

−
(
θ8

3θ
4
4 + θ8

4θ
4
3

)
= −2

3
(E6 + 2E2(τ)E4) , (A.19)

θ8
3θ

4
2 + θ8

2θ
4
3 = −2

3

(
E6 − E2

(τ
2

)
E4

)
,

θ8
2θ

4
4 − θ8

2θ
4
4 = −2

3

(
E6 − E2

(
τ + 1

2

)
E4

)
.

For simplifications in the section 3.2 dealing with the 2B orbifold we need to relate

theta functions and E4. This is given by

θ4
4(2τ) = −(E2 − 2E4). (A.20)

Finally we have the interesting identity relating the (0, 2) sector of the new supersymmetric

index for the 2B model given in (3.60) to Eisenstein series

Φ
(0,2)
R+ θ6

2 + Φ
(0,2)
NS+θ

6
3 − Φ

(0,2)
NS−θ

6
4 =

1

3
E6 −

4

3
E2(τ)E4 . (A.21)
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B Threshold integrals

In this appendix we detail the steps in performing the integral in (4.18). First we write the

integrand in a from so that we can identity integrals which has already been performed.

Adding and subtracting terms in the integrand we obtain

∆G(T, U, V )−∆G′(T, U, V ) =

∫
F

d2τ

τ2
{BG − BG′}, (B.1)

=

∫
F

d2τ

τ2

{
Γ(0,0) ⊗ 2(n2 − n1)A(z)

−Γ0,1 ⊗

[
24A(z)(

n1 − 12

18
)− 12B(z)E2(τ)

(
2

3
− b̂

2

)]

−Γ(1,0) ⊗

[
24A(z)

(
n1−12

18

)
+6B(z)E2

(τ
2

)(2

3
− b̂

2

)]

−Γ(1,1) ⊗

[
24A(z)

(
n1−12

18

)
+6B(z)E2

(
τ+1

2

)(
2

3
− b̂

2

)]}
,

= −24

((
1

2
− 3b̂

8

)
I1 +

(
n1

72
− 1

3
+
b̂

8

)
(I2 + I3)

)
, (B.2)

where

I1 =

∫
F

d2τ

τ2

{
Γ

(0,0)
3,2 ⊗ 4A(z) + Γ

(0,1)
3,2 ⊗

(
4

3
A− 2

3
BE2(τ)

)
+ Γ

(1,0)
3,2 ⊗

(
4

3
A+

1

3
BE2

(τ
2

))
+Γ

(1,1)
3,2 ⊗

(
4

3
A+

1

3
BE2

(
τ + 1

2

))}
,

I2 =

∫
F

d2τ

τ2
Γ

(0,0)
3,2 ⊗ 8A,

I3 =

∫
d2τ

τ2
[Γ(0,0) + Γ(0,1) + Γ(1,0) + Γ(1,1)]⊗ 4A. (B.3)

Using the results of the integrals in (B.5) and (B.17) in (B.1) we obtain

∆G(T, U, V )−∆G′(T, U, V ) = 48

((
1

2
− 3b̂

8

)
log(det(Im(Ω))6 |Φ6(U,T,V)|2) (B.4)

+

(
n1

72
− 1

3
+
b̂

8

)
log(det

(
Im(Ω))10 |Φ10(U,T,V)|2

)
+

(
n1

72
− 1

3
+
b̂

8

)
log(det

(
Im(Ω))10 |Φ10(2U,T/2,V)|2

))
.

Let us first recall the results of one loop integration or the theta lifts which are known

from earlier work

I1 = −2 log
(

det(Im(Ω))10 |Φ10(U,T,V)|2
)
, (B.5)

I2 = −2 log
(

det(Im(Ω))6 |Φ6(U,T,V)|2
)
.
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The first equation is the result for the theta lift of the elliptic genus of K3 and the second

equation is the result for the theta lift of the elliptic genus of the 2A orbifold of K3. The

new integral which we need to obtain the difference of one loop gauge thresholds for the

non-standard embeddings is the following

I3 =

∫
d2τ

τ2

[
Γ(0,0) + Γ(0,1) + Γ(1,0) + Γ(1,1)

]
⊗ 4A. (B.6)

To evaluate this integral we can use the general result in [22] for integrals of this form

which we will now state. Given the integral of the form

Ĩ(U, T, V ) =

N−1∑
r,s=0

1∑
b=0

Ĩr,s,b , (B.7)

Ĩr,s,b =

∫
F

d2τ

τ2

∑
m1,m2,n2∈Z
n1∈Z+ r

N
j∈2Z+b

qp
2
L/2q̄p

2
R/2e2πism1/Nhr,sb , (B.8)

hr,sb (τ) =
∑

n∈Z−b2/4

cr,sb (4n)qn,

F r,s(τ, z) = hr,s0 (τ)θ3(2τ, 2z) + hr,s1 (τ)θ2(2τ, 2z)

=
∑
b=0,1

∑
n∈Z/N,j∈2Z+b

cr,sb (4n− j2)qnzj ,

with the condition

c
(r,s)
0 (u) = 0 for u < 0, c

(r,s)
1 (u) = 0 for u < −1, (B.9)

the result for the integral is given by

Ĩ(U, T, V ) = −2 log
[
det ImΩk

]
− 2 log

[
det Φ̃(U,T,V)

]
− 2 log

[
det ¯̃Φ(U,T,V)

]
,

(B.10)

where

Φ̃(U, T, V ) = e2πi(α̃U+β̃T+V ) (B.11)∏
b=0,1

N−1∏
r=0

∏
k′∈Z+ r

N
,l∈Z,

j∈2Z+b
k′,l≥0, j<0k′=l=0

(
1− e2πi(k′T+lU+jV )

)∑N−1
s=0 e2πisl/N cr,sb (4k′l−j2)

,

and

β̃ =
1

24N
Q0,0, (B.12)

α̃ =
1

24N
χ(M)− 1

2N

N−1∑
s=0

Q0,s
e−2πis/N

(1− e2πis/N )2
,

Qr,s = N (cr,s0 (0) + 2cr,s1 (−1)) ,

Q0,0 = χ(M) = 24.
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Now examining the integral we have in (B.6), it can be seen that we can use the above

result to perform the integral. Comparing the form in (B.7) and (B.6) we see that we have

N = 2, therefore r, s ∈ {0, 1} and all the coefficients

cr,sb (u) =
1

2
cb(u). (B.13)

where cb(u) are the coefficients in the expansion of the elliptic genus of K3 which is given by

8A(τ, z) =
∑
b=0,1

∑
n∈Z,j∈2Z+b

cb
(
4n− j2

)
qnzj . (B.14)

Thus we have

Qr,s = 24, α̃ = 2, β̃ =
1

2
. (B.15)

We can further simplify the expression in (B.11) as follows

Φ̃(U, T, V ) = e2πi(2U+T/2+V )
∏
b=0,1

1∏
r=0

∏
k′∈Z+ r

2
,l∈Z,

j∈2Z+b
k′,l≥0,j<0k′=l=0

(
1− e2πi(k′T+2lU+jV )

)cr,sb (4k′l−j2)

= e2πi(2U+T/2+V )
∏
b=0,1


∏

k′∈Z,l∈Z,
j∈2Z+b

k′,l≥0,j<0k′=l=0

(
1− e2πi(2k′T/2+l(2U)+jV )

)cb(8k′l−j2)

×
∏

k′∈Z,l∈Z,
j∈2Z+b

k′,l≥0, j<0
k′=l=0

(
1− e2πi((2k′+1)T/2+l(2U)+jV )

)cb(4(2k′+1)l−j2)


,

= e2πi(2U+T/2+V )
∏
b=0,1

1∏
r=0

∏
k′∈Z, l∈Z, j∈2Z+b
k′,l≥0, j<0 k′=l=0

(
1− e2πi(k′T/2+l(2U)+jV )

)cb(4k′l−j2)

= Φ10(2U, T/2, V ). (B.16)

In the last line we have used the definition of Φ10 which is the theta lift of the elliptic genus

of K3. Thus the result of the integral in (B.6) is given by

I3 =

∫
d2τ

τ2

[
Γ(0,0) + Γ(0,1) + Γ(1,0) + Γ(1,1)

]
⊗ 4A, (B.17)

= −2 log(det
(

Im(Ω))10 |Φ10(2U,T/2,V)|2
)
.
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C Mathematica files

There are 2 Mathematica files included in the supplementary attachments. Both the Mathe-

matica files begin with definitions of the generalized theta functions, Dedekind eta function,

Jacobi forms of index 1 and Eisenstein series.

1. z4wilson.nb (online resource 1): the partition function of the shifted E8×E8 lattice

together with the left moving bosonic partition function on K3 is written in terms of

generalized theta functions and compared with the the (0, 1) sector of (4.11).

2. relations.nb (online resource 2): different relations given in the appendix A and

used in the main text are checked by q expansions. The formula for Nh − Nv as a

function of b̂ given in (4.8) is checked against the general expression (3.43). Nh−Nv

is also evaluated for the 2B model.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S. Kachru and C. Vafa, Exact results for N = 2 compactifications of heterotic strings, Nucl.

Phys. B 450 (1995) 69 [hep-th/9505105] [INSPIRE].

[2] S. Stieberger, (0,2) heterotic gauge couplings and their M-theory origin, Nucl. Phys. B 541

(1999) 109 [hep-th/9807124] [INSPIRE].

[3] G. Honecker and M. Trapletti, Merging Heterotic Orbifolds and K3 Compactifications with

Line Bundles, JHEP 01 (2007) 051 [hep-th/0612030] [INSPIRE].

[4] J.A. Harvey and G.W. Moore, Algebras, BPS states and strings, Nucl. Phys. B 463 (1996)

315 [hep-th/9510182] [INSPIRE].
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