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1 Introduction

The Skyrme model was originally made as a toy model for baryons where the baryon is

made of a soliton in a theory of pions with higher-derivative terms [1, 2]. The theory was

taken much more serious after Witten showed that the soliton, called the Skyrmion, is

exactly the baryon in the large-Nc limit of low energy QCD [3, 4]. Although quite a few

phenomenologically appealing results have been achieved in the framework of the Skyrme

model, see e.g. [5–9], a withstanding problem is that the binding energies are typically

about an order of magnitude too large, compared to experimental data. This motivated a

large body of work attempting at lowering the binding energies in Skyrme-like models. One

direction is based on a self-dual Yang-Mills theory in five dimensions, dimensionally reduced

to four dimensions and in turn giving rise to an infinite tower of vector mesons [10, 11].

This leads one to search for a theory where the soliton — the Skyrmion — is either a BPS

state or saturates a BPS-like energy bound. The original Skyrme model has an energy

bound discovered long ago by Faddeev [12]. Sometimes this bound is called a Bogomol’nyi

bound [13], which may be misleading because the target space of the Skyrme model is S3,

which is not Kähler and hence cannot be supersymmetrized. The mentioned energy bound

is, however, not saturable unless the space is isometric to a 3-sphere [14]. A different model

was constructed later, which is by now called the BPS Skyrme model as it has a saturable

energy bound [15, 16]. Supersymmetrizing the BPS Skyrme model was attempted in [17],

which however is not possible due to the fact that its target space is not Kähler [18].
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Supersymmetrizing the Skyrme model was attempted early on, in the literature [19].

Several problems were encountered along the way. The first problem of S3 not being Kähler

was remedied by switching the target space to CP 1, which however is the target space of

a baby Skyrme model rather than of the Skyrme model. The next problem is that unless

care is taken in constructing the model, one will encounter the auxiliary field problem;

i.e. the auxiliary field, F , in the chiral multiplet will have derivatives acting on it and in

turn making it a dynamical field.1 Finally, even circumventing the auxiliary field problem,

the supersymmetrized Skyrme-like term turned out to have four time derivatives [19, 21],

making a Hamiltonian formulation impossible. The later attempt at supersymmetrizing

the baby-Skyrme model also arrived at the same type of Lagrangian with four time deriva-

tives [21].

Thirty years after the problem was laid out in the seminal paper [19] not much progress

on constructing the Skyrme term was made, until a systematic investigation of the super-

symmetric four-derivative term without the auxiliary field problem [22–25] lead to the

idea that a non-Abelian nontrivial solution to the non-dynamic auxiliary field equation

could produce a supersymmetric Skyrme term. This was carried out in [26] and indeed

the nontrivial solution to the auxiliary field equation gave a term whose Nambu-Goldstone

(NG) submanifold is exactly the Skyrme term. The construction is based on complexifying

SU(2) to SL(2,C), which in turn gives rise to three new bosonic degrees of freedom called

quasi-NG bosons [27]; this complexification is inevitable due to nonlinear realization the-

ory. Once the quasi-NG bosons are turned on, the supersymmetric Skyrme term is more

complicated and does possess four time derivatives, again not allowing for a Hamiltonian

formulation. The restriction to the NG submanifold, however, eliminates the four time

derivatives and as mentioned above, yields exactly the Skyrme term. A twist compared to

the non-supersymmetric Skyrme model, is that if one tries to turn on a standard kinetic

(Dirichlet) term, the nontrivial solution to the auxiliary field equation will simply eliminate

it, leaving just a potential term for the quasi-NG bosons. Introducing a superpotential has

not been carried out yet.

It requires an attractive term in the Lagrangian in order for a Skyrmion to be stabilized

— i.e. a nontrivial solution to the virial equation due to Derrick’s theorem. In the conven-

tional Skyrme model, the kinetic term and the Skyrme term is balanced. In this paper we

will induce a kinetic term in the theory by performing Scherk-Schwarz (SS) [28, 29] dimen-

sional reduction (DR) in order to construct a Skyrmion, although our Skyrmion is rather

an instanton in three Euclidean dimensions. Although the original formulation breaks su-

persymmetry due to twisting of the R-symmetry, supersymmetry preserving dimensional

reductions are possible, see e.g. [30].

We derive 3-dimensional and 2-dimensional Lagrangians by supersymmetry preserving

SS dimensional reductions and in turn construct solitons in all dimensions from two through

four. The first soliton is the instanton found by Speight [31] in the so-called pure Skyrme

model — which is exactly the NG part of the supersymmetric Skyrme model. Next, we

construct a 3-dimensional Skyrmion-instanton in the once SS reduced theory. Finally, we

1For a recent work in this direction, however, see [20].
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create a vortex-instanton in the twice SS anisotropically reduced Euclidean two-dimensional

theory. All of these instantons are non-BPS states, breaking all supersymmetries.

The plan of the paper is as follows. We start by reviewing the supersymmetric Skyrme

model in section 2. In section 3 we construct the SS dimensionally reduced Lagrangians that

we will use to construct the lower-dimensional solitons in section 4. Finally, we conclude

with a discussion in section 5. The appendix discusses the BPS property of the solitons.

2 The supersymmetric Skyrme model

We will begin by reviewing the supersymmetric Skyrme model, found in [26]. The con-

struction of fourth-order derivative terms in supersymmetry — without the auxiliary field

problem — is based on the Lagrangian

L =

∫
d4θ K(Φ,Φ†) +

1

16

∫
d4θ ΛABC̄D̄(Φ,Φ†)DαΦADαΦBD̄α̇ΦC̄†D̄α̇ΦD̄†, (2.1)

where K(Φ,Φ†) is a Kähler potential and ΛABC̄D̄(Φ,Φ†) is a Kähler tensor with the indices

A,B and C̄, D̄ symmetrized pairwise. The chiral superfields ΦA are then combined with a

nonlinear sigma model field

M = exp(iΦAtA) ∈ GC/Ĥ, (2.2)

taking value in the coset relevant for chiral symmetry breaking:

GC/Ĥ ' SU(N)C = GC/HC ' SL(N,C) ' T ∗SU(N). (2.3)

Here, Ĥ is the complex isotropy group and not necessarily equal to HC but can be larger

in general [32–34].

The superfields ΦA are composed of NG bosons πA, quasi-NG bosons σA, quasi-NG

fermions ψA and auxiliary fields FA as

ΦA(y, θ) = πA(y) + iσA(y) + θψA(y) + θ2FA(y). (2.4)

Our case of chiral symmetry breaking falls into the class of maximally realized supersym-

metrizations (and therefore Ĥ = HC) which means that the number of quasi-NG bosons

is equal to the number of NG bosons [27, 35]. The Kähler potential, K(Φ,Φ†), used for

constructing the supersymmetric Skyrme model [26] is

K = f2
π TrMM †, (2.5)

and the (2, 2) Kähler tensor, ΛABC̄D̄(Φ,Φ†), is implicitly defined by∫
d4θ ΛABC̄D̄(Φ,Φ†)DαΦADαΦBD̄α̇ΦC̄†D̄α̇ΦD̄†

=

∫
d4θ Λ(M,M †) Tr

[
DαMD̄α̇M

†DαMD̄α̇M †
]
. (2.6)
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Then the bosonic part of the Lagrangian is

L(4)
b = f2

π Tr
[
−MµM

µ + F †F
]

+ Λ(M,M †) Tr
[
M †µMνM

µ†Mν + (F †F )2 −M †µMµF †F −M †µMµFF †
]
, (2.7)

where we have introduced the short notation Mµ ≡ ∂µM and fπ is the pion decay constant.

The first term is the ordinary kinetic (Dirichlet) term with two time derivatives while the

second term is a higher derivative correction. The Kähler tensor ΛABC̄D̄ in (2.1) is deter-

mined by the G-invariant function Λ(M,M †) through the relation (2.2). The equations of

motion for the auxiliary fields are

f2
πΛ−1F + 2FF †F − FM †µMµ −MµM

†µF = 0,

f2
πΛ−1F † + 2F †FF † −M †µMµF † − F †MµM

†µ = 0. (2.8)

The Lagrangian (2.7) avoids the auxiliary field problem and hence the auxiliary field equa-

tion is algebraic; it is, nevertheless, a nontrivial matrix equation.

Two consistent possibilities of solutions to the equations (2.8) arise if we do not in-

troduce a superpotential. The first corresponds to the trivial solution F = 0 which is

called the canonical branch. The on-shell Lagrangian on the canonical branch is obtained

straightforwardly from eq. (2.7):

L(4)
b = −f2

π TrM †µM
µ + Λ(M,M †) Tr

[
M †µMνM

µ†Mν
]
. (2.9)

However, this term does not reduce to the Skyrme term when the quasi-NG fields are set

to zero and it also contains four time-derivatives.

The second is the non-canonical branch associated with the non-trivial solutions F 6= 0.

The non-canonical branch for the theory (2.7) without a superpotential was found explicitly

in [26] for the SU(2) case

L(4)
b =

Λ(M,M †)

2

{
Tr

[
2M †µMνM

µ†Mν − 1

2
M †µM

µM †νM
ν − 1

2
MµM

µ†MνM
ν†
]

(2.10)

− 1

2

(
Tr[MµM

µ†]
)2
− Tr

[
f4
π

2Λ2(M,M †)
12

]
∓
√(

Tr[M †µM
µM †νM

ν ]− 1

2

(
Tr[MµM

µ†]
)2
)(

Tr[MµM
µ†MνM

ν†]− 1

2

(
Tr[MµM

µ†]
)2
)}

.

We note that the ordinary second-order kinetic term is canceled on the non-canonical

branch. Although the term with four time derivatives does not cancel in general when the

quasi-NG fields are turned on, the above Lagrangian simplifies exactly to the Skyrme term

when they are turned off

L(4)
b

∣∣∣
M=U

= Λ Tr
[
U †µUνU

µ†Uν − U †µUµU †νUν
]
− Tr

[
f4
π

4Λ
12

]
. (2.11)

The prefactor Λ(M,M †) is a function of G-invariants and thus when restricting to the

NG submanifold, Λ(UU † = 12) = Λ becomes a constant. The effect of adding the kinetic
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(Dirichlet) term thus only had the effect of inducing the potential (the last term in the

above Lagrangian). If we consider a G-invariant theory, Λ must be a constant and thus

the potential is just a c-number that we can ignore.

The upshot is thus that the Kähler potential cannot induce a kinetic term or a po-

tential if G-invariance is preserved. In the next section, we will perform Scherk-Schwarz

dimensional reductions in order to induce a kinetic term.

3 Scherk-Schwarz dimensional reductions

Our starting point will be the supersymmetric Skyrme model (2.10) in 4-dimensional Eu-

clidean space. We will keep the G-invariance intact throughout this paper, so the addition

of the kinetic term will only induce a constant and hence not affect the equations of mo-

tion. Therefore we will simply work with only the fourth-order derivative term and ignore

the latter constant by setting fπ = 0. For simplicity, we will restrict to the NG submani-

fold before performing Scherk-Schwarz (SS) dimensional reduction (DR) and it will prove

convenient to change notation to a 4-vector n = {n1, n2, n3, n4} as

U = 12n
4 + inaτa, (3.1)

where τa are the Pauli matrices and the fields satisfy n · n = 1. Using this notation, the

NG restricted Skyrme model on Euclidean four-space, R4, reads

L(4)
4d,b =

1

4
(nµ · nµ)2 − 1

4
(nµ · nν)2, (3.2)

where we have defined nµ = ∂µn and lowered all the indices since the Euclidean metric is

just the identity matrix. We have also set Λ = 1/16 for convenience. The Lagrangian (3.2)

admits a symmetry under the transformation n′ = On, O ∈ SO(4) which will be utilized

for the SS reduction.

3.1 Three-dimensional model

We are now ready to perform the first SSDR by compactifying the fourth coordinate.

We will use the coordinates xµ with µ = 1, 2, 3, 4 where we have Wick-rotated the time

coordinate, and SS dimensional reduction along x4 ∼ x4 + 2πR4 is carried out as follows

n(xµ) = O(x4)N(xa), (3.3)

where a = 1, 2, 3 runs over the non-compactified dimensions and the matrix

O(x4) = −O(x4 + 2πR4) ≡



cos
m4,1x4

2R4
− sin

m4,1x4

2R4
0 0

sin
m4,1x4

2R4
cos

m4,1x4

2R4
0 0

0 0 cos
m4,2x4

2R4
− sin

m4,2x4

2R4

0 0 sin
m4,2x4

2R4
cos

m4,2x4

2R4


, (3.4)
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where m4,1 ∈ Z 6=0 and m4,2 ∈ Z 6=0 are two nonzero Kaluza-Klein (KK) integers describing

towers of higher-momentum states along the compactified circle. Notice that we have

applied twisted boundary conditions (TBC) such that

n(x4 + 2πR4) = ε(m4,1,m4,2)n(x4), (3.5)

with

ε(m4,1,m4,2) =


(−1)m4,1

(−1)m4,1

(−1)m4,2

(−1)m4,2

 , (3.6)

which is just an SO(4) transformation of the fields.

After the dust settles, we obtain

L(4)
3d,b =

πR4

2

[
(Na ·Na)

2 − (Na ·Nb)
2
]

+
π

4R4

[
m2

4,1 + (m2
4,2 −m2

4,1){(N3)2 + (N4)2}
]
Na ·Na

− π

4R4

[
m4,1(N1N2

a −N2N1
a ) + m4,2(N3N4

a −N4N3
a )
]2
, (3.7)

where we again have defined the notation Na = ∂aN and used the relation N · N = 1.

If we set the two integers m4,1 and m4,2 equal to each other and to m4 ∈ Z 6=0, the SS

dimensionally reduced Lagrangian simplifies to

L(4)
3d,b =

πR4

2

[
(Na ·Na)

2 − (Na ·Nb)
2
]

+
m2

4π

4R4
Na ·Na

− m2
4π

4R4

[
N1N2

a −N2N1
a +N3N4

a −N4N3
a

]2
. (3.8)

Then the last term in the first line is a kinetic term with a prefactor of the KK mass in

the 3-dimensional Euclidean theory. We stress that the SS reduction of the fourth-order

derivative term of the BPS Skyrme model produces the usual (second-order derivatives

term) kinetic term. This is in contradistinction to the ordinary case where the potential

term appears by SS reduction from the usual kinetic term.

Let us note that the lowest energy state comes from the lowest KK mode and thus the

compactified momenta correspond to the integers m4,1 = ±1 and m4,2 = ±1. It is clear

from the SS reduced Lagrangian (3.8) that the overall sign of the two integers is physically

unobservable. One may naively think that the relative sign could matter, but renaming

the two fields {N3, N4} → {N4, N3} compensates a relative minus sign.

A further remark about the KK momenta is in store. Because π1(SU(2)) is trivial,

higher even momentum numbers m4 may be metastable or unstable and could decay to

m4 = 0 while for odd integers, they may decay to the states with m4 = ±1. This holds for

both the KK integers. The states with minimum energy are thus m4 = −1, 0, 1, where the

m4 = 0 is distinguished from m4 = ±1 by the boundary conditions. We will focus on the

latter in this paper.

– 6 –
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3.2 Two-dimensional model

Now we will perform another consecutive SS dimensional reduction, but along x3 ∼ x3 +

2πR3 as

N(xa) = Õ(x3)M(xi), (3.9)

where i = 1, 2 runs over the non-compactified dimensions and

Õ(x3) = −Õ(x3+2πR3) ≡



cos
m3,1x3

2R3
− sin

m3,1x3

2R3
0 0

sin
m3,1x3

2R3
cos

m3,1x3

2R3
0 0

0 0 cos
m3,2x3

2R3
− sin

m3,2x3

2R3

0 0 sin
m3,2x3

2R3
cos

m3,2x3

2R3


, (3.10)

where m3,1 ∈ Z 6=0 is a nonzero integer while m3,2 ∈ Z is an integer; we allow it to be

vanishing in order to get an anisotropic SS dimensional reduction (this does not correspond

to a compactified momentum not being quantized, but merely formally to the option of

making the last two fields independent of the circle coordinate). The TBC are then N(x3 +

2πR3) = ε(m3,1,m4,2)N(x3), with ε again given by eq. (3.6).

Starting now from the 3-dimensional Euclidean Lagrangian (3.7), we get

L(4)
2d,b = π2R3R4

[
(Mi ·Mi)

2 − (Mi ·Mj)
2
]

+
π2

2

[
m2

4,1

R3

R4
+ m2

3,1

R4

R3

+

{
(m2

4,2 −m2
4,1)

R3

R4
+ (m2

3,2 −m2
3,1)

R4

R3

}[
(M3)2 + (M4)2

] ]
Mi ·Mi

− π2

2

(
m2

4,1

R3

R4
+ m2

3,1

R4

R3

)(
M1M2

i −M2M1
i

)2
− π2

2

(
m2

4,2

R3

R4
+ m2

3,2

R4

R3

)(
M3M4

i −M4M3
i

)2
− π2

(
m4,1m4,2

R3

R4
+ m3,1m3,2

R4

R3

)(
M1M2

i −M2M1
i

) (
M3M4

i −M4M3
i

)
+

π2

2R3R4

(
m2

4,1m
2
3,2 + m2

4,2m
2
3,1 − 2m3,1m3,2m4,1m4,2

)
×
[
(M1)2 + (M2)2

] [
(M3)2 + (M4)2

]
, (3.11)

where Mi = ∂iM. In the case the two momenta on each compactified circle are equal,

viz. when m3,1 = m3,2 = m3 and m4,1 = m4,2 = m4, a great simplification occurs

L(4)
2d,b = π2R3R4

[
(Mi ·Mi)

2 − (Mi ·Mj)
2
]

+
π2

2

[
m2

4

R3

R4
+ m2

3

R4

R3

]
Mi ·Mi

− π2

2

(
m2

4

R3

R4
+ m2

3

R4

R3

)(
M1M2

i −M2M1
i +M3M4

i −M4M3
i

)2
. (3.12)
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However, we can see that this simplification also eliminates the potential, i.e. only derivative

terms remain.

In order to get a relatively simple Lagrangian with a potential, let us consider the

case where the first compactification has equal momenta (m4,1 = m4,2 = m4) while the

second compactification has one nonvanishing momentum m3,1 = m3 6= 0 and one vanishing

m3,2 = 0. This will simplify the Lagrangian (3.11) to

L(4)
2d,b = π2R3R4

[
(Mi ·Mi)

2 − (Mi ·Mj)
2
]

+
π2

2

[
m2

4

R3

R4
+ m2

3

R4

R3

[
(M1)2 + (M2)2

] ]
Mi ·Mi

− π2

2
m2

4

R3

R4

(
M1M2

i −M2M1
i +M3M4

i −M4M3
i

)2
− π2

2
m2

3

R4

R3

(
M1M2

i −M2M1
i

)2
+

π2

2R3R4
m2

4m
2
3

[
(M1)2 + (M2)2

] [
(M3)2 + (M4)2

]
. (3.13)

We note again that the lowest energy states correspond to the lowest KK modes, being

m4 = ±1 and m3 = ±1. The two signs are obviously not observable in the above La-

grangian (3.13). One may however ask whether what consequences a relative sign between

the two momenta on the first compactified circle (x4 ∼ x4 + 2πR4) may yield. Again

it simply amounts to a sign in front of the last two terms (in the parenthesis) on the

third line in eq. (3.13), which again can easily be compensated by renaming the two fields

{M3,M4} → {M4,M3}.
In the next section we will construct Euclidean solitons in the above Lagrangians.

4 Euclidean solitons or instantons

In this section we will consider Euclidean solitons in the supersymmetric Skyrme model

and its derivatives coming from SS dimensional reduction.

4.1 4d pure Skyrme instanton

The first and simplest case is to consider a Euclidean soliton directly in the 4-dimensional

theory (3.2), since the action is classically conformal in said number of dimensions. It is

therefore an instanton-like soliton, first constructed in [31]. Note that the pure Skyrme

model [31] and the bosonic sector of the NG restricted submanifold of the supersymmetric

Skyrme model are identical. Hence the solution is directly applicable and here we will

just make a swift review of the pure Skyrme-instanton. Let us start with the Lagrangian

density (2.11) and use the Ansatz for the Skyrme field

U = qηq−1, (4.1)

where q is the identity map from S3 → SU(2) as

q = x̂412 + iτax̂a, (4.2)

– 8 –
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r 0 =1/ 2

r 0 =1

r 0 =2

2 4 6 8 10
r

- 1.0

- 0.5

0.5

1.0

η 0

Figure 1. Skyrme-instanton solutions for various instanton sizes r0 = es0 = 1/2, 1, 2.

where x̂µ ≡ xµ/r and the radius of the 3-sphere is r =
√
xµxµ and finally

η = η0(r)12 + iτ3η3(r), (4.3)

where η is a curve in SU(2) obeying the constraint η2
0 + η2

3 = 1. Thus the Euclidean action

can be written as

SE = 16π2

∫
ds

[
1

2
η′20 (s) +

[
1− η2

0(s)
]2]

, (4.4)

where we have introduced s = log r. The Skyrme-instanton solution is

η0(s) = tanh
√

2(s− s0), (4.5)

which solves both the second-order equation of motion derived from the Euclidean ac-

tion (4.4) and the Bogomol’nyi equation

η′0(s) =
√

2
[
1− η2

0(s)
]
. (4.6)

The Euclidean action associated with the Skyrme-instanton solution (4.5) is

SE = 16
√

2π2

∫
ds η′0(s)

[
1− η2

0(s)
]

= 16
√

2π2

∫
dη0

[
1− η2

0

]
=

64
√

2π2

3
, (4.7)

where we have used the boundary conditions for the instanton solution: η0(−∞) = −1

and η0(∞) = 1. The topological charge of the instanton is, however, Z2 [31]; to see this

requires a suspension of the Hopf map to get to a nontrivial π4(S3), see also e.g. [36].

In figure 1 we show 4d Skyrme-instanton solutions for various instanton sizes. Notice

that η0(r0) = 0, i.e. the curve in SU(2) passes zero exactly at the values of r0 = es0 which

we called the instanton size.

In the following, we look for instantons in three- and two-dimensional models.

4.2 3d Skyrmion-instanton

Skyrmions in the pure Skyrme theory (without a kinetic or potential term) are unstable

against expanding themselves. Either a kinetic term or a potential term is needed to
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stabilize the Skyrmions with a finite size (and energy). Here, we have the kinetic term for

the SS dimensionally reduced theory and we call Skyrmions in 3-dimensional Euclidean

theory Skyrmion-instantons. After performing a single SS dimensional reduction to 3-

dimensional Euclidean space, we have the Lagrangian density (3.7). For simplicity, we will

construct a soliton in the isotropically reduced theory, namely (3.8) which corresponds to

the latter Lagrangian with the two momenta on the circle set equal m4,1 = m4,2.

For convenience, we will rescale the lengths as xa = 2R4
m4
x̃a, where x̃a are dimensionless

coordinates. The Euclidean action thus reads

SE = πm4

∫
d3x̃ LE (4.8)

LE =
1

4

[
(Na ·Na)

2 − (Na ·Nb)
2
]

+
1

2
Na ·Na −

1

2

[
N1N2

a −N2N1
a +N3N4

a −N4N3
a

]2
.

The equations of motion derived from the above action read

Nα
aa + (Nb ·Nb)N

α
aa + (Nab ·Nb)N

α
a − (Na ·Nb)N

α
ab − (Nbb ·Na)N

α
a

+
(
N1N2

aa −N2N1
aa +N3N4

aa −N4N3
aa

) (
N2δα1 −N1δα2 +N4δα3 −N3δα4

)
+ 2

(
N1N2

a −N2N1
a +N3N4

a −N4N3
a

) (
N2
aδ

α1 −N1
aδ

α2 +N4
aδ

α3 −N3
aδ

α4
)

= 0,

(4.9)

where α = 1, 2, 3, 4. We will call the soliton a 3d Skyrmion-instanton and it is very similar

to a Skyrmion in the sense that it wraps a 3-sphere in the target space and lives in 3-

dimensional (Euclidean) configuration space.

Since the last term in the action (4.8) breaks spherical symmetry we have not been

able to reduce the equation of motion for a single 3d-Skyrmion-instanton to an ordinary

differential equation. We therefore turn to numerical methods and solve the full partial

differential equations with the finite difference method in conjunction with the relaxation

method on an 813 cubic lattice with a fourth-order stencil. We define the topological charge

of the 3d-Skyrmion-instanton as

B = − 1

2π2

∫
d3x̃ B, B =

1

6
εabcεαβγδNα

a N
β
b N

γ
c N

δ. (4.10)

The solution is shown as isosurfaces of the topological charge and Euclidean Lagrangian

densities at their respective half-maximum values in figure 2. We have colored the figures

using a normalized 3-vector v ≡ (N2, N3, N4)/
√

(N2)2 + (N3)2 + (N4)2 and mapping v3+

iv2 = eiθcolor , where θcolor = 0, π/3, 2π/3 corresponds to red, green and blue, respectively.

v1 is then mapped to the lightness with |v1| = 1 being white and v1 = 0 being black.

As we can see from the figure, the solution is a squashed sphere. In order to calculate

the squashing of the solution, let us first define the size of the 3d-Skyrmion-instanton along

the xa direction for a fixed a as

〈(xa)2[X ]〉 =

∫
d3x̃ (xa)2X∫
d3x̃ X

, (4.11)

where the index a is not summed over and X is a density. The solution calculated in

figure 2 is rotated such that there is an axial symmetry in the (x1, x3)-plane and thus we

– 10 –
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(a) (b)

Figure 2. 3d-Skyrmion-instanton solution in the once SS reduced 3-Euclidean dimensional theory.

(a) shows the isosurface of the topological charge density and (b) the isosurface of the Euclidean

Lagrangian density; both at their respective half-maximum values. The solution is a squashed sphere

with squashing parameter measured to be σ[B] = 0.9499 and σ[LE ] = 0.9308; the topological charge

evaluated numerically as Bnumerical = 0.9992 and the Euclidean action is SE = πm4 × 55.91. The

colors are described in the text.

can define the squashing parameter as

σ[X ] ≡

√
〈(x2)2[X ]〉
〈(x1)2[X ]〉

, (4.12)

where we will use the topological charge density X = B and the Euclidean Lagrangian

density X = LE , respectively; the numerical calculation gives σ[B] = 0.9499 and σ[LE ] =

0.9308.

4.3 2d vortex-instanton

We will now consider the case of two consecutive SS dimensional reductions where the

first one is isotropic and the second dimensional reduction is anisotropic in the way that

only the first two fields depend nontrivially on the second circle coordinate. We thus have

the case of the first reduction with equal momenta (m4,1 = m4,2 = m4) and the second

reduction with only one momentum (m3,1 = m3 and formally m3,2 = 0).

It will again prove convenient to rescale the lengths as xi = 2
√

R3R4
m3m4

x̃i, where x̃i

are dimensionless coordinates. The anisotropic dimensional reduction induces a potential

which we need in order to construct a Euclidean vortex. We will employ the appropriate

Ansatz for the vortex [37–39]

M = {cos f(r) cosα, cos f(r) sinα, sin f(r) cos θ, sin f(r) sin θ} , (4.13)
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κ =1

κ =16

κ =1/ 16

2 4 6 8 10
r

0.5

1.0

1.5

(a) f

κ =1

κ =16

κ =1/ 16

1 2 3 4 5
r

5

10

15

(b) LE

Figure 3. 2d vortex-instanton solutions for various values of κ = 1, 16, 1/16. (a) shows the radial

profile function f and (b) the Euclidean Lagrangian density LE . The action of the solutions are

indeed finite and are calculated numerically to be SE(1) = π3m3m4 × 4.658, SE(16) = π3m3m4 ×
5.241 and SE(1/16) = π3m3m4 × 4.328.

where reiθ = x̃1 + ix̃2 are the standard polar coordinates in two dimensions and α is a

U(1) modulus. Finally, the 2-dimensional Euclidean action for the vortex system is found

by plugging the above Ansatz into the Lagrangian (3.13) and it reads

SE = π3m3m4

∫
dr rLE , (4.14)

LE =
1

r2
sin2(f)f2

r +

(
1

κ
+ κ cos2 f

)(
f2
r +

1

r2
sin2 f

)
− 1

κr2
sin4 f + cos2 f sin2 f,

(4.15)

where we have defined

κ ≡ m3R4

m4R3
. (4.16)

The winding number is defined as

N =
1

2π

∫
dr
(
M3
rM

4
θ −M4

rM
3
θ

)
=

1

2π

∫
dr sin(2f)fr =

1

2π

∫
df sin 2f = 1, (4.17)

where we have used the boundary conditions f(0) = 0 and f(∞) = π/2 in the last equality.

In figure 3 are shown the profile function f and the Lagrangian density for various

values of κ = 1/16, 1, 16. Vortex solutions in this model are somewhat similar to those

in the Skyrme model [37–39] with a similar potential term, albeit the kinetic term has a

nontrivial field dependence as in K-theories, see e.g. [40–42].

Notice that although there are two potentially logarithmically divergent terms in the

action, they come with coefficients κ−1 and −κ−1 and thus cancel, leaving the action

integral convergent. Let us however examine the potential divergence in more detail. The

asymptotic behavior of the profile function is

f ∼ π

2
−Ae−

√
κr, (4.18)
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Dim. Instantons Relevant terms

4 Pure Skyrme-instanton Pure Skyrme term, no kinetic term

3 Skyrmion-instanton Kinetic and Skyrme terms

2 Vortex-instanton Kinetic, potential and Skyrme terms

Table 1. Instantons in various dimensions.

where A ∈ R>0 is an undetermined constant. Substituting into the Euclidean Lagrangian

density (4.15), we get to leading order (i.e. approaching zero the slowest) at asymptotically

large r:

LE ∼ 2A2e−2
√
κr

(
1 +

1

κr2
+
κ

r2

)
+O

(
e−4
√
κr
)
, (4.19)

which leaves the action integral convergent, as promised.

5 Discussion and conclusion

In this paper we have constructed solitons in the supersymmetric Skyrme model in three

different codimensions from two through four. The results are summarized in table. 1. As

mentioned, the supersymmetric Skyrme model lacks a kinetic term because the auxiliary

field equation eliminates it, leaving only a potential term for the quasi-NG bosons behind.

In this paper, we concentrated on the theory restricted to the NG submanifold only, for

which the supersymmetric Skyrme term is exactly equal to the standard bosonic Skyrme

term. First we reviewed Speight’s instanton in the 4-dimensional Euclidean pure Skyrme

model. Then we performed a Scherk-Schwarz dimensional reduction to 3 dimensions in

which we constructed a 3-dimensional instanton that looks like a squashed sphere. Finally,

we performed yet another anisotropic SS dimensional reduction to 2 dimensions, in which

we constructed a Euclidean vortex-instanton with finite action. We would like to point out

that this is — to the best of our knowledge — the first global vortex with finite tension.

As mentioned above, the existence of a stable soliton necessitates the existence of a

pressure term. Two common terms are the kinetic term and the potential term. One

possibility is to use the potential that is induced by the kinetic term; we mentioned that

it does not provide a potential for the NG bosons, but only for the quasi-NG bosons: this

is only if G-invariance (here it is SU(2) × SU(2)) is kept. If we sacrifice the G-invariance,

then we can make a G-symmetry breaking potential in the theory. Another possibility, yet

to be explored, is to include a superpotential in the theory and solve the auxiliary field

equation again [43].

A comment on supersymmetry of the models is in order. We have performed SS

dimensional reduction on the pure Skyrme model which is just a truncation of the super-

symmetric Skyrme model to the NG subspace. Although the solution of the auxiliary field

has quite a non-linear form on the non-canonical branch [26], it is possible to write down

the full untruncated Lagrangian and perform the SS dimensional reductions to three and

two dimensions. We pointed out that the 4d Skyrme-instantons by Speight are not BPS in

the supersymmetric model. This is obvious because of the fact that the topological charge
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is Z2 and hence not Z. Consequently, two instantons annihilate each other and an anti-

instanton is the same as the instanton itself. This is in contrast to BPS solitons for which

two solitons have the mass exactly equal to twice the mass of a single soliton. Indeed, it is

also possible to show that all the instantons discussed in this paper are non-BPS solitons.

A brief discussion on the BPS properties of the instantons in three and two dimensions is

found in appendix.

In this paper we have performed SS dimensional reductions, which can be obtained as

the small compactification limit of the compactified circle with twisted boundary conditions

(TBC). This reduction can give a relation between solitons in different dimensions.

For instance, this has been considered in Yang-Mills theory in R3 × S1 [44–47], by

which an instanton (caloron) is decomposed into a set of BPS monopoles.

Skyrme chains have been constructed in R2×S1 also with TBC, which for chains of 1-

Skyrmions are well-approximated by the holonomy of Yang-Mills calorons [48]. Instantons

in the principal chiral model were constructed on R2 × S1 with TBC in [49, 50]. A 3d

instanton is first interpreted as a vortex ring with a U(1) modulus twisted once [37–39],

and in the small compactification limit, it is decomposed into a vortex and an anti-vortex

with the U(1) modulus twisted half (having half Skyrmion charges) [49, 50]. The vortex-

instanton in this paper is somewhat similar to these two cases.

Lumps (sigma model instantons) in the CPn model in R1 × S1 with TBC were con-

structed in [30, 51, 52]. A lump can be interpreted as a domain wall ring with the U(1)

modulus twisted once, and in small compactification limit it is decomposed into a kink and

an anti-kink with U(1) modulus twisted half (having half lump charges) [30, 51, 52].2

These relations should hold for our 4d instanton and 3d instanton. In four dimensions,

a 3d Skyrmion-instanton is a string with SU(2) moduli. When we make a ring the SU(2)

moduli should be twisted somehow to induce a π4 charge. This was discussed in the context

in Helium-3; a Shanker monopole string (characterized by π3[SO(3)] ' Z) is twisted to make

a ring producing an instanton (characterized by π4[SO(3)] ' Z2) [36]. Difficulties, however,

are that SU(2) moduli cannot be uniquely twisted along S1 and that the π4 charge is Z2

so twisting twice should be equivalent to untwisting.

A story, similar to the one in this paper, plays out in the supersymmetric baby Skyrme

model [23, 24, 58–60], where the kinetic term also vanishes when a nontrivial solution of the

auxiliary field equation is used [23]. Analogously to this paper, Scherk-Schwarz dimensional

reduction can be carried out also in that case, yielding a kinetic term and possibly a domain

wall solution [51, 52, 57] if we perform it twice.

Acknowledgments

S. B. G. thanks the Recruitment Program of High-end Foreign Experts for support. The

work of S. B. G. was supported by the National Natural Science Foundation of China

(Grant No. 11675223). The work of M. N. is supported in part by a Grant-in-Aid for

2This was used to construct bions, a pair of a kink-instanton and an anti-kink-instanton with zero total

instanton charge (exact bion solutions are available for the CP 2 model [53, 54]). The application of bions

to resurgence has been extensively studied [55–57].

– 14 –



J
H
E
P
0
1
(
2
0
1
7
)
0
1
4

Scientific Research on Innovative Areas “Topological Materials Science” (KAKENHI Grant

No. 15H05855) and “Nuclear Matter in Neutron Stars Investigated by Experiments and

Astronomical Observations” (KAKENHI Grant No. 15H00841) from the the Ministry of

Education, Culture, Sports, Science (MEXT) of Japan. The work of M. N. is also supported

in part by the Japan Society for the Promotion of Science (JSPS) Grant-in-Aid for Scientific

Research (KAKENHI Grant No. 25400268) and by the MEXT-Supported Program for

the Strategic Research Foundation at Private Universities “Topological Science” (Grant

No. S1511006). The work of S. S. is supported in part by Kitasato University Research

Grant for Young Researchers.

A BPS property of instanton solutions

We remark that solitons in supersymmetric field theories are potentially BPS states which

preserve fractions of supersymmetry. BPS states in 4-dimensional supersymmetric higher-

derivative theories have been classified in [25]. The BPS states satisfy the condition that

the supersymmetry variation of ψM , the fermionic partner of M , vanishes for some ξ and ξ̄:

δ(ψM )α =
√

2i(σµE)αα̇ξ̄
α̇∂µM +

√
2ξαFM = 0, (A.1)

where α = 1, 2 and σµE = (i~τ ,12), σ̄µE = (−i~τ ,12) which satisfy {σµE, σ̄νE} = 2δµν12 are the

sigma matrices in Euclidean space. More explicitly, the variation is found to be

δψM =
√

2

(
(∂3 − i∂4)Mξ̄1̇ + (∂1 − i∂2)Mξ̄2̇ − iξ1FM

(∂3 + i∂4)Mξ̄2̇ + (∂1 + i∂2)Mξ̄1̇ − iξ2FM

)
,

δψ̄M = −
√

2i

(
(∂3 + i∂4)M̄ξ1 + (∂1 − i∂2)M̄ξ2 + iξ̄1̇F̄M

−(∂3 − i∂4)M̄ξ2 + (∂1 + i∂2)M̄ξ1 + iξ̄2̇F̄M

)
. (A.2)

We stress that the supersymmetry transformation parameters ξ and ξ̄ are independent of

each other in Euclidean spaces.

We are interested in codimension-four instanton-like configurations. For the non-

canonical branch, we have FM , F̄M 6= 0. Let us consider the following 1/4-BPS condition

ξ̄1̇ 6= 0, ξ̄2̇ = ξ1 = ξ2 = 0, then we have

(∂3 − i∂4)M = (∂1 + i∂2)M = 0, F̄M = 0. (A.3)

The last condition together with the equation of motion of the auxliary field (2.8) with

fπ = 0 implies the following condition:

0 = TrFMF
†
M = Tr∂µM∂µM

†. (A.4)

The only solution to these conditions is M = const. The other choices of nonzero compo-

nent of ξ, ξ̄ result in the same condition. The other possible 1/4-BPS combinations of ξ, ξ̄,

for example ξ̄2̇ − iξ1 = ξ̄1̇ = ξ2 = 0, lead to the condition

(∂1 − i∂2)M = FM , (∂3 + i∂4)M = 0. (A.5)
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This implies that M is a holomorphic function of z = x3 + ix4 and its dependence in

the x1, x2 plane is determined by the source term FM on the right-hand side in the first

equation. This is just a vortex-lump type configuration discussed in [25]. The combinations

like ξ̄2̇ − iξ1 = ξ̄1̇ − iξ2 = 0 give lump-lump type configurations. This is true even if

we restrict the model to the NG subspace. Therefore, there are no non-trivial 1/4 BPS

instantons in the pure Skyrme model in four dimensions.

For the 1/2-BPS condition, if we keep two of the four parameters, it inevitably leads

to the condition FM = 0 which results in a vacuum condition of M . If we combine, for

example, ξ̄2̇ = iξ1, ξ̄1̇ = iξ2, this leads to the condition that M is independent of x3, x4.

Therefore codimension-four solitons are inconsistent with the 1/2 BPS condition. We note

that this is the story for codimension-four solitons. We can, however, find 1/4 and 1/2

BPS configurations of codimension two on the non-canonical branch [25].

The conclusion is that the pure Skyrme-instantons constructed by Speight is not BPS

in the supersymmetric Skyrme model. In hindsight, it is obvious that they cannot be BPS

since they carry Z2 charge. Although it is not a BPS solution in the sense that it does

not preserve fractions of supersymmetry, the instantons by Speight in four dimensions do

satisfy the equation of motion and saturate an energy bound on the NG subspace.

The same analysis can be applied even to the lower-dimensional models. In lower

dimensions, the supersymmetry variation of fermions is given by eq. (A.2) in which the

derivatives in the compactified directions x3, x4 are replaced by Killing vectors G associated

with isometries in the target space. Namely, the derivative with respect to the compactified

direction induces a motion along the Killing vectors, e.g. ∂3M = mG(M) where m is a mass

parameter. These Killing vectors generate central charges in the supersymmetry algebra.

Using this fact, it is obvious that the above discussion in four dimensions holds true in

lower dimensions. We find that only possible BPS instantons are two-dimensional 1/2 BPS

lumps in the massless theory, which are characterized by a holomorphic dependence on

x1, x2. One finds that the Skyrmion-instanton and the vortex-instanton discussed in the

main body of this paper do not belong to this class and they are thus non-BPS solitons.
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