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1 Introduction

In this paper we will revisit the construction of bulk operators in AdS/CFT [1–4], with

special focus on gravitational dressing and its consequences for locality. In particular,

we will investigate to what extent these issues are incorporated in the recently proposed

identification of bulk operators with cross-cap boundary states in the CFT [5–9]. We

specialize our discussion to AdS3/CFT2.

Most investigations of bulk physics in AdS work at leading order in large N . In this

limit, it is reasonable to assume that a standard semi-classical description applies, and that

bulk operators should look like free local quantum fields propagating on a fixed background

geometry [4, 10–12]. The infinite N limit, however, is bound to be somewhat misleading.

The holographic mapping relies essentially on the fact that the bulk theory is gravitational

and therefore inherently non-local. Localized observables must make reference to delo-

calized geometric data, such as the distance to some fixed reference point or asymptotic

boundary. In a quantum gravitational theory, the distance between two points defines a

non-local operator.

The non-locality of the bulk theory is more than just a technical nuisance. It is re-

sponsible for many of the apparent contradictions that plague the formalism of QFT in

curved space, and is likely to be an essential component of any future microscopic explana-

tion of holography. It also provides an immediate reality check for the bulk reconstruction

program. Rather than trying to enforce exact compliance with bulk locality, it is neces-

sary to come to grips with the fact that bulk observables are necessarily non-local, and

instead use the analytic and geometric structure of CFT as a guide for how to deal with

this non-locality in a natural and practical way.

A useful analogy for gravitational dressing is the use of Wilson lines, or generalizations

thereof, to define physical operators in gauge theory. Equivalently, one could fix the gauge

so that local matter fields become gauge invariant. However, their commutation relations

would still be non-local. The gravitational story is quite analogous [13, 14]. In this case the

dressing enforces diffeomorphism invariance and creates the gravitational field associated

with a local operator. It also serves as an anchor for the bulk point relative to one or more

reference points on the boundary. In addition, it should provide an dynamical adjustment

mechanism that ensures that the bulk equation of motion remains satisfied in non-trivial

background geometries.

As in gauge theory, the gravitational dressing operation is not unique. So let us list

some principles that can guide us toward a natural and practical choice.

– 1 –
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A set of reasonable requirements on the gravitational dressing prescription are that it

should be:

1. Geometric. Gravitational dressing provides a geometric anchoring for the bulk point

relative to the boundary. The dressing operator should include a projection that fixes

the geodesic distance between the bulk point to a collection of boundary points.

2. Intrinsic. The bulk geometry and gravitational dynamics emerge from the CFT. A

non-perturbative definition of bulk operators should preferably be given in terms of

intrinsic CFT data, and not presume the existence of a semi-classical bulk geometry.

3. Minimal. A gravitational dressing is minimal if a correlation function of N scalar

bulk operators Φ(Xi) depends on at most N(d+ 1) independent parameters, i.e. the

positions Xi. Ideally, there should exist a gauge choice in which the dressing operator

is invisible.

4. Analytic. Gravitationally dressed bulk operators are non-local, both in the bulk and

in the CFT. To preserve some form of locality, we require that correlation functions

between bulk and boundary operators are analytic and do not contain any unphysical

branch cuts.

5. Gauge invariant. The stress energy tensor of the CFT generates coordinate trans-

formations on the boundary of AdS. Diffeomorphism invariance of the bulk theory

implies that bulk correlation functions must satisfy Ward identities, or ‘soft graviton

theorems’, that generalize the conformal Ward identities of the CFT.

6. Gauge redundant. Physical arguments, such as the AdS/Rindler wedge construction

and the apparent similarity between holographic reconstruction and quantum error

correction [15], indicate that the bulk observables are not unique and should have

a built-in gauge redundancy. This will help avoid or conceal the physical effect of

non-local commutators.

In the following sections we will elaborate each of these requirements, and along the

way, test to which extent they are realized by the proposed identification of bulk operators

with cross-cap boundary states [5–7]. We mostly restrict ourselves to the special case

of AdS3/CFT2. We will argue that in this case the gravitational dressing necessitates

replacing the free HKLL operators (which define global cross-cap operators, that satisfy a

finite number of invariance conditions [7]) with Virasoro cross-cap operators (that satisfy an

infinite number of invariance conditions [5, 16]). We explicitly verify that this replacement

helps eliminate unphysical branch cut singularities in graviton amplitudes. We also describe

how, for holographic CFTs, approximate bulk locality emerges as a dynamical consequence

of a CFT crossing relation. Moreover, we will find that the amplitudes of Virasoro cross-

cap states satisfy a natural set of conformal Ward identities, that can be viewed as the

AdS3 analogue of soft-graviton theorems, and a form of background independence. A key

geometric ingredient that underlies most of these result is the uniformization theorem.
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2 A geometric definition of bulk operators

We introduce two sets coordinates on AdSd+1

Xa = (y, xµ) Poincaré

X = (ρ, t, xa) global

with xµ and (t, xa) coordinates along the AdS boundary R× Sd−1.

A bulk point in AdS lies at the intersection of a continuous family of geodesics. Since

each geodesic starts and ends at the boundary, a bulk point thus induces a pairing between

boundary points, depicted in figure 1. When the bulk point is located at the center of

AdS, the associated pairing is antipodal. We can move the point to some general location

X away from the center by acting with a isometry transformation which in the coordinate

system described above looks like

g(X) = yDeiPµx
µ ∈ SO(d+ 1, 2) Poincaré

g(X) = e−itHeρ(Pa−Ka)xa ∈ SO(d+ 1, 2) global

with (H,Mab, Pa,Ka) the global conformal symmetry generators on the AdS boundary

R × Sd−1. D is the Poincaré patch boundary dilatation generator and Pµ the translation

generators. Both descriptions will be convenient in the following and we will use them

interchangeably.

The characterization of a bulk point as the common intersection of a family of geodesics

is also natural from the point of view of radon transform and the kinematic space construc-

tion of bulk operators [17, 18].

2.1 Bulk operators as global cross-caps

The mapping that interchanges the endpoints points of all geodesics through X defines an

orientation reversing diffeomorphism of the boundary. For a bulk point located at X =

(y, xµ) pure AdS, this diffeomorphism takes the form of a global conformal transformation

z′
µ − xµ = −y2 zµ − xµ

(z − x)2
. (2.1)

We thus obtain a canonical identification between bulk points in AdS and orientation

reversing global conformal transformations. Picking a bulk point breaks the SO(d, 2) group

of global conformal transformations to the subgroup SO(d − 1, 2) of transformations that

commute with the orientation reversing global conformal transformation (2.1).

Bulk operators are in one-to-one correspondence with CFT operators via the asymp-

totic condition Φ(X) → y2hO(x) for y → 0. To leading order in 1/N and in the AdS

vacuum, the bulk field Φ(0) satisfies the free wave equation(
� +m2

h

)
Φ(0)(X) = 0 (2.2)

with � is the wave operator in AdSd+1 and m2
h = 2h(d − 2h). At sub-leading order in

1/N , this equation of motion receives 1/N corrections, both due to coupling to dynamical

gravity and due to self-interactions. These corrections will be the main focus of this paper.
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Figure 1. A bulk point X in AdS lies at the intersection of a continuous family of geodesics, and

thereby induces an antipodal pairing between boundary points.

An efficient construction of the leading order operator Φ(0) was introduced by

Nakayama and Ooguri in [7]. Consider the global cross-cap state |Φ(0)〉 ≡ |Φ(0)(0)〉, made

from global descendents of the primary state |O〉 of conformal dimension h, solving

Mab

∣∣Φ(0)
〉

= 0 (2.3)

(Pa +Ka)
∣∣Φ(0)

〉
= 0. (2.4)

These equations impose the condition that |Φ(0)〉 is invariant under all global isometries

that keep the center of AdS fixed, thus supporting its interpretation as a state created by

a local bulk operator situated at the center. By acting with the global AdS isometries, we

construct states |Φ(0)(X)〉 localized at any other point X

∣∣Φ(0)(X)
〉

= g(X)
∣∣Φ(0)

〉
(2.5)

with g(X) the global transformation given in equation (2.15). The resulting operator

Φ(0)(X) solves the free field wave equation (2.2) on the unperturbed AdS geometry and

satisfies the GKPW asymptotic boundary condition. This geometric definition of bulk op-

erators is equivalent to the free HKLL formula Φ(0)(X) =
∫
dxK(X,x)O(x) where K(X,x)

is the HKLL smearing function that solves the bulk equation of motion [10].

The leading order bulk operator (2.3)–(2.4) can be recognized as a global cross-cap

state: it imposes the antipodal identification z = z′, with z′ given in equation (2.1), and

projects on the Hilbert space sector spanned by the global descendents of the primary

operator O. This characterization has several attractive features, and an equal number

of short-comings. It gives a nice geometric description, but it only works for pure AdS.

Moreover, the projection onto a given representation of the global conformal group is a

rather artificial non-local operation that presumes a preferred global coordinate system. It

is then not surprising that, as soon as interactions are included, the leading order definition

needs to be modified.
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2.2 Bulk interactions and locality I

A first non-trivial test of locality is the three point function between a single free HKLL

bulk operator and two boundary operators

〈
Oi(x1)Oj(x2)Φ(0)

k (0)
〉

=
(1 + x2

1)hi−hj (1 + x2
2)hj−hi

(x1 − x2)2(hi+hj)
G(0)

ijk(η) (2.6)

Here, without loss of generality, we placed the bulk operator at the center X = 0, and

η =
(x1 − x2)2

(1 + x2
1)(1 + x2

2)
(2.7)

is the cross ratio. Assuming the bulk theory is weakly coupled, the leading order con-

tribution to the three point function would be expected to take the form of a tree

level Witten diagram. In particular, bulk locality requires that it should be free of any

non-local singularities.

The function G(0)

ijk(η) was computed for example in [11, 12] and found to be given by

G(0)

ijk(η) = Cijk η
hk

2F1

(
hk + hij , hk − hij , 2hk; η

)
(2.8)

with hij = hi−hj . This expression has a branch cut at η > 1. The value η = 1 corresponds

to the configuration where x1 and x2 are antipodal points relative to the location of the

bulk operator

η → 1 for x1 → −
x2

x2
2

. (2.9)

For general locations X, the branch cut singularity appears where x1 and x2 are at the

beginning and end-point of a geodesic through X.

It is expected that this non-locality can be removed via an appropriate modification of

the leading order operators Φ(0), that includes the effect of bulk interactions. It turns out

that holographic CFTs naturally have the required structure that allows one to implement

this program. Using the CFT bootstrap, it can be shown that for every pair of light

operators Oi and Oj in a holographic CFT, there exists an infinite series of double trace

operators On = [OiOj ]n with conformal dimensions hn = hi + hj + n with n = integer,

up to corrections of order 1/N (For simplicity, we are ignoring spin.) [19–22]. The OPE

between the two light operators takes the form of a generalized free field expansion, plus

subleading interaction terms

Oi(x)
∣∣Oj〉'∑

n

Cijn x
2n
∣∣On〉+

1

N

∑
k

Cijk x
2(hk−hi−hj)

∣∣Ok〉 (2.10)

plus descendents. Here we extracted an explicit factor of 1/N from the OPE coefficient

between three light single trace operators.

The procedure developed in [11, 12, 23–25] for obtaining the 1/N corrected bulk op-

erator Φ is to write Φ = Φ(0) + an infinite tower of free HKLL operators associated to

the double-trace operators On. The coefficients in this expansion are then fixed by the

– 5 –
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requirement that the branch cut at η = 1 cancels out in the three point function. As an

alternative derivation, one can fix the interaction terms by requiring that the correlation

functions of bulk operators Φ(X) continue to satisfy the bulk wave equation in general

semi-classical backgrounds [12, 26]. The underlying mechanism is that, after replacing the

CFT operators by their expectation value, the interaction terms automatically produce the

required deformation of the linearized bulk wave operator. We will refer to this approach

to restoring bulk locality as the HKLL expansion.

Gravity and gauge interactions play a special role, since they dictate that bulk op-

erators must be defined in a way that respects diffeomorphism and gauge invariance. In

gravity, the required modification of local operators is called gravitational dressing.

2.3 Virasoro cross-cap operator

Our aim in this paper is to uncover new clues towards finding an intrinsic CFT definition

of bulk operators that optimizes the physical requirements of bulk locality, background

independence and diffeomorphism invariance. Necessarily, this bulk operator will need to

include a form of gravitational dressing. From now on we will specialize to AdS3/CFT2.

We will comment on the higher dimensional case in the concluding section.

Given that 2D CFTs have enhanced conformal symmetry, it is natural to investigate

what happens if one promotes the definition of bulk operators to the full Virasoro cross-cap

states [5]. There are several pieces of evidence in support of this proposal. First, Virasoro

cross-caps are true geometric defects, that affect the complex structure and orientability

of the 2D space-time. The associated CFT operator transforms covariantly under the

full group of analytic coordinate transformations (z, z̄) → (w(z), w̄(z̄)). As we will see in

section 5.3, this activates the powerful uniformization theorem as an organizing structure

for analyzing CFT correlation functions, in a manner that directly mirrors the geometric

properties of the AdS bulk. In [5], this fact was used to show that the matrix element of

the cross-cap Ishibashi state between two heavy states matches with the mode function of

a bulk field in the corresponding BTZ black hole geometry, see also [27]. In this paper,

we would like to explore this proposal further. We will use the cross-cap states both as

guidance for how to think about gravitational dressing, and as an investigative tool for

studying bulk dynamics and backreaction from a pure CFT perspective.

Inserting a cross-cap makes the 2D space-time non-orientable. To describe a CFT on

a non-orientable space-time Σ, it is convenient to view Σ as a Z2 quotient of an orientable

space-time Σ̂, called the orientation double cover, or Schottky double of Σ. The covering

space Σ̂ has two copies of each point on Σ, one for each orientation, and thus admits a Z2

involution that interchanges the two orientations. Starting from the CFT on Σ̂, we obtain

the CFT on Σ = Σ̂/Z2 by moding out by the orientation reversing Z2 identification.

Thanks to the uniformization theorem, the Schottky double admits a complex coor-

dinate system such that the orientation reversing involution takes the form of a Möbius

transformation z → (az + b)/(cz + d) with ad − bc = 1. We can choose the coordinates z

so that the boundary that connects the two sheets of the cover takes the shape of a circle

(z − x)(z̄ − x̄) = y2. (2.11)

– 6 –
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Via its center location (x, x̄) and radius y, the circle specifies a point in AdS3. We introduce

the orientation reversing global conformal transformation (cf. equation (2.1) )

z → z′ = x− y2

z̄ − x̄ , (2.12)

which interchanges the two sheets of the double cover. The physical space-time Σ, defined

as the quotient under the Z2 identification z = z′, is now non-orientable: it has a cross-

cap inserted at the center of the circle. The simplest example of the above construction

produces the real projective plane RP2, which can be viewed as a cross-cap glued into a

sphere, or as the quotient of the sphere by the antipodal map, RP2 = S2/Z2.

A cycle that connect any point x to its Z2 image represents a non-contractibe cycle

of Schottky double of the cross-cap. The proposed definition of the local bulk field, put

forward in [5], is to identify Φ(X) with the operator that creates the cross-cap defect (2.12)

and projects onto the Virasoro representation labeled by h in the corresponding dual chan-

nel. Via the operator state correspondence, the operator Φ(X) is defined via the reflection

condition (
T (z)− T ′(z′)

) ∣∣Φ(X)
〉

= 0, (2.13)

T ′(z′) dz′
2

= T̄ (z)dz̄2 (2.14)

with z′ given in equation (2.12). We can translate the state |Φ(X)〉 to the state |Φ〉 placed

at the center of AdS3 by acting with the global isometry transformation

g(X) = e−itHeϕl0e
ρ
2

(l−1−l1), (2.15)

where : H = L0 + L̄0, l0 = L0 − L̄0, l1 = L1 − L̄−1, l−1 = L−1 − L̄1. (2.16)

When expanded in Laurent coefficients, equation (2.13) implies the infinite set of conditions(
Ln − (−1)nL−n

)∣∣Φ〉 = 0, n ∈ Z (2.17)

which define a cross-cap boundary state. If we ignore bulk self-interactions, it is reasonable

to require that the state |Φ〉 is spanned by descendents of the primary state associated to

the CFT operator O(x). Equation (2.17) then specifies a unique Ishibashi state |Φ〉 = |h〉〉
The Ishibashi conditions (2.17) are necessary to ensure that the cross-cap state are

invariant under arbitrary conformal transformations that preserve the location of the cir-

cle (2.11). As we will see in section 5 and appendix B, this invariance implies that the

correlation functions of Φ(X) satisfy conformal Ward identities, that in the bulk theory

can be interpreted as recursion relations similar to the soft-graviton theorems. The full

conformal invariance is also a requisite for the uniformization theorem, which will play a

key role in demonstrating background independence of the bulk operators.

This Virasoro Ishibashi state can be generalized to include gauge fields. AdS3 bulk

theories with gauge interactions correspond to CFT2 with chirally conserved Kac-Moody

currents J(z) and J̄(z̄). Ward identities in the CFT give recursion relations between

– 7 –



J
H
E
P
0
1
(
2
0
1
7
)
0
0
4

correlation function between bulk operators and boundary currents, analogous to soft-

photon theorems. The absence of non-local branch cuts in these mixed correlation functions

requires extending the set of Virasoro Ishibashi condition with an infinite set of Kac-Moody

Ishibashi conditions
(
Jn−(−1)nJ̄−n

)∣∣Φ〉 = 0. More generally, if the bulk contains massless

higher spin fields, the Ishibashi conditions must be imposed for the complete extended chiral

algebra of the CFT. This corresponds to ‘higher spin dressing’ of the bulk operators, and

ensures that all gauge constraints and associated Ward identities are satisfied.

The proposed identification of cross-caps with bulk fields receives combinatorial sup-

port via the counting of complex structure moduli. The orientable double cover of a sphere

Σg with g cross-caps is a Riemann surface with g handles. The moduli space of conformal

structures of Σg is the subspace of the moduli space of Σ̂g which preserves the Z2 involu-

tion. It has real dimension 3g − 3 for g > 1. Adding a cross-cap adds three real moduli,

given by the location and size of the new cross-cap. It also adds a new element to the

fundamental group of the surface, along which one can insert a projection onto a given

conformal family. The three moduli are interpreted as the locations of the corresponding

bulk operator. The non-orientable surface with g = 1 is the Klein bottle. It has one real

modulus, which we will interpret as the distance between two bulk operators. In section 6,

we will use this identification to compute the bulk-to-bulk two point function.

In the next sections, we will provide evidence that the replacement of the global cross-

cap state by the Virasoro cross-cap state incorporates the physical effect of gravitational

dressing. Other bulk interactions, such as self-interactions among bulk scalar fields, will

require a further modification, which we will outline below.

2.4 Holographic cross-cap operator

We now introduce a more complete CFT definition of local bulk operators, that includes

the effect of other bulk interactions besides gravity. Our proposal can be viewed as a

natural CFT implementation of the HKLL construction that removes non-local branch

cuts in the bulk-to-boundary three point function 〈ΦOO〉. An analogous investigation was

recently performed in [8]. The main difference between our approach and their set-up is

that we take the Virasoro cross-cap states as a starting point, and moreover, we replace the

strong conformal bootstrap condition considered in [8] by a weaker bootstrap constraint.

We will call this weaker condition the ‘holographic bootstrap constraint’ and the solutions

‘holographic cross-cap operators’.

We start from the Ansatz that holographic cross-cap states can be expanded as an

infinite weighted sum of Virasoro Ishibashi states∣∣Φ〉 =
∣∣ h〉〉 +

∑
hp>h

Φp
∣∣ p〉〉. (2.18)

The extrapolate dictionary limy→0 y
−2h Φh(y, x) = Oh(x) requires that the Ishibashi state

|h〉〉 appears with unit coefficient Φh = 1 as the lowest term in this expansion. Higher

terms with hp > h will be automatically suppressed in the y → 0 limit. Moreover, following

HKLL, we will assume that all terms Φp with hp > h are of order 1/N . This is a reasonable

– 8 –
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assumption, given that the role of the these higher coefficients is to incorporate the effect

of bulk interactions.

We wish to identify a natural CFT principle that uniquely fixes the Φp coefficients.

Consider the matrix elements (cf. equation (2.6))〈
Oi
∣∣Oj(x)

∣∣p〉〉 = ηhi−hjGijp(η), η ≡ 1

1 + x2
, (2.19)

〈
Oi
∣∣ Oj(x)

∣∣Φ〉 = ηhi−hjGΦ
ij (η), GΦ

ij (η) =
∑
hp≥h

Φp Gijp(η). , (2.20)

which represent three point functions of two local operators and one cross-cap state at

X = 0. Both cross-cap states implement the Z2 identification x↔ x′ = −1/x̄ for the stress

tensor. This involution acts on the cross ratio via η ↔ 1− η.

As we will discuss in section 4, the three point functions Gijk(η) can be evaluated

via the method of images, by going to the double cover Σ̂ of the non-oriented surface Σ

with the cross-cap. This method identifies the three point function Gijp(η) with the chiral

Virasoro conformal blocks defined on the double cover

p

Oi(η) O′
j̄
(1)

Oj(0) O′
ī
(∞)

Gijp(η) =
〈
Oi(0)Oj(η)PpO′i(1)O′j(∞)

〉
=

(2.21)

Here Pp denotes the projection onto the conformal sector labeled by p, and we absorbed

the OPE coefficients into the definition of the conformal block. We can think of this chiral

four point function as obtained by factorizing the operators Oi and Oj into their chiral

halves, and placing the right-moving half of each operator at the Z2 image point of the

left-moving half under the orientation reversing Z2 involution. The Z2 symmetry fixes the

cross ratio η to be real.

The bootstrap condition is a restriction on the Z2 transformation of the three point

function. Since the Ishibashi state |p〉〉 involves a projection on a given conformal sector,

correlation functions involving primary fields are not single valued on the quotient space

Σ: if we transport Oi from a point x in the outside region |x| > 1 to its mirror point x′ in

the interior region |x| < 1, we must deform the contour along which the projection acts.

As a result, the three point functions Gijp(η) exhibit a non-trivial Z2 monodromy. The

standard bootstrap condition for CFT cross-cap states includes the requirement that the

corresponding three point functions are single valued under the Z2 involution Gij(1− η) =

εGij(η) up to an overall sign ε = ±1.1 However, as pointed out in [8], this condition appears

to be too restrictive. We will therefore replace it with a weaker requirement that there

must exist a mirror cross-cap state |Φ̃〉 =
∑

k Φ̃k
∣∣k〉〉 ∈ HCFT such that the Z2 involution

x→ x′ interchanges the respective three point functions

GΦ
ij (1− η) = G̃ Φ̃

ij (η). (2.22)

1This condition can be thought of as a generalization of (2.13) to other non-chiral operators, it can also

be thought of as [Oj −O′j ]|C〉 = 0, where O′j is the image of Oj under the cross-cap identification.
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In other words, there should exist a set of expansion coefficients Φ̃k such that∑
p

ΦpGijp(1− η) =
∑
k

Φ̃k Gijk(η), (2.23)

where the sum on the right-hand side must run over the actual CFT spectrum. Via the

identification (2.21), the holographic bootstrap condition (2.23) can be diagrammatically

represented in the form of a crossing relation

p

Oi

Oj

Oj

Oi

= Σ
k

Φk k

Oi

Oj

Oj

Oi

‘

‘
‘

‘

p
ΦpΣ ~

This condition can be explicitly analyzed once we know analytic expressions for the Virasoro

conformal blocks.

While equation (2.23) is weaker than the standard CFT bootstrap constraint, it is

still very restrictive. Using the identification (2.21) and known results about the crossing

relations of Virasoro conformal blocks [28, 29], it may be possible to write a formal duality

relation of the form Gijp(1 − η) =
∑

kMpkGijk(η). However, for holographic CFTs with

c � 1, this duality transformation necessarily involves an integral over a continuum of

states, that do not all belong to the CFT spectrum [28, 29]. The rule that the sum runs

over the actual CFT spectrum is a necessary requirement if we want to be able to view the

state |Φ〉 as obtained by imposing some geometric boundary condition on the CFT path-

integral. Other than that, it is reasonable to assume that the dual expansion coefficients

Φ̃k describe some random distribution supported on the entire spectrum over the CFT and

that all Φ̃k are of order O(1/N). A further discussion of equation (2.23) from an algebraic

(rational) CFT perspective is presented in appendix A.

2.5 Bulk interactions and locality II

We will now argue that for holographic CFTs, the holographic bootstrap condition (2.23)

is sufficient to ensure that the bulk to boundary correlation functions obey micro-causality.

The HKLL micro-causality condition stipulates that the three point function should be

free of non-local branch cuts. This is a special case of the more stringent condition that

the three point function remains regular when the operator Oj approaches the Z2 image

O′i of the other operator

GΦ
ij (η) = regular at η = 1. (2.24)

In the dual AdS interpretation, the point η = 1 corresponds to the situation where Oi and

Oj are situated at antipodal points relative to the bulk operator Φ. The condition (2.24)

is highly restrictive. As we will see, for generic cross-cap states the three point function

GΦ

ij(η) is expected to exhibit a non-local logarithmic branch cut for η > 1. Equation (2.24)

demands that these branch cuts cancel out in the sum (2.18). We will argue how our

– 10 –
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Õj Õi
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Figure 2. The limits η → 0 and η → 1 of the bulk-to-boundary three-point function
〈
ΦOiOj

〉
correspond to the two OPE limits where Oi approaches Oj or its mirror image [32]. For physical

cross caps both limits correspond to the same physical situation. For holographic cross caps, bulk

locality requires that the limit η → 1 is regular.

proposal (2.23) satisfies (2.24), but we leave for future work to understand if there is a

better explanation purely from the CFT point of view.

The regularity of the 3-point function at η = 1 gives useful information about the

expansion coefficient Φ̃k in the crossed channel. As mentioned in section 2.2, the spectrum

of a holographic CFTs contains for every pair of light single trace operators Oi and Oj an

infinite series of double trace operators On with conformal dimension hn = hi+hj +n with

n a non-negative integer. At large N , these operators give the dominant contribution in

the OPE expansion between Oi and Oj . Using equations (2.10) and (2.23) we deduce that

to leading order in 1/N , we can expand2

GΦ
ij (η) '

η→1

∑
n

Cijn Φ̃n (1− η)n + . . . (2.25)

where the sum over n runs over all intermediate double trace operators On. All leading

terms in this sum are regular at η = 1 and in particular have no branch cut at η > 1.

Regularity at η = 1 requires that all subleading contributions of single trace operators

and heavy states, indicated by the dots, are suppressed by extra factors of 1/N and/or

by kinematics. As we have argued above, holographic CFTs are expected to satisfy this

requirement.

The regularity condition (2.24) was used in [11] to (uniquely) determine the 1/N

corrections to Φ(0). We can make direct contact with the analysis of [11], by noting that

in the large c limit with fixed hi, hj , hp, the Virasoro blocks reduce to global blocks

Gijp(η) =
c→∞

Cijp η
hp

2F1

(
hp + hij , hp − hij , 2hp; η

)
(2.26)

with hij = hi−hj . This expression matches the bulk-to-boundary three point function (2.6)

of Φ(0) found in [11]. The global block (2.26) has a logarithmic branch cut for η > 1. The

CFT origin of this branch cut is that, due to the projection on a fixed conformal family in

2Here we assume that all Φ̃p coefficients that appear in (2.23) are of the same order in 1/N . Note that,

for the three-point function to be order 1/N , the coefficients Φ̃n of the double trace operators On have to

be of order 1/N . Since all other OPE coefficients are suppressed by an extra factor of 1/N , the dots thus

refer to terms of order 1/N2.

– 11 –



J
H
E
P
0
1
(
2
0
1
7
)
0
0
4

the intermediate channel, the conformal block has non-trivial monodromy when Oj circles

around O′i.
Let us denote the discontinuity of Gijk(η) across the branch cut by Iijk(η). As we

have argued above, for holographic CFTs and for bulk operators that satisfy the bootstrap

condition (2.23), this discontinuity cancels to leading non-trivial order in 1/N . So we

deduce that the coefficients Φp in the expansion (2.18) must be chosen such that∑
p

ΦpCijpIijp(η) = 0. (2.27)

This equation has been analyzed in [11] and shown to uniquely fix the 1/N corrections,

via the Ansatz that the sum over p in (2.18) includes (besides the primary state h with

normalized coefficient Φh = 1) an infinite set of double trace operators On with coeffi-

cients Φn of order 1/N . After plugging the solution for Φn into the expansion (2.20) and

using (2.26), one discovers that the resulting three point function GΦ

ij(η) reproduces the

expression for the tree level Witten diagram of a local interacting bulk theory [12]. In com-

bination, these results support our proposal that the holographic cross cap states defined

by (2.13) and (2.23) exhibit no non-local singularities (to leading order in 1/N), and solve

the interacting bulk equation of motion.

Let us summarize. We have formulated an intrinsic CFT definition of the HKLL bulk

operators in terms of cross-cap boundary states. The novelty of our approach is that

we factorize the micro-causality conditions into two steps: (i) the conformal invariance

constraint (2.13) and (ii) the holographic bootstrap equation (2.23). Both conditions are

natural from a CFT perspective, and do not presume the existence of a bulk dual. We have

argued that these conditions are implied by CFT locality, but for holographic CFTs are

sufficient to imply that the three point functions
〈
ΦOO

〉
are free of non-local branch cuts,

at leading order in 1/N . However, as we will see in the following, correlation functions

involving boundary stress energy tensors and other conserved currents such as
〈
ΦOT

〉
and

〈
ΦOT T̄

〉
still exhibit singularities whenever the stress energy insertions are antipodal

relative to Φ. Thanks to the conformal invariance constraint (2.13) these singularities are

given by poles instead of branch cuts. In the next section, we will argue that imposing

Virasoro symmetry has a natural bulk interpretation in terms of gravitational dressing.

Before we move on, we would like to point out that a combination of blocks that solves

similar constrains in higher dimensional CFT has already been considered long time ago

by A. Polyakov [51], and more recently in [50, 52]. In [50] they argue that in theories with

a spectrum of primary operators and double trace operators the bootstrap equation can

be efficiently solved if one first constructs what they called “dressed” conformal blocks.

These blocks are defined as a sum of a single primary operator block plus double-traces

in a way that solves the equation (2.23) that we called “holographic bootstrap”, although

applied to the full global block and not to the chiral part of it. They argue in that paper

that this equation has infinite solutions given by sums of double-trace operators that by

itself solves (2.23). To pick a special solution they further impose the regularity condition

similar to (2.24). A similar logic was initiated in [51] and implemented recently in [52]

using Mellin transformations techniques. These considerations show that the HKLL states
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are a natural object that appears when trying to solve the bootstrap in theories with a

generalized free field theory-like spectrum.

3 Gravitational dressing

In this section, we discuss a few basic aspects of gravitational dressing, and formulate some

physical expectations about what a dressing operation should look like. We then study to

what extent the Virasoro cross-caps states meet these expectations.

3.1 Physical expectation

In gauge theories, gauge invariance forbids the presence of local charged field operators.

It dictates that a charged matter field Φ(X) must be attached to a non-local operator

WΓ(X) that creates the associated flux line, either in the form of an open Wilson line

or as a smeared operator that directly creates the associated Coulomb field. We will call

WΓ(X) a ‘dressing operator’. Dressing operators are not unique. To formulate a notion

of locality, it is useful to choose a gauge, that associates a unique dressing operator to

a given point. The statement of locality is that ΦΓ(X) = Φ(X)WΓ(X) commutes with

operators spacelike separated from the support of WΓ(X). It is often customary to choose

the dressing operator such that in the given gauge choice WΓ = 1 so that ΦΓ(X) = Φ(X).

Note, however, that even if ΦΓ(X) looks like the usual local QFT operator, the commutator

algebra (defined via the Dirac bracket) is non-local, as it includes the non-local effect of

the dressing operator.

The gravitational story is quite analogous. In this case, the dressing enforces diffeomor-

phism invariance and creates the gravitational field associated with the excitations created

or annihilated by a local operator. A convenient gravitational dressing in AdS space-time

is to specify the position of an operator via the affine distance along a geodesic normal

the boundary. In Fefferman-Graham coordinates, the associated dressing operator looks

trivial. As before, however, the presence of the dressing operation remains visible in the

form of non-local commutation relations [13].3

The CFT expression for the geodesically dressed bulk local operator is not known at

present.4

In general, we expect that the dressing operator receives contributions to all orders in

the stress tensor. The following physical argument gives a useful indication for what the

result should look like, see [13] for more details. Suppose we choose some gauge, say, by

3Bulk locality in the presence of gauge interactions has been studied before in [23–25, 33, 34]. These

papers consider bulk fields in the F-G gauge gyµ = Ay = 0, which makes trivial the dressing defined by

shooting a perpendicular geodesic to the boundary of AdS. The commutators between the bulk operators

and the corresponding conserved currents are found to vanish at space-like separation along the boundary: if

a bulk operator Φ(y, x) is anchored to the point x in the boundary, then [Φ(y, x), Tµν(x′)] = [Φ(y, x), j(x′)] =

0 for x 6= x′. Gravitational dressing in d = 3 has been explored before in [14]. Here we are taking a more

operational approach.
4While gravitational dressing has been considered before in [23, 25, 33], they never wrote an explicit

boundary expression with the proper “local” bulk commutation relations. In the case of electromagnetic

interactions, [34] analyzed it in detail.
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setting some components of the metric equal to zero. Let us denote the coordinate system

in this gauge by X . Since diffeomorphism invariance is now fixed, a local field Φ(0)(X )

is a physical observable. In some other general coordinate system X, we can write the

corresponding dressed field as Φ(X) = Φ(0)(X (X)). Let v(X) denote the vector field that

generates the diffeomorphism X → X (X)+ v(X) + . . . Then the dressed operator looks like

Φ(X) = eK(X) Φ(0)(X) eK
†(X), K(X) = ivα(X)Pα (3.1)

with Pα a bulk translation generator. We choose the coordinate system X such that

X (X) = X in the pure AdS, so that vα(X) = 0 in the vacuum state. When we deform

the background away from pure AdS by turning on some boundary stress energy source

Tαβ , we expect that vα(X) becomes non-zero, and in the linearized regime, proportional to

Tαβ . The translation operator Pα is also linear in Tαβ . We deduce that, in this linearized

regime, the dressing operation takes the generic form (3.1) with K a quadratic expression

in the CFT stress tensor

K =
1

N2

∫
d2z d2wfαβγδ(z, w)Tαβ(z)Tγδ(w), (3.2)

where fαβγδ(z, w) denotes a suitable bilocal tensor. Here one of the Tαβ factors detects

the deformation of the background geometry, and the other one acts as the generator

of the diffeomorphism that transforms the free field Φ(0)(X) into the dressed operator

Φ(X) = Φ(0)(X (X)). The presence of the 1/N2 prefactor indicates that the dressing

operator incorporates 1/N corrections, and thus would appear to become trivial in the

large N limit. In the following subsection, we will show that the cross-cap operators are

indeed of the expected form (3.2).

3.2 Dressing operator

The Virasoro cross-cap state decomposes as a sum of a global cross-cap state plus a series of

1/c correction terms. We will now analyze these correction terms, and show that they can

be interpreted as gravitational dressing: they incorporate the interaction between the bulk

operator and the gravitational degrees of freedom in the bulk. As we will see in section 5,

they implement a form of background independence: they ensure that Φ(X) satisfies the

bulk wave equation of motion in a general class of background geometries. In this section,

we will isolate the gravitational correction terms and combine them into a single ‘dressing

operator’. Indeed, a perhaps somewhat surprising aspect of our proposal is that even the

identity operator 1 has a non-trivial representation as a gravitationally dressed local bulk

operator 1(X). The following discussion is meant to explain its physical role. We will see

that in the end, via a judicial gauge choice, we will be able to set 1(X) = 1.

It is not hard to convince oneself that there exists a gravitational dressing operation,

which we may formally denote by eK(X) = g(X) eKg(X)−1, such that∣∣Φ(X)
〉

= eK(X)
∣∣Φ(0)(X)

〉
(3.3)

The dressing operator eK consists of a sum of products of Virasoro generators, designed

such that it converts a state that satisfies the global cross-cap conditions into a state that
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solves the Virasoro cross-cap conditions. When acting on the CFT vacuum state, the

dressing operator creates the Virasoro cross-cap state in the identity representation∣∣1(X)
〉

= eK(X)
∣∣0〉 (3.4)

Via the operator state correspondence we can identify 1(X) = eK(X), which we can think

of as the operation of placing the identity operator at the bulk location X. This is a

non-trivial operation: it inserts a projection operator that restricts the functional integral

of the bulk gravity theory to the space of all metrics for which the point X lies at the

intersection of an infinite family of geodesics with prescribed endpoints. The functional

integral over all bulk metrics with and without this restriction are physically different.

We would like to make this statement more explicit. For simplicity we will work at

the linearized level, and specialize to the state |1(0)〉 = eK|0〉. According to the above

interpretation, the state |1(0)〉 is given by the functional integral over all metrics for which

antipodal points, related via z′ = −1/z, are end-points of geodesics that all go through

the center of AdS3. This restriction on the functional integral is expressed in the CFT via

the conditions
(
Ln− (−1)nL−n

)∣∣1(0)
〉

= 0. Combining these conditions with the Virasoro

algebra we deduce that to leading order in 1/c the operator K takes the form

K =

∞∑
n=2

(−1)n
L−nL̄−n
c

12(n3 − n)
+ . . . (3.5)

where the ellipsis indicate higher order terms in 1/c. Note that the gravitational dressing

operation eK looks like a 1/c correction: in the infinite c limit, eK formally approaches

unity. As we will see, however, for certain correlators one still needs to work with the exact

exponential expression. This is analogous to the electromagnetic case story [34].

3.3 Bulk interpretation of dressing operator

We would like to give a bulk interpretation of the gravitational dressing operator eK. From

the perspective of the stress energy tensor, a Virasoro cross-cap state implements a true

Z2 identification on the CFT geometry. Taking the Z2 quotient produces a non-orientable

boundary space-time Σ = Σ̂/Z2. Semi-classical bulk geometries with non-orientable bound-

aries were recently studied in [35, 36]. We briefly summarize their results. Following [36],

we will work in a Euclidean signature.

Any 3-manifold M with non-orientable boundary must be non-orientable itself. The

semi-classical bulk geometry is therefore the Z2 quotient of an orientable manifold M̂.

Unlike its boundary Σ = Σ̂/Z2, the quotient geometry M = M̂/Z2 may not be smooth:

it has a single Z2 defect located at its center.5

The orientation reversing involution σ : z → −1/z̄ of the boundary extends to an

orientation reversing isometry of the bulk. In Poincaré coordinates it reads

σ : z → − z

|z|2 + y2
, y → y

|z|2 + y2
, (3.6)

5The orientable double cover M̂ is given by the standard AdS3 space-time with metric d̂s2 = (dy2 +

dzdz̄)/y2 in Poincaré coordinates, or d̂s2 = cosh2ρdτ2 + sinh2ρdθ2 + dρ2, in global coordinates. The

Poincaré patch is y ∈ R+ and (z, z̄) ∈ C; the global patch has boundary S1×R parametrized by τ ∈ R and

θ ∈ [0, 2π]. The center of global AdS3 is at ρ = 0, τ = 0, which corresponds to y = 1 and z = 0.
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or in global coordinates

σ : (t, ρ, θ) → (−t, ρ, θ + π). (3.7)

This transformation has a fixed point at the origin of AdS. The quotient space-time M
= AdS3/Z2 therefore has a Z2 singularity at the origin. We will call this singularity

a Z2 defect.

From the above description it may look like inserting the Z2 defect amounts to removing

half of the bulk space-time. However, based on the CFT discussion in section 2 and the

correspondence with the HKLL program, we will adopt a different interpretation. We will

treat the involution (3.6)–(3.7) as an exact symmetry, that is enforced only on all geometric

deformations of the bulk space-time. In other words, we require that any deformation of

the space-time metric should respect the Z2 symmetry. From the point of view of the

full AdS geometry, this is a global restriction that leads to antipodal correlations in the

stress energy tensor. Massless gauge fields and currents are also subject to the same Z2

symmetry requirement.

The presence of the Z2 defect has non-local consequences, and thus creating it is a

non-local operation. Any sphere surrounding the Z2 defect is non-orientable, and has non-

trivial homotopy. The support Γ of the bulk operator ΦΓ(X) that creates the defect at X

must therefore extend out from the bulk point X all the way to the boundary and insert a

cross-cap into every surface that intersects with Γ. This extended support of ΦΓ(X) also

serves to specify the bulk location of the point X, by restricting the bulk geometry such

that the (regularized) geodesic distance from X to the boundary is held fixed. This type

of non-locality is an inevitable part of any gravitational dressing prescription. One of the

motivations of our study is to quantify its physical consequences. From here on we will not

explicitly indicate the support Γ of the bulk operator Φ(X).

3.4 Dressing operator as a sum over geometries

The dressing operator 1(X) is a purely geometrical defect. Note, however, that

〈T (z)1(X)〉 = 0, so at the linearized level, the dressing operator leaves the classical metric

unperturbed. To see its physical effect, we need to look at the fluctuations of the metric. As

we will now show, we can write the state
∣∣1(0)〉, defined in equations (3.4) and (3.5), as a

functional integral over all metrics compatible with the antipodal identification associated

with X. We will work at leading order at large c. In this limit, we can use semi-classical

gravity and use a linearized approximation.

In semi-classical gravity, the functional integral over metric is reduced to a sum

over classical geometries. Consider the general class of vacuum solutions of the 3-d Ein-

stein equations

ds2 =
1

y2

(
dy2 + dzdz̄

)
+ Ωdz2 + Ωdz̄2 + y2 ΩΩdy2 (3.8)

where Ω(z) and Ω̄(z̄) denote analytic functions of z and z̄. Elements within this class

of vacuum solutions are all related via reparametrizations that act non-trivially on the

boundary of of AdS3. The continuous family of bulk metrics (3.8) is associated with
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the family of CFT vacuum states |Ω〉 = U(ω)|0〉 related via diffeomorphisms U(ω) =

e
∮
dz ω(z)T (z)+c.c., with Ω and ω related via

〈Ω|T (z)|Ω〉 =
c

6
Ω(z) =

c

12
∂3ω. (3.9)

These vacuum states |Ω〉 are all physically distinct. Their existence is linked with the fact

that AdS3 has an infinite asymptotic symmetry group.6

Now let us consider the state |1(0)〉 = eK|0〉 created by dressing operator placed at

the center of AdS. From the linearized expression (3.5) for K, we deduce that the state

can be written as a gaussian integral over Ω of deformed vacuum states7

∣∣1(0)
〉

=

∫
[dΩ] e−S[Ω]

∣∣Ω〉, (3.10)

We can uniquely express the exponent S[Ω] in the prefactor as

S[Ω] =
∑
n≥2

(−1)n
c

12
(n3 − n) ω̄nωn + . . . (3.11)

=
c

2

∮
dwdz

ω(w)ω (−1/z̄)

(z − w)4
+ . . . (3.12)

with Ω and ω related via (3.9). This expression can be recognized as the linearized Einstein

action evaluated on the deformed AdS3 geometry (3.8), over the past region of the constant

time slice, and with the deformation Ω restricted to be symmetric under the antipodal map

S[Ω] =
1

8πG
SE [Ω] (3.13)

Ω(z)dz2 = Ω′(z′)dz′
2
, z′ = −1/z̄ (3.14)

The Newton constant G is related to the central charge c via 1
8πG = 2c

3 . Note that, since

the factor S[Ω] grows linear with c, the typical geometries that contribute to the functional

integral (3.10) are deformed geometries (3.8) with Ω of size ∼ 1/
√
c.

4 Bulk-to-boundary correlators and commutators

In this section we will compute several correlation functions of a single holographic cross-cap

operator Φ(X) with one or more local CFT operators O(z). These correlation functions

are uniquely fixed and computable by the Schottky double construction and conformal

symmetry. Consider a cross-cap operator located at X = (y, x, x̄). To study its correlation

functions with local CFT operators, we need to consider the CFT on the complex plane

subject to the Z2 identification (2.12). We will then analyze the singularity structure of

the correlation functions, and deduce information about the commutators between Φ(X)

and local boundary operators.

6Note that the relation (3.9) between Ω and ω determines the vector field ω up to sl(2) transformations

ω(z)→ ω(z) + ε−1 + ε0z+ ε1z
2. So for given Ω(z), the vector field ω(z) will in general be multi-valued and

undergo some sl(2) monodromy transformation.
7Here Ω is restricted to have trivial monodromy.
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As it is standard with boundary CFT calculations, see [32, 37] for example, an arbitrary

correlation function with a crosscap Ishibashi state of weight hk is equivalent to a chiral

correlation function in the Schottky double, where we add the appropriate image for each

local operator. Now this correlation function can be computed in the plane, with the

subtlety that one has to insert a projector Pk (into the space corresponding the hk) between

the operators and their images.

4.1 Some bulk-to-boundary correlators

In this subsection we will compute some simple bulk to boundary correlation functions.

We will work to leading order in 1/N .

4.1.1
〈
ΦO

〉
As a warm-up we start with the bulk-to-boundary 2-point function 〈O(x1, x̄1)Φ(y, x2, x̄2)〉.
Local CFT operators O(z, z̄) factorize into a holomorphic and an anti-holomorphic com-

ponent. Via the Schottky double, we obtain the bulk-to-boundary correlation functions

via the standard image method, by placing a virtual copy of every physical operator at

the corresponding mirror point under the Z2 identification (2.12). Specifically, we map

the left moving component at z into a right moving operator placed at z′. Meanwhile we

keep the left-moving component in place. This procedure also requires a Jacobian factor

O(z, z̄)→ y2h

(z̄−z̄0)2hOL(z)OR(˜̄z). If the operator is already chiral then if it is right moving it

will stay at the same location, while if it is left moving it will be mapped to a right moving

operator at the mirror point z′.

Following this method of images, we readily obtain

〈O(x1, x̄1)Φ(y, x2, x̄2)〉 =
〈
O(x1, x̄1)O′(x′1, x̄′1)

〉
=

y2h

(y2 + x12x̄12)2h
. (4.1)

This matches the standard expression for the bulk-to-boundary propagator. Note that if we

multiply the result (4.1) by y−2h and take the y → 0 limit, we recover the two point function

of a local operator, in accordance to the extrapolate dictionary limy→0 y
−2hΦh = Oh. The

global cross-cap operator would give the same result, as shown by explicit computation

in [6, 7].

4.1.2
〈
ΦOT

〉
Consider the three point function 〈TOΦ〉, where O is a scalar operator of the same con-

formal dimension h as Φ. The Schottky double construction, this is given by a chiral

three-point function on the double cover

〈T (z)O(x1, x̄1)Φ(y, x2, x̄2)〉 =
〈
T (z)O(x1, x̄1)O′(x′1, x̄′1)

〉
(4.2)

=
h y2h

(y2 + x12x̄12)2h−2(z − x1)2(y2 + (z − x2)x̄12)2
,

where x12 = x1−x2. The correlation function (4.2) exhibits a singularity for z = x2−y2/x̄12.

The global cross-cap produces the same formula (4.2). Of course, the reason that the two

are identical is that (4.2) follows uniquely from a global conformal Ward identity.
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(y, x, x̄)•
O(z)

•
O′(z′)

Figure 3. Correlation functions with cross-cap operators are most easily computed by the method

of images, by associating to every local operator O(z) a Z2 image operator O′(z′) placed at the

antipodal point z′ = x− y2

z̄−x̄ .

4.1.3
〈
1 T T̄

〉
As a next simple example, we place a single pure dressing operator 1(X) in the bulk and

consider its correlation functions with one or two stress tensor insertions. We immediately

find that these correlation functions are all trivial (i.e. equal to those in the vacuum),

except for the T T̄ two-point function

〈
T (z) T̄ (w̄) 1(X)

〉
=

c/2

(y2 + (z − x)(w̄ − x̄))4
(4.3)

Note that this two-point function has a pole at z − x = −y2/(w̄ − x̄), but that, for w

inside the region |w − x| > y, the pole in z is located on the second sheet |z − y| < y.

The presence of the singularity indicates that if we move T (z) from the first to the second

sheet, it flips orientation into T̄ (−1/z̄), which does have a singular OPE with T̄ (w̄). From

the bulk point of view, this antipodal singularity reflects the fact that, in the presence of

the dressing operator 1(X), metric fluctuations are prescribed to be invariant under the

Z2 involution that keeps the bulk point X fixed. This type of non-locality is a necessary

feature of gravitational dressing of local bulk operators. We will comment further on the

necessity and consequences of this non-locality in the next subsection.

4.1.4
〈
ΦOT T̄

〉
The simplest case for which the global and Virasoro results are different is

〈T (z)T̄ (w̄)O(x1, x̄1)Φ(y, x2, x̄2)〉. (4.4)

In the Virasoro case this is fixed by the image method and the conformal Ward identity. We

add the image of the operator O(x1, x̄1) and the image of the anti-holomorphic component
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of the stress tensor T (w̃) with w̃ = − y2

w̄−x̄2
+ x2. Including the proper Jacobians we obtain

〈T (z)T̄ (w̄)O(x1, x̄1)Φ(y, x2, x̄2)〉 =
cy2h

2(y2 + x12x̄12)2h(y2 + z2w̄2)4

+
h2y2h

(y2 + x12x̄12)2h−4(y2 + x12w̄2)2(w̄ − x̄1)2(z − x1)2(y2 + z2x̄12)2
(4.5)

+
2hy2h

(y2 + x12x̄12)2h−2(y2 + x12w̄2)(w̄ − x̄1)(z − x1)(y2 + z2w̄2)2(y2 + z2x̄12)

where x12 = x1 − x2, z2 = z − x2, w2 = w − x2, etc. The details of the computation are

given in the appendix C. Again we observe that the correlation function (4.5) is regular

everywhere, except for poles when two operators are at the same physical location, or

at each others image point on the second sheet. In particular we see that there are no

non-local branch cuts.

Let us repeat the calculation for the global cross-cap Φ(0). In this case the stress tensor

is on equal footing with other quasi-primary operators. Therefore when we insert more

than one stress tensor the result is no longer fixed by conformal symmetry. The Schottky

double picture is still valid and therefore the three point function is equal to a chiral four

point function

〈T T̄OΦ(0)〉 = 〈TO PGh TO〉, (4.6)

where the first two operator are placed outside the cross-cap radio and the rest are inside

and we inserted the projection PGh onto the global module of the primary state associated

to the cross-cap. From this one can immediately conclude that this is given by a global

conformal block8

〈h|T (z)T̄ (w̄)|Φ(0)〉 =
h2

(−zw̄)2 2F1

(
2, 2, 2h;− 1

w̄z

)
. (4.7)

This hypergeometric function diverges at z → w̃ = −1/w̄, which corresponds to the an-

tipodal point on the second sheet, but has a branch cut for w̃
z = (1,+∞). This equation

can be generalized for arbitrary positions since there is only one cross-ratio that can be

defined η = (z−x1)(w̄−x̄1)
(1+x1x̄1)(1+zw̄) , following [8], since this is equivalent to inserting a non-chiral

operator O(z, w̄) = T (z)T̄ (w̄).

Equation (4.7) can be compared with the Virasoro cross-cap result given by (4.5) in

the limit in which x1, x̄1 →∞ and x2, x̄2 → 0, which gives

〈h|T (z)T̄ (w̄)|Φ〉 =
h2

(−zw̄)2
+

2h

(−zw̄)(1 + zw̄)2
+

c/2

(1 + zw̄)4
. (4.8)

Comparing (4.7) with (4.8), we notice several differences. The global cross-cap correlator

has branch cuts, whereas the Virasoro cross-cap correlator has only poles. On the other

hand, equation (4.8) has a term proportional to the central charge c, while (4.7) in inde-

pendent of c. The extra term is identical to the vacuum two-point function 〈0|T (z)T̄ (w̄)|0〉.
Both differences can be interpreted as a result of the gravitational dressing.

8In appendix C, we derive this result by direct computation.
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At this stage, it is unclear to us how unique the modification of the global state that

gets rid of branch cuts is. For example, it would be nice to understand if the family of

1/c corrections that don’t have a branch cut is in one-to-one correspondence with different

Virasoro cross-cap states.

For completeness, it is interesting to compare (4.7) and (4.8). Using results from [53]

we can write the explicit combination

〈h|T (z)T̄ (w̄)|Φ(h,h)〉V =
∞∑
n=0

Cn〈h|T (z)T̄ (w̄)|Φ(0)
(h+n,h+n)〉, (4.9)

where the coefficients are given by

Cn =
1

h2

(
c(n− 1)3

12
(2h)n+1 + 2h(n(n+ 2h− 1) + 1)(2h− 2)n

)
(2h− 2)n

(2h− 2)2n+1

+
1

h
(−1)n((n+ 1)(2h− 2 + n)− 2)(n+ 1)!

(2h− 2)n
(2h− 2)2n+1

. (4.10)

This gives another way to write down the Virasoro dressing of the global cross-cap states.

The cross-cap states |Φ(0)
(h+n,h+n)〉 are interpreted as Virasoro descendants of |Φ(0)

(h,h)〉. Of

course, the sum over double-traces from the HKLL prescription, that are not constructed

from Virasoro descendants of the primary, are not going to contribute in this correlator.

4.1.5
〈
ΦOO

〉
Next let us consider the three-point function between two local CFT operators and one

cross-cap operator. These are proportional to OPE coefficients and should be interpreted

as bulk matter interactions. As discussed in section 2.4, in the interacting bulk operators

are defined as the holographic cross-cap states
∣∣Φ〉 = |h〉〉+∑n Φn

∣∣n〉〉, required to solve the

equation (2.23). Using the prescription outlined above, we find that the three point function

〈Oi|Oj(x)|Φ〉 = ηhi−hjGΦ
ij(η) can be decomposed as GΦ

ij(η) = Gijh(η) +
∑

n Φn Gijn(η),

with Gijp(η) given by the conformal blocks defined on the double cover

Gijp(η) =
〈
Oi(0)Oj(η)PpO′i(1)O′j(∞)

〉
=

c→∞
Cijp η

hp
2F1

(
hp + hij , hp − hij , 2hp; η

)
(4.11)

The coefficients Φn are determined by the holographic bootstrap condition (2.23), which

in particular implies that the function GΦ

ij(η) has no non-local branch cut for η > 1. As

discussed in section 2.5, this requirement is identical to the HKLL prescription for restoring

bulk locality [11]. Via our construction, we give a direct CFT interpretation of the HKLL

conditions as the rule that the operator Oj(η) should have a regular OPE with the antipodal

image of Oi.

4.2 Commutators

What can we learn from the above explicit formulas for the correlation functions about the

commutators between bulk and boundary operators? So far we have worked in Euclidean
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signature, where all operators are space-like separated. To extract commutation relations

from Euclidean correlation functions we can use the reconstruction theorem of Osterwalder-

Schader [38, 39]: we can get arbitrary time ordered correlators by displacing each operator

slightly in Euclidean time Oj(t − iεj) and then taking the {εj} → 0 in a particular order.

We can then derive the equal time commutation relations by extracting the discontinuity

at tE = 0 [
Φ(y, θ, 0),O(θ′, 0)

]
= lim

ε→0

(
Φ(y, θ, ε)O(θ′, 0) − Φ(y, θ,−ε)O(θ′, 0)

)
(4.12)

A nontrivial commutator results only if the field O encounters non analyticities, such

as poles or branch-cuts, as we vary x. Poles are typically associated with commutators

between light-like separated operators, while branch cuts in equal time correlation functions

indicate the presence of non-zero commutators at space-like separation.

Does our proposed definition of bulk operators lead to unacceptable non-local

commutators?

We first look at the c-number part of the commutator [Φ(X),O(z)] between a bulk

and a boundary operator. The 2-point function
〈
Φ(X)O(z)

〉
given in (4.1) is, perhaps

surprisingly, exactly equal to the free field bulk-to-boundary propagator. So from this we

conclude that
〈
[Φ(X),O(z)]

〉
= 0 for X 6= z. So the commutator has no non-local c-number

contribution.

Next we look at the commutator 〈T (z)1(0)T̄ (w̄) − T̄ (w̄)1(0)T (z)〉 in the presence of

a bulk operator 1(0). The 〈T (z)1(0)T̄ (w̄)〉 three point function given in (4.3) has a pole

at w = z′ = −1/z̄. This pole gives rise to a non-local commutator when T (w) and T̄ (z)

are located at antipodal points. For two points to be antipodal and slightly away from

t = 0, the time at which the bulk operator is inserted, they have to the future/past of

the crosscap. A similar conclusion holds for the correlation functions 〈ΦOT T̄ 〉. This non-

locality appears to be an inevitable consequence of the gravitational dressing operation.

Generators of global AdS isometries are given by integrals of the stress energy tensor over

the boundary, but act non-trivially on the location of the bulk point. Both facts can be

simultaneously true only if there are non-local correlations between the bulk operators and

the boundary stress tensor.

Some partial insight can be gained by studying the Ward identities that express the

effect of adding stress energy tensors to correlation functions. From the bulk perspective,

these identities are analogous to soft-graviton theorems, that describe the effect of adding

a boundary graviton to the correlation function. For a short description of these Ward

identities we refer to appendix B. One basic consequence of this bulk interpretation of

the Ward identity is that correlation functions of stress tensors cannot have branch-cut

singularities, only poles. As we have seen in the previous section, the transition from global

to Virasoro cross-cap states indeed eliminates the branch-cut at η > 1, but leaves a pole.

Finally we consider the commutator [Oi(x1),Oj(x2)] in the presence of a holographic

cross-cap operator Φ. The three-point function for Virasoro Ishibashi cross-cap states has

a branch cut along the line η > 1. Rotated to Lorentzian signature, η > 1 corresponds

to the region (x1 − x′2)2 < 0, which includes space-like separated points. The presence of
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the branch cut would lead to an unacceptable physical commutator between two space-like

separated operators. As argued in section 2.5, the holographic bootstrap constraint is suf-

ficient to remove this branch cut and any non-trivial monodromy around η = 1, at least to

leading order in 1/N . This eliminates the non-local commutator. The 〈OiOjΦ〉 correlation

function continues to be singular at η = 0 and exhibit a branch cut at η < 0. This is the

physical OPE singularity and discontinuity when Oi and Oj cross each others light-cone.

The gravitational dressing that the cross-cap implements leads to a Z2 symmetric

distribution of energy everywhere on the boundary. It would be interesting to study how,

by using conformal transformations similar to those of [14], one could comb the effect of

the dressing to a smaller subregion. As we will see in the next section, one indeed has the

freedom to change the shape of the cross-caps. This freedom plays an important role in

establishing background independence of the bulk operators.

5 Background independence

We have seen that the 2-point function 〈Φ(X)O(x)〉 reproduces the bulk-to-boundary prop-

agator in AdS. We will now present a general argument that demonstrates that Φ(X) also

satisfies the wave equation in a deformed background. Hence the cross-cap operators pro-

vide a concrete realization of an adjustment mechanism, whereby the gravitational dressing

terms, when acting on a state that represents a deformed background, automatically pro-

duce the necessary modification of the wave equation.

Consider the general class of classical bulk metric (3.8). In the CFT dual, this class

of backgrounds correspond to states |Ω〉 created by acting with a diffeomorphism on the

vacuum9
∣∣Ω〉 = U †(Z)

∣∣0〉, where U(Z) denotes the unitary operator that implements the

finite conformal transformation z → Z(z), with Z(z) chosen such that

〈Ω|T (z)|Ω〉 =
c

6
Ω(z) =

c

12
{Z, z} (5.3)

Similarly, we also introduce right-moving coordinates Z̄(z̄). We will call (Z, Z̄) the uni-

formizing coordinate system. The 2D uniformizing coordinates can be extended into the

bulk to a 3D uniformizing coordinate system X̃ = (Y ,Z, Z̄), in which the metric (3.8) takes

the standard form

ds2 =
1

Y 2

(
dY 2 + dZdZ̄

)
. (5.4)

9This class of metrics admits a continuous symmetry group generated by the infinitesimal diffeomor-

phisms

z → z̃ = z + ω +
1

4
y2 ∂̄2ω̄, y → ỹ = y

(
1 +

1

2
(∂ω + ∂̄ω̄)

)
(5.1)

under which Ω transforms via Ω → Ω̃ = Ω + ξ∂Ω + 2∂ξΩ − 1
2
∂3ξ. These infinitesimal diffeomorphisms

exponentiate to finite complex conformal transformations on the boundary. The finite transformation law

of Ω reads

Ω(w)dw2 =

(
Ω(z)− 1

2
{w, z}

)
dz2. (5.2)
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We would like to demonstrate that, when acting on the deformed state |Ω〉, the bulk

field Φ(X) satisfies the wave equation in the corresponding background

(�Ω +m2)Φ(X) = 0. (5.5)

As we will see, this statement of background independence is an immediate consequence

of the uniformization theorem. Essentially, the CFT proof of (5.5) directly copies the bulk

procedure that locally transforms the background metric (3.8) to the standard AdS3 form

by going to the uniformizing coordinates X̃ = (Y ,Z, Z̄).

A special case of this adjustment mechanism was already uncovered in [5] for the case

of the BTZ background. For a general metric in the class (3.8), the uniformizing coordinate

is multivalued: in going around the S1 circle, Z may undergo a monodromy Z → aZ+b
cZ+d

with ab− cd = 1 and similar for Z̄. For BTZ black hole states, the conjugacy class of the

Möbius transformations specifies the total mass and spin of the black hole [40]. Specializing

to the non-rotating case, 〈T (z)〉 = ∆/z2 and 〈T (z̄)〉 = ∆/z̄2, the uniformizing coordinate

transformation reads

Z(z) = zir+ , Z̄(z̄) = z̄ir+ with r2
+ = 24∆

c − 1. (5.6)

The paper [5] considered the matrix element of the cross-cap operator Φh(X) between

two highly excited states with conformal weight ∆ � c/12. This amplitude can be com-

puted via the same method as used in the previous section, by going to the Schottky double.

It is given by the four point conformal block of four heavy external states of dimension

close to ∆ projected onto a intermediate channel labeled by the light conformal dimension

h. The Z2 reflection symmetry of the Schottky double restricts the cross ratio η to be a

real number, which is identified with the radial location of the bulk point X at which Φ

acts. Setting X = (η, 0, 0), it was found that this matrix element at large c is given by

〈
h3,h4

∣∣Φh(η, 0, 0)
∣∣ h1,h2

〉
= ηh 2F1

(
h+

i

2r+
h13, h+

i

2r+
h24, 2h ; η

)
(5.7)

h1 = h2 =
1

2
∆, h3 =

1

2
(∆+ω+`), h4 =

1

2
(∆+ω−`). (5.8)

This expression exactly matches with the mode function of a free field of mass m2
h =

2h(2h−d) propagating in the BTZ black hole background of mass M = ∆− c
24 . Remarkably,

the amplitude of the Virasoro cross-cap operator Φ(X) automatically adjusts itself, so that

it solves the wave equation in the appropriate BTZ geometry. How does this adjustment

mechanism work?

5.1 Gauge freedom

Up to now we have assumed that the Z2 identification that defines the cross-cap operators

acts via an antipodal map along a circle (2.11) in the local coordinate system. The Ishibashi

conditions (2.13) imply that the cross-cap states are invariant under diffeomorphisms that

leave the circle (2.11) invariant and that commute with the antipodal identification z′ = z.
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Figure 4. Deformation of the circle along which the cross-cap identification is made.

The group generated by these diffeomorphisms is isomorphic to Diff(S1), the diffeomor-

phism group of the circle.

We can also act with diffeomorphism that do not respect the invariance conditions. Or

in more plain language, we are free to change coordinates. This would change the equation

of the circle. It is then clear that, from the point of view of some fixed coordinate system,

there is a continuous infinite dimensional family of cross-cap boundary states related via

diffeomorphisms.

In general, we can write an orientation preserving diffeomorphism of the form

z′ = ḡ(z̄), ḡ(z̄) = x− y2

z̄ − x̄0
− v̄(z̄) (5.9)

with v̄(z̄) some arbitrary anti-analytic function near z = x. The original circular boundary

between the first and second sheet is now deformed, as indicated in figure 4. The group

of deformations of the circle is also isomorphic to Diff(S1). Indeed, in terms of Virasoro

generators, the situation is:

(i) the Diff(S1) generators ln = Ln − (−1)nL̄−n (with n ∈ Z) preserve the shape of the

circle

(ii) the D̃iff(S1) generators l̃n = Ln + (−1)nL̄−n (with n ∈ Z) deform the shape of

the circle.

Note that the generators from the two different Diff(S1) groups commute with each other.

We learn that the gravitationally dressed bulk operators Φ(X) are in fact not defined

as functions on AdS3 but as functionals defined on the group D̃iff(S1). From now on, we

will therefore denote them as Φ(g).

How can this be compatible with our earlier claim that gluing a cross-cap into a Rie-

mann surface only adds three real moduli parameters? The answer is well-known. The

D̃iff(S1) element g can be identified with the transition function, or gluing map, that

connects the local coordinate neighborhood of the cross-cap with the complex coordinate

system on the remaining part of the Riemann surface. The number moduli of the cross-

cap is equal to the dimension of a cohomology group: the moduli are the holomorphic

deformations of the gluing map that can not be extended to holomorphic coordinate trans-

formations on the cross-cap or on the rest of the Riemann surface. The Riemann-Roch
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theorem implies that the dimension of this cohomology group is equal to 3 times the Euler

character of the cross-cap = 3 × 1 = 3. Below we will summarize this classical argument

from the point of view of a CFT correlation function involving the bulk operator Φ(g).

5.2 Gauge invariance

Consider the bulk boundary two point function evaluated between the deformed vac-

uum state 〈
Ω
∣∣Φ(g)O(x)

∣∣Ω〉 (5.10)

Within this matrix element, the stress energy tensor receives a vacuum expectation value

given by (5.3). We can distinguish two types of gauge transformations

(a) the group of conformal transformations that leave the in and out states
∣∣Ω〉 invariant

(b) the group of conformal transformations that leave the bulk operator Φ[g ] invariant.

Both gauge symmetries are active ingredients in the derivation of the uniformization

theorem.

A given state
∣∣Ω〉 satisfies an infinite set of Virasoro conditions of the form L(ξn)

∣∣Ω〉 =

0, L̄(ξ̄n)|Ω〉 = 0, where L(ξ) =
∮
dz ξ(z)T (z) and ξn = zn+1 + . . . are a suitable set of

vector fields. Let V (ξ) denote a general element of the conformal group obtained by

exponentiating the L(ξn) and L̄(ξ̄n) generators. The Virasoro conditions imply that the

state
∣∣Ω〉 is inert under V (ξ):

V (ξ)
∣∣Ω〉 =

∣∣Ω〉. (5.11)

A similar story applies to the bulk operators Φ[g]. Each Φ[g] satisfies an infinite set of

Ishibashi conditions
[
L(ηn),Φ(g)

]
= 0, where L(η) =

∮
dz η(z)

(
T (z)− T ′(z′)

)
and ηn are

a suitable set of vector fields. Let V (η) denote a general element of the conformal group

obtained by exponentiating the L(ηn) generators. The Ishibashi conditions then tell us

that the bulk operator Φ(g) are inert under the action of V (η)

V †(η)Φ(g)V (η) = Φ(g ) (5.12)

5.3 Uniformization

We now outline the CFT derivation of the uniformization theorem. Consider the bulk-to-

boundary 2-point function (5.10). Both the states |Ω〉 and the bulk operator Φ(g) depend

on an infinite set of parameters. The uniformization theorem states that, thanks to the

two gauge invariances described above, we can always find a coordinate system such that

the two point function depends only a finite set of parameters, and exactly reduces to the

two point function in pure AdS3.

The gauge invariance (5.11) of the in and out states can be used to deform the bulk

field via Φ(g) → Φ(g̃) = V †(ξ) Φ(g)V (ξ). We use this freedom to bring the cross-cap

operator in a standard circular form (2.12)–(2.17)

V (ξ) : Φ(g) → Φ(X) (5.13)

– 26 –



J
H
E
P
0
1
(
2
0
1
7
)
0
0
4

|Ω〉〈Ω|

O(x1)

Φ(g)

=

O(x1)

Φ(X)

Figure 5. The uniformization theorem provides a map from a bulk-to-boundary 2-point function〈
Ω
∣∣Φ(g)O(x1)

∣∣Ω〉 in a Bañados geometry to a 2-point function
〈
0
∣∣Φ(X)O(x1)

∣∣0〉 in AdS3. The

bulk point X0 depends on both g0 and Ω. The map makes essential use of Virasoro symmetry.

This standardized bulk operator Φ(X) still satisfies an invariance property

V †(η)Φ(X)V (η) = Φ(X), where now V (η) denote a general element of the confor-

mal group generated by the Ishibashi generators that annihilate the circular cross-cap

state. We can therefore use this invariance to deform the in and out states, and rotate

them into the standard SL(2,R) invariant vacuum state

V (η) :
∣∣Ω〉 → ∣∣ 0〉 (5.14)

In this way, we have demonstrated that locally we can always go to the uniformizing

coordinate system, in which the 2-point function (5.10) reduces to the standard 2-point

function between two SL(2,R) invariant vacuum states〈
Ω
∣∣Φ(g)O(x)

∣∣Ω〉 =
〈

0
∣∣Φ(X)O(x)

∣∣ 0〉. (5.15)

As explained before, the right-hand side is easily computed by going to the Schottky double,

producing an answer that agrees with the bulk-to-boundary propagator and locally satisfies

the wave equation in AdS3. Globally, we need to take into account the monodromy of the

uniformizing coordinate Z. In particular, if the state
∣∣Ω〉 corresponds to a BTZ black hole,

the 2-point function (5.15) matches with the bulk-to-boundary propagator in the BTZ

background geometry [5].

5.4 Uniformizing gauge

As mentioned in the introduction, gravitational dressing is the analogue of turning a local

observable, like a charged matter field, into a gauge invariant observable. This can be done

either by attaching a Wilson line or a Coulomb field. By choosing a particular gauge, like

an axial or Coulomb gauge, the non-local gauge invariant observable can be made to look

like an ordinary local observable. We would like to find a similar gauge for our problem.

We will call it the uniformizing gauge.

The above geometric definition of the gravitational dressing is indeed associated with

a natural gauge choice. Once we will choose this gauge, the dressing operator 1(X) is

– 27 –



J
H
E
P
0
1
(
2
0
1
7
)
0
0
4

essentially set equal to unity. The gauge symmetry that we will use to fix this gauge

is diffeomorphism invariance. We can distinguish diffeomorphism that are trivial on the

AdS boundary and diffeomorphism that reduce to conformal transformations on the AdS

boundary, and thereby act non-trivially on the correlation functions of the CFT.

Consider some state |Ψ〉 in the CFT. The classical expectation value of the stress

energy tensor 〈
T (z)

〉
=
〈
Ψ
∣∣T (z)

∣∣Ψ〉 (5.16)

is locally an analytic function of the coordinate Z. It transforms non-trivially under con-

formal transformations T (w)dw2 =
(
T (z) + c

12{w, z}
)
dz2, with {w, z} = w′′′

w′ − 3
2

(
w′′

w′

)2
the Schwarzian derivative. Hence the expectation value

〈
T (z)

〉
depends on the coordinate

system. It is a well know fact that locally we can always find a special coordinate system

Z(z) such that 〈
T (Z)

〉
= 0. (5.17)

We will call this the uniformizing coordinate system. The standard method for finding the

uniformizing coordinate system is to consider the second order differential equation(
∂2 − b2 T (z)

)
ψ(z) = 0, (5.18)

with b determined by the relation c = 1+6(b+1/b)2. This is the familiar null state equation

L−2 − b2L2
−1 = 0 that forms the basis of the so-called monodromy method for computing

conformal blocks. Equation (5.18) has two independent solutions ψ1(z) and ψ2(z). The

uniformizing coordinates are then defined as the ratio of the two solutions

Z(z) = ψ1(z)/ψ2(z). (5.19)

For a general state |Ψ〉 created, say, by acting with a collection of local CFT operators O(xi)

on the CFT vacuum, the uniformizing coordinates are multi-valued. In passing around one

of the local operators, the coordinate Z typically undergoes a non-trivial monodromy in

the form of a Möbius transformation Z → (aZ + b)/(cZ + d).

Now will now describe a gauge choice that circumvents this obstruction. Consider

some general correlation function of N bulk operators Φ(Xk) located at N bulk points

Xk. To specify our coordinate system, we first replace all bulk operators Φ(Xk) by iden-

tity operators 1(Xk). The CFT correlation function 〈1(X1) . . .1(XN )〉 is the chiral CFT

partition function on the associated Schottky double Σ̂, projected on the identity sector in

each of the N channels. We now choose our coordinate system on Σ̂ such that〈
T (Z) 1(X1) . . .1(XN )

〉
= 0. (5.20)

Note that this coordinate system depends on the positions Xi. We claim that, for CFTs

at large c and a sparse low energy spectrum, the above coordinate choice is globally well

defined on Σ̂. Indeed, since the dressing operators 1(Xk) are all given by sums of de-

scendents of the unit operator, the uniformizing coordinate Z has a trivial monodromy
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around each operator 1(Xk). This guarantees that, for CFTs with a gravitational dual,

the correlation function 〈1(X1) . . .1(XN )〉 is dominated by the identity conformal block in

all channels. In the gravity theory, this means that the double cover of the bulk saddle

looks like pure handle body. Hence the uniformizing coordinate Z defined via (5.20) has

no SL(2,R) monodromies and is globally single valued.

As we have seen in the previous section, the stress energy tensor tells us how correlation

functions depend on the metric, and thereby on all geometric parameters of the correlation

functions, including the position of operators. From this relationship, we conclude that

with our gauge choice (5.20), the correlation function 〈1(X1) . . .1(XN )〉 is independent of

the Xk. So we can set 〈
1(X1) . . .1(XN )

〉
= 1 (5.21)

In practice this means that we define the canonically normalized bulk correlation functions

as the ratio 〈
Φ(X1) . . .Φ(XN )

〉
bulk

=

〈
Φ(X1) . . .Φ(XN )

〉
cft〈

1(X1) . . .1(XN )
〉

cft
(5.22)

Taking the ratio of CFT correlation functions is natural, because it eliminates the ambiguity

in the overall normalization due to the conformal anomaly.10

6 Bulk two-point function

In this section we will study the two point function of two bulk operators. The classical

bulk geometry corresponding to the Klein bottle has been described and analyzed in detail

in [36]. It has two fixed points, that we interpret as the location of the bulk fields. In [36] it is

shown that the semi-classical partition function associated with this saddle point, computed

at one loop, exactly matches the identity conformal block in the CFT. We have given this

result a new interpretation as the two-point function of two local Z2 defect operators 1(X)

placed at the corresponding bulk points. Following the discussion in section 5.4, we will

normalize correlation functions according to (5.22) which is equivalent to choosing the

physical gauge such that the two point function of two unit operators equals unity.

6.1 Bulk to bulk propagator

Next we turn to the bulk-to-bulk two point function. Adding two cross-caps to a sphere

creates a Klein bottle K2 = T 2/Z2 [41]. Explicitly, we start from the torus τ → τ + β,

σ → σ+ 2π and make a Z2 identification τ → −τ , σ → σ+π. The CFT partition function

on the Klein bottle is then defined as Z = Tr
(
Ω q̃L0− c

24 ¯̃qL̄0− c
24

)
, where q̃ = e2π/β where

Ω is a parity changing operator. Applying a modular transformation, we can rewrite this

as a sum of matrix elements of the evolution operator qL0 q̄L0 between cross-cap Ishibashi

states |h〉〉. Therefore the CFT partition function, after projecting onto one given primary

10More generally, for mixed correlation functions involving N bulk operators Φ(Xi) and M bound-

ary operators O(xj), we will be able to make the gauge choice
〈
1(X1) . . .1(XN )O(x1) . . .O(xK)

〉
=〈

O(x1) . . .O(xK)
〉
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channels, takes the form of the two point function 〈Φ(1, 0, 0)|Φ(q, 0, 0)〉 between two local

bulk states |Φ(q, 0, 0)〉 = qL0+L0 |h〉〉 at position X1 = (1, 0, 0) and X2 = (q, 0, 0). We review

this derivation explicitly in the appendix D. The overlap between two cross-caps is equal

to the corresponding Virasoro character

〈
Φ1

∣∣Φ2

〉
= χh(q2) =

q2h− c
12

η(q2)
, (6.1)

〈
11

∣∣ 12

〉
= χ0(q2) = q−

c
12

1− q2

η(q2)
. (6.2)

These characters were computed in the Klein-bottle. Going to the plane would eliminate

the background energy −c/12. After normalizing we see that this background-dependent

factor cancels. In the physical gauge (5.21), the normalized two point function between

two bulk operators is obtained by taking the ratio

〈Φ(X1)Φ(X2)〉 =
Zh
Z0

=

〈
Φ1

∣∣Φ2

〉〈
11

∣∣ 12

〉 =
q2h

1− q2
. (6.3)

This answer should be compared with well-known result for the bulk-bulk propagator in

AdS3 of a field with mass squared m2
h = 2h(2h− 2)

〈Φ(X1)Φ(X2)〉 =
e−(2h−1)D(1,2)

2 sinhD(1, 2)
. (6.4)

where D(1, 2) is the geodesic distance between the two points X1 and X2 in AdS3, which

in Poincaré coordinates is given by

coshD(1, 2) =
y2

1 + y2
2 + x12x̄12

2y1y2
. (6.5)

which suggests that we should make identification q(1, 2) = e−D(1,2). It is straightforward

to verify this relation, by performing a conformal map from the annulus to the Schottky

representation of the Klein bottle in terms of two circles. This analysis in performed in the

appendix. We find that

q(1, 2) =
y2

1 + y2
2 + x12x̄12 −

√
(y2

1 + y2
2 + x12x̄12)2 − 4y2

1y
2
2

2y1y2
= e−D(1,2), (6.6)

which establishes the identification between (6.3) and (6.4). The result (6.4) can be derived

equally for global cross-caps and gives the same result since the global character is χgh(q) =
qh

1−q . This coincides and gives a more geometrical proof of the two point function of two

global cross-caps obtained in [6].

We end with a few short comments. The above calculation gives further support for the

proposed identification of cross-cap states with bulk operators. Not only does it reproduce

the bulk-to-bulk propagator, it also illustrates the mechanism that makes the background

independence of the cross-cap operators manifest. Note that the exact match between the

normalized 2-point function (6.3) with the bulk propagator holds for any CFT with c > 1.
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The special assumption that relies on large c and a sparse low energy spectrum is that there

exists a uniformizing coordinate choice such that
〈
T (z)1(X1)1(X2)

〉
= 0, which enables us

to pick the gauge
〈
1(X1)1(X2)

〉
= 1.

It is known [16] that Ishibashi states |Φ(y, 0, 0)〉 = yL0+L0 |h〉〉 with size y = 1 have

infinite norm. This has an interpretation in the Poincare patch of AdS. If we put a point

in the origin of size y and another at infinity with size y, then if we send y → 1 the two

bulk points would approach each other. The divergent norm thus originates from the short

distance singularity of the scalar field two point function in AdS. This also appears in the

global patch as a divergence in the norm of the state |Φ(X)〉 which can be regularized with

a UV cut-off [9].

6.1.1
〈
ΦΦT

〉
Next we again turn to the stress tensor insertions. The easiest case is a single insertion.

Since the stress tensor generates deformations of the complex structure of the 2D space-

time, this one-point function can be obtained from taking the derivative of the partition

function with respect to the moduli of the surface, which in this case is log q. Let us start

with the geometry of the plane with the cross-caps at 0 and infinity and with sizes q and

1 respectively. For this particular case the one point function is

z2〈T (z)〉 =
q

2

∂

∂q
Zh. (6.7)

If we take for Zh the normalized partition function (6.3) we get the result

〈Φ(1)|T (z)|Φ(q)〉 =
(h+ q2 − hq2)q2h

z2(1− q2)2
. (6.8)

Again we would find the same answer if we use the global cross-cap.

For this configuration we again see that there is not unphysical branch-cuts and the

poles are at the origin and at infinity, where the operators and their Z2 images are located.

We can generalize this for an arbitrary configuration in the following way. We can find the

correlation function

〈T (z)Φ(X1)Φ(X2)〉 (6.9)

by the same method outlined above, by performing a Möbius transformation that maps

the annulus to two arbitrary circles (see appendix). If we relabel the original coordinate

as ζ then it is given by ζ → z = a ζ+b
c ζ+d , where a, b, c, d ∈ R depend on the coordinate

(1, 2) = (y1, x1, x̄1, y2, x2, x̄2). We will not write down the explicit dependence to avoid

cluttering. The correlation function is

〈T (z)Φ(X1)Φ(X2)〉 =
1

ζ(z)2

(
dζ

dz

)2
(

2h+
e−D(1,2)

2 sinhD(1, 2)

)
e−(2h−1)D(1,2)

2 sinhD(1, 2)
, (6.10)

where D(1, 2) is the geodesic distance introduced above in equation (6.5). As a function

of the stress-tensor insertion position z this expression has poles at the zeros and pole of

the Möbius transformation because of the ζ(z)−2 and
(
dζ
dz

)2
factors, respectively. For case
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that the bulk operator are placed on the real line xi = x̄i it is straightforward to find an

expression for the position of the poles

z± =
x2

12 + y2
2 − y2

1 ±
√

(x2
12 + y2

1 + y2
2)2 − 4y2

1y
2
2

2x12
. (6.11)

It is easy to check that z+ is the image of z− with respect to any of the two cross-cap

identifications. This forces z+ to be inside one cross-cap and z− inside the other. From

this we conclude that, when restricted to the region outside the cross-caps, the correlation

function is again free of branch cuts and poles.

7 Concluding remarks

In this paper we have examined the correlation functions and bulk properties of CFT

operators Φ(X) that create cross-cap boundary states, and compared these findings with

physical properties one would expect for gravitationally dressed bulk operators. We have

found that the proposed identification passes a number of non-trivial tests. Some of these

checks simply follow from the fact that at large c, the Virasoro cross-cap boundary state

Φ(X) formally reduces to a global cross-cap boundary state Φ(0)(X), which is known to

coincide with the free HKLL bulk operator [6–8]. Our proposal is that the 1/c correction

terms that turn the global boundary state into the Virasoro boundary state incorporate

gravitational dressing.

A central theme in our story is that bulk locality, which often is seen as an organizing

principle of the bulk reconstruction program, can not be expected to be an exact property

of a gravitational theory. So instead of imposing locality by hand, we have followed a more

pragmatic approach that takes direct guidance from geometric and analytic properties of

the CFT.

We have found that our geometric definition of bulk operators incorporates, through

concrete CFT mechanisms, two key physical properties: background independence (the fact

that Φ(X) solves the correct bulk equation of motion for any deformed vacuum state) and

micro-causality (the fact that the three point function
〈
Φ(X)O(x1)O(x2)

〉
has no branch

cut singularity when x1, x2 and X all lie on the same geodesic). Background independence

and micro-causality are both highly restrictive conditions, and our results give supporting

evidence that the holographic cross-cap states defined by (2.13) and (2.23) indeed represent

gravitationally dressed bulk operators in the interacting bulk theory.

We would also like to point out that the HKLL prescription to impose microcausal-

ity, while before it was directly motivated by the expectation of bulk locality, can be now

understood as a natural one from the CFT point of view when trying to solve the boot-

strap [50–52].

Our proposal has two somewhat unexpected features. The first is that the gravita-

tionally dressed identity operator is in fact non-trivial. This looks surprising, but may be

inevitable. In any diffeomorphism invariant theory, singling out a bulk point is in fact a

non-trivial operation, that restricts the allowed configuration space of metrics. We have

argued that our proposal performs this task in a natural way, but there may be other
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natural methods. It would for example be very instructive to compare our approach with

the recent studies of AdS bulk physics using kinematic space [18], geodesic Witten dia-

gram [42, 43] and OPE blocks [17]. Note, however, that in our discussion geodesics are

not fundamental. For example, there are bulk backgrounds for which there are points not

connected to the boundary by geodesics. This would be the case for a heavy operator with

mass less than c/12. Of course, since the cross-cap is a well defined boundary operator,

it can capture operators which do not sit in any boundary geodesic as opossed to other

proposals like OPE blocks. This is implicit in the uniformization discussion.

A second unexpected feature of our proposal is that the three point function of a bulk

operator with two chiral CFT operators, such as stress energy tensors and currents, exhibits

an antipodal singularity. This type of non-locality also appears to be a necessary feature

of gravitational dressing of local bulk operators. Since the non-locality takes the form of a

pole rather than a branch cut, it may be possible to partially hide the effect of the non-local

correlation by smearing the location of the bulk operators over some small region.

An essential ingredient in our calculations is the uniformization theorem. It provides an

organizing structure for analyzing CFT correlation functions, by exploiting the existence of

a special coordinate system Z in which the CFT state locally looks like a vacuum state, in

a manner that directly mirrors the property of the gravity theory, that the geometry locally

always looks like AdS3. The Virasoro symmetry of the boundary states is a prerequisite.

Without it, the uniformization theorem would not be in play.

Some open questions that we leave for future study are the following:

• We have restricted most of our discussion to the special case of AdS3/CFT2. Even

though AdS3 gravity and CFT2 are both special, due to the absence of local gravitons

and the presence of infinite conformal symmetry, our result can give some valuable

clues for the problem of bulk construction in higher dimensions. Indeed, a natural

proposal for gravitationally dressed bulk operators in AdSd>3 is to extend the global

constraints (2.3) and (2.4) to a geometric cross-cap constraint[
Tµν(z)− T ′µν(z′)

] ∣∣Φ(X)
〉

= 0 (7.1)

where T ′µν(z′) = ∂z′λ

∂zµ
∂z′ρ

∂zν Tλρ(z
′) is the stress tensor transformed via the antipodal

map (2.1). The global conditions (2.3) and (2.4) are the global zero modes of the local

conditions (7.1). Based on our results, it is worth investigating whether operators that

solve this equation indeed posses the right characteristics to support a holographic

interpretation as dressed bulk operators.

• Another open direction is to consider bulk fields with spin. In [7], a generalization

of the global cross cap conditions was introduced, which suggests that spin may be

included by modifying the local cross cap constraint to
[
Tµν(z) − T ′µν(z′)

]
|Φ〉 =

Sµν(z)|Φ〉 with Sµν the spin operator of the bulk field. Testing the consistency of

this type of modification, however, requires more work.

• We expect that the different representations [15] that can be given to a bulk local

field can also be understood in a way similar to section 5.3. AdS/Rindler coordi-
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nates parametrize a bulk subregion of AdS, the Rindler wedge. An operator inside

a Rindler wedge can be represented by solving the wave equation in AdS/Rindler

coordinates or in global coordinates and the support of the boundary operator will

be different. There are many Rindler wedges that go through a given bulk point so

there seems to be different representations, given by solving the wave equation in

the respective wedge. From the boundary point of view, each wedge asymptotes to

the causal domain of an interval, so if we write the boundary in coordinates that

only foliate this region, the bulk dual will naturally be just AdS/Rindler. This can

be achieved via a conformal transformation which maps this boundary subregion to

a plane at finite temperature 2π. So, we expect that constructing the crosscaps in

this state corresponds to a bulk local operator in the AdS/Rindler wedge. These

different representations should be equivalent after uniformizing the Rindler state

and crosscap. Of course, this story works because the Rindler wedge has a geometric

interpretation from the boundary point of view. More generally, one would like re-

construct operators in the entanglement wedge, but for that the modular hamiltonian

is needed [49]. Since this object is not geometric in general, we do not expect that

entanglement wedge reconstruction with crosscaps to be more illuminating.

• Finally, a key motivation for the recent interest in the construction of local bulk op-

erators is the hope that they may shed light on the physical nature of the black hole

interior. In light of this, it is relevant to note that there exists a rather concrete paral-

lel between this question and our reformulation of the micro-causality constraint. As

we have explained in section 2.5, micro-causality requires that the bulk-to-boundary

3-point function 〈Oi|Φ|Oj〉 with two light single trace CFT operators remains regular

in the limit η → 1. The bulk-to-boundary 3-point function 〈Oi|Φ|Oj〉 with two heavy

CFT operators, on the other hand, coincides with the mode function in a BTZ black

hole background. As seen from the explicit expression given in equation (5.7), the

same regularity condition at η → 1 directly maps to the requirement of regularity at

the black hole horizon. When the bulk field approaches the horizon, the two heavy

CFT operators are anti-podal relative to the bulk point at which Φ is located. On

the CFT side, this means that Oi and Oj approach other on the second sheet. The

behavior of the mode near the horizon thus maps to the behavior of the three point

function in this kinematic limit.11 Horizon regularity would require that the OPE

limit η → 1 is dominated by heavy intermediate states with h > hi + hj . We leave

this problem for future study.
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A Cross caps and crossing symmetry

In this appendix we consider the holographic bootstrap condition (2.23) from an algebraic

viewpoint, motivated by the structure of rational CFT [30, 31]. The three point functions

Gijk(η) are given by conformal blocks. Conformal blocks in RCFT satisfy known linear

transformation rules under crossing, that imply the existence of a monodromy matrix Mpk

such that

Gijp(1− η) =
∑
k

MpkGijk(η) (A.1)

where Mpk = M
[
i j
j i

]
pk

denotes the familiar fusion matrix. The matrix Mpk squares to unity,

since it represents the effect of an involution, and therefore has eigen values εα = ±1. The

eigen vectors define special crossing symmetric CFT cross-cap states

|α〉〉 =
∑
p

Uαp |p〉〉,
∑
p

Mkp U
α
p = εαU

α
k (A.2)

with the property that the corresponding three point functions are Z2 invariant

Gαij(1− η) = εαG
α
ij(η) Gαij(η) =

∑
p

Uαp Gijp(η) (A.3)

up to an overall sign εα = ±1. In RCFT, the crossing (anti-)symmetric states form a

complete basis of cross cap boundary states.

It is not known whether there exists an analogue of the monodromy matric Mpk for

holographic CFTs. If it does, it would be some random looking infinite dimensional unitary

matrix with a few other prescribed properties dictated by the modular bootstrap. Similarly,

it is not known if it is possible to find a basis of crossing (anti-)symmetric states |α〉〉 such

that its three point functions satisfy (A.3). The existence of such crossing symmetric

states is a weaker assumption than the existence of a monodromy matrix Mpk. Suppose

that there exists a basis of crossing (anti-)symmetric states |α〉〉. We can than give an

alternative formulation of the holographic bootstrap condition, by imposing that |Φ〉 can

be written as linear sum ∣∣Φ〉 =
∑
α

Φα
∣∣α〉〉. (A.4)

This condition automatically implies that its three point functions can be expanded in

the dual channel as in (2.23). Via the relations (A.3) we then deduce that the expansion

coefficients Φp and Φ̃p that appear in (2.23) are related via

Φk =
∑
α

ΦαU
α
k , Φ̃k =

∑
α

εαΦαU
α
k . (A.5)
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Assuming we would know the explicit form of the Uαp matrix, the first equation should fix

the Φα coefficients via the boundary condition that |Φ〉 = |h〉〉+O(1/N), and that Φp = 0

for hp < h. The second equation then determines the Φ̃k coefficients.12 It is reasonable to

assume that the Φk describe some random distribution supported on the entire spectrum

over the CFT. In particular, the coefficients Φk of the light single trace operators are

expected to be extremely small.

B Conformal Ward identity with bulk fields

The conformal Ward identity gives a linear recursion relation that expresses the effect of

adding one stress energy tensor Tαβ(x) to some given correlation function. Via AdS/CFT,

we can re-interpret this identity as expressing the universal effect of adding a boundary

graviton localized at x, created or annihilated by Tαβ(x), to the scattering amplitude of

all particles created or annihilated by the other operators in the correlation function. This

recursion relation is the AdS analogue of Weinberg’s soft graviton theorem [44].

The soft graviton theorem in asymptotically flat space-time has recently been reinter-

preted as the Ward identity that expresses the symmetry of the quantum gravity S-matrix

under the BMS supertranslations, the asymptotic symmetry group of flat space [45, 46].

AdS3 also has an infinite asymptotic symmetry group, in the form of 2D conformal trans-

formations. The most direct analogue of S-matrix elements are the correlation functions of

local CFT operators. The soft graviton theorem for these CFT n-point functions is simply

expressed as the conformal Ward identity. With our geometric definition of bulk operators,

we can now generalize this correspondence to correlation functions with bulk operators.

As an example, consider a correlation function with a single stess tensor Tαβ(x) and

n bulk operators Φk(Xk). In the CFT this describes the one-point function of Tαβ(x) on

a sphere with n cross-caps, projected onto a given conformal sectors for each cross-cap.

The bulk operators Φk(Xk) each transform in some specific representation Vk of the global

isometry group SO(2, 2) ' SL(2,R)L × SL(2,R)R of AdS3. We introduce thesymmetry

generators t̂ia = (L̂ia, R̂ia) with a = 0, 1,. . . ,6 and a = 1,2,3. Here (L̂ia, R̂ia) denote the

generators of SL(2,R)L × SL(2,R)R, that act as left- and right-invariant vector fields on

AdS3, viewed as group manifold.

The soft graviton theorem for bulk n-point functions is a generalization of the standard

conformal Ward identity of n local CFT operators [47]. It takes the general form〈
Tαβ(x)Φ1(X1) . . . Φn(Xn)

〉
= T̂αβ(x)

〈
Φ1(X1) . . . Φn(Xn)

〉
T̂αβ(x) =

∑
i,a

φiaαβ(x) t̂ia (B.1)

where φiaαβ(x) = φiaαβ(x,X1, ...,Xn) denote a suitable set of symmetric tensors, that depend

on the positions and conformal dimensions of all n bulk operators. From the CFT per-

spective, this relation expresses the fact that a local infinitesimal variation of 2D metric

12Of course, for an RCFT (or any CFT with a known fusion matrix Mpk) the relation between the

expansion coefficients is simply expressed as Φ̃p =
∑
kMpkΦk.
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deforms the complex structure of the sphere with n cross-caps (or more accurately, of its

Schottky double). This space of complex structures Mn is parametrized by the locations

Xi of the bulk operators. The φiaαβ(x) are the quadratic differentials that represent the

cotangent vectors dXi ∈ T ∗Mn.

Each bulk operator Φk(Xk) imposes a cross-cap identification via an SL(2,R)

transformation

Xi =

(
ai bi

ci di

)
↔ − 1

z̄i
=
aiz + bi
ciz + di

(B.2)

Correspondingly, the action of the left- and right SL(2,R) symmetry generators are lin-

early related

(
L̂ia − (Xi)a

b R̂ib
)
Φi(Xi) = 0. (B.3)

Note that this relation identifies Xi as a point on AdS3, defined as the coset

SO(2, 2)/SL(2,R). The quadratic differentials are required to be covariant under all the

cross-cap identifications

φiazz(z)dz2 = (Xi)
a

bφ
ib
z̄z̄(z̄i)dz̄

2
i , (B.4)

φjazz(z)dz2 = φjaz̄z̄(z̄i)dz̄i
2 j 6= i. (B.5)

These relations ensure that the energy-momentum tensor is invariant under all Z2

involutions

T̂zz(z)dz2 = T̂z̄z̄(z̄i)dz̄i
2 (B.6)

The quadratic differentials φiaαβ(x) are uniquely determined by the reflection condition (B.4)

and by the monodromy around each cross-cap, which in turn is fixed by the conformal

dimensions hk of each bulk field.

This soft-graviton theorem can be easily generalized to an arbitrary number of stress

tensor insertions. The complete set of Ward identities reveals a few important lessons.

First, by summing up correlation functions with T (z) and T̄ (w) insertions, we can in prin-

ciple determine the correlation function of bulk operators in arbitrary deformed background

geometries. The fact that the Ward identities take the above geometric form implies that

the bulk operators Φ(X) satisfy a form of background independence. Secondly, given that

the dimension of the space of complex structures of a sphere with n cross-caps precisely

matches with the number of coordinates of n local bulk operators, we can use the rela-

tion (B.1) and its generalizations to give direct proof that the correlation functions of n

bulk operators in any background only depend on n coordinates Xk. This minimality

property is a direct consequence of the uniformization theorem, and relies on Virasoro

conformal symmetry.
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C Correlators with T T̄ insertion

C.1 Virasoro cross-cap case

We will give some details about the calculation of 〈T T̄OΦ〉, using the notation in (4.5).

Since there is only one cross-cap we can compute this in the projective plane. This is equiv-

alent to adding the image of the operator O(x1, x̄1) and the image of the anti-holomorphic

component of the stress tensor T̄ (w̄) → T (w′), where w′ = − y2

w̄−x̄2
+ x2. Therefore this is

equivalent to computing 〈T (z)T (w′)O(x)O(x′)〉 in the chiral Schottky double, which can

be obtained from the following Ward identity

〈T (z)T (w′)O(x)O(x′)〉 =
h

(w′ − x)2
〈T (z)O(x)O(x′)〉+

1

w′ − x∂x〈T (z)O(x)O(x′)〉

+
h

(w′ − x′)2
〈T (z)O(x)O(x′)〉+

1

w′ − x′∂x′〈T (z)O(x)O(x′)〉

+
2

(w′ − z)2
〈T (z)O(x)O(x′)〉+

1

w′ − z ∂z〈T (z)O(x)O(x′)〉

+
c/2

(w′ − z)4
〈O(x)O(x′)〉. (C.1)

This gives the result

〈T (z)T (w′)O(x)O(x′)〉 =
h2

(x− x′)2h−4(w′ − x)2(w′ − x′)2(z − x)2(z − x′)2

+
2h

(x− x′)2h−2(w′ − x)(w′ − x′)(z − x)(z − x′)(w′ − z)2

+
c/2

(x− x′)2h(w′ − z)4
. (C.2)

Using the cross-cap identification to fix the position of the images and adding the proper

Jacobians we can get this four-point function for the Virasoro cross-cap in (4.5).

The previous calculation relied on the conformal Ward identities. For the special

configuration 〈h|T (z)T̄ (w̄)|Φ〉 this can be derived in another way that illustrates the role

of the mirroring property of the cross-cap. Expand T and T̄ in a Laurent series with Ln
and L̄n. Then use the cross-cap mirroring property that L̄n = (−1)nL−n when acting on a

Virasoro Ishibashi state. After this one can use the Virasoro algebra to get the result (4.8).

In the following section we will do this for the global cross-cap.

C.2 Global cross-cap case

To make the discussion more explicit we will compute the correlation function using the

global Virasoro algebra for a particular configuration 〈h|T (z)T̄ (w̄)|Φ(0)〉. After performing a

mode expansion of the stress tensors and using the explicit definition of the global cross-cap

as a sum of normalized descendants we get

〈h|T (z)T̄ (w̄)|Φ(0)〉 =
∑
n,m

〈h|LnL̄m|Φ(0)〉z−2−nw̄−2−m

=
∑
k,n

(−1)k

Nk
〈h|Ln|k〉R〈h|L̄n|k〉L(zw̄)−2−n, (C.3)
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where Nk = k!Γ(2h+k)
Γ(2h) is the normalization of the global descendant |k〉 = (L−1)k|h〉. In

the second line we used the fact that only terms with n = m contribute. Moreover, we

can notice that Ln|k〉 ∼ |k − n〉. Therefore we only need the case to sum over k = n and

we obtain

〈h|T (z)T̄ (w̄)|Φ(0)〉 =
∑
n

(−1)n

Nn
〈h|LnLn−1|h〉2(zw̄)−2−n. (C.4)

The inner product is given by 〈h|LnLn−1|h〉 = h(n+ 1)!. This is easy to see since it is equal

to 〈h|[. . . [Ln, L−1], . . . , L−1]|h〉 and given that [Ln, L−1] = (n+ 1)Ln−1 the identity can be

shown by induction. This gives the result as a Taylor series

〈h|T (z)T̄ (w̄)|Φ(0)〉 =
∑
n

Γ(2h)

n!Γ(2h+ n)
[h(n+ 1)!]2(−zw̃)−2−n. (C.5)

Finally, looking at the definition of Gauss hypergeometric function it is easy to check that

〈h|T (z)T̄ (w̄)|Φ(0)〉 =
h2

(−zw̄)2 2F1

(
2, 2, 2h;− 1

w̄z

)
. (C.6)

Of course this just recovers the global conformal block mentioned in the discussion be-

fore (4.7).

D The Klein bottle

In this appendix we want to provide some details about the way we computed correlation

functions with two cross-caps Ishibashi states. Since it will be useful below we will start

by reminding the reader the explicit solution of the Ishibashi conditions [16] for both a

cross-cap and a circular boundary in the origin respectively

|Φh(y)〉⊗ =
∑
N,i

(−1)Ny2h+2N |h;N, i〉R|h;N, i〉L, z → z? = −y
2

z̄
(D.1)

|Φh(r)〉� =
∑
N,i

r2h+2N |h;N, i〉R|h;N, i〉L, z → z′ =
r2

z̄
(D.2)

The state |h;N, i〉 is a orthonormal basis for the descendants of h of level N , labeled by

the index i. To the right we wrote the geometric identification on the plane to which each

state corresponds to. From these expressions we can see that if we compute a correlation

function with circles instead of cross-caps and perform the analytic continuation r → iy

to the answer we will get the cross-cap correlation function. This is the Poincaré patch

version of the procedure presented in [6, 7] to go from a circle to a cross-cap. This analytic

continuation is also reminiscent to the one that takes AdS to dS.

The explicit form of the Ishibashi states (D.1) can be used to prove that the correlation

function with two cross-caps and local operators is equivalent to placing the local operators

in the Klein bottle. This is a standard calculation that can be found in [41]. For example,

start from

Z = 〈Φh(1)|Φh(q)〉. (D.3)
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q 1

ζ

f(ζ) z1 r1

z2 r2

z

Figure 6. The action of the Moebius transformation z = f(ζ) that maps the annulus between q

and 1 in ζ space (left) to two circles at z1,2 of radius r1,2 in the z space (right).

The argument uses the fact that the match between the right and left movers in the

Ishibashi states is the same as the projection that one has to take in the Klein bottle

because of the presence of the parity changing operators Ω. This operator has to be

included to implement the identification of the boundaries of the fundamental region of the

Klein bottle. Because of the match between left and right movers the only moduli is real

and is given by q2. Then for example for a pure Ishibashi state of dimension h the result

gives Z = χh(q2), where χh is the Virasoro character of the representation.

This was done for the configuration of a cross-cap of size q and 1 at the origin and

infinity. A cross-cap breaks most of the SL(2, R) symmetries from the global conformal

group and therefore it is not easy to get the answer for a generic cross-cap configuration.

Nevertheless the identification for circles z → z?, called conjugation, given in (D.2) is

preserved by Moebius transformations [48]. In the case of the two point function we analyze

above, we can compute the two point function for circles instead of cross-caps, namely an

annulus with radius between q and 1, then use this extra symmetry to place the two circles

at arbitrary positions and sizes and finally perform the analytic continuation explained

above to get the answer for two cross-caps. This is possible since Moebius transformations

map circles to circles.

Knowing that the transformation exists and is unique we can find it by using the fact

that it keeps cross-ratios of 4 points fixed. In particular, we want a transformation that

maps the annulus q < |ζ| < 1 to a circle of size r1 at the position z1 and another circle of

size r2 at a position z2. For simplicity we will consider the case of zi real. Then by choosing

the points [q,−q, 1, ζ] in the annulus we can form the cross-ratio in the image plane giving

2q(1− ζ)

(1− q)(ζ + q)
=

2r1(z2 − r2 − z)

(z1 + r1 − z2 + r2)(z1 − r1 − z)
. (D.4)

From this expression we can solve for z as a function of ζ which will have the usual

ζ → z = aζ+b
cζ+d , and we can get explicit expressions for these parameters. Nevertheless,

since annulus with different q are not equivalent there should be a relation between q and

(zi, ri). To find this we can take (D.4) and use the fact that the transformation should

map the point ζ = −1 to z = z2 + r2. Solving this equation we get

q =
r2

1 + r2
2 − z2

12 +
√

(r2
1 + r2

2 − z2
12)2 − 4r2

1r
2
2

2r1r2
. (D.5)
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Now we can replace this relation in (D.4) and get z as a function ζ, zi and ri. After

replacing this in the Klein bottle partition function we obtain the bulk-bulk propagator in

AdS3. In particular the q parameter maps to (6.6), which is equal to e−D(1,2) with D(1, 2)

the geodesic distance in AdS3.

Of course, the fact that we can only map this annulus to circles that have a fixed q

parameter (D.5), which after analytic continuation is the geodesic distance in AdS3, is an

explicit manifestation of the isometries of the bulk.

We can derive the correlation function between a stress tensor and two cross-caps

in another way that relies on the mirroring property of the Ishibashi state instead of a

Ward identity. The stress tensor as an operator satisfies T (z) = T̄ (z′) when acting on the

cross-cap state, where z → z′ is the corresponding cross-cap identification

T (z)|Φ(y, x, x̄)〉 = ˜̄T

(
− y2

z̄ − x̄ + x

)
|Φ(y, x, x̄)〉. (D.6)

We can use this to compute the overlap 〈Φ(y2, 0, 0)|T (z)|Φ(y1, x, x̄)〉, which is a special

case of the three-point function computed in the previous section. Apply property (D.6)

to the cross-cap in the right, giving T̄ . Then apply the BPZ conjugate version of (D.6) to

the cross-cap in the left, ending up with the functional equation

〈T (z)〉 =
y4

1y
4
2

(xx̄− x̄z + y2
1)4

〈
T
(
− y2

2
y2
1

x−z + x̄

)〉
. (D.7)

This equation can be solved and gives

〈T (z)〉 =
(y2

1 − y2
2)2

[z(xx̄+ y2
1 − y2

2) + xy2
2 − x̄z2]2

F (x, x̄, y1, y2), (D.8)

where F (x, x̄, y1, y2) is an arbitrary function independent of z. From this expression we

can find the poles in z and recover the result (6.11). The mirroring property that fixed the

poles in the correlation function is only valid for Virasoro Ishibashi states.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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[40] M. Bañados, C. Teitelboim and J. Zanelli, The black hole in three-dimensional space-time,

Phys. Rev. Lett. 69 (1992) 1849 [hep-th/9204099] [INSPIRE].

[41] R. Blumenhagen, D-branes and orientifolds, Lect. Notes Phys. 851 (2012) 49 [INSPIRE].

[42] E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Witten diagrams revisited: the AdS

geometry of conformal blocks, JHEP 01 (2016) 146 [arXiv:1508.00501] [INSPIRE].

[43] E. Hijano, P. Kraus, E. Perlmutter and R. Snively, Semiclassical Virasoro blocks from AdS3

gravity, JHEP 12 (2015) 077 [arXiv:1508.04987] [INSPIRE].

[44] S. Weinberg, Infrared photons and gravitons, Phys. Rev. 140 (1965) B516.

[45] A. Strominger, Asymptotic symmetries of Yang-Mills theory, JHEP 07 (2014) 151

[arXiv:1308.0589] [INSPIRE].

– 43 –

http://dx.doi.org/10.1103/PhysRevD.89.066010
https://arxiv.org/abs/1311.3020
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.3020
http://dx.doi.org/10.1007/JHEP10(2012)165
https://arxiv.org/abs/1201.3664
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.3664
https://arxiv.org/abs/1604.07383
http://inspirehep.net/search?p=find+EPRINT+arXiv:1604.07383
https://arxiv.org/abs/hep-th/9911110
http://inspirehep.net/search?p=find+EPRINT+hep-th/9911110
http://dx.doi.org/10.1007/PL00005590
https://arxiv.org/abs/math/0007097
http://inspirehep.net/search?p=find+EPRINT+math/0007097
http://dx.doi.org/10.1016/0370-2693(88)91796-0
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B212,451%22
http://dx.doi.org/10.1007/BF01238857
http://dx.doi.org/10.1007/BF01238857
http://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,123,177%22
http://dx.doi.org/10.1016/0370-2693(94)90255-0
https://arxiv.org/abs/hep-th/9311183
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B321,349%22
http://dx.doi.org/10.1007/JHEP09(2012)106
https://arxiv.org/abs/1201.3666
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.3666
https://arxiv.org/abs/1511.05627
http://inspirehep.net/search?p=find+EPRINT+arXiv:1511.05627
http://dx.doi.org/10.1103/PhysRevD.59.066002
http://dx.doi.org/10.1103/PhysRevD.59.066002
https://arxiv.org/abs/hep-th/9808081
http://dx.doi.org/10.1088/0264-9381/33/18/185006
http://dx.doi.org/10.1088/0264-9381/33/18/185006
https://arxiv.org/abs/1603.04426
http://inspirehep.net/search?p=find+EPRINT+arXiv:1603.04426
http://dx.doi.org/10.1007/BF01645738
http://dx.doi.org/10.1007/BF01645738
http://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,31,83%22
http://dx.doi.org/10.1007/BF01608978
http://dx.doi.org/10.1007/BF01608978
http://inspirehep.net/search?p=find+J+%22Comm.Math.Phys.,42,281%22
http://dx.doi.org/10.1103/PhysRevLett.69.1849
https://arxiv.org/abs/hep-th/9204099
http://inspirehep.net/search?p=find+EPRINT+hep-th/9204099
http://dx.doi.org/10.1007/978-3-642-25947-0_2
http://inspirehep.net/search?p=find+J+%22Lect.Notes%20Phys.,851,49%22
http://dx.doi.org/10.1007/JHEP01(2016)146
https://arxiv.org/abs/1508.00501
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.00501
http://dx.doi.org/10.1007/JHEP12(2015)077
https://arxiv.org/abs/1508.04987
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.04987
http://dx.doi.org/10.1007/JHEP07(2014)151
https://arxiv.org/abs/1308.0589
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.0589


J
H
E
P
0
1
(
2
0
1
7
)
0
0
4

[46] A. Strominger, On BMS invariance of gravitational scattering, JHEP 07 (2014) 152

[arXiv:1312.2229] [INSPIRE].

[47] T. Eguchi and H. Ooguri, Conformal and current algebras on general Riemann surface, Nucl.

Phys. B 282 (1987) 308 [INSPIRE].

[48] A.V. Ahlfors, Complex analysis: an introduction to the theory of analytic functions of one

complex variable, McGraw-Hill, New York U.S.A. (1979).

[49] D.L. Jafferis, A. Lewkowycz, J. Maldacena and S.J. Suh, Relative entropy equals bulk relative

entropy, JHEP 06 (2016) 004 [arXiv:1512.06431] [INSPIRE].

[50] S. El-Showk and K. Papadodimas, Emergent spacetime and holographic CFTs, JHEP 10

(2012) 106 [arXiv:1101.4163] [INSPIRE].

[51] A.M. Polyakov, Nonhamiltonian approach to conformal quantum field theory, Zh. Eksp. Teor.

Fiz. 66 (1974) 23 [INSPIRE].

[52] R. Gopakumar, A. Kaviraj, K. Sen and A. Sinha, Conformal bootstrap in Mellin space,

arXiv:1609.00572 [INSPIRE].

[53] H. Osborn, Conformal blocks for arbitrary spins in two dimensions, Phys. Lett. B 718

(2012) 169 [arXiv:1205.1941] [INSPIRE].

– 44 –

http://dx.doi.org/10.1007/JHEP07(2014)152
https://arxiv.org/abs/1312.2229
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.2229
http://dx.doi.org/10.1016/0550-3213(87)90686-9
http://dx.doi.org/10.1016/0550-3213(87)90686-9
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B282,308%22
http://dx.doi.org/10.1007/JHEP06(2016)004
https://arxiv.org/abs/1512.06431
http://inspirehep.net/search?p=find+EPRINT+arXiv:1512.06431
http://dx.doi.org/10.1007/JHEP10(2012)106
http://dx.doi.org/10.1007/JHEP10(2012)106
https://arxiv.org/abs/1101.4163
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.4163
http://inspirehep.net/search?p=find+J+%22Zh.Eksp.Teor.Fiz.,66,23%22
https://arxiv.org/abs/1609.00572
http://inspirehep.net/search?p=find+EPRINT+arXiv:1609.00572
http://dx.doi.org/10.1016/j.physletb.2012.09.045
http://dx.doi.org/10.1016/j.physletb.2012.09.045
https://arxiv.org/abs/1205.1941
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.1941

	Introduction
	A geometric definition of bulk operators
	Bulk operators as global cross-caps
	Bulk interactions and locality I
	Virasoro cross-cap operator
	Holographic cross-cap operator
	Bulk interactions and locality II

	Gravitational dressing
	Physical expectation
	Dressing operator
	Bulk interpretation of dressing operator
	Dressing operator as a sum over geometries

	Bulk-to-boundary correlators and commutators
	Some bulk-to-boundary correlators
	< Phi O > 
	< Phi O T >
	< 1 T bar-T >
	< Phi O T bar-T >
	< Phi O O >

	Commutators

	Background independence
	Gauge freedom
	Gauge invariance
	Uniformization
	Uniformizing gauge

	Bulk two-point function
	Bulk to bulk propagator
	< Phi Phi T >


	Concluding remarks
	Cross caps and crossing symmetry
	Conformal Ward identity with bulk fields
	Correlators with T bar-T insertion
	Virasoro cross-cap case
	Global cross-cap case

	The Klein bottle

