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1 Introduction

Supersymmetric flux compactifications of type IIB superstring theory constitute a vast and

rich arena for the study of the implications of string dynamics on 4d physics. Comprehen-

sive reviews on the subject include [1–5]. A common feature of several flux compactification

scenarios is the crucial role played by α′ and/or gs corrections to the leading-order effective

action. One of the most prominent perturbative corrections to the 4d low-energy effective

action is the α′3 correction to the Kähler potential proportional to the Euler characteristic

of the Calabi-Yau threefold used in the compactification. This correction was first com-

puted in a paper by Becker, Becker, Haack, and Louis (BBHL) [6]. It plays in essential

role in the Large Volume Scenario for type IIB compactifications [7–9].
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The 10d origin of the Euler characteristic correction to the 4d Kähler potential resides

in the leading α′ corrections to the bulk type IIB supergravity action. This is an eight-

derivative coupling built with four Riemann tensors, accompanied by several additional

couplings involving other type IIB fields as a consequence of SL(2,Z) symmetry. For the

derivation and discussion of these couplings see e.g. [10–19]. The authors of [6] infer the

corresponding correction to the 4d Kähler potential in a somewhat indirect way. Exploiting

mirror symmetry, the starting point of their analysis are the results of [20, 21] about the

corrected metric of the hypermultiplet moduli space of a Calabi-Yau type II compactifica-

tion to four dimensions with N = 2 supersymmetry. Making use of the results of [22] these

corrections are then reformulated in terms of 4d field variables whose 10d origin is manifest,

in such a way that the orientifold projection to N = 1 supersymmetry can be performed.

The aim of this paper is to provide a direct derivation of the Euler characteristic

correction to the 4d Kähler potential by means of a completely explicit Kaluza-Klein re-

duction of the relevant α′3 couplings in the 10d bulk action. Not only is this approach

more transparent, but it also presents other advantages. Firstly, we do not have to make

any assumption about the superpotential or the scalar potential of the full 4d, N = 1

low-energy effective action, since our conclusions are entirely drawn from the examination

of the kinetic terms for the dilaton and the Kähler moduli of the Calabi-Yau threefold for

arbitrary h1,1. Secondly, our approach allows us to derive both the correction to the 4d

Kähler potential and the correction to the Kähler coordinates as a function of the Kähler

moduli. Finally, in the process of the derivation one necessarily has to analyze the back-

ground solution and show how it gets modified by the α′ corrections under examination. In

particular, we are able to provide an explicit solution for the α′-corrected internal metric in

terms of the non-harmonic part of the third Chern form c3 of the leading order Calabi-Yau

threefold background. The corrected metric is Kähler but not Ricci-flat. As a result it

no longer has SU(3) holonomy, but rather an SU(3) structure with non-vanishing torsion.

The corrected geometry fits in the framework of almost Calabi-Yau manifolds [23]. Simi-

lar results were derived in [24] in the case of M-theory compactifications on a Calabi-Yau

fourfold. Additionally, we find that the 10d background metric is corrected by an overall

Weyl factor at order α′3, in analogy with the findings of the three-dimensional M-theory

analysis of [24–28]. Throughout this paper, we let higher derivatives act in the internal

space, working at two-derivative level in the external directions. Recently, α′3 external

four-derivative couplings between Kähler moduli and gravity were derived in [29] for the

same class of type IIB orientifold setups considered in this work, with potential applications

to Kähler moduli inflation studies.

The main results of our paper are summarized in equations (4.18) to (4.21). We

reproduce the Euler characteristic correction to the Kähler potential originally found by

BBHL [6]. We also compute the leading α′3 corrections to the Kähler coordinates and the

4d axio-dilaton in terms of the Kähler moduli, and find that they are vanishing. Finally,

we exclude the possibility that the effect of the correction to the Kähler potential can

be undone by a Kähler coordinate redefinition, and we reformulate our findings in the

formalism of linear multiplets [30–32] in order to elucidate the physical relevance of the

correction. Let us remark that our analysis does not take into account explicitly localized

sources of the N = 1 setup, such as seven-branes and orientifold planes.

– 2 –



J
H
E
P
0
1
(
2
0
1
7
)
0
0
3

This paper is organized as follows. Section 2 is devoted to the computation of the rele-

vant α′ corrections to the 4d kinetic terms of the dilaton and Kähler moduli. In particular,

in section 2.1 we present the relevant higher-derivative corrections to the 10d action of

type IIB supergravity, in section 2.2 we discuss the background solutions of interest, while

section 2.3 is devoted to the dimensional reduction to four dimensions. The results of the

computation are then analyzed in section 3 in the context of the 4d, N = 2 effective theory

obtained in the absence of orientifold planes and D-branes. We show that our findings are

compatible with the expected perturbative correction to the prepotential for the Kähler

moduli space metric. We then proceed in section 4 to analyze the 4d, N = 1 setup obtained

after implementation of an orientifold projection. We verify that the α′-corrected kinetic

terms of the dilaton and Kähler moduli can be written in terms of a corrected Kähler po-

tential. We determine the latter, reproducing the correction of BBHL [6], and we identify

the α′-corrected form of the Kähler coordinates. Section 5 summarizes our conclusions.

Our conventions, together with useful identities and some technical material, can be found

in the appendices.

2 Four-dimensional α′3 Lagrangian

This section discusses the dimensional reduction of IIB supergravity action including a

suitable class of eight-derivative corrections, on a Calabi-Yau threefold to four dimensions.

In particular, we restrict our analysis to purely gravitational terms and dilaton terms. We

fluctuate the background metric by Kähler deformations and focus on couplings that carry

two external spacetime derivatives and are at most quadratic in the infinitesimal Kähler

deformations. We first review the relevant eight-derivative α′3 corrections to 10d type IIB

supergravity and the supersymmetric background.

2.1 Type IIB higher-derivative action

The starting point of our analysis consists of the type IIB supergravity action including

the leading order α′3 eight-derivative correction built with four Riemann tensors [10–19].

For our purposes this gravitation coupling has to be supplemented with suitable dilaton

couplings discussed below.

In order to set up our notation, let us first record the gravitational and axio-dilaton

terms in the two-derivative type IIB supergravity in the Einstein frame,

S
(2)
R,τ =

1

2κ210

∫
(

R− 1

2τ22
∇Mτ∇Mτ

)

∗10 1 , (2.1)

where 2κ210 = (2π)7α′4, M = 0, . . . , 9 is a 10d world index, and the axio-dilaton is defined as

τ = τ1 + i τ2 = C0 + i e−φ̂ . (2.2)

The action (2.1) is invariant under the SL(2,Z) symmetry of type IIB superstring theory,

under which the Einstein frame metric is invariant and the axio-dilaton transforms as

τ ′ =
a τ + b

c τ + d
,

(

a b

c d

)

∈ SL(2,Z) . (2.3)
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Next, let us consider the α′3 correction constructed with four Riemann tensors. It takes

the form

S
(8)
R4 =

1

2κ210
· α′3

3 · 212
∫

f0(τ, τ)

(

t8t8 +
1

8
ǫ10ǫ10

)

R4 ∗10 1 , (2.4)

where the explicit tensor contractions are given by

ǫ10ǫ10R
4 = ǫR1R2M1...M8ǫR1R2N1...N8R

N1N2
M1M2R

N3N4
M3M4R

N5N6
M5M6R

N7N8
M7M8 ,

t8t8R
4 = tM1...M8

8 t8N1...N8R
N1N2

M1M2R
N3N4

M3M4R
N5N6

M5M6R
N7N8

M7M8 , (2.5)

and the tensor t8 is defined in terms of the metric in the standard way [12]. We have also

introduced the function f0(τ, τ), which is the non-holomorphic, SL(2,Z)-invariant function

defined as

f0(τ, τ) =
∑

(m,n) 6=(0,0)

τ
3/2
2

|m+ n τ |3 . (2.6)

It is useful to note that in the large τ2 limit, which corresponds to the small string coupling

limit, we have

f0(τ, τ) = 2ζ(3) τ
3/2
2 +

2π2

3
τ
−1/2
2 +O(e−2πτ2) . (2.7)

Our analysis requires the consideration of additional higher-derivative terms involving

gradients of the dilaton. Such terms can be obtained following the approach of [14, 17, 18],

by replacing each occurrence of the Riemann tensor in (2.5) according to

RMN
PQ → RMN

PQ + c̃1g[M
[P∇N ]∇Q]φ̂+ c̃2g[M

[P∇N ]φ̂∇Q]φ̂+ c̃3g[M
[P gN ]

Q]∇Kφ∇K φ̂ ,

(2.8)

where antisymmetrizations are performed with weight one, and c̃1, c̃2, c̃3 are real numerical

coefficients that we leave unfixed for now.1 In order to achieve SL(2,Z)-invariance several

other terms have to be added to the action [33, 34], but they are not relevant for our

discussion.

In summary, the total action utilized in the analysis of the following sections is obtained

by summing the two-derivative terms in (2.1) with the terms generated by the replacement

rule (2.8) in the terms given in (2.5). We only keep terms which can correct the kinetic

terms of the resulting 4d dilaton and discarding higher derivative terms thereof, as well as

terms for the axion C0. We also retain only the leading term in the large τ2 expansion of

f0(τ, τ), see (2.7). We thus obtain

S =
1

2κ210

∫
[

R− 1

2
∇Mφ∇Mφ+

ζ(3)α′3

3 · 211 e−
3
2
φ

(

t8t8 +
1

8
ǫ10ǫ10

)

R4 (2.9)

+
ζ(3)α′3

3 · 211 e−
3
2
φ

(

c̃1∇M∇M φ̂ f1 + c̃2∇M φ̂∇N φ̂ fMN
2 + c̃3∇M φ̂∇M φ̂ f3

)]

∗10 1 ,

1The analysis of the 4-point tree-level dilaton scattering amplitude gives the value c̃1 = −1

(see [14, 17, 18] and also [33, 34]), while c̃2, c̃3 cannot be fixed in this way. In what follows, however,

we proceed treating all c̃ coefficients on the same footing.
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where the quantities f1, fMN
2 , f3 are homogeneous polynomials of degree three in the

components of the Riemann tensor and are given explicitly in appendix B. For notational

convenience let us introduce the dimensionful constant

α =
ζ(3)α′3

3 · 211 , (2.10)

which plays the role of the small expansion parameter relevant for our problem. Note that

we adopt conventions in which the 10d metric components and the dilaton are dimension-

less, while coordinates xM have dimension of length.

2.2 Supersymmetric background

In this section we study how the supersymmetric Calabi-Yau background solutions of type

IIB supergravity are modified in the presence of the higher-derivative terms in (2.9) and we

present the relevant dilaton and Kähler fluctuations around the corrected background. Let

us note that we cannot analyze directly the supersymmetry properties of the background,

since the type IIB supersymmetry variations are not completely known at the required

order in α′, but we can give necessary conditions for the α′ modification of the background

by solving the equations of motion.

2.2.1 Corrections to the background

Our problem fits into the framework of supersymmetric flux compactifications of type

IIB superstring on a Calabi-Yau threefold Y3. Let us first recall some facts about these

setups neglecting higher-derivative corrections to the 10d supergravity action [35]. For

compactifications to flat four-dimensional spacetime the background metric has the form

ds210 = e2A ηµνdx
µdxν + e−2A g(0)

ab dy
adyb , (2.11)

where µ, ν = 0, 1, 2, 3 are 4d external spacetime world indices, xµ are Cartesian coordinates,

ηµν is the Minkowski metric, a, b = 1, . . . 6 are real internal world indices associated to the

coordinates ya, and g(0)

ab denotes the Ricci-flat metric on Y3. The warp factor A only depends

on the internal coordinates and also determines the background F5 flux via

F5 = (1 + ∗10) de4A ∧ dx0 ∧ dx1 ∧ dx3 ∧ dx4 . (2.12)

The F5 flux has to obey the Bianchi identity

dF5 = H3 ∧ F3 + ρ6 , (2.13)

where H3 = dB2 and F3 = dC2 − C0dB2 are the usual NSNS and RR three-form field

strengths and the six-form ρ6 encodes the D3-brane charge density associated with possible

localized sources. Integrating (2.13) on the internal manifold yields the D3-brane tadpole

cancellation condition
1

2κ210T3

∫

Y3

H3 ∧ F3 +QD3 = 0 , (2.14)

– 5 –
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where T3 = (2π)−3(α′)−2 is the D3-brane tension and QD3 is the total D3-brane charge,

proportional to the integral of ρ6.
2 If all local sources are removed, all fluxes have to vanish

and the warp factor is necessarily trivial.

The inclusion of higher-derivative corrections to the type IIB bulk action induces mod-

ifications in the previous picture. In what follows we analyze the 10d equations of motion

in presence of higher-derivative corrections of order α ∝ α′3 but without introducing any

local source in the problem. Even though this setup yields an effective 4d, N = 2 low-

energy effective action, we argue that the following analysis is sufficient for the purpose

of studying the Euler characteristic correction to the Kähler potential in the 4d, N = 1

theory after performing the orientifold truncation in section 4.

We adopt the following α′-corrected Ansatz for the 10d background metric,

ds210 = eΦ
[

e2A ηµνdx
µdxν + e−2A gabdy

adyb
]

, (2.15)

where

Φ = αΦ(1) +O(α2) ,

A = αA(1) +O(α2) ,

gab = g(0)

ab + α g(1)

ab +O(α2) . (2.16)

The quantity Φ is an overall 10d Weyl rescaling of the metric, and it has been introduced

in analogy with the analysis of [24]. This parametrization of the prefactors multiplying

the internal and external metric is general and is useful for the following discussion. The

zeroth-order metric is the Calabi-Yau Ricci-flat metric. Accordingly, Φ and A have no

O(α0) term. All quantities depend exclusively on the internal coordinates in order not to

break Poincaré invariance in the external directions. The corrections to the dilaton profile

are parametrized as

φ̂ = φ0 + αφ(1) +O(α2) , (2.17)

where φ0 is the constant uncorrected dilaton VEV.

The 10d Einstein equation at order α can be written in the form

0 = R(1)

MN − 1

2
(R(1)

PQ g(0)PQ) g(0)

MN + TMN . (2.18)

The first two terms capture the contribution coming from the two-derivative part of the

Einstein equation evaluated on the α-corrected Ansatz (2.15). The symbol R(1)

MN is used

to denote the O(α) part of the 10d Ricci tensor computed using the metric (2.15), while

g(0)

MN is used for the O(α0) part of (2.15). The quantity TMN encodes all the contributions

coming from the higher-derivative part of the Einstein equation, derived from (2.9), upon

evaluation on the O(α0) part of the metric Ansatz (2.15). We find

Tµν = 0 , Tµa = 0 , Tab = 768α e−
3
2
φ0 J (0)

a
cJ (0)

b
d∇(0)

c ∇(0)

d Q , (2.19)

2Recall that QD3 generically receives contributions not only from D3-branes and O3-planes, but also

from higher-dimensional defects with flux- and/or geometry-induced D3-brane charge, such as D7-branes

and O7-planes [35].
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where ∇(0), J (0) denote the Levi-Civita connection and complex structure associated to the

zeroth-order metric, respectively, and the quantity Q is the six-dimensional Euler density,

Q =
1

12

(

R(0)
a1a2

a3a4R(0)
a3a4

a5a6R(0)
a5a6

a1a2 − 2R(0)
a1

a2
b1

b2R(0)
a2

a3
b2

b3R(0)
a3

a1
b3

b1
)

. (2.20)

This object satisfies

Q = (2π)3 ∗(0)

6 c(0)3 ,

∫

Q ∗(0)

6 1 = (2π)3χ , (2.21)

where χ is the Euler characteristic of the internal space, ∗(0)

6 is the Hodge star operator

with respect to the zeroth-order metric, and c3 is the third Chern form built from g(0)

ab ,

defined in appendix A.

It is convenient to use holomorphic and antiholomorphic indices m = 1, 2, 3, m̄ = 1̄, 2̄, 3̄

associated to the zeroth-order complex structure, in such a way that J (0)
m

n = +iδm
n.

One may then check that all components of the order-α Einstein’s equation are solved by

imposing

Φ(1) =−192 e−
3
2
φ0 Q , R(1)

mn̄ =−1536 e−
3
2
φ0 ∇(0)

m ∇(0)

n̄ Q , R(1)
mn =0 , R(1)

m̄n̄ = 0 , A(1) =0 ,

(2.22)

where R(1) denotes the linearized Ricci tensor of the metric correction g(1). Let us also

point out that we can exhibit an explicit expression for g(1). To this end we start recalling

that, as a consequence of the ∂∂̄-lemma, the (3, 3)-form c3 can be decomposed as

c3 = Hc3 + i∂∂̄F , (2.23)

where Hc3 denotes the harmonic part of c3 with respect to the zeroth-order metric and F

is a suitable co-closed (2, 2)-form.3 We can express the Euler density Q in terms of F as

(2π)−3Q = ∗(0)

6 Hc3 +
1

2
∆(0) ∗(0)

6 (J (0) ∧ F ) , (2.24)

where ∆(0) = 2g(0)mn̄∇(0)
m ∇(0)

n̄ denotes the scalar Laplacian of the zeroth-order metric, and

we exploited the co-closure of F . Let us also stress that the first term in (2.24) is constant

on the threefold as a result of the harmonic projection. Utilizing (2.24) one can observe

that the equations for R(1) in (2.22) can be solved by setting

g(1)
mn = 0 , g(1)

m̄n̄ = 0 , g(1)

mn̄ = −1536(2π)3 e−
3
2
φ0 ∇(0)

m ∇(0)

n̄ ∗(0)

6 (J (0) ∧ F ) . (2.25)

3The existence and co-closure of F can be seen by the following argument, similar to an argument in [36].

Let us first apply the Hodge decomposition theorem to the 6-form c3 and write c3 = Hc3+db5 for a suitable

globally defined 5-form b5. Since the form db5 is d-exact, ∂-closed, and ∂̄-closed, the ∂∂̄-lemma ensures

that it is ∂∂̄-exact, so that dβ5 = ∂∂̄f4 for a globally defined 4-form f4. We can now apply the Hodge

decomposition theorem to f4 and write f4 = Hf4 + dg3 + δg5, where δ denotes the codifferential and g3, g5
are a globally defined 3- and 5-form, respectively. We now note that Hf4 is harmonic on a Kähler manifold

and hence ∂̄-closed, and that ∂∂̄d = 0. It follows that we can write c3 = Hc3 + ∂∂̄δg5. We can thus set

F = −iδg5, which is co-closed because it is co-exact.

– 7 –
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As we can see, the corrected metric g(0)

mn̄ + αg(1)

mn̄ is still Kähler and belongs to the same

Kähler class as g(0)

mn̄.

The dilaton also receives a correction sourced by the higher-derivative terms in (2.9).

The relevant terms in the dilaton equation of motion yield the relation

0 = g(0)n̄m∇(0)
m ∇(0)

n̄ φ(1) − 1152 e−
3
2
φ0 c̃1 g

(0)n̄m∇(0)
m ∇(0)

n̄ Q , (2.26)

and is solved by

φ(1) = 1152 c̃1 e
− 3

2
φ0Q . (2.27)

An integration constant has been set to zero because, up to O(α2) terms, it can always be

reabsorbed in φ0. Our findings about the modification of the background dilaton profile

and internal metric are in line with previous work [13, 37–40].

In closing this section let us remark that a full determination of F1, G3, F5 at order

α would require a detailed knowledge of order-α corrections to their equations of mo-

tion, which are related to the SL(2,Z) completion of the higher-derivative terms recorded

in (2.9). This investigation is beyond the scope of the present work. Since we focus on cou-

plings involving the metric and the dilaton, however, we only need the expressions (2.22)

and (2.27) for the order-α Weyl rescaling factor and dilaton correction.

2.2.2 SU(3) structure on the internal manifold

In this section we show how the SU(3) holonomy of the zeroth-order Calabi-Yau internal

metric is deformed to a specific SU(3) structure of the α′3-modified background. Our

discussion applies to g(0)

ab + α g(1)

ab and does not involve the overall Weyl rescaling factor of

the 10d metric.

The Kähler form and the (3, 0)-form of the uncorrected Calabi-Yau metric are subject

to α′ corrections but remain nonetheless globally defined on the internal space. As a result,

the structure group of the internal manifold is reduced from SO(6) to SU(3) even after

taking corrections into account. This guarantees the existence of local SU(3) coframes,

consisting of triplets eI , I = 1, 2, 3, of complex one-forms together with their complex

conjugates ēĪ , with the property that {eI , ēĪ} is a local basis of T ∗Y3⊗C and on overlapping

patches the transition functions for eI take values in SU(3). We may express locally J and

Ω, as well as the metric, in terms of the SU(3) coframe as

J = i δIJ̄ e
I ∧ ēJ̄ , Ω =

1

3!
ǫIJK eI ∧ eJ ∧ eK , ds2 = 2 δIJ̄ e

I ēJ̄ , (2.28)

where ǫ123 = 1. The coframe can be written as the sum of an uncorrected contribution and

a correction,

eI = e(0)I + α e(1)I . (2.29)

Since the uncorrected geometry is Kähler, we can adopt complex coordinates and choose

the coframe e(0)I in such a way that its only non-zero components are e(0)Im, ē(0)Ī n̄.

The relevant correction to the SU(3) coframe takes the form

e(1)I = −768(2π)3 e−
3
2
φ0 e(0)In∇(0)

m ∇(0)n ∗(0)

6 (J (0) ∧ F ) dzm . (2.30)

– 8 –
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It is indeed straightforward to check that the associated correction to the metric reproduces

g(1) in (2.25). We also have

J = J (0) + αJ (1) , J (1) = −1536i (2π)3e−
3
2
φ0 ∂(0)∂̄(0) ∗(0)

6 (J (0) ∧ F ) , (2.31)

and therefore

dJ (1) = 0 . (2.32)

The correction to the (3, 0) form reads

Ω = Ω(0) + αΩ(1) , Ω(1) =
[

−384 (2π)3e−
3
2
φ0 ∆(0) ∗(0)

6 (J (0) ∧ F )
]

Ω(0) , (2.33)

which implies

dΩ(1) = −768 (2π)3e−
3
2
φ0 dQ ∧ Ω(0) . (2.34)

We can summarize our conclusions in the language of SU(3) torsion classes, reviewed for

instance in [41]. The most general SU(3) structure can be described by

dJ = −3

2
Im(W1Ω) +W4 ∧ J +W3 ,

dΩ = W1 J ∧ J +W2 ∧ J +W5 ∧ Ω , (2.35)

with suitable torsion classes W1, W2, W3, W4, W5. We can then see that in our case all

torsion classes vanish, with the exception of

W5 = 0 + αW (1)

5 , W (1)

5 = −768 (2π)3e−
3
2
φ0 ∂̄(0)Q . (2.36)

The corrected geometry is still Kähler and the manifold is an almost Calabi-Yau three-

fold [23]. The situation at hand can be compared to considering, for instance, a quintic

in P
4 endowed with the metric induced by the ambient space Fubini-Study metric. It is

interesting to point out, however, that if the requirement of simple connectedness is re-

laxed, it is possible to have Ricci-flat Kähler manifolds that are almost Calabi-Yau, but not

Calabi-Yau. An example is furnished by the Enriques surfaces; recently, novel examples

have been constructed in [42] in the context of solvmanifolds.

2.2.3 Fluctuations associated to Kähler moduli

In order to derive the relevant couplings in the four-dimensional effective action of type

IIB compactified on Y3 we need to activate Kähler structure deformations of the internal

metric entering the 10d background solution. We thus imagine to pick a fixed, reference

point in the complex structure and Kähler structure moduli space of Y3 and to switch on

small deformations in the Kähler structure moduli space directions.

It is well-known that, at zeroth-order in α, the Kähler structure deformations of the

internal Ricci-flat metric take the form

δg(0)

mn̄ = −i δvi ωimn̄ , (2.37)

where i = 1, . . . , h1,1(Y3), δv
i are real deformation parameters, and ωimn̄ denote a basis of

harmonic (1, 1)-forms whose cohomology classes are Poincaré dual to an integral basis of

the homology H4(Y3,Z).
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At first order in α the structure of the internal metric deformations can be written as

δ(g(0)

mn̄ + α g(1)

mn̄) = −i δvi (ωimm̄ + α∇(0)
m ∇(0)

n̄ ρi) + α∇(0)
m ∇(0)

n̄ δF̃ +O(α2) . (2.38)

The ρi functions parametrize deviations from the harmonic representative within each

cohomology class in H1,1(Y3), while δF̃ denotes the variation of the function F̃ = ∗(0)

6 (J (0)∧
F ) appearing in (2.25) induced by the zeroth-order deformation (2.37). Both kinds of

modifications can be combined in a single expression of the form

δ(g(0)

mn̄ + α g(1)

mn̄) = −i δvi (ωimm̄ + α∇(0)
m ∇(0)

n̄ λi) +O(α2) , (2.39)

for suitable functions λi. Similar results were found in [25, 26]. Crucially, these functions

drop out from the dimensional reduction discussed in the next section. As a consequence,

we do not need to discuss their specific form, and moreover it seems that they do not have

any physical significance. Let us point out that the deformation (2.37) of the zeroth-order

metric induces also a modification of the quantity Q entering the order α expressions for

the Weyl rescaling function Φ(1) and the dilaton correction φ(1). Since we are working up

to quadratic order in fluctuations, we can consider a truncated Taylor series expansion for

Q of the form

Q[g(0) + δg(0)] = Q+Qiδv
i +

1

2
Qijδv

iδvj . (2.40)

In order to compute the 4d effective action we treat the fluctuation parameters δvi as

arbitrary functions of the external coordinates. In a similar way, we promote the O(α0)

dilaton profile φ0 from a constant to an arbitrary function of external spacetime. In sum-

mary, the Ansatz utilized in the dimensional reduction takes the form

ds210 = exp

{

−192α e−
3
2
φ(x)

(

Q+Qiδv
i +

1

2
Qijδv

iδvj
)}

× (2.41)

×
[

gµνdx
µdxν + 2

(

g(0)

mn̄ + α g(1)

mn̄ − iδvi(ωimn̄ + α∇(0)
m ∇(0)

n̄ λi)
)

dzmdz̄n̄
]

+O(α2) +O(δv3) ,

φ̂(x, y) = φ(x) + 1152 c̃1 α e−
3
2
φ(x)

(

Q+Qiδv
i +

1

2
Qijδv

iδvj
)

+O(α2) +O(δv3) . (2.42)

Note that we have replaced the external Minkowski metric with an arbitrary metric gµν(x).

We will drop the explicit dependence of the spacetime coordinates, writing φ for φ(x), for

notational simplicity in the following.

2.3 Reduction results

This section is devoted to the discussion of the results of the dimensional reduction of the

various terms in (2.9) according to the Ansatz (2.41). In section 2.3.1 we present the out-

come of the computation and we address the problem of uplifting it from small fluctuations

δvi to a full, non-linear dependence on the Kähler structure moduli. Section 2.3.2 is then

devoted to the Weyl rescaling that casts the 4d Einstein-Hilbert term into canonical form.
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2.3.1 Results and uplift

To begin with, the reduction of the Einstein-Hilbert term to four dimensions yields
∫

M10

R ∗10 1 −→
∫

M4

(

ΩR+ Pij ∇µδv
i∇µδvj + Pi∇µδv

i∇µφ
)

∗4 1 , (2.43)

with

Ω =

∫

Y3

[

1− iδvi ωim
m+

1

2
δviδvj(ωimn̄ωj

n̄m − ωim
mωjn

n)−384 · 2αe− 3
2
φ0 Q

]

∗(0)

6 1, (2.44)

Pij=

∫

Y3

[

1

2
ωimn̄ωj

n̄m− ωim
mωjn

n− 384 · 2α e−
3
2
φ0 Q

(

1

2
ωimn̄ωj

n̄m + ωim
mωjn

n

)]

∗(0)

6 1 ,

(2.45)

Pi =

∫

Y3

−384 · 6 i α e−
3
2
φ ωim

mQ ∗(0)

6 1 . (2.46)

The terms proportional to α originate from the 10d Weyl rescaling factor in the backreacted

metric Ansatz (2.41). Let us point out that terms involving other quantities such as

g(1)

mn̄ and λi drop out of the final result because their contributions can be organized into

total derivatives in the internal space. It is also crucial to make use of the fact that the

fluctuation of c3 under a Kähler deformation is an exact six-form, in accordance with c3
being a characteristic class.4

Next we consider the reduction of the dilaton kinetic terms. Note that ∇µφ can be

effectively considered to be a fluctuation of the same order as δvi, and as a result terms

of the schematic form δv∇φ∇φ or δv∇δv∇φ have to be neglected. To linear order in

fluctuations we have

∇µφ = ∇µφ
[

1− 1728α c̃1 e
− 3

2
φQ

]

+ 1154α c̃1 e
− 3

2
φQi∇µδv

i . (2.48)

Combining this observation with the effect of the Weyl rescaling factor we obtain
∫

M10

−1

2
∇M φ̂∇M φ̂ ∗10 1 −→

∫

M4

[

U ∇µφ∇µφ+ Ui∇µφ∇µδvi
]

∗4 1 , (2.49)

with

U = −1

2
(2πα′)3 V (0) + 384α

(

1 +
9

2
c̃1

)

e−
3
2
φ (2π)3χ , Ui = −384α · 3i c̃1 ωim

m (2π)3χ ,

(2.50)

where V (0) denotes the volume of Y3 in units of
√
2πα′ computed with the zeroth-order

metric g(0)

mn̄ and we used (2.21) and the footnote for the integrals of Q, Qi. We have also

recalled that ωim
m is constant on the threefold.

4This observation allows us to derive useful identities involving the variation of the zero-formQ. Recalling

Q = (2π)3 ∗
(0)
6 c3 and taking into account the variation of the metric implicit in the Hodge star, one can

show that
∫

Y3

[Qi − i ωim
m
Q] ∗

(0)
6 1 = 0 ,

∫

Y3

[

Qij + (ωimn̄ ωj
n̄m + ωim

m
ωjn

n)Q
]

∗
(0)
6 1 = 0 , (2.47)

where the quantities Qi, Qij were introduced in (2.40).
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We can now record the results of the reduction of the higher-derivative terms. First

of all,

∫

M10

e−
3
2
φ

(

t8t8 +
1

8
ǫ10ǫ10

)

R4 ∗101 −→
∫

M4

[

−384 · 2(2π)3e− 3
2
φχR+ P̃ij ∇µδv

i∇µδvj
]

∗41 ,
(2.51)

where

P̃ij = 384(2π)3e−
3
2
φ

∫

Y3

ωimn̄ωj
n̄m c3 . (2.52)

Let us remind the reader that the internal six-form c3 is the third Chern form defined in

appendix A and was related to Q in (2.21). Secondly, the reduction of the higher-derivative

dilaton couplings in (2.9) yields

∫

M10

e−
3
2
φ

(

c̃1∇M∇M φ̂ f1 + c̃2∇M φ̂∇N φ̂ fMN
2 + c̃3∇M φ̂∇M φ̂ f3

)

(2.53)

−→ 384(2π)3
∫

M4

e−
3
2
φ

[

− 3

2
(3c̃1 + 2c̃2 + 4c̃3)χ∇µφ∇µφ+ 3i c̃1 ωim

m χ∇µφ∇µδvi
]

∗4 1 .

As mentioned above, in the process of dimensional reduction we have implicitly chosen

a reference point in the complex structure and Kähler moduli spaces of the threefold Y3 and

we have only activated Kähler fluctuations δvi, retaining terms up to quadratic order. Our

next task is to infer the form taken by the couplings written above when the fluctuations

δvi are promoted to a full dependence on the moduli space of Y3. At two-derivative level

this is a standard procedure that we briefly review in order to set up our notation.

Recall that the (1, 1) forms ωimn̄, i = 1, . . . , h1,1 are the harmonic representatives of the

cohomology classes dual to an integral basis Di of the homology H4(Y3,Z). The threefold

intersection numbers are denoted

Kijk = Di ·Dj ·Dk = (2πα′)−3

∫

Y3

ωi ∧ ωj ∧ ωk . (2.54)

We have inserted the appropriate power of 2πα′ in order to make the intersection numbers

Kijk dimensionless. Indeed, the components ωimn̄ are dimensionless, so that the (1, 1)-forms

ωi = ωimn̄ dz
m ∧ dz̄n̄ have mass dimension −2.

The Kähler class of the zeroth-order metric at the reference point in moduli space can

be expanded onto the basis of forms ωi as

J (0) = v(0)iωi , (2.55)

where v(0)i are taken to be dimensionless. We also define the quantities

K(0)

ij = Kijkv
(0)k , K(0)

i =
1

2
Kijkv

(0)jv(0)k , V (0) =
1

6
Kjikv

(0)iv(0)jv(0)k . (2.56)

The quantity V (0) is the volume of the threefold in units of
√
2πα′, so that we can write

∫

Y3

∗(0)

6 1 = (2πα′)3 V (0) . (2.57)
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Let us record the useful identities

ωim
m = i

K(0)

i

V (0)
, ωimn̄ωj

n̄m ∗(0)

6 1 = ωi ∧ ωj ∧ J −
K(0)

i K(0)

j

V (0)2
∗(0)

6 1 , (2.58)

and stress that harmonicity of ωi guarantees that ωim
m is covariantly constant on Y3. Using

these identities we can immediately compute the O(α0) part of Pij defined in (2.45),

Pij = (2πα′)3

[

1

2
K(0)

ij +
1

2

K(0)

i K(0)

j

V (0)

]

+O(α) . (2.59)

This expression is initially understood to be evaluated at the reference point in Kähler

moduli space, but given its topological nature it uplifts naturally to the full moduli space

dependence. This is achieved simply by replacing v(0)i with an arbitrary vi. The quantities

defined in (2.55), (2.56) in terms of v(0)i are promoted to v-dependent quantities denoted

V , Ki, Kij without the (0) superscript. In a similar way, the quantity Ω′ naturally uplifts

to the full v-dependent threefold volume form, which integrates to the full volume.

The uplift of higher-derivative couplings is considerably less under control in general,

due to the fact that corrections are expected to lift some of the näıve flat directions of moduli

space, making the identification of the correct massless modes a hard problem. Nonetheless,

we can recast the reduction results of the higher-derivative terms under consideration in

a simple form. Exploiting the fact that ωim
m is covariantly constant we can immediately

perform the uplift of integrals of the form
∫

Y3

ωim
m c3 −→ i χ

Ki

V ,

∫

Y3

ωim
m ωjn

n c3 −→ −χ
KiKj

V2
. (2.60)

A similar manipulation for the integral
∫

Y3

ωimn̄ ωj
n̄m c3 (2.61)

is not straightforward, since the non-harmonic part F of c3 introduced in (2.23) poses an

obstruction to the factorization of this expression. In the present context, however, the

overall coefficient of this term in the dimensional reduction is zero and we do not have to

address this complication.

Let us introduce the field-dependent, dimensionless quantity

χ̃ = 384(2π)3
α

(2πα′)3 V e−
3
2
φ χ =

1

16
ζ(3)

e−
3
2
φ

V χ . (2.62)

In what follows it plays the role of the effective expansion parameter for the problem at

hand. Combining all contributions after uplift the 4d effective action takes the form

S4d =
1

(2π)4α′

∫

M4

{

V (1 + b1 χ̃)R+

[(

1

2
+ b2 χ̃

)

Kij +

(

1

2
+ b3 χ̃

) KiKj

V

]

∇µv
i∇µvj

+ V
(

−1

2
+ b4 χ̃

)

∇µφ∇µφ+ b5 χ̃Ki∇µφ∇µvi
}

∗4 1 . (2.63)
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In this expression we have promoted the fluctuations δvi to full 4d fields vi. For notational

convenience we have introduced the numerical coefficients

b1 = −4 , b2 = 0 , b3 = 2 , (2.64)

b4 = 1− 3c̃2 − 6c̃3 , b5 = 6 . (2.65)

2.3.2 Weyl rescaling

Our next task is performing a Weyl rescaling of the external metric in (2.63) in order to

bring the 4d Einstein-Hilbert term into canonical form. Let us record the identities

gµν = e2Λg̃µν , R = e−2Λ
[

R̃− 6∇̃µΛ∇̃µΛ− 6∇̃µ∇̃µΛ
]

. (2.66)

In our case, we set

Λ = −1

2
log [V (1 + b1 χ̃)] . (2.67)

Dropping the tilde on the new metric, the Weyl-rescaled 4d action can be written in

the form

S4d =
1

(2π)4α′

∫

M4

[

R+ Gvivj ∇µv
i∇µvj + Gφφ∇µφ∇µφ+ 2Gφvi ∇µφ∇µvi

]

∗4 1 , (2.68)

where

Gvivj = − 1

V2

[

1 + χ̃

(

−b3 −
5

2
b1

)]

KiKj +
1

2V [1 + χ̃ (2b2 − b1)] Kij , (2.69)

Gφφ = −1

2
[1 + χ̃ (−b1 − 2b4)] , (2.70)

Gφvi =

(

9

4
b1 +

1

2
b5

)

χ̃
Ki

V . (2.71)

This form of the reduction result is a convenient starting point for the discussion of the 4d

N = 2 and N = 1 theories in the following sections.

3 Correction to the N = 2 prepotential

In this section we analyze the result of the dimensional reduction from the point of view

of the 4d, N = 2 effective theory obtained without including branes or performing any

orientifold projection. We show that our findings are compatible with the known results

about the correction to the geometry of the N = 2 hypermultiplet scalar manifold induced

by a perturbative α′ correction to the Kähler moduli space prepotential [21, 40, 43].

3.1 Translation into N = 2 field variables

Let us recall some well-known facts about the 4d, N = 2 effective theory arising from

compactification of type IIB superstring on a Calabi-Yau threefold [20, 22, 44, 45]. The

complex structure moduli of the threefold fit into nV = h1,2 vector multiplets. Their scalar

manifold is special Kähler and its geometry is tree-level exact both in gs and α′. The Kähler

structure moduli, the dilaton, the axion, as well as the scalars coming from the expansion
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of B2, C2, C4 onto internal even harmonic forms, all fit into nH = h1,1+1 hypermultiplets.

Their scalar manifold MQ is quaternionic of real dimension 4(h1,1 + 1).

The structure of the metric on MQ is most conveniently analyzed using the string

frame Kähler moduli vis and the 4d dilaton φ4. In terms of these variables the quaternionic

metric on MQ can be written schematically as [20, 44]

ds2(MQ) = (dφ4)
2 +Gi̄(ws, w̄s) dw

i dw̄̄ + Gxy(ws, w̄s, φ4, q)dq
x dqy . (3.1)

In this expression wi
s = uis+ i vis are the complexified Kähler moduli arising from expansion

of B2+ iJs onto the basis ωi of harmonic (1, 1)-forms. The metric Gi̄ is the special Kähler

metric on the Kähler moduli space MK of the threefold. The fields qx denote collectively

all real scalars in MQ different from φ4, u
i
s, v

i
s. The metric components Gxy are entirely

determined by the special Kähler metric on MK. For this reason, the quaternionic metric

on MQ is sometimes referred to as special quaternionic [20, 44]. Let us stress that the

structure (3.1) of the metric on MQ is expected to hold not only at tree level, but also

including α′ corrections, thanks to mirror symmetry considerations, reviewed for instance

in [46, 47].

In our analysis all the fields qx as well as the axions uis are effectively frozen to zero.

Our next task is therefore to connect the string frame Kähler moduli vis and the 4d dilaton

φ4 to the Einstein frame Kähler moduli vi and the 10d dilaton φ. At two-derivative level

we have the relations

e−2φ4 = e−
1
2
φ V , vis = e

1
2
φ vi . (3.2)

Let us remind the reader that in our conventions V is the volume of the threefold in units of√
2πα′. In order to take into account the effect of higher-derivative corrections we deform

these relations into

e−2φ4 = e−
1
2
φ V (1 + Υ1 χ̃) , vis = e

1
2
φ vi (1 + Υ2 χ̃) , (3.3)

where Υ1, Υ2 are constants that will be fixed momentarily.

We can now invert (3.3) to leading order in α′3 to obtain vi, φ in terms of vis, φ4, and

plug the resulting expressions into the 4d effective action (2.68). The result is conveniently

expressed in terms of the quantities

Vs =
1

6
Kijk v

i
s v

j
s v

k
s , Ks

i =
1

2
Kijk v

j
s v

k
s , Ks

ij = Kijk v
k
s . (3.4)

Furthermore, it is convenient to introduce a new field-dependent dimensionless quantity

χ̃s, which is the string-frame analog of χ̃ and is given by

χ̃s =
1

16
ζ(3)

1

Vs
χ . (3.5)

With this notation, the 4d effective action can be written as

S4d =
1

(2π)4α′

∫

M4

{

R+

[

1

2Vs
(1 + a1 χ̃s)Ks

ij −
1

2Vs
(1 + a2 χ̃s)

Ks
iKs

j

Vs

]

∇µv
i
s∇µvjs

− 2 (1 + a3 χ̃s)∇µφ4∇µφ4 + a4 χ̃s
Ks

i

Vs
∇µφ4∇µvis

}

∗4 1 , (3.6)
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where the numerical coefficients a are given in terms of the b coefficients introduced

in (2.63) by

a1 = 2b2 − b1 , a2 = −37

16
b1 +

5

4
b2 −

1

8
b3 −

1

2
b4 −

1

4
b5 + 2Υ2 ,

a3 =
11

16
b1 −

3

4
b2 −

9

8
b3 −

1

2
b4 +

3

4
b5 , a4 = −27

8
b1 −

1

2
b2 −

3

4
b3 + b4 −

1

2
b5 + 2Υ1 . (3.7)

If we plug in the values of the b coefficients given in (2.64), we find

a1 = 4 , a2 = 7 +
3

2
c̃2 + 3c̃3 + 2Υ2 ,

a3 = −1 +
3

2
c̃2 + 3c̃3 , a4 = 13− 3c̃2 − 6c̃3 + 2Υ1 . (3.8)

We are now in a position to discuss the correction to the N = 2 prepotential.

3.2 Implications for N = 2 prepotential

As noted above, the form (3.1) of the quaternionic metric on MQ should be preserved

by α′ corrections. In particular, cross terms between φ4 and vis are not allowed, and also

vis-dependent corrections to the (dφ4)
2 terms are forbidden. These considerations lead us

to impose a3 = 0, a4 = 0. As a result we can fix the value of Υ1 and derive a linear

constraint on the dilaton coupling coefficients c̃2, c̃3,

Υ1 = −4 , 3c̃2 + 6c̃3 − 2 = 0 . (3.9)

We now aim at demonstrating that the effective action (3.6) can be written as

S =
1

(2π)4α′

∫

M4

{

R− 2∇µφ4∇µφ4 − 2Gi̄∇µv
i
s∇µvjs

}

∗4 1 , Gi̄ = ∂wi
s
∂w̄̄

s
KN=2(ws, w̄s) ,

(3.10)

where we remind the reader that wi
s = uis + i vis are the complexified Kähler moduli, and

where the Kähler potential KN=2(ws, w̄s) can be derived from a holomorphic prepotential.

In order to set our notation, it is useful to review the relation between the Käher

potential and the prepotential. The geometry of the h1,1 complex-dimensional Kähler

moduli space is conveniently described by h1,1 + 1 complex projective coordinates XI =

(X0, Xi) related to the complex coordinates wi
s by

wi
s =

Xi

X0
. (3.11)

The geometry of MK is encoded in a holomorphic prepotential F (X), which is a homoge-

neous function of XI of degree 2. The Kähler potential KN=2(ws, w̄s) for the metric on

MK is then extracted from F via

e−KN=2(ws,w̄s) = −i(XIF I − FIX
I
) , FI = ∂XIF (X) . (3.12)

Mirror symmetry considerations [21, 46, 47] ensure that the prepotential F (X) takes

the form

F (X) =
1

X0

1

6
KijkX

iXjXk + i λ (X0)2 + . . . , (3.13)
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where the first term is the classical prepotential, the second is a perturbative α′ effect, and

the ellipsis stands for terms that are exponentially suppressed in the large volume limit

and originate from worldsheet instantons. The N = 2 Kähler potential derived from (3.13)

using (3.12) is, up to instanton corrections and an immaterial constant,

KN=2 = − log

[

Vs +
1

2
λ

]

. (3.14)

We can finally relate this to our dimensional reduction by comparing the metric com-

puted from (3.14) with the metric in (3.6). We find that, in order for the match to be

possible, we have to impose

Υ2 = 0 . (3.15)

The constant λ is then fixed to be

λ = −1

2
ζ(3)χ , (3.16)

so that the N = 2 Kähler potential reads

KN=2 = − log

[ Vs

(2πα′)3
− 1

4
ζ(3)χ

]

. (3.17)

In this last expression we have reinstated all factors of α′ and Vs denotes the dimensionful

volume of the threefold. Let us close this section with a comparison between our findings

and the analogous quantities in BBHL [6]. Using equations (3.11), (3.12), (3.13) and the

comment before (3.15) in that paper, we infer that their N = 2 Kähler potential in our

notation coincides exactly with (3.17).

4 N = 1 Kähler coordinates and Kähler potential

In this section we analyze the results of the dimensional reduction and identify the Kähler

coordinates and Kähler potential in the 4d, N = 1 effective action. We briefly comment

on our findings.

4.1 Correction to the Kähler potential and coordinates

Upon dimensional reduction on a Calabi-Yau threefold, the two-derivative action of type

IIB supergravity yields a 4d effective action with N = 2 supersymmetry. If orientifold

planes are included in the setup, the 4d spectrum is suitably projected and one obtains

an effective action with 4d, N = 1 supersymmetry [30–32]. For definiteness, we consider

here the projection relevant to the case with O3/O7-planes. The dilaton φ and the Kähler

moduli vi fit into 4d, N = 1 chiral multiplets whose scalar components are of the form

τ0 = C0 + ie−φ , (4.1)

Ti = ρi + iKi + ζi . (4.2)

Several remarks are in order. We used the symbol τ0 to denote the 4d axio-dilaton. Its real

part C0 is the straightforward dimensional reduction of the fluctuations of the 10d axion
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around its zero background. Its imaginary part is built with φ which is not directly iden-

tified with the 10d dilaton because of the backreaction term φ(1) discussed in section 2.2.1.

This discrepancy has consequences for the transformation property of 4d fields under the

10d SL(2,Z) symmetry, as discussed in [6]. In the expression for Ti, the scalars ρi come

from the expansion of the RR four-form, and ζi denotes a complex quantity built with the

scalars coming from the reduction of the NSNS and RR two-forms. Since we are freezing

all such scalars to zero, the quantity ζi vanishes. Let us point out that the orientifold pro-

jection to N = 1 supersymmetry is implicit in the range of the index i. Indeed, by an abuse

of notation, the index i in (4.1) runs only over the elements of H1,1
+ (Y3), i.e. the (1, 1) forms

that are even under the isometric involution of Y3 considered in the implementation of the

orientifold projection. Let us stress that equations (2.56) still hold after restricting the

range of i, by virtue of the restrictions imposed on intersection numbers by the orientifold

projection, as explained in detail in [30–32].

The kinetic terms of τ0 and Ti are governed by a Kähler potential K. If we write

T0 ≡ τ0 and introduce the collective index I = (0, i), the effective action contains the terms

S4d ⊃ 1

(2π)4α′

∫

M4

[

R+GTITJ
∇µTI∇µT J

]

∗4 1 , (4.3)

where

GTITJ
= −2 ∂TI

∂TJ
K , K = φ− 2 logV . (4.4)

The Kähler potential is understood as a function of TI , T J determined implicitly via (4.1).

Upon inclusion of higher-derivative terms in the 10d action, the coefficients of the

terms in the two-derivative 4d effective action are modified, but the form of the action is

still expected to obey the constraints deriving from 4d, N = 1 supersymmetry. In this

section we show that our results are consistent with this expectation.

Let us introduce the notation v0 ≡ φ, in such a way that vI = (φ, vi). The kinetic

terms specified by (2.69) can be written compactly as

GvIvJ ∇µv
I∇µvJ = Gφφ∇µφ∇µφ+ Gvivj ∇µv

i∇µvj + 2Gviφ∇µv
i∇µφ . (4.5)

Recall that C0, ρi and ζi are frozen to zero in our discussion. The problem at hand is the

determination of the O(χ̃) corrections to TI and K in such a way that the relation

GvIvJ ∇µv
I∇µvJ = −2 (∂TI

∂TJ
K)∇µTI∇µT J (4.6)

holds including terms up to order χ̃.

The first outcome of our analysis is the observation that, regarding the b coefficients

in (2.63) as input data, a solution exists only if the following linear constraint is satisfied,

11b1 − 12b2 − 18b3 − 8b4 + 12b5 = 0 . (4.7)

Plugging in the values of the b coefficients given in (2.64), we obtain

3c̃2 + 6c̃3 − 2 = 0 , (4.8)
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which is the same constraint on c̃2, c̃3 found in (3.9) in the analysis of the N = 2 case. If

this requirement is met, the Kähler coordinates and Kähler potential are given in terms of

the b coefficients by

τ0 = ie−φ

[

1 + χ̃

(

−3

4
b1 +

3

2
b3 − b5

)]

, (4.9)

Ti = iKi

[

1 + χ̃

(

1

4
b1 + 2b2 +

1

2
b3

)]

, (4.10)

K = φ− 2 log

[

V
(

1 + χ̃

(

b1 + b2 +
3

2
b3 −

1

2
b5

))]

. (4.11)

The actual values taken by these quantities upon substituting the numerical values of the

b coefficients are summarized at the end of this section.

An important feature of the zeroth-order Kähler potential is the property of extended

no-scale structure [30–32]. This property is tested by computing the following quantity,

∂K

∂TI
(K−1)IJ̄

∂K

∂T J̄

= 4
[

1 + 0 · χ̃+O(χ̃2)
]

, (4.12)

where (K−1)IJ̄ denotes the inverse of the matrix KIJ̄ = ∂TI
∂TJ

K. The zeroth order value

4 signals extended no-scale structure [48], and interestingly the leading correction has a

vanishing coefficient for any value of the b coefficients. This does not mean that the cor-

rection under examination has no physical effect. For instance, in a scenario like KKLT

the axio-dilaton and the complex structure moduli are stabilized first at a supersymmet-

ric value by means of the Gukov-Vafa-Witten superpotential [49]. The relevant quantity

in the computation of the scalar potential for the Kähler moduli is no longer the quan-

tity in (4.12), but rather the same object with summation restricted to i, j indices only,

implicitly evaluated at the fixed value of the axio-dilaton. One finds

∂K

∂Ti
(K−1)i̄

∂K

∂T ̄

= 3

[

1 +

(

1

2
b1 − b2

)

χ̃+O(χ̃2)

]

. (4.13)

As we can see, the zeroth-order value 3 associated to no-scale structure receives a non-zero

correction at order χ̃ (12b1 − b2 = −2).

In order to elucidate further the physical effects of the correction to the Kähler potential

an alternative formulation can be used, in which the chiral multiplets Ti are dualized into

linear multiplets Li [30–32]. The dynamics of the system is encoded in a kinetic potential

K̃, which is the Legendre transform of the original Kähler potential K. Let us adopt the

following conventions for the Legendre transform,

Li = − ∂K

∂ImTi
, K̃ = K + Li ImTi , ImTi =

∂K̃

∂Li
. (4.14)

A straightforward computation gives, up to terms of order χ̃2 and higher,

Li =
vi

K

[

1 + χ̃

(

−5

4
b1 −

1

2
b3

)]

, (4.15)

Li ImTi = 3 [1 + χ̃ (−b1 + 2b2)] . (4.16)
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In this formulation the hallmark of zeroth-order no-scale structure is the value 3, which

again receives corrections at order χ̃. As a further check that the 4d dynamics is really

affected by the corrections under examination we can examine the expression for the kinetic

potential K̃ in terms of the fields Li,

K̃ = 3− log Imτ + log

(

1

6
KijkL

iLjLk

)

+
1

16
ζ(3)χ (−2b1 + 4b2) (Imτ)3/2

√

1

6
KijkLiLjLk ,

(4.17)

which has manifestly a different functional form as compared to the zeroth-order result.

Note indeed that −2b1 + 4b2 = 8.

Let us now summarize the expressions for the Kähler coordinates and potential after

plugging in the values of the b coefficients given in (2.64). We have

τ0 = ie−φ , (4.18)

Ti = iKi , (4.19)

K = φ− 2 log

[ V
(2πα′)3

− 1

4
ζ(3) e−

3
2
φ χ

]

, (4.20)

Li =
vi

V

[

1 +
1

4

(2πα′)3

V ζ(3) e−
3
2
φ χ

]

, (4.21)

Li ImTi = 3

[

1 +
1

4

(2πα′)3

V ζ(3) e−
3
2
φ χ

]

. (4.22)

Clearly these expressions are valid up to α′ corrections of higher order than the α′3 cor-

rections under examination. We have utilized the explicit expression (2.62) for χ̃ and we

have used V for the dimensionful volume of the threefold, thus reinstating explicitly all

factors of α′ for the convenience of the reader. As we can see, the leading correction to τ0,

Ti is vanishing. Let us also remark that our finding for the correction to the N = 1 Kähler

potential is in perfect agreement with the corresponding result in BBHL [6].

4.2 Some comments

Some comments about the results of the previous section are in order. We consider the

4d, N = 1 theory arising from a Calabi-Yau orientifold with O7-planes and D7-branes,

but we do not take into account explicitly the backreaction of these extended objects.

For instance, the Chern-Simons part of the effective action for a D7-brane wrapping a

divisor in the Calabi-Yau threefold contains higher-curvature terms which are essential

in the derivation of the contribution of D7-branes to the D3-brane tadpole cancellation

condition [35]. From the point of view of the uplift to F-theory, D7-branes and O7-branes

are encoded in the Calabi-Yau fourfold geometry, and the metric Ansatz for dimensional

reduction to three dimensions is modified by higher-derivative corrections [24–28]. These

considerations suggest that D7-branes and O7-branes could play an important role in the

context of higher-derivative corrections to the bulk N = 1 Kähler potential, which is

however beyond the scope of this work and left for future investigation.

It is interesting to observe that our computation shows that the leading correction

to the N = 1 Kähler coordinates τ0, Ti is vanishing. As far as the 4d axio-dilaton τ0
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is concerned, this result is consistent with the expectations from F-theory, since in the

context of F-theory compactification the axio-dilaton is identified with one of the complex

structure moduli of the elliptically fibered Calabi-Yau fourfold, and is therefore expected

not to receive corrections from the Kähler moduli sector proportional to the Euler number

χ of the base threefold.

5 Conclusions

In this paper we revisited the leading α′3 perturbative correction to the Kähler potential

of a 4d, N = 1 orientifold compactification of type IIB superstring theory on a Calabi-Yau

threefold. We reproduced the result of Becker, Becker, Haack, and Louis (BBHL) [6] by

showing that a correction to the Kähler potential emerges, which is proportional to the

Euler characteristic of the leading order Calabi-Yau threefold background.

Our derivation is based on an explicit Kaluza-Klein reduction of the type IIB bulk

action from ten to four dimensions. The 10d two-derivative action is supplemented by the

well-known gravitational correction of the schematic form (t8t8+
1
8ǫ10ǫ10)R

4 [10–19], as well

as by related dilaton couplings. Since the latter are not completely known, we parametrized

them in terms of three constants c̃1, c̃2, c̃3, see (2.8). Supersymmetry considerations in

four dimensions allowed us to derive the linear relation (4.8) among these parameters in

the 10d action, which could be checked against proposals in the literature for the complete

axio-dilaton α′3 sector.

The background geometry used in the dimensional reduction at two-derivative level

must be modified in order to solve the higher-dimensional equations of motion in the

presence of the α′3 corrections under examination. We presented an explicit solution for

this backreacted background in terms of the non-harmonic part of the third Chern form c3
of the zeroth order Calabi-Yau threefold. The α′-corrected internal metric is still Kähler

but no longer Ricci-flat. As a result, the manifold is no longer a Calabi-Yau threefold with

SU(3) holonomy, but rather an almost Calabi-Yau threefold [23] endowed with an SU(3)

structure for which the only non-zero torsion class is W5 in the notation of [41]. We also

found that the entire 10d background metric is corrected at order α′3 by an overall Weyl

factor proportional to the Euler density of the zeroth order Calabi-Yau threefold. This is

in analogy with the results of [24–26] in the context of three-dimensional M-theory vacua

in the presence of higher-derivative corrections.

The dimensional reduction is performed by allowing for small spacetime dependent

fluctuations δvi of the Kähler moduli of the threefold, for arbitrary h1,1. We have showed

that the outcome of the dimensional reduction can be uplifted from infinitesimal variations

to a full non-linear dependence on the moduli space. The latter is captured by simple

topological expressions proportional to the Euler characteristic of the threefold.

The resulting kinetic terms for the dilaton and the Kähler moduli are consistent with

4d, N = 2 supersymmetry, once the appropriate N = 2 field variables are identified.

The prepotential for the special Kähler geometry of the Kähler moduli space is found to be

corrected by the expected term proportional to the Euler characteristic of the threefold [43].
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The kinetic terms in the 4d effective action can also be truncated in accordance with

the standard O3/O7 orientifold projection, yielding a theory with N = 1 supersymmetry.

We reproduce the expected BBHL correction to the N = 1 Kähler potential proportional to

the Euler characteristic of the classical Calabi-Yau threefold. We also computed the leading

α′ corrections to the Kähler coordinates as a function of the threefold Kähler moduli, and

found that they are vanishing.

Our investigation can be extended in several directions. It would be desirable to switch

on additional type IIB fields, for instance the axion C0, and examine their kinetic terms to

confirm the structure of the Kähler potential. It would be also interesting to repeat a similar

analysis for the complex structure moduli sector, even though no analogous correction to

the Kähler potential is expected. Finally, it would be interesting to consider explicitly

the effect of both local sources and bulk higher-derivative corrections on the background

solution. To pursue these directions further, however, a preliminary investigation of the

complete α′3-corrected type IIB bulk action would be probably necessary. By a similar

token, the detailed knowledge of the α′-corrected 10d gravitino and dilatino supersymmetry

variations would allow a direct check of supersymmetry of the background in the presence

of higher-derivative corrections.
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A Conventions, definitions, and identities

In this work we denote 10d spacetime indices by capital Latin letters M,N = 0, . . . , 9, 4d

spacetime indices by µ, ν = 0, 1, 2, 3, and the internal complex indices by m,n, p = 1, . . . , 3

and m̄, n̄, p̄ = 1, . . . , 3. We occasionally also make use of real internal indices a, b = 1, . . . , 6.

The metric signature of the ten-dimensional space is (−,+, . . . ,+). Our conventions for

the totally anti-symmetric tensor in Lorentzian signature in an orthonormal frame are

ǫ012...9 = ǫ0123 = +1. The epsilon tensor in d dimensions then satisfies

ǫR1···RpN1...Nd−pǫR1...RpM1...Md−p
= (−1)s(d− p)!p!δN1

[M1
. . . δNd−p

Md−p] , (A.1)

where s = 0 if the metric has Euclidean signature and s = 1 for a Lorentzian metric.

We adopt the following conventions for the Christoffel symbols and Riemann tensor

ΓR
MN =

1

2
gRS(∂MgNS + ∂NgMS − ∂SgMN ) , RMN = RR

MRN ,

RM
NRS = ∂RΓ

M
SN − ∂SΓ

M
RN + ΓM

RTΓ
T
SN − ΓM

STΓ
T
RN , R = RMNgMN ,

(A.2)
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with equivalent definitions on the internal and external spaces. Differential p-forms are

expanded in a basis of differential one-forms as

Λ =
1

p!
ΛM1...Mp

dxM1 ∧ . . . ∧ dxMp . (A.3)

The wedge product between a p-form Λ(p) and a q-form Λ(q) is given by

(Λ(p) ∧ Λ(q))M1...Mp+q
=

(p+ q)!

p!q!
Λ
(p)
[M1...Mp

Λ
(q)
M1...Mq ]

. (A.4)

Furthermore, the exterior derivative on a p-form Λ reads

(dΛ)NM1...Mp
= (p+ 1)∂[NΛM1...Mp] , (A.5)

while the Hodge star of p-form Λ in d real coordinates is given by

(∗dΛ)N1...Nd−p
=

1

p!
ΛM1...MpǫM1...MpN1...Nd−p

. (A.6)

Moreover, the identity

Λ(1) ∧ ∗Λ(2) =
1

p!
Λ
(1)
M1...Mp

Λ(2)M1...Mp ∗ 1 (A.7)

holds for two arbitrary p-forms Λ(1) and Λ(2).

Let us specify in more detail our conventions regarding complex coordinates in the

internal space. For a complex manifold M with complex dimension n the complex coordi-

nates z1, . . . , zn and the underlying real coordinates y1, . . . , y2n are related by

(z1, . . . , zn) =

(

1√
2
(y1 + iy2), . . . ,

1√
2
(y2n−1 + iy2n)

)

. (A.8)

Using these conventions one finds

√
g dy1 ∧ . . . ∧ dy2n =

√
g(−1)

(n−1)n
2 indz1 ∧ . . . ∧ dzn ∧ dz̄1 ∧ . . . ∧ dz̄n =

1

n!
Jn , (A.9)

with g the determinant of the metric gab in real coordinates and
√
det gab = det gmn̄. The

Kähler form is given by

J = igmn̄dz
m ∧ dz̄n̄ . (A.10)

Let ωp,q be a (p, q)-form, then its Hodge dual is the (n− q, n− p) form

∗ωp,q =
(−1)

n(n−1)
2 in (−1)pn

p!q!(n− p)!(n− q)!
ωm1...mpn̄1...n̄qǫ

m1...mp

r̄1...r̄n−p
ǫ
n̄1...n̄q

s1...sn−q
×

× dzs1 ∧ · · · ∧ dzsn−q ∧ dz̄r̄1 ∧ · · · ∧ dz̄r̄
n−p

.

Finally, let us record our conventions regarding Chern forms. To begin with, we define the

curvature two-form for Hermitian manifolds to be

Rm
n = Rm

nrs̄ dz
r ∧ dz̄s̄ , (A.11)

– 23 –



J
H
E
P
0
1
(
2
0
1
7
)
0
0
3

and we set

TrR = Rm
mr1s̄2 dz

r1 ∧ dz̄s̄1 ,

TrR2 = Rm
nr1s̄1 R

n
mr2s̄2 dz

r1 ∧ dz̄s̄1 ∧ dzr2 ∧ dz̄s̄2 ,

TrR3 = Rm
nr1s̄1 R

n
pr2s̄2 R

p
mr3s̄3 ∧ dzr1 ∧ dz̄s̄1 ∧ dzr2 ∧ dz̄s̄2 ∧ dzr3 ∧ dz̄s̄3 . (A.12)

The Chern forms can then be expressed in terms of the curvature two-form as

c0 = 1 ,

c1 =
1

2π
iTrR ,

c2 =
1

(2π)2
1

2

(

TrR2 − (TrR)2
)

, (A.13)

c3 =
1

3
c1c2 +

1

(2π)2
1

3
c1 ∧ TrR2 − 1

(2π)3
i

3
TrR3 ,

c4 =
1

24

(

c41 −
1

(2π)2
6c21TrR2 − 1

(2π)3
8ic1TrR3

)

+
1

(2π)4
1

8
((TrR2)2 − 2TrR4) .

The Chern forms of an n-dimensional Calabi-Yau manifold Yn reduce to

c3(Yn≥3) = − 1

(2π)3
i

3
TrR3 and c4(Yn≥4) =

1

(2π)4
1

8
((TrR2)2 − 2TrR4) . (A.14)

B Higher-derivative dilaton terms

In this appendix we record the expression of the quantities f1, f
MN
2 , f3 introduced in (2.9).

We have

f1 = 192RM
R
O
SRMNOPRNSPR − 48RMN

RSRMNOPROPRS (B.1)

+ 576RMN
M

ORN
PRSROPRS + 384RMN

M
ORN

P
P
RRO

S
RS

− 72RMN
MNROPRSR

OPRS − 576RMN
M

ORN
P
O
RRP

S
RS

+ 288RMN
MNROP

O
RRP

S
RS − 24RMN

MNROP
OPR

RS
RS ,

fMN
2 = gMN

(

192RR
Q
O
V RRSOPRSV PQ − 48RRS

QV RRSOPROPQV (B.2)

+ 576RRS
R
ORS

PQV ROPQV + 384RRS
R
ORS

P
P
QRO

V
QV

− 72RRS
RSROPQV R

OPQV − 576RRS
R
ORS

P
O
QRP

V
QV

+ 288RRS
RSR

OP
O
QRP

V
QV − 24RRS

RSR
OP

OPR
QV

QV

)

+ · · · = gMN f1 + . . .

where the ellipsis denote terms where the free indices M,N are on the Riemann tensors

and thus will not contribute to our discussion. Furthermore,

f3 = 768RMO
RSRMNOPRNRPS + 384RM

R
O
SRMNOPRNSPR

− 96RMN
RSRMNOPROPRS + 1536RMN

M
ORN

PRSROPRS

− 384RMN
RSRMNOPRORPS + 768RMN

M
ORN

PRSRORPS

+ 1536RMN
M

ORN
P
P
RRO

S
RS − 240RMN

MNROPRSR
OPRS

− 1920RMN
M

ORN
P
O
RRP

S
RS + 1152RMN

MNROP
O
RRP

S
RS

− 96RMN
MNROP

OPR
RS

RS . (B.3)

– 24 –



J
H
E
P
0
1
(
2
0
1
7
)
0
0
3

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] M. Graña, Flux compactifications in string theory: A Comprehensive review,

Phys. Rept. 423 (2006) 91 [hep-th/0509003] [INSPIRE].

[2] M.R. Douglas and S. Kachru, Flux compactification, Rev. Mod. Phys. 79 (2007) 733

[hep-th/0610102] [INSPIRE].

[3] R. Blumenhagen, B. Körs, D. Lüst and S. Stieberger, Four-dimensional String

Compactifications with D-branes, Orientifolds and Fluxes, Phys. Rept. 445 (2007) 1

[hep-th/0610327] [INSPIRE].

[4] F. Denef, M.R. Douglas and S. Kachru, Physics of String Flux Compactifications,

Ann. Rev. Nucl. Part. Sci. 57 (2007) 119 [hep-th/0701050] [INSPIRE].

[5] H. Samtleben, Lectures on Gauged Supergravity and Flux Compactifications,

Class. Quant. Grav. 25 (2008) 214002 [arXiv:0808.4076] [INSPIRE].

[6] K. Becker, M. Becker, M. Haack and J. Louis, Supersymmetry breaking and alpha-prime

corrections to flux induced potentials, JHEP 06 (2002) 060 [hep-th/0204254] [INSPIRE].

[7] V. Balasubramanian, P. Berglund, J.P. Conlon and F. Quevedo, Systematics of moduli

stabilisation in Calabi-Yau flux compactifications, JHEP 03 (2005) 007 [hep-th/0502058]

[INSPIRE].

[8] J.P. Conlon, F. Quevedo and K. Suruliz, Large-volume flux compactifications: Moduli

spectrum and D3/D7 soft supersymmetry breaking, JHEP 08 (2005) 007 [hep-th/0505076]

[INSPIRE].

[9] M. Cicoli, J.P. Conlon and F. Quevedo, General Analysis of LARGE Volume Scenarios with

String Loop Moduli Stabilisation, JHEP 10 (2008) 105 [arXiv:0805.1029] [INSPIRE].

[10] M.T. Grisaru, A.E.M. van de Ven and D. Zanon, Two-Dimensional Supersymmetric σ-models

on Ricci Flat Kähler Manifolds Are Not Finite, Nucl. Phys. B 277 (1986) 388 [INSPIRE].

[11] M.T. Grisaru, A.E.M. van de Ven and D. Zanon, Four Loop Divergences for the N = 1

Supersymmetric Nonlinear σ-model in Two-Dimensions, Nucl. Phys. B 277 (1986) 409

[INSPIRE].

[12] J.H. Schwarz, Superstring Theory, Phys. Rept. 89 (1982) 223 [INSPIRE].

[13] D.J. Gross and E. Witten, Superstring Modifications of Einstein’s Equations,

Nucl. Phys. B 277 (1986) 1 [INSPIRE].

[14] D.J. Gross and J.H. Sloan, The Quartic Effective Action for the Heterotic String,

Nucl. Phys. B 291 (1987) 41 [INSPIRE].

[15] N. Sakai and Y. Tanii, One Loop Amplitudes and Effective Action in Superstring Theories,

Nucl. Phys. B 287 (1987) 457 [INSPIRE].

[16] M. Abe, H. Kubota and N. Sakai, Loop Corrections to the Heterotic String Effective

Lagrangian, Phys. Lett. B 200 (1988) 461 [INSPIRE].

– 25 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.physrep.2005.10.008
https://arxiv.org/abs/hep-th/0509003
http://inspirehep.net/search?p=find+EPRINT+hep-th/0509003
http://dx.doi.org/10.1103/RevModPhys.79.733
https://arxiv.org/abs/hep-th/0610102
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610102
http://dx.doi.org/10.1016/j.physrep.2007.04.003
https://arxiv.org/abs/hep-th/0610327
http://inspirehep.net/search?p=find+EPRINT+hep-th/0610327
http://dx.doi.org/10.1146/annurev.nucl.57.090506.123042
https://arxiv.org/abs/hep-th/0701050
http://inspirehep.net/search?p=find+EPRINT+hep-th/0701050
http://dx.doi.org/10.1088/0264-9381/25/21/214002
https://arxiv.org/abs/0808.4076
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.4076
http://dx.doi.org/10.1088/1126-6708/2002/06/060
https://arxiv.org/abs/hep-th/0204254
http://inspirehep.net/search?p=find+EPRINT+hep-th/0204254
http://dx.doi.org/10.1088/1126-6708/2005/03/007
https://arxiv.org/abs/hep-th/0502058
http://inspirehep.net/search?p=find+EPRINT+hep-th/0502058
http://dx.doi.org/10.1088/1126-6708/2005/08/007
https://arxiv.org/abs/hep-th/0505076
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505076
http://dx.doi.org/10.1088/1126-6708/2008/10/105
https://arxiv.org/abs/0805.1029
http://inspirehep.net/search?p=find+EPRINT+arXiv:0805.1029
http://dx.doi.org/10.1016/0550-3213(86)90448-7
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B277,388%22
http://dx.doi.org/10.1016/0550-3213(86)90449-9
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B277,409%22
http://dx.doi.org/10.1016/0370-1573(82)90087-4
http://inspirehep.net/search?p=find+J+%22Phys.Rept.,89,223%22
http://dx.doi.org/10.1016/0550-3213(86)90429-3
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B277,1%22
http://dx.doi.org/10.1016/0550-3213(87)90465-2
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B291,41%22
http://dx.doi.org/10.1016/0550-3213(87)90114-3
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B287,457%22
http://dx.doi.org/10.1016/0370-2693(88)90152-9
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B200,461%22


J
H
E
P
0
1
(
2
0
1
7
)
0
0
3

[17] A. Kehagias and H. Partouche, On the exact quartic effective action for the type IIB

superstring, Phys. Lett. B 422 (1998) 109 [hep-th/9710023] [INSPIRE].

[18] A. Kehagias and H. Partouche, D instanton corrections as (p,q) string effects and

nonrenormalization theorems, Int. J. Mod. Phys. A 13 (1998) 5075 [hep-th/9712164]

[INSPIRE].

[19] R. Minasian, T.G. Pugh and R. Savelli, F-theory at order α′3, JHEP 10 (2015) 050

[arXiv:1506.06756] [INSPIRE].

[20] S. Ferrara and S. Sabharwal, Quaternionic Manifolds for Type II Superstring Vacua of

Calabi-Yau Spaces, Nucl. Phys. B 332 (1990) 317 [INSPIRE].

[21] P. Candelas, X.C. De La Ossa, P.S. Green and L. Parkes, A Pair of Calabi-Yau manifolds as

an exactly soluble superconformal theory, Nucl. Phys. B 359 (1991) 21 [INSPIRE].

[22] R. Bohm, H. Gunther, C. Herrmann and J. Louis, Compactification of type IIB string theory

on Calabi-Yau threefolds, Nucl. Phys. B 569 (2000) 229 [hep-th/9908007] [INSPIRE].

[23] D. Joyce, Lectures on Calabi-Yau and special Lagrangian geometry, math/0108088 [INSPIRE].

[24] T.W. Grimm, T.G. Pugh and M. Weissenbacher, On M-theory fourfold vacua with higher

curvature terms, Phys. Lett. B 743 (2015) 284 [arXiv:1408.5136] [INSPIRE].

[25] T.W. Grimm, T.G. Pugh and M. Weissenbacher, The effective action of warped M-theory

reductions with higher derivative terms — part I, JHEP 01 (2016) 142 [arXiv:1412.5073]

[INSPIRE].

[26] T.W. Grimm, T.G. Pugh and M. Weissenbacher, The effective action of warped M-theory

reductions with higher-derivative terms — Part II, JHEP 12 (2015) 117 [arXiv:1507.00343]

[INSPIRE].

[27] T.W. Grimm, R. Savelli and M. Weissenbacher, On α′ corrections in N = 1 F-theory

compactifications, Phys. Lett. B 725 (2013) 431 [arXiv:1303.3317] [INSPIRE].

[28] T.W. Grimm, J. Keitel, R. Savelli and M. Weissenbacher, From M-theory higher curvature

terms to α′ corrections in F-theory, Nucl. Phys. B 903 (2016) 325 [arXiv:1312.1376]

[INSPIRE].

[29] M. Weissenbacher, On four-derivative terms in IIB Calabi-Yau orientifold reductions,

arXiv:1607.03913 [INSPIRE].

[30] T.W. Grimm and J. Louis, The Effective action of N = 1 Calabi-Yau orientifolds,

Nucl. Phys. B 699 (2004) 387 [hep-th/0403067] [INSPIRE].

[31] T.W. Grimm and J. Louis, The Effective action of type IIA Calabi-Yau orientifolds,

Nucl. Phys. B 718 (2005) 153 [hep-th/0412277] [INSPIRE].

[32] T.W. Grimm, The Effective action of type-II Calabi-Yau orientifolds,

Fortsch. Phys. 53 (2005) 1179 [hep-th/0507153] [INSPIRE].

[33] G. Policastro and D. Tsimpis, R4, purified, Class. Quant. Grav. 23 (2006) 4753

[hep-th/0603165] [INSPIRE].

[34] G. Policastro and D. Tsimpis, A Note on the quartic effective action of type IIB superstring,

Class. Quant. Grav. 26 (2009) 125001 [arXiv:0812.3138] [INSPIRE].

[35] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string

compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].

– 26 –

http://dx.doi.org/10.1016/S0370-2693(97)01430-5
https://arxiv.org/abs/hep-th/9710023
http://inspirehep.net/search?p=find+EPRINT+hep-th/9710023
http://dx.doi.org/10.1142/S0217751X98002365
https://arxiv.org/abs/hep-th/9712164
http://inspirehep.net/search?p=find+EPRINT+hep-th/9712164
http://dx.doi.org/10.1007/JHEP10(2015)050
https://arxiv.org/abs/1506.06756
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06756
http://dx.doi.org/10.1016/0550-3213(90)90097-W
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B332,317%22
http://dx.doi.org/10.1016/0550-3213(91)90292-6
http://inspirehep.net/search?p=find+J+%22Nucl.Phys.,B359,21%22
http://dx.doi.org/10.1016/S0550-3213(99)00796-8
https://arxiv.org/abs/hep-th/9908007
http://inspirehep.net/search?p=find+EPRINT+hep-th/9908007
http://arxiv.org/abs/math/0108088
http://inspirehep.net/search?p=find+EPRINT+math/0108088
http://dx.doi.org/10.1016/j.physletb.2015.02.047
https://arxiv.org/abs/1408.5136
http://inspirehep.net/search?p=find+EPRINT+arXiv:1408.5136
http://dx.doi.org/10.1007/JHEP01(2016)142
https://arxiv.org/abs/1412.5073
http://inspirehep.net/search?p=find+EPRINT+arXiv:1412.5073
http://dx.doi.org/10.1007/JHEP12(2015)117
https://arxiv.org/abs/1507.00343
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.00343
http://dx.doi.org/10.1016/j.physletb.2013.07.024
https://arxiv.org/abs/1303.3317
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.3317
http://dx.doi.org/10.1016/j.nuclphysb.2015.12.011
https://arxiv.org/abs/1312.1376
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.1376
https://arxiv.org/abs/1607.03913
http://inspirehep.net/search?p=find+EPRINT+arXiv:1607.03913
http://dx.doi.org/10.1016/j.nuclphysb.2004.08.005
https://arxiv.org/abs/hep-th/0403067
http://inspirehep.net/search?p=find+EPRINT+hep-th/0403067
http://dx.doi.org/10.1016/j.nuclphysb.2005.04.007
https://arxiv.org/abs/hep-th/0412277
http://inspirehep.net/search?p=find+EPRINT+hep-th/0412277
http://dx.doi.org/10.1002/prop.200510253
https://arxiv.org/abs/hep-th/0507153
http://inspirehep.net/search?p=find+EPRINT+hep-th/0507153
http://dx.doi.org/10.1088/0264-9381/23/14/012
https://arxiv.org/abs/hep-th/0603165
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603165
http://dx.doi.org/10.1088/0264-9381/26/12/125001
https://arxiv.org/abs/0812.3138
http://inspirehep.net/search?p=find+EPRINT+arXiv:0812.3138
http://dx.doi.org/10.1103/PhysRevD.66.106006
https://arxiv.org/abs/hep-th/0105097
http://inspirehep.net/search?p=find+EPRINT+hep-th/0105097


J
H
E
P
0
1
(
2
0
1
7
)
0
0
3

[36] D. Nemeschansky and A. Sen, Conformal Invariance of Supersymmetric σ Models on

Calabi-Yau Manifolds, Phys. Lett. B 178 (1986) 365 [INSPIRE].

[37] M.D. Freeman and C.N. Pope, β-functions and Superstring Compactifications,

Phys. Lett. B 174 (1986) 48 [INSPIRE].

[38] M.D. Freeman, C.N. Pope, M.F. Sohnius and K.S. Stelle, Higher Order σ Model

Counterterms and the Effective Action for Superstrings, Phys. Lett. B 178 (1986) 199

[INSPIRE].

[39] P. Candelas, M.D. Freeman, C.N. Pope, M.F. Sohnius and K.S. Stelle, Higher Order

Corrections to Supersymmetry and Compactifications of the Heterotic String,

Phys. Lett. B 177 (1986) 341 [INSPIRE].

[40] I. Antoniadis, S. Ferrara, R. Minasian and K.S. Narain, R4 couplings in M and type-II

theories on Calabi-Yau spaces, Nucl. Phys. B 507 (1997) 571 [hep-th/9707013] [INSPIRE].

[41] T. House and E. Palti, Effective action of (massive) IIA on manifolds with SU(3) structure,

Phys. Rev. D 72 (2005) 026004 [hep-th/0505177] [INSPIRE].

[42] D. Andriot, New supersymmetric vacua on solvmanifolds, JHEP 02 (2016) 112

[arXiv:1507.00014] [INSPIRE].

[43] P. Candelas, X.C. De la Ossa, P.S. Green and L. Parkes, An Exactly soluble superconformal

theory from a mirror pair of Calabi-Yau manifolds, Phys. Lett. B 258 (1991) 118 [INSPIRE].

[44] S. Ferrara and S. Sabharwal, Dimensional Reduction of Type II Superstrings,

Class. Quant. Grav. 6 (1989) L77 [INSPIRE].

[45] M. Bodner and A.C. Cadavid, Dimensional Reduction of Type IIB Supergravity and

Exceptional Quaternionic Manifolds, Class. Quant. Grav. 7 (1990) 829 [INSPIRE].

[46] S. Hosono, A. Klemm and S. Theisen, Lectures on mirror symmetry,

Lect. Notes Phys. 436 (1994) 235 [hep-th/9403096] [INSPIRE].

[47] K. Hori et al., Clay mathematics monographs. Vol. 1: Mirror symmetry, AMS, Providence,

U.S.A. (2003).

[48] D. Ciupke and L. Zarate, Classification of Shift-Symmetric No-Scale Supergravities,

JHEP 11 (2015) 179 [arXiv:1509.00855] [INSPIRE].

[49] S. Kachru, R. Kallosh, A.D. Linde and S.P. Trivedi, de Sitter vacua in string theory,

Phys. Rev. D 68 (2003) 046005 [hep-th/0301240] [INSPIRE].

– 27 –

http://dx.doi.org/10.1016/0370-2693(86)91394-8
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B178,365%22
http://dx.doi.org/10.1016/0370-2693(86)91127-5
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B174,48%22
http://dx.doi.org/10.1016/0370-2693(86)91495-4
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B178,199%22
http://dx.doi.org/10.1016/0370-2693(86)90764-1
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B177,341%22
http://dx.doi.org/10.1016/S0550-3213(97)00572-5
https://arxiv.org/abs/hep-th/9707013
http://inspirehep.net/search?p=find+EPRINT+hep-th/9707013
http://dx.doi.org/10.1103/PhysRevD.72.026004
https://arxiv.org/abs/hep-th/0505177
http://inspirehep.net/search?p=find+EPRINT+hep-th/0505177
http://dx.doi.org/10.1007/JHEP02(2016)112
https://arxiv.org/abs/1507.00014
http://inspirehep.net/search?p=find+EPRINT+arXiv:1507.00014
http://dx.doi.org/10.1016/0370-2693(91)91218-K
http://inspirehep.net/search?p=find+J+%22Phys.Lett.,B258,118%22
http://dx.doi.org/10.1088/0264-9381/6/4/002
http://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,6,L77%22
http://dx.doi.org/10.1088/0264-9381/7/5/013
http://inspirehep.net/search?p=find+J+%22Class.Quant.Grav.,7,829%22
http://dx.doi.org/10.1007/3-540-58453-6_13
https://arxiv.org/abs/hep-th/9403096
http://inspirehep.net/search?p=find+EPRINT+hep-th/9403096
http://dx.doi.org/10.1007/JHEP11(2015)179
https://arxiv.org/abs/1509.00855
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.00855
http://dx.doi.org/10.1103/PhysRevD.68.046005
https://arxiv.org/abs/hep-th/0301240
http://inspirehep.net/search?p=find+EPRINT+hep-th/0301240

	Introduction
	Four-dimensional alpha'*3 Lagrangian
	Type IIB higher-derivative action
	Supersymmetric background
	Corrections to the background
	SU(3) structure on the internal manifold
	Fluctuations associated to Kähler moduli

	Reduction results
	Results and uplift
	Weyl rescaling


	Correction to the N=2 prepotential
	Translation into N=2 field variables
	Implications for N=2 prepotential

	N=1 Kähler coordinates and Kähler potential
	Correction to the Kähler potential and coordinates
	Some comments

	Conclusions
	Conventions, definitions, and identities
	Higher-derivative dilaton terms

