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quantum chromodynamics with massive flavored quarks. Starting with the color struc-
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reduced basis of primitive amplitudes. These primitives, with k quark-antiquark pairs and

(n − 2k) gluons, are taken in the (n − 2)!/k! Melia basis, and are independent under the

color-algebra Kleiss-Kuijf relations. This generalizes the color decomposition of Del Duca,

Dixon, and Maltoni to an arbitrary number of quarks. The color coefficients in the new
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be mapped to a well-defined subset of the familiar BCJ relations for gluons. They restrict

the amplitude basis further down to (n− 3)!(2k − 2)/k! primitives, for two or more quark

lines. We give a decomposition of the full amplitude in that basis. The presented results

provide strong evidence that QCD obeys the color-kinematics duality, at least at tree level.
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1 Introduction

The sheer abundance of QCD background processes at the Large Hadron Collider has

stimulated remarkable theoretical progress in the treatment of perturbative gauge theory.

Calculations of previously intractable processes involving high numbers of loops and legs

have been successfully carried out, such as the inclusive W + 5-jet production at next-to-

leading order [1], or the inclusive Higgs production at (next-to)3-leading order [2]. Mod-

ern methods have been essential for many aspects of this progress, such as the unitarity

method [3–5], on-shell recursion [6, 7], more recent unitarity-based one-loop methods [8–

19], and advanced integration techniques [20–26], to mention a few. Even so, increasingly

refined methods are needed to curb the factorial growth of complexity characteristic of

perturbative computations.

The increase of both the number of loops and legs is an unavoidable consequence

of precision QCD. In the physical observables, contributions from different numbers of
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loops and legs are tied together through the singularity structure and unitarity. High-

multiplicity tree amplitudes enter explicitly in the real emission contributions, as well as

secretly in the virtual loop contributions through the modern unitarity-based methods.

Therefore, progress in treatment of tree amplitudes can be directly or indirectly translated

to progress in precision QCD phenomenology.

Modern methods usually decompose tree amplitudes into purely-kinematic primitive

amplitudes and their coefficients that depend only on color. Such primitive amplitudes

are gauge-invariant and are often computed via off-shell [27] or on-shell recursion [6, 7],

which admits an analytic all-multiplicity solution [28, 29] for massless QCD with up to four

quark-antiquark pairs. The primitives can be assembled in several superficially different

ways, with varying degree of efficiency, to obtain the full amplitude. The standard SU(Nc)

trace-based decomposition of an n-gluon amplitude involves an overcomplete summation

over (n − 1)!/2 linearly-dependent primitives. The linear dependence comes from two

sources: from the color algebra of the gauge theory [30] and from an observed kinematic

algebra, which is closely tied to the former through the color-kinematics duality [31, 32].

The corresponding relations satisfied by the primitives are known to all multiplicity: the

Kleiss-Kuijf (KK) relations [30], and the Bern-Carrasco-Johansson (BCJ) relations [31].

More efficient ways of assembling the primitives are known. The Del Duca-Dixon-

Maltoni (DDM) [33, 34] color decomposition removes all the pure-gluon primitives that are

redundant under the KK relations, and thus involves only the (n− 2)! members of the KK

primitive basis. For amplitudes with a single quark-antiquark pair a very similar decom-

position can be used [35, 36]. For general QCD amplitudes, with k quark-antiquark pairs

and (n − 2k) gluons, much less is known about non-redundant decompositions involving

well-defined and simple primitive amplitudes. Recently, Melia proposed [37, 38] a basis of

primitives, for general n and k, that enjoys the same useful properties as the KK basis. For

distinctly-flavored quarks the basis consists of (n− 2)!/k! planar color-ordered amplitudes.

In this paper we give a color decomposition that uses precisely these primitives. Thus we

obtain a generalization of the DDM decomposition valid for all tree amplitudes in QCD,

applicable to any gauge group and any representation.

The color-kinematics duality [31, 39] highlights the fact that gauge theories generically

possess an underlying kinematic structure that controls the theory, similar to the way the

color Lie algebra defines the theory. This structure has been used successfully for tree and

loop amplitudes in massless gauge theories with and without supersymmetry, including

massless QCD with no quarks [32, 40–51]. The duality imposes the BCJ relations on pure-

gluon tree amplitudes that further reduce the basis of independent primitives to one of size

(n−3)!. These relations have been observed to still hold in certain specific excursions away

from the massless pure-gluon case, e.g. for one massless quark-antiquark pair [52, 53], or for

two or three massive particles [54, 55]. The color-kinematics duality was extended to theo-

ries with fundamental massless matter in refs. [49, 50], but the corresponding BCJ relations

were not worked out there. They are instead presented here for matter with any mass.

In this paper, we show that the color-kinematics duality can be straightforwardly

extended to all tree-level amplitudes in QCD. Furthermore, for amplitudes with k massive

distinctly-flavored quark-antiquark pairs and (n − 2k) gluons, we find all BCJ relations
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generated by the duality. For k ≥ 2 they reduce the number of independent primitives to

(n−3)!(2k−2)/k!, and for k = 0, 1 the counting is the standard (n−3)!. Using this reduced

BCJ basis, we construct a second new decomposition that uses these primitives only. We

expect that the BCJ relations obtained here are applicable beyond the case of QCD. In

particular, super-QCD and D-dimensional QCD should obey the color-kinematics duality

at tree level just as well.

This paper is organized in an example-driven way. After we review the color and

kinematic structure of gauge theory amplitudes in section 2, we proceed to the lower-

point examples that lead to the main result of section 3 — the new color decomposition

for a generic QCD amplitude (section 3.3). We return to the lower-point examples in

the beginning of section 4, where we show that they respect the color-kinematics duality

and thus satisfy the massive BCJ relations. Then we generalize them and derive a new

amplitude basis in section 4.5. Our final amplitude decomposition is given in section 4.6.

We conclude by discussing our results in section 5.

2 Review and preliminaries

In this section we review some general properties of the color and kinematic structure of

tree-level scattering amplitudes in QCD.1 Amplitudes involving only gluons or at most

one quark-antiquark pair have a similar form and structure, and are well studied in the

literature. Adding more quarks makes the composition of the amplitude more involved,

and this is the topic of the bulk of this paper.

QCD is a renormalizable gauge theory with only cubic and quartic interactions. In

what follows we center the discussion around the cubic interactions. The role of the quar-

tic ones is to make the amplitudes constructed from the Feynman rules gauge invariant,

and they carry no new physical information with respect to the cubic interactions. This

nontrivial statement is made apparent by the on-shell recursion [6, 7], which relies only on

input from the three-point amplitudes of the theory.

For the color structures the redundancy of quartic interactions is clear from inspecting

the four-gluon Feynman vertex

a, λ

b, µ c, ν

d, ρ

=
ig2

2

[
f̃abef̃ecd

(
gλνgµρ − gλρgµν

)
+ f̃ bcef̃eda

(
gλνgµρ − gλµgνρ

)

+f̃acef̃ebd
(
gλµgνρ − gλρgµν

)]
,

(2.1)

where we, for later convenience, use imaginary structure constants f̃abc = i
√
2fabc. This

vertex contains the same color factors as the s-, t- and u-channel diagrams that are con-

structed from the three-gluon vertices. Hence the quartic vertex can always be absorbed in

some way into cubic trees without changing the general color structure of a QCD amplitude.

1In this paper by QCD we mean Yang-Mills theory with gauge group G and with Nf massive Dirac

fermions in the fundamental representation (quarks). Additionally, we allow for supersymmetric extensions.

The cases of N = 0, 1, 2 (super-)QCD are all included in the general treatment that follows.
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k \ n 3 4 5 6 7 8

0 1 3 15 105 945 10395

1 1 3 15 105 945 10395

2 - 1 5 35 315 3465

3 - - - 7 63 693

4 - - - - - 99

ν(n, k) = (2n−5)!!
(2k−1)!! for 2k ≤ n

Table 1. Number of cubic graphs, ν(n, k), in the full n-point amplitude with k distinguishable

quark-antiquark pairs and (n− 2k) gluons.

Therefore, without loss of generality we can write a QCD tree amplitude in terms of

cubic graphs only. This gives us an expansion of the n-point tree amplitude of the form2

Atree
n,k = gn−2

ν(n,k)
∑

cubic graphs Γi

cini

Di
, (2.2)

where ci are color factors, ni are kinematic numerators, and Di are denominators encoding

the propagator structure of the cubic graphs. The denominators may contain masses,

corresponding to massive quark propagators.

Amplitudes with multiple quarks of the same flavor and mass can be obtained from

distinct-flavor amplitudes by setting masses to be equal and summing over permutations of

quarks. Therefore, we do not lose generality by taking all k quark-antiquark pairs to have

distinct flavor and mass. For explicitness, in table 1 we provide total counts of cubic graphs

for different amplitudes up to eight particles and four quark pairs. This count appears in

eq. (2.2) as ν(n, k). It agrees with the usual counting of standard QCD Feynman diagrams

restricted to those diagrams that only have trivalent vertices.

The kinematic numerators ni are in general not gauge-invariant and thus have no

unique expressions. However, certain linear combinations of ni/Di correspond to gauge-

invariant primitive amplitudes that can be constructed from the color-stripped Feynman

rules [56] summarized in appendix A.

The color factors ci in eq. (2.2) are constructed from the cubic graphs using only two

building blocks: the structure constants f̃abc for three-gluon vertices and generators T a
i̄ for

quark-gluon vertices, as shown in figure 1. When separating the color from kinematics,

the diagrammatic crossing symmetry only holds up to signs dependent on the permutation

of legs. These signs are apparent in the total antisymmetry of f̃abc. Since the structure

constants can be thought of as the generators in the adjoint representation, (T a
adj)bc ≡ f̃ bac,

it is convenient to introduce a similar antisymmetry for the fundamental generators,

T a
̄i ≡ −T a

i̄ ⇔ f̃ cab = −f̃ bac . (2.3)

In formulas with suppressed indices we denote the flipped generator by T
a ≡ T a

ı̄j .

2Following ref. [31] we absorb all factors of i into the numerators, which is convenient for tree amplitudes.

The numerators in ref. [50] have a factor of −i pulled out relative to this convention.
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f̃abc =

b

a c
T a
i̄ =

a

i ̄
T a
̄i =

a

i ̄

= −T a
i̄

Figure 1. Color vertices with planar ordering consistent with the color-stripped Feynman rules.

(a) − =

(b) − =

Figure 2. Color-algebra relations in the adjoint (a) and fundamental representation (b). The color-

kinematics duality requires that the kinematic numerators satisfy the corresponding kinematic-

algebra relations, which can be represented by the same graphs.

Color factors obey simple relations arising from the Jacobi and commutation identities,

f̃dacf̃ cbe − f̃dbcf̃ cae = f̃abcf̃dce , (2.4a)

T a
i̄ T

b
jk̄

− T b
i̄ T

a
jk̄

= f̃abc T c
ik̄
, (2.4b)

depicted diagrammatically in figure 2. They both imply color-algebraic relations of the

schematic form

ci − cj = ck (2.5)

for the triplets of diagrams (i, j, k) that differ only by the subdiagrams drawn in figure 2, but

otherwise have common graph structure. The interdependence among the color factors ci
means that the corresponding kinematic coefficients ni/Di are in general not unique, as

should be expected from the underlying gauge dependence of the numerators. In section 2.2

we return to this kinematic numerator freedom. Before that, we review how to assemble

the diagrams into gauge-invariant building blocks, i.e. the primitive amplitudes.

2.1 Color decomposition of tree amplitudes

A classic way to remove the relations among color factors is to replace all structure constants

by generators,

f̃abc = Tr
(
T aT bT c

)
− Tr

(
T bT aT c

)
, (2.6)

and then eliminate all contracted adjoint indices using the SU(Nc) Fierz identity,

T a
i̄ T

a
kl̄
= δil̄ δk̄ −

1

Nc
δi̄ δkl̄ . (2.7)
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2 1

σ(3) σ(4) . . . σ(n)

Figure 3. Multi-peripheral cubic diagram for the color factors in formulas (2.11) and (2.12). All

permuted legs are gluons, while the horizontal line can be either a quark or a gluon line.

This leads to a basis of linearly-independent color structures. In the pure-gluon case it

gives the familiar color-trace decomposition [36, 57–59],

Atree
n,0 =

∑

σ∈Sn−1({2,...,n})

Tr
(
T a1T aσ(2) . . . T aσ(n)

)
A(1, σ(2), . . . , σ(n)) , (2.8)

where the sum is over (n−1)! primitives because the cyclic symmetry of the trace allows one

to fix the first argument.3 In a similar but much more cumbersome way, the color content

of amplitudes with k quark-antiquark pairs and (n− 2k) gluons can be reduced [36, 60–67]

to color structures of the following type:

1

Np
c

(
T a2k+1 . . . T al1

)

i1ᾱ1

(
T al1+1 . . . T al2

)

i2ᾱ2
. . .

(
T
alk−1+1 . . . T an

)

ikᾱk
, (2.9)

where lf ∈ {2k + 1, . . . , n}, ᾱf ∈ {̄1, . . . , ̄k}, and (p + 1) counts the number of disjoint

cycles in the permutation ᾱ.

An obvious feature of the above SU(Nc) decomposition is that it is specific to the

gauge group. A more interesting drawback is that it usually maps the color space to a

basis that is larger than the number of linearly independent color factors ci. Hence the

resulting kinematic coefficients — the color-ordered amplitudes — are not the minimal

set of primitives. In other words, they are not independent. Indeed, the purely gluonic

color-ordered amplitudes can be reduced using the Kleiss-Kuijf (KK) relations [30]. By

construction, the number of the primitives independent under such color-algebra relations

must coincide with the number of linearly independent color factors. The KK amplitude

relations can be written as

A(1, β, 2, α) = (−1)|β|
∑

σ∈α⊔⊔βT

A(1, 2, σ) , (2.10)

where the sum runs over the shuffle product of the ordered sets α and βT , the latter being

β in reverse order. This gives all partially ordered permutations that respect the element

order of the two sets. The KK relations let us fix the second argument in the pure gluon

primitives, and hence they reduce the basis to (n− 2)! elements — the KK basis.

An interesting exception to the redundancy of the aforementioned decomposition al-

gorithm is the case of the amplitude with a single quark line [35, 36],

Atree
n,1 =

∑

σ∈Sn−2({3,...,n})

(
T aσ(3) . . . T aσ(n)

)

̄2i1
A(1, 2, σ(3), . . . , σ(n)) , (2.11)

3The reversal symmetry A(1, 2, . . . , n) = (−1)nA(n, . . . , 2, 1) further reduces that count to (n− 1)!/2.
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where we have denoted the quark-antiquark pair by a bar below and above the labels, i.e.

as 1 and 2. The sum is over the basis of (n− 2)! primitives, which are already independent

under color-algebra relations. Moreover, the color factors in eq. (2.11) are valid for any

gauge group, as can be guessed from the absence of explicit factors of Nc.

The reason for the nice properties of eq. (2.11) is that this example happens to coincide

with another basis of color factors that have these properties more generally. For k < 2 the

color factors in this basis correspond to the “multi-peripheral” graphs shown in figure 3.

The above k = 1 case can be easily mapped to the pure-gluon configuration by replacing

T a → T a
adj. This gives the decomposition of Del Duca, Dixon and Maltoni (DDM) [33, 34]:

Atree
n,0 =

∑

σ∈Sn−2({3,...,n})

f̃ a2aσ(3)b1 f̃ b1aσ(4)b2 . . . f̃ bn−3aσ(n)a1 A(1, 2, σ(3), . . . , σ(n)) . (2.12)

Note that it is a substantial improvement over the trace decomposition (2.8), since it avoids

using (n− 2)2(n− 3)! primitives altogether.

The details become more involved when considering generalizations along the lines of

the DDM decomposition to more than one quark line. A basis of amplitude primitives for

generic tree amplitudes in QCD, which have the same count as the number of indepen-

dent color structures, was recently found by Melia in refs. [37, 38]. However, it remained

unknown what are the corresponding color coefficients in a decomposition using that basis.

In section 3 we discuss the Melia basis in detail, and give the complete amplitude

color decomposition in terms of this basis. The new decomposition can be thought of as a

natural generalization of the DDM decomposition to the case of k quark-antiquark pairs,

in analogy to how the Melia basis is the multi-quark generalization of the KK basis for

amplitude primitives. Similarly to the multi-peripheral formulas (2.11) and (2.12), the color

coefficients of the new decomposition will be constructed from the cubic color factors ci
and will thus be valid for any gauge group (and any group representation for the quarks).

2.2 Color-kinematics duality

Let us return to the trivalent graph expansion (2.2) of a gauge-theory amplitude, involving

kinematic numerator factors ni, color factors ci and denominatorsDi. As already explained,

the numerators are not uniquely defined, since, for instance, the quartic-vertex contact

terms can be freely absorbed into the cubic graph numerators in more than one way. More

generally, the ambiguity of the ni is a necessary consequence of the gauge dependence of

individual Feynman diagrams, and hence the operation of shifting the numerators while

leaving the amplitude invariant is called generalized gauge transformation [31, 32].

It was observed by Bern, Carrasco and one of the current authors (BCJ) [31], that

within the freedom of shifting the numerators there exists particularly nice choices, such

that the resulting kinematic numerators ni obey the same general algebraic identities as the

color factors ci. That is, there is a numerator relation for every color Jacobi/commutation

relation (2.4) and a numerator sign flip for every color factor sign flip (2.3):

ni − nj = nk ⇔ ci − cj = ck , (2.13a)

ni → −ni ⇔ ci → −ci . (2.13b)
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Amplitudes that satisfy these relations are said to exhibit color-kinematics duality. While

both eqs. (2.13a) and (2.13b) should be imposed, the latter is often omitted as the numer-

ators inherit this antisymmetry from the cubic vertices of color-ordered Feynman rules.

The relations in eq. (2.13) define a kinematic algebra of numerators, which is suggestive

of an underlying kinematic Lie algebra. While not much is known about this Lie algebra,

which should be infinite-dimensional due to the continuous nature of momentum, in the

special case of the self-dual sector of QCD the kinematic algebra is known to correspond

to certain area-preserving diffeomorphisms [68].

A very useful aspect of the color-kinematics duality is that once the numerators satisfy

eq. (2.13), they can take the place of the color factors in eq. (2.2), since they satisfy the

same algebraic identities. Through this procedure one obtains a double copy amplitude,

Mtree
n,k = i

(κ

2

)n−2
ν(n,k)
∑

cubic graphs Γi

niñi

Di
, (2.14)

which describes scattering in a gravitational theory. More precisely, the scattering ampli-

tude (2.14) will involve (n− 2k) gravitons and 2k matter particles [50]. The tilde notation

is introduced since the two copies of numerators may be not identical, they can differ by a

generalized gauge transformation, or the states may differ on the two sides. More generally,

the two sets of numerators in the double copy construction do not have to belong to the

same gauge theory [31, 32], producing a wide range of gravity theories with and without

supersymmetry. For example, pure Yang-Mills theory “squares” to gravity coupled to a

dilaton and anti-symmetric tensor. Pure Einstein gravity can be obtained by removing

these extra particles via a ghost-like double-copy prescription for massless quarks [50].

In contrast, a highly asymmetric double copy is needed for the amplitudes that couple

Yang-Mills theory to gravity [69].

At tree level the double copy construction is known [31, 39] to be equivalent to the

field-theory limit of the Kawai-Lewellen-Tye (KLT) relations [70] between open- and closed-

string amplitudes. However, the color-kinematics duality (2.13) and the double copy (2.14)

can be argued to be deeper concepts, since they have straightforward generalizations to

loop amplitudes [32]. Amplitudes up to four loops have been constructed exhibiting the

duality and double copy [32, 40–51]. The implications of the color-kinematics duality have

been used to derive a number of highly impressive results for string-theory amplitudes [71–

78], and more generally the duality has been studied using string-theory methods [79–83].

Recently the double-copy construction has been extended to classical Kerr-Schild solutions

in general relativity and gauge theory [84].

In this paper the details of gravity amplitudes will not be discussed any further, since

here we are instead interested in the aspect that the color-kinematics duality implies that

primitive amplitudes obey the Bern-Carrasco-Johansson (BCJ) relations [31]. These rela-

tions constrain the primitive amplitudes beyond the color-algebra basis discussed in the

previous section. In the pure-gluon case these kinematic-algebra relations can be used to

reduce the amplitude basis to (n− 3)! primitives. The simplest family of BCJ relations is

– 8 –
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linear in the generalized Mandelstam invariants:4

n−1∑

i=2

( i∑

j=2

sjn

)

A(1, 2, . . . , i, n, i+ 1, . . . , n− 1) = 0 , (2.15)

while the more general BCJ relations (found in ref. [31]) can be derived [85] from eq. (2.15)

and its relabelings.

The BCJ amplitude relations motivated the discovery of the scattering equations and

associated elegant string-like formulas for gauge and gravity tree amplitudes [86–89]. In

the context of scattering equations the BCJ relations have been applied to a massless

quark-antiquark pair [53] and a massive pair of scalars [54], and three massive particles of

different spins [55]. In section 4, we show that the color-kinematics duality (2.13) holds

for general QCD amplitudes, including an arbitrary number of massive quarks, and give

an explicit solution to the resulting BCJ amplitude relations.

3 Color-algebra basis for quark-gluon amplitudes

In this section we analyze the color structure of a general tree amplitude in QCD: we discuss

the Melia basis [38] of (n− 2)!/k! color-ordered primitives and find their color coefficients.

This will constitute a new color decomposition for QCD amplitudes. Though the results

are applicable to arbitrary matter particles in any gauge-group representation, we refer to

them as quarks. Similarly, the gluon can in principle be replaced by any adjoint particle

since only group-theoretic properties are used in this section.

We start with the case with no gluons, i.e. the multi-quark amplitudes, with all k

quark lines having different flavors. In ref. [37] Melia considered such amplitudes with

quarks in the adjoint representation and found a basis of primitives independent under all

color-algebra amplitude relations. The latter are simply the familiar KK relations (2.10)

projected onto the multi-quark case by setting to zero all the diagrams and primitives with

crossed quark flavor lines (crossed with respect to a planar color ordering).

This is possible because the KK relations can be deduced [31] from the fact that color-

ordered primitive amplitudes can be expanded in terms of antisymmetric cubic vertices, as

is manifest in the adjoint representation, and can be imposed in the fundamental case (see

figure 1). Under the projection that removes crossed fermion line diagrams, the antisym-

metry of the vertices is maintained (since zero is antisymmetric) thus all the fermion-case

KK relations are inherited from the pure-gluon case unscathed, though some of them are

reduced to redundant equations, or even to trivial 0 = 0 equations. This implies that the

fermion-case basis of primitives has to be a subset of the original basis of (n−2)! primitives.

In fact, the (n − 2)! basis decomposes into k! = (n/2)! cases of inequivalent permutations

of the quarks (maintaining the antiquark ordering), out of which only one has no flavor

crossings. Hence, the basis surviving the projection is reduced in size by a factor 1/(n/2)!.

Indeed, the Melia basis for pure-fermion amplitudes has dimension (n − 2)!/(n/2)! [37],

and in the general mixed quark-gluon case the dimension is (n− 2)!/k! [38].

4These relations for gluon amplitudes are sometimes called “fundamental BCJ relations” [85]. Here we

avoid this terminology to prevent confusion with the fundamental representation of the gauge group.
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The fact that the basis of primitives were derived in refs. [37, 38] for the case of

adjoint particles and color-ordered planar amplitudes is not a problem. The same planar

amplitudes are also a basis of primitives in the mixed adjoint-fundamental case that we

encounter in QCD. We illustrate this through examples, and then give the general color

decomposition for QCD.

3.1 Pure-quark example: n = 6, k = 3

Let us now explain the details of the Melia basis using an instructive pure-quark example.

The basis of primitive amplitudes for k = n/2 quark-antiquark pairs is given by [37]5

{

A(1, 2, σ)
∣
∣ σ ∈ Dyckk−1

}

, (3.1)

where the last (n − 2) arguments must form a valid Dyck word out of the quarks and

antiquark labels.6 These words are defined as strings of X and Y letters, (k − 1) of each,

such that the number of X’s preceding each Y is greater than the number of preceding

Y’s. A more illuminating representation is obtained by realizing that Dyck words precisely

correspond to well-formed brackets, with X’s playing the role of opening brackets and Y’s

being closing brackets. For n = 6 there are two such words, XYXY and XXYY, equivalent

to the brackets {}{} and {{}}, respectively. An example of an invalid Dyck word is XYYX,

and it translates to the ill-formed brackets {}}{.
Of course, the brackets themselves are not sufficient to specify the particle labels, in-

stead they only specify the particle type. The X’s or opening brackets can be identified

with quarks and Y’s or closing brackets with antiquarks (or, more precisely, the fundamen-

tal and anti-fundamental representation, respectively). To form the Dyck words relevant

for eq. (3.1), each valid bracket combination needs to be populated by particle labels. To

be specific, if we have quark flavor lines 3 ← 4 and 5 ← 6, then there are exactly two label

assignments per bracket combination that leave the flavor lines uncrossed:

XYXY ⇒ (3, 4, 5, 6), (5, 6, 3, 4) ⇔ {3 4}{5 6}, {5 6}{3 4} , (3.2a)

XXYY ⇒ (3, 5, 6, 4), (5, 3, 4, 6) ⇔
{
3{5 6}4

}
,
{
5{3 4}6

}
. (3.2b)

These four valid Dyck words are written out using two different notations: the bar notation

used in eq. (2.11) and the bracket notation introduced above. As can be seen, the two

notations convey the same information, since each downstairs and upstairs bar can be

respectively identified with an opening and a closing bracket. In this paper we use both

notations interchangeably according to convenience. A very important aspect of either

notation is that each opening bracket corresponds to a unique closing bracket, and hence

each downstairs bar corresponds to a unique upstairs bar. These pairs of states are precisely

the quark-antiquark pairs of the same flavor. Thus the notation conveniently combines the

information about the gauge-group representation and flavor. In other words, no separate

notation is needed for specifying the flavor of the primitive amplitudes.

5The precise basis used in ref. [37] is slightly different:
{

A(2, 1, σ)
∣

∣σ ∈ Dyckk−1

}

in our notation.
6Recall that we mark quarks and antiquarks with underscores and overscores, respectively.
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Atree
6,3 =

1 2

3

4 5

6 +

1 2

5

6 3

4 +

3 4

5

6 1

2 +

3 4

1

2 5

6

+

5 6

1

2 3

4 +

5 6

3

4 1

2 +

12

3

4 5

6

Figure 4. Feynman diagrams for the six-quark amplitude Atree

6,3 (1, 2, 3, 4, 5, 6).

We have thus arrived at the Melia basis for n = 6, k = 3, which contains four primitives:

A(1, 2, 3, 4, 5, 6) , A(1, 2, 5, 6, 3, 4) , A(1, 2, 3, 5, 6, 4) and A(1, 2, 5, 3, 4, 6) . (3.3)

Now we will determine the color factors corresponding to the primitives and that are

appropriate for quarks in the fundamental representation. Recall that the full amplitude

can be written as

Atree
6,3 =

c1n1

D1
+

c2n2

D2
+

c3n3

D3
+

c4n4

D4
+

c5n5

D5
+

c6n6

D6
+

c7n7

D7
, (3.4)

where each term corresponds to a cubic Feynman diagram in figure 4. Their color factors

c1 = T a
i1 ̄
T b
j ı̄2

T a
i3 ı̄4

T b
i5 ı̄6

, c2 = T b
i1 ̄
T a
j ı̄2

T a
i3 ı̄4

T b
i5 ı̄6

, (3.5a)

c3 = T a
i3 ̄
T b
j ı̄4

T a
i5 ı̄6

T b
i1 ı̄2

, c4 = T b
i3 ̄
T a
j ı̄4

T a
i5 ı̄6

T b
i1 ı̄2

, (3.5b)

c5 = T a
i5 ̄
T b
j ı̄6

T a
i1 ı̄2

T b
i3 ı̄4

, c6 = T b
i5 ̄
T a
j ı̄6

T a
i1 ı̄2

T b
i3 ı̄4

, (3.5c)

c7 = −f̃abcT a
i1 ı̄2

T b
i3 ı̄4

T c
i5 ı̄6

, (3.5d)

can be read off according the rules in figure 1. For completeness and later use, we give the

kinematic content of three representative diagrams:

n1 = − i

4
(ū1γ

µ( 6k1,3,4+m1)γ
νv2)(ū3γµv4)(ū5γνv6) , D1 = (s1,3,4 −m2

1)s34s56 , (3.6a)

n2 = − i

4
(ū1γ

ν( 6k1,5,6+m1)γ
µv2)(ū3γµv4)(ū5γνv6) , D2 = (s1,5,6 −m2

1)s34s56 , (3.6b)

n7 = − i

4
(ū1γ

µv2)(ū3γµv4)(ū5( 6k1,2 − 6k3,4)v6) + cyclic , D7 = s12s34s56 , (3.6c)

where we allow for arbitrary spins. All momenta are outgoing and the notation used is

ki,j,...,l = ki + kj + · · ·+ kl ,

si,j,...,l = (ki + kj + · · ·+ kl)
2 ,

sij = (ki + kj)
2 .

(3.7)

It is easy to see that the seven color factors (3.5) obey three commutation relations:

c1 − c2 = −c7 , c3 − c4 = −c7 , c5 − c6 = −c7 . (3.8)
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Thus the color space of Atree
6,3 is four-dimensional, which is consistent with the length of the

Melia basis (3.3). The primitive amplitudes therein can also be diagrammatically expanded

according to the color-ordered Feynman rules (A.1)

A123456 =
n2

D2
+

n4

D4
+

n6

D6
+

n7

D7
, A123564 = − n3

D3
− n4

D4
,

A125634 =
n1

D1
+

n3

D3
+

n5

D5
− n7

D7
, A125346 = − n5

D5
− n6

D6
,

(3.9)

where for brevity we have written the amplitude arguments as subscripts.

Now we wish to color-decompose the amplitude (3.4) such that we get exactly the Melia

basis primitives as kinematic coefficients. We observe that we can massage it into a com-

bination of the expressions in eq. (3.9) by using the commutation relations (3.8). Indeed,

if we eliminate the color factors c3, c6 and c7, we land on the following decomposition:

Atree
6,3 =

c1n1

D1
+

c2n2

D2
+

(c1 − c2 + c4)n3

D3
+

c4n4

D4
+

c5n5

D5
+

(c2 − c1 + c5)n6

D6
+

(c2 − c1)n7

D7

= c2A123456 + c1A125634 + (c2 − c4)A123564 + (c1 − c5)A125346

≡ C123456A123456 + C125634A125634 + C123564A123564 + C125346A125346 .
(3.10)

The precise expressions for C12...’s, the color coefficients of the primitives, are subject to

the commutation identities (3.8). Our choice here is the one that will be generalized in

section 3.3. Some traits of the general pattern can be seen from the following rendition of

the color coefficients:

C123456 =
2 1

3 64 5
, C123564 =

2 1

6

3 4

5

+

2 1

6

3 4

5

,

C125634 =
2 1

5 46 3
, C125346 =

2 1

4

5 6

3

+

2 1

4

5 6

3

,

(3.11)

where we choose to draw some of the color diagrams in a nonplanar fashion in order to

preserve the cyclic ordering dictated by the primitive amplitudes. In other words, although

the color-ordered primitives (3.9) are composed only of planar Feynman diagrams, their

color coefficients (3.11) contain both planar and nonplanar color diagrams. More than that,

we observe that this non-planarity is related to the bracket “nestedness” for configurations
{
3{5 6}4

}
and

{
5{3 4}6

}
, as will be increasingly clear for higher-multiplicity examples.

3.2 Quark-gluon example: n = 5, k = 2

Now let us replace the last quark pair by a single gluon, while four remaining quarks have
the same distinct flavors as before. The quark masses are then m1 = m2, m3 = m4. For
completeness and further use, we give full color and kinematic content for each of the five
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Figure 5. Feynman diagrams for the four-quark one-gluon amplitude Atree

5,2 (1, 2, 3, 4, 5).

Feynman diagrams shown in figure 5:

c1 = T a5

i1 ̄
T b
j ı̄2

T b
i3 ı̄4

, n1 =
i

2
√
2
(ū1 6ε5( 6k1,5+m1)γ

µv2)(ū3γµv4) , D1 = (s15−m2

1
)s34 ,

(3.12a)

c2 = T b
i1 ̄

T a5

j ı̄2
T b
i3 ı̄4

, n2 =
−i

2
√
2
(ū1γ

µ( 6k2,5−m2) 6ε5v2)(ū3γµv4) , D2 = (s25−m2

2
)s34 ,

(3.12b)

c3 = T b
i1 ı̄2

T a5

i3 ̄
T b
j ı̄4

, n3 =
i

2
√
2
(ū1γµv2)(ū3 6ε5( 6k3,5+m3)γ

µv4) , D3 = s12(s35−m2

3
) ,

(3.12c)

c4 = T b
i1 ı̄2

T b
i3 ̄

T a4

j ı̄4
, n4 =

−i

2
√
2
(ū1γµv2)(ū3γ

µ( 6k4,5−m4) 6ε5v4) , D4 = s12(s45−m2

4
) ,

(3.12d)

c5 = f̃a5b cT b
i1 ı̄2

T c
i3 ı̄4

, n5 =
i√
2

(

(ū1 6ε5v2)(ū3 6k5v4)− (ū1 6k5v2)(ū3 6ε5v4) (3.12e)

− (ū1γ
µv2)(ū3γµv4)(k12 ·ε5)

)

, D5 = s12s34 .

The five color factors obey two commutation relations:

c1 − c2 = −c5 , c3 − c4 = c5 . (3.13)

implying a color-algebra basis of three primitive amplitudes. A symmetric color decompo-

sition is obtained if we eliminate c1 and c4:

Atree
5,2 =

5∑

i=1

cini

Di
= c2

(
n1

D1
+

n2

D2

)

+ c3

(
n3

D3
+

n4

D4

)

+ c5

(

− n1

D1
− n4

D4
+

n5

D5

)

≡ c2A15234 + c3A12354 + c5A12345 ,

(3.14)

where in the last line we identified the correct color-ordered amplitudes, corresponding to

the independent color factors c2, c3 and c5 (similar decompositions are found in ref. [90]).

However, this is not yet the Melia basis [38]. To obtain it, we use the KK relation (2.10)

to move leg 2 next to leg 1:

A(1, 5,
︸︷︷︸

β

2, 3, 4
︸︷︷︸

α

) = −A(1, 2, 5, 3, 4)−A(1, 2, 3, 5, 4)−A(1, 2, 3, 4, 5) . (3.15)

Thus we obtain a new decomposition

Atree
5,2 = −c2A12534 − c1A12345 + (−c1 + c4)A12354

≡ C12534A12534 + C12345A12345 + C12354A12354 ,
(3.16)
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in terms of three primitives

A12534 = − n2

D2
− n3

D3
− n5

D5
, A12345 = − n1

D1
− n4

D4
+

n5

D5
, A12354 =

n3

D3
+

n4

D4
. (3.17)

Note that they correspond to the single Dyck word XY, equivalent to the bracket {34},
with the gluon label 5 inserted before, after and in the middle of the word, respectively.

Their color coefficients in the decomposition (3.16) are given by the following graphs:

C12534 =
2 1

4
5 3

, C12345 =
2 1

3 4
5

,

C12354 =

2 1

3 4

5

+

2 1

3 4

5

=

2 1

3 4

5

+

2 1

3 4

5

,

(3.18)

where C12354 is drawn both as (−c1 + c4) and (−c2 + c3) to emphasize that the nonplanar

diagrams cannot be removed by commutation relations. The pattern to take note of is that

the non-planarity occurs in the ordering {3 5 4} with the gluon sandwiched between the

quark brackets, which is reminiscent of the nested quark-antiquark pairs in section 3.1.

3.3 New color decomposition

In this section we formulate the new color decomposition for QCD.

We use the Melia basis for primitives with (n− 2k) gluons and k quark-lines [38]:

{
A(1, 2, σ)

∣
∣ σ ∈ Dyckk−1 × {gluon insertions}n−2k

}
. (3.19)

In the construction of this basis there are (2k−2)!/(k!(k−1)!) Dyck words prior to assigning

the particle labels inside the brackets. The quark labels can be assigned to (k− 1) slots in

(k − 1)! inequivalent ways. The antiquark labels have unique slot assignments after this,

since all quark lines have different flavors. Then the (n − 2k) gluons are assigned to any

place except between 1 and 2, which must stay adjacent. With each gluon inserted, the

number of available slots grows, starting from (2k − 1) up to (n − 2). Therefore, the size

of this color-algebra basis is

κ(n, k) =

empty brackets
︷ ︸︸ ︷

(2k − 2)!

k!(k − 1)!
×(k − 1)!

︸ ︷︷ ︸

dressed quark brackets

× (2k − 1)(2k) . . . (n− 2)
︸ ︷︷ ︸

insertions of (n−2k) gluons

=
(n− 2)!

k!
, (3.20)

in agreement with the reasoning given in the beginning of section 3. See table 2 for the

explicit counts of the lower-multiplicity primitive amplitudes.

Now the new color decomposition for QCD is conveniently written as

Atree
n,k =

κ(n,k)
∑

σ ∈Melia basis

C(1, 2, σ)A(1, 2, σ) , (3.21)
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k \ n 3 4 5 6 7 8

0 1 2 6 24 120 720

1 1 2 6 24 120 720

2 - 1 3 12 60 360

3 - - - 4 20 120

4 - - - - - 30

Table 2. The number of n-point primitive amplitudes with k distinguishable quark pairs, indepen-

dent under color-algebra relations, as given by the formula κ(n, k) = (n− 2)!/k!.

where A(1, 2, σ) are the usual color-ordered planar primitive amplitudes (defined by the

color-ordered Feynman rules in appendix A), and the color coefficients C(1, 2, σ) are non-

trivial objects that are the subject of the remaining discussion in this section.

Using the suggestive bracket notation, we can obtain the color coefficients using the

following replacement rules for the quark, antiquark and gluon labels:

C(1, 2, σ) = (−1)k−1 {2|σ|1}
∣
∣
∣
∣
∣

q → {q|T b⊗ Ξb
l−1

q → |q}

g → Ξ
ag

l

, (3.22)

where the integer l is the level of bracket “nestedness” for a given particle in the word

{2|σ|1}. In other words, l is the number of opening brackets minus the number of closing

brackets to the left of the particle. The bra {q| and the ket |q} now represent the funda-

mental and anti-fundamental color indices of a quark and an antiquark, or can equivalently

be understood as their the color wavefunctions. The object Ξa
l in eq. (3.22) is an operator

obtained by tensoring l copies of the Lie algebra,

Ξa
l =

l∑

s=1

1⊗ · · · ⊗ 1⊗
s

︷ ︸︸ ︷

T a ⊗ 1⊗ · · · ⊗ 1⊗ 1
︸ ︷︷ ︸

l

. (3.23)

The sum effectively runs over each slot s in the identity tensor product and inserts a genera-

tor with adjoint index a and in the appropriate representation, see figure 6. By convention,

each copy of the Lie algebra representation corresponds to a particular nestedness level,

starting from level l (the leftmost copy) and down to level one (the rightmost copy). Note

that the operators Ξa
l form a representation of the Lie algebra,

[
Ξa
l , Ξ

b
l

]
= f̃abc Ξc

l . (3.24)

This makes it natural to extend eq. (3.23) to the pure-gluon case by defining Ξa
0 = T a

adj.

In the multi-sandwich formula (3.22) the quark and antiquark wavefunctions act only

on the Lie algebra copy at their corresponding nestedness level l. For example, {2| and |1}
act on the level-one copy of the group representation, which is complex conjugated with

respect to the rest, as is seen in figure 6. This is indicated by the bar over the rightmost

unit operator in eq. (3.23) and the fact that in eq. (3.22) we use the bra {2| and the ket

|1} for the color wavefunctions of the antiquark 2 and quark 1, which is contrary to the
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Ξa
l =

a

...







l =

...

+

...

+

...

+ . . . +

...

Figure 6. Diagrammatic form of the operator Ξa
l . It is drawn as a single diagram with hollow

quark-gluon vertices, this represents summation over the possible locations where the gluon line

can attach.

convention for all other particles. This is due to the special role of the fermion line 1 ← 2.

This notational subtlety could in principle be avoided by complex conjugating that line into

1 → 2, i.e. by interchanging the roles of the quark and the antiquark.7 More generally, any

group representation copy can be complex conjugated, as it only changes the interpretation

of which particles are quarks and antiquarks. (In fact, any representation can be allowed

for each Lie algebra copy.)

The above formulas (3.22) and (3.23) unambiguously determine the color coefficients

in the color decomposition (3.21). For k = 1, 0 it is straightforward to see that our de-

composition coincides with the multi-peripheral formulas (2.11) and (2.12). Indeed, if all

permuted particles 3, . . . , n are gluons, they are replaced by Ξai
1 = T

ai , producing pre-

cisely eq. (2.11). In case particles 1 and 2 are gluons as well, the nestedness level is zero,

and the adjoint-representation operators Ξai
0 = T ai

adj yield the DDM decomposition (2.12).

For a more detailed example of using eq. (3.22), let us consider the six-point amplitude

discussed in section 3.1. One of the color coefficients in its decomposition is

C123456 = {2|{3|T a⊗ Ξa
1|4}{5|T b⊗ Ξb

1|6}|1} = {2|{3|T a⊗ T
a|4}{5|T b⊗ T

b|6}|1}
= {2|T a

T
b|1}{3|T a|4}{5|T b|6} = (T bT a)i1ı2T

a
i3ı4

T b
i5ı6

,
(3.25)

where we in the last step have translated it to a more conventional notation. A more

interesting example is the color coefficient

C123564 = {2|{3|T a⊗ Ξa
1{5|T b⊗ Ξb

2|6}|4}|1}
= {2|{3|T a⊗ T

a{5|T b⊗ 1⊗ T
b|6}|4}|1} + {2|{3|T a⊗ T

a{5|T b⊗ T b⊗ 1 |6}|4}|1}
= {2|T a

T
b|1}{3|T a|4}{5|T b|6} + {2|T a|1}{3|T aT b|4}{5|T b|6} (3.26)

= (T bT a)i1ı2T
a
i3ı4

T b
i5ı6

− T a
i1ı2

(T aT b)i3ı4T
b
i5ı6

.

The other two color coefficients for the six-point amplitude are, with less details, given by

C125634 = {2|{5|T a⊗ Ξa
1|6}{3|T b⊗ Ξb

1|4}|1} = {2|T a
T
b|1}{3|T b|4}{5|T a|6} ,

C125346 = {2|{5|T a⊗ Ξa
1{3|T b⊗ Ξb

2|4}|6}|1} = {2|T a
T
b|1}{3|T b|4}{5|T a|6}

+ {2|T a|1}{3|T b|4}{5|T aT b|6} .

(3.27)

7This would mean the Melia basis A(1, 2, σ), or, after relabeling, A(1, σ, n).
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The four above color coefficients are indeed the ones given diagrammatically in eq. (3.11).

For the five-point amplitude discussed in section 3.2, our decomposition results in the

following color coefficients:

C12534 = −{2|Ξa5
1 {3|T b⊗ Ξb

1|4}|1} = −{2|T a5{3|T b⊗ T
b|4}|1} = −{2|T a5T

b|1}{3|T b|4} ,
C12345 = −{2|{3|T b⊗ Ξb

1|4}Ξa5
1 |1} = −{2|{3|T b⊗ T

b|4}T a5 |1} = −{2|T b
T
a5 |1}{3|T b|4} ,

C12354 = −{2|{3|(T b⊗ Ξb
1) Ξ

a5
2 |4}|1} (3.28)

= −{2|{3|(T b⊗ T
b
)(1⊗ T

a5)|4}|1} − {2|{3|(T b⊗ T
b
)(T a5⊗ 1 )|4}|1}

= −{2|T b
T
a5 |1}{3|T b|4} − {2|T b|1}{3|T bT a5 |4} ,

which coincide with the color diagrams in eq. (3.18).

While we do not provide a proof for the decomposition (3.21), we have explicitly

checked its validity for all quark-gluon configurations up to eight points, as well as the

nine-point amplitude with four quark lines and one gluon. To be more precise, the check

was done as follows. We expand the Melia basis of color-ordered primitives in kinematic

cubic diagrams,

A(1, 2, σ) =
∑

σ-color-ordered cubic graphs Γi

± ni

Di
, (3.29)

and solve for ni/Di in terms of the primitives A(1, 2, σ). When this solution is plugged back

into the color dressed cubic graph expansion (2.2), the color coefficients of the undetermined

ni can be shown to vanish under the color algebra (2.4). What is left is then an expansion

of the amplitude in terms of the primitives and some color factors ci. The color coefficients

C(1, 2, σ) of the primitives can then be read off from this expression. They are indeed given

exactly by eq. (3.22).

3.4 Higher-point example and color-coefficient diagram

Here we illustrate how the general formula (3.22) is applied to a high-multiplicity example.

Consider the color factor of the following 14-point primitive amplitude with six quark pairs

and two gluons (n = 14, k = 6):

A(1, 2, 13, 3, 5, 6, 4, 7, 9, 14, 11, 12, 10, 8) . (3.30)

We can use the cyclic property of planar amplitudes to move 1 to the end and then, to

make the nestedness of the primitive more apparent, replace the bar notation of the legs

with brackets:

{2 13{3{5 6}4}{7{9 14{11 12}10}8}1} . (3.31)

As before, the bar-bracket correspondence for the fermion line 1 ← 2 is opposite to all

other legs due to the different convention for Lie algebra representation on that line.

Using eq. (3.22) it is straightforward to obtain the expression for the color coefficient

of this primitive

C1,2,13,3,5,6,4,7,9,14,11,12,10,8 = −{2|Ξa13
1 {3|T b⊗ Ξb

1{5|T c⊗ Ξc
2|6}|4} (3.32)

× {7|T d⊗ Ξd
1{9|(T e⊗ Ξe

2)Ξ
a14
3 {11|T f⊗ Ξf

3 |12}|10}|8}|1} .
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Figure 7. Diagrammatic representation for the color coefficient of the planar amplitude

A(1, 2, 13, 3, 5, 6, 4, 7, 9, 14, 11, 12, 10, 8), obtained by using the notation of figure 6. Note that the

diagram has the same structure as the word {2 13{3{5 6}4}{7{9 14{11 12}10}8}1}.

While this formula is compact, it becomes a rather formidable expression if written

in terms of standard color factors. In order to understand it better, let us sketch out the

various standard color structures contained in it. For example, the first Ξa13
1 in eq. (3.32)

will give rise to the structure

{2|Ξa13
1 . . . |1} =

(
T
a13 . . .

)

ı̄2i1
, (3.33)

whereas the second appearance of Ξ gives

{2| . . . {3|T a⊗ Ξa
1 . . . |4} . . . |1} =

(
T a . . .

)

i3 ı̄4

(
. . . T

a
. . .

)

ı̄2i1
. (3.34)

For l ≥ 2 the operator Ξa
l consists of a sum of tensor products, thus nested curly brackets

imply summation over different possibilities of inserting the generator T a. For example,

the third Ξ in eq. (3.32) gives rise to two structures

{2| . . . {3 . . . {5|T b
3⊗ Ξb

2|6}|4} . . . |1} =
(
T b

)

i5 ı̄6

(
. . . T b

)

i3 ı̄4

(
. . . . . .

)

ı̄2i1

+
(
T b

)

i5 ı̄6

(
. . .

)

i3 ı̄4

(
. . . T

b
. . .

)

ı̄2i1
,

(3.35)

while the sixth occurrence of Ξ gives three contributions

{2| . . . {7 . . . {9| . . .Ξa14
3 . . . |10}|8}|1} =

(
. . . T a14 . . .

)

i9 ı̄10

(
. . .

)

i7 ı̄8

(
. . .

)

ı̄2i1

+
(
. . . . . .

)

i9 ı̄10

(
. . . T a14

)

i7 ı̄8

(
. . .

)

ı̄2i1

+
(
. . . . . .

)

i9 ı̄10

(
. . .

)

i7 ı̄8

(
. . . T

a14)

ı̄2i1
.

(3.36)

Indeed, each Ξa
l gives rise to exactly l structures, which then are multiplied together. This

implies that the number of standard color factors hiding in eq. (3.32) can be counted by

multiplying the subscripts of the Ξ’s in this expression, giving

1× 1× 2× 1× 2× 3× 3 = 36 terms. (3.37)

Finally, we note that probably the best way to understand the color coefficient (3.32)

is to draw a diagram for it. Indeed, figure 7 contains the same information as the for-

mula (3.32). In particular, compare this diagram with the word given in eq. (3.31). The

diagram figure 7 is similar to a usual color factor diagram that describes the contractions
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of f̃abc’s and T a’s; however, we use hollow quark-gluon vertices to represent the operation

of summing over the possible locations where a gluon can attach (see figure 6). In this sum,

if the gluon does not attach at a given vertex, the vertex should be considered to be the

identity operator. In this sense, the hollow vertex can either represent a gluon attachment,

or a nonplanar crossing of the lines. Note that the diagram in figure 7, and similar ones

built up by the diagrammatic Ξ’s shown in figure 6, are the natural generalizations of the

multi-peripheral diagrams that appear in the DDM decomposition.

4 Kinematic-algebra basis for quark-gluon amplitudes

In this section we turn our attention to the kinematic structure of general tree amplitudes

in QCD. We find that they obey the color-kinematics duality (2.13), and this constrains

the basis of primitives further. The number of independent primitives is reduced down to

(n− 3)!(2k − 2)/k! for k ≥ 2, and for k = 1, 0 it is given by the familiar (n− 3)!.

The color-kinematics duality is well-established for gluons in any spacetime dimen-

sion [31, 39, 46], and similarly for massless particles in supersymmetric YM multiplets

that comprise gluons [32, 40–43, 45, 48, 51] or only matter [47, 49, 50]. The BCJ am-

plitude relations, which are a consequence of the duality [31] but can be proven by other

means [71, 72, 85], have in a few cases been shown to generalize to massive amplitudes. In

particular, amplitudes with a massive scalar pair [54] and with three massive particles of

different spins [55] have been considered in the literature.

In this section, we show that the color-kinematics duality (2.13) holds for QCD tree-

level n-point amplitudes with k quark-antiquark pairs having distinct flavors and masses.

We prove this for k ≤ 4, n ≤ 8 by explicit calculations. Assuming the duality holds in

general, we derive the resulting tree-amplitude relations. We expect that these relations

not only hold for QCD, but can be applied to generic YM amplitudes with massive fla-

vored matter particles (fermions/scalars), including general gauge-group representation,

general spacetime dimension, with and without supersymmetry. In particular, the ampli-

tude relations can be used as a gauge-invariant test to check if a given theory obeys the

color-kinematics duality.

We first give a few concrete examples and then state the general results.
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4.1 Four-point example: n = 4, k = 1

One of the simplest massive quark amplitudes involves one massive quark-antiquark pair

and two gluons. It has three Feynman diagrams:

1, i 2, ̄

3, a 4, b

= − i

2

T a
ik̄
T b
k̄

s13−m2
(ū1 6ε3( 6k1,3+m) 6ε4v2) =

c1n1

D1
, (4.1a)

1, i 2, ̄

4, b 3, a

= − i

2

T b
ik̄
T a
k̄

s14−m2
(ū1 6ε4( 6k1,4+m) 6ε3v2) =

c2n2

D2
, (4.1b)

1, i 2, ̄

3, a 4, b

=
i

2

f̃abcT c
i̄

s12

(

2(k4 ·ε3)(ū1 6ε4v2)− 2(k3 ·ε4)(ū1 6ε3v2)

+ (ε3 ·ε4)(ū1( 6k3 − 6k4)v2)
)

=
c3n3

D3
,

(4.1c)

where the spins are left unspecified. These diagrams correspond precisely to the ones in

the fundamental commutation relation (2.4b), which in terms of color factors read

c1 − c2 = c3 . (4.2)

By the color-kinematics duality, the kinematic relation should then read

n1 − n2 = n3 . (4.3)

Indeed, the kinematic numerators of the above Feynman diagrams,

n1 = − i

2
ū1 6ε3( 6k1,3+m) 6ε4v2 , n2 = − i

2
ū1 6ε4( 6k1,4+m) 6ε3v2 ,

n3 =
i

2

(

2(k4 ·ε3)(ū1 6ε4v2)− 2(k3 ·ε4)(ū1 6ε3v2) + (ε3 ·ε4)(ū1( 6k3 − 6k4)v2)
)

,

(4.4)

do satisfy eq. (4.3). To check this in detail one has to repeatedly use the Clifford algebra,

γµγν + γνγµ = 2ηµν , (4.5)

the Dirac equations and gluon transversality conditions,

ū1( 6k1−m) = 0 , ( 6k2+m)v2 = 0 , ki · εi = 0 , (4.6)

as well as the mass-shell conditions for the quarks k21 = k22 = m2 and the gluons k23 = k24 = 0.

After several algebraic steps, one arrives at

n1 − n2 − n3 ∝ ū1 6k1 6ε3 6ε4v2 + ū1 6ε3 6ε4 6k2v2 − (ε3 ·ε4)(ū1( 6k1 + 6k2)v2) = 0 . (4.7)

Note that the numerators (4.4) are gauge-dependent through the polarization vectors

of the gluons, but the combination n1−n2−n3 is gauge-invariant (and zero). For a generic

amplitude the numerators of cubic graphs need to absorb the four-gluon interactions, which
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invariably leads to ambiguities in defining the numerators, and thus the duality is not

manifest in general. However, in the above amplitude there is no quartic vertex, hence it

is not surprising that the duality holds automatically from the Feynman rules.

Having shown that the color-kinematics duality is present in this QCD amplitude, we

proceed using only the formal properties of the numerators. Expressing the color-dressed

amplitude through two color-ordered primitives is straightforward,

Atree
4,1 =

3∑

i=1

cini

Di
=

{

c1

(
n1

D1
+

n3

D3

)

+ c2

(
n2

D2
− n3

D3

)}

≡ c2A1234 + c1A1243 , (4.8)

where the color factors are of the multi-peripheral type, in accord with the decomposi-

tion (2.11). Using the duality, n3 = n1 − n2, we obtain a system of two equations,

A1234 =

(
1

D2
+

1

D3

)

n2 −
n1

D3
, A1243 =

(
1

D1
+

1

D3

)

n1 −
n2

D3
, (4.9)

which, after Gaussian elimination of n1, yields

A1234 =

(
1

D2
+

1

D3
− D1

(D1+D3)D3

)

n2 −
D1

D1+D3
A1243 . (4.10)

The coefficient of n2 can be shown to be proportional to a vanishing sum of denominators

D1 +D2 +D3 = (s13 −m2) + (s14 −m2) + s12 = 0 , (4.11)

resulting in the following relation among the primitive amplitudes:

(s14 −m2)A1234 = (s13 −m2)A1243 . (4.12)

This is a straightforward generalization8 of the corresponding massless BCJ relation (2.15).

It allows us to express the full amplitude in terms of a single primitive,

Atree
4,1 =

(

T a3
ı̄2j

T a4
̄ i1

+ T a4
ı̄2j

T a3
̄ i1

s14 −m2

s13 −m2

)

A1234 . (4.13)

4.2 Kinematic algebra for n = 5, k = 2

We proceed by showing that the color-kinematics duality is present in QCD amplitudes

with two quark lines of different flavors and masses. Let us return to the n = 5, k = 2

amplitude considered in section 3.2. Since the four-gluon vertex is also absent in this

amplitude, the numerators in eq. (3.12) are directly given by the Feynman rules, and we

expect the duality to hold automatically,

c1 − c2 = −c5 ⇔ n1 − n2 = −n5 , (4.14a)

c3 − c4 = c5 ⇔ n3 − n4 = n5 . (4.14b)

8Eq. (4.12) can be presented [54] as (k1 · k4)A1234 = (k1 · k3)A1243, making it formally identical to the

massless BCJ relation, but here we prefer to use momentum invariants with explicit mass dependence,

similar to Feynman propagators.
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As before, to see that these relations indeed hold true, one has to use the Clifford algebra,

the Dirac equation for massive quarks, the transversality condition for gluons, as well as

the mass-shell conditions. We will spare the reader the details of this successful check, and

instead proceed formally.

Combining the two kinematic identities of eq. (4.14) and the three primitives as defined

in eq. (3.14), we obtain a system of five equations. Four of these equations can be used to

solve for numerators n1, n2, n3 and n4 in terms of variables n5, A15234 and A12354,

n2 = n1 − n5 , n1 =
D1D2

D1+D2

(

A15234 −
n5

D2

)

,

n3 = n4 − n5 , n4 =
D3D4

D3+D4

(

A12354 −
n5

D3

)

,

(4.15)

the remaining fifth equation yields an expression for A12345,

A12345 = − D2

D1+D2
A15234 −

D3

D3+D4
A12354 +

(
1

D1+D2
+

1

D3+D4
+

1

D5

)

n5 . (4.16)

The variable n5 cannot be solved for since its prefactor in eq. (4.16) vanishes, resulting in

the following gauge-invariant amplitude relation:

(s35 −m2
3)A12354 + (s12 − s34)A12345 − (s25 −m2

2)A15234 = 0 . (4.17)

This expression involves the primitive A15234 outside of the Melia basis, but we can trade

it for A12534 using the KK relation (3.15). Via the identity s12− s34 = s35+ s45−m2
3−m2

4,

we obtain another amplitude relation:

(s25 −m2
2)A12534 + (s25 + s35 −m2

2 −m2
3)A12354

+(s25 + s35 + s45 −m2
2 −m2

3 −m2
4)A12345 = 0 .

(4.18)

Here, in order to have consistent quark masses, one should set m1 = m2 and m3 = m4.

We keep the masses distinct, as well as avoid using further momentum identities, so as to

match the pattern of the general n-point formula given in the next section. If we do use

further momentum identities this expression can be simplified to

(s25 −m2
2)A12534 + (s14 − s23)A12354 − (s15 −m2

1)A12345 = 0 , (4.19)

which is nothing but a relabeling of eq. (4.17): (1, 2, 3, 4) → (4, 1, 2, 3). In fact, all BCJ

relations for n = 5, k = 2 are related by such simple relabelings.

As an alternative test of the color-kinematics duality, one can verify these amplitude

relations directly, thus circumventing the numerator check. For example, it is straightfor-

ward to check that the relations (4.17) and (4.19) hold in the mi → 0 limit, in which the

amplitudes become9

A(1−, 5+, 2
+
, 3−, 4

+
) = i

〈13〉2
〈15〉〈25〉〈34〉 , A(1−, 2

+
, 5+, 3−, 4

+
) = i

〈13〉2〈23〉
〈12〉〈34〉〈25〉〈35〉 ,

A(1−, 2
+
, 3−, 5+, 4

+
) = i

〈13〉2
〈12〉〈35〉〈45〉 , A(1−, 2

+
, 3−, 4

+
, 5+) = −i

〈13〉2〈14〉
〈12〉〈34〉〈15〉〈45〉 ,

(4.20)

9Since k > 1 these primitives do not correspond to component amplitudes in any of the pure N = 1, 2, 4

SYM theories. Thus their BCJ relations in principle need not be the same as those of pure SYM theories.

– 22 –



J
H
E
P
0
1
(
2
0
1
6
)
1
7
0

where we have specialized to quarks and a gluon of definite helicity, using the spinor-helicity

formalism [91]. Of course, the above amplitude relations hold just as well for any mass

and spin/helicity configuration, as follows from the fact that the Feynman diagrams in

eq. (3.12) satisfy the color-kinematics duality.

We note that eq. (4.18) can be mapped to the gluonic BCJ relation (2.15) by letting

sj5 → (sj5 − m2
j ) = 2kj · k5. However, not all of the gluonic BCJ relations hold true for

quark primitives. For example, consider the following identity valid for gluons [31]:

A14235 = −s12s45A12345 + s25(s14 + s24)A15234

s35s24
. (4.21)

In trying to map the primitives to the quark flavor/mass configurations considered here,

the left-hand side involves crossed flavor lines and thus should be set to zero. The resulting

two-term relation between A12345 and A15234 is not a true identity, not even in the massless

limit. This shows that mapping the gluonic BCJ relations onto the k ≥ 2 quark case is

more subtle than for the corresponding KK relations, which we argued in section 3 to hold

true regardless of the particle configuration. Nevertheless, it is not difficult to understand

the general structure of the quark-gluon BCJ relations, as we show in section 4.4.

Before proceeding to higher-point amplitudes, we note that one can use eq. (4.18) to

express the full amplitude (3.16) in terms of two primitives with legs 1, 2 and 3 fixed:

Atree
5,2 =

(

T b
i1 ı̄2

T a5
i3 ̄
T b
j ı̄4

+ T b
i1 ̄
T a5
j ı̄2

T b
i3 ı̄4

s35 −m2
3

s25 −m2
2

)

A12354

−
(

T a5
i1 ̄
T b
j ı̄2

T b
i3 ı̄4

+ T b
i1 ̄
T a5
j ı̄2

T b
i3 ı̄4

s15 −m2
1

s25 −m2
2

)

A12345 .

(4.22)

4.3 Kinematic algebra for n = 6, k = 3

Let us now consider the kinematic structure of the six-quark example of section 3.1. The

general massive forms for three of the numerators are found in eq. (3.6), and in the limit

of massless quarks these simplify to

n1(1
−, 2

+
, 3−, 4

+
, 5−, 6

+
) = −i〈13〉〈5|1+3|4][62] , (4.23a)

n2(1
−, 2

+
, 3−, 4

+
, 5−, 6

+
) = −i〈15〉〈3|1+5|6][42] , (4.23b)

n7(1
−, 2

+
, 3−, 4

+
, 5−, 6

+
) = −i

(

〈13〉[42]〈5|1+2|6] + 〈35〉[64]〈1|3+4|2] + 〈15〉[62]〈3|5+6|4]
)

.

(4.23c)

The remaining four numerators are obtained by permuting the particle labels of these

expressions. As is evident from this form, it so happens that all the Feynman diagrams are

separately gauge-invariant. Indeed, not only is the quartic vertex absent, but furthermore

there are no external gluons to introduce gauge dependence (e.g. via a reference axial

vector), as it happens in the five-point amplitude. Therefore the numerators are unique,

and hence the color-kinematics duality cannot be imposed unless it holds from the start:

c1 − c2 = −c7 , n1 − n2 = −n7 ,

c3 − c4 = −c7 , n3 − n4 = −n7 ,

c5 − c6 = −c7 , n5 − n6 = −n7 .

(4.24)
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Fortunately, these numerator identities do hold, as can be checked for the massive numera-

tors (3.6) through Dirac spinor algebra, or in the massless limit (4.23) using spinor-helicity

identities.

If we now return to the formal definitions of the primitives (3.9), and consider them

together with the kinematic algebra of eq. (4.24), we obtain a system of seven equations

for seven numerator variables, which is straightforward to solve uniquely. The first six

numerators are given by

n1 =D1

{(
1

D3+D4
+

1

D5+D6
− 1

D7

)

n7−A125634+
D4

D3+D4
A123564+

D6

D5+D6
A125346

}

,

n2 = n1 + n7 , n3 = − D3

D3+D4
(D4A123564 + n7) , (4.25)

n4 = n3 + n7 , n5 = − D5

D5+D6
(D6A125346 + n7) , n6 = n5 + n7 ,

and the seventh numerator is

n7 =
{

(D3+D4)(D5+D6)(D2A123456
−D1A125634

)− (D5+D6)(D2D3 −D1D4)A123564

− (D3+D4)(D2D5 −D1D6)A125346

}

(4.26)
/{

(D1+D2)(D3+D4)(D5+D6)/D7−(D3+D4)(D5+D6)− (D1+D2)(D3+D4+D5+D6)
}

.

Indeed, we have now expressed all the ni in terms of gauge-invariant quantities, formally

confirming the direct observation that each Feynman diagram is gauge-invariant. The

above expressions look non-local, but by uniqueness of the solution, the numerators have

to be local, as is manifest in eqs. (3.6) and (4.23).

An interesting fact we learn from this solution is that there are no extra relations gen-

erated10 among the primitive amplitudes in the color-algebra basis (3.9). More generally,

this curious absence of BCJ relations happens when there are no external gluons, n = 2k,

as we have explicitly checked up to eight points. At eight points this fact is somewhat

counterintuitive since the Feynman graph expansion involves the quartic gluon vertex that

naively should lead to numerator ambiguities and associated BCJ relations.

4.4 BCJ relations for QCD

In the previous sections we exemplified that scattering amplitudes in QCD obey the color-

kinematics duality. For these examples, with many quarks and no quartic gluon vertices,

it turned out that the color-kinematics duality followed directly from the Feynman rules.

However, in general this is not the case, and the duality has to be imposed by hand

using nontrivial rearrangements of terms between the kinematic numerators. This is what

happens for higher-point amplitudes with only gluons [31] or with one quark-antiquark

pair (n ≥ 5, k ≤ 1). For such amplutudes the numerators satisfying the color-kinematics

duality were shown to exist to all multiplicities [80, 92, 93], thus effectively proving the

duality at tree level for k ≤ 1.

10This does not imply that further amplitude relations do not exist. However, one should expect that any

extra relations require more that just the color properties (2.3), (2.4) and their kinematic analogue (2.13).
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By explicit calculations we have checked that the duality works for any quark-gluon

configurations up to eight particles. While we do not provide a proof for n > 8, k > 1,

we will show that the duality imposes the BCJ relations in QCD that are constitute a

well-defined subset of the pure-gluon BCJ relations.

In the pure-gluon case, the number of independent BCJ relations are (n−2)!− (n−3)!

and they are given in ref. [31]. A subset of those are linear in momentum invariants,

n−1∑

i=2

( i∑

j=2

sjn

)

A(1, 2, . . . i, n, i+ 1, . . . , n− 1) = 0 , (4.27)

and in ref. [85] it was shown that relabelings of these simple equations could be used to

derive the more complicated relations involving higher powers of momentum invariants.

We found that the corresponding quark-gluon BCJ relations, for k massive quark lines,

are given by the general formula

n−1∑

i=2

( i∑

j=2

sjn −m2
j

)

A(1, 2, . . . i, n, i+ 1, . . . , n− 1) = 0 . (4.28)

where particle n is strictly a gluon, while the remaining (n − 1) particles can be of any

type: quark/antiquark/gluon. In the next section we will generalize this formula to include

the relations with higher powers of momentum invariants, as well as derive the number of

linearly independent BCJ relations, counted for n ≤ 8 in table 3.

In section 4.2 we derived a n = 5, k = 2 amplitude relation (4.18) with the permuted

leg n being a gluon. It has precisely the form (4.28). The four-point relation (4.12) from

section 4.1 does not have this precise form right away, it can be easily rewritten that way,

either as a sum over different insertions of the gluon leg 4,

(s24 −m2)A1243 + (s24 + s34 −m2)A1234 = 0 , (4.29)

or, equivalently, as a sum over insertions of the gluon leg 3,

(s23 −m2)A1234 + (s23 + s34 −m2)A1243 = 0 . (4.30)

For the pure-quark six-point amplitude in section 4.3, we note that eq. (4.28) is consis-

tent with the fact it had no BCJ amplitude relations despite obeying the color-kinematics

duality. Indeed, by definition pure-quark amplitudes, n = 2k, have no external gluons, and

thus eq. (4.28) gives no relations for them.

We derived the quark-gluon BCJ relations (4.28) as follows. We start with the primitive

amplitudes in the Melia basis (3.19),
{

A(1, 2, σ) =
∑

σ-color-ordered cubic graphs Γi

± ni

Di

∣
∣
∣ σ ∈ Melia basis

}

, (4.31)

written in terms of the formal numerators ni, and the given kinematic denominators Di.

The numerators are further constrained by the kinematic Jacobi/commutation relations:11

{

ni − nj = nk

∣
∣
∣ (i, j, k) ∈ Jacobi/commutation triplets

}

. (4.32)

11The number of independent Jacobi/commutation relations is ν(n, k)− κ(n, k) = (2n−5)!!
(2k−1)!!

− (n−2)!
k!

.
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k \ n 3 4 5 6 7 8

0 0 1 4 18 96 600

1 0 1 4 18 96 600

2 - 0 1 6 36 240

3 - - - 0 4 40

4 - - - - - 0

δ(n, k) =

{

(n− 2)!− (n− 3)! for k = 0, 1
(
(n− 2)!− (n− 3)!(2k − 2)

)
/k! for 2 < 2k ≤ n

Table 3. Number of independent BCJ relations, δ(n, k), for n-point amplitudes with k distinguish-

able quark pairs and (n− 2k) gluons.

Solving the combination of the systems (4.31) and (4.32), similar to how it was done in

sections 4.1–4.3, one obtains a collection of gauge-dependent solutions for a subset of the ni

and a collection of gauge-invariant solutions for a subset of primitives. The latter solutions

are the BCJ relations.

We explicitly solved this system for any quark-gluon configuration up to eight particles,

as well as for the nine-point amplitude with four quark lines and one gluon. We also

verified that, similarly to the pure-gluon case, all the BCJ relations in QCD follow from

label permutations of the simple family of relations of the type (4.28). However, the label

permutations of eq. (4.28) should be regarded as an equation system, not a solution, to

the full set of BCJ relations. In the full solution the primitive amplitudes are reduced to

a new basis smaller than that of the color-algebra basis (3.19).

4.5 New amplitude basis for QCD

Now let us find a complete solution to all gauge-invariant relations imposed by the system

of equations comprised of eqs. (4.31) and (4.32). These relations are the BCJ relations and

allow us to reduce the primitive amplutudes to a smaller basis.

The new BCJ basis for k ≥ 2 is taken to be a subset of the Melia basis (3.19) obtained

by demanding that the third particle is strictly a quark:

{
A(1, 2, q, σ)

∣
∣ {q, σ} ∈ Dyckk−1 × {gluon insertions in σ}n−2k

}
. (4.33)

It is always possible to demand that for k > 1, because any gluon that happens to be in

the third location can be moved to other positions using eq. (4.28).

Let us count the size of the basis (4.33). As before, there are (2k − 2)!/(k!(k − 1)!)

Dyck words, and after dressing them with quark labels, each allow for (k − 1)! different

quark pair configurations. The (n − 2k) gluons are then free to be assigned to the slots

in-between the particles, except for the space inside the fixed sequence 1, 2, q. For each

gluon inserted the available number of slots increases, ranging from (2k − 2) to (n − 3).
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k \ n 3 4 5 6 7 8

0 1 1 2 6 24 120

1 1 1 2 6 24 120

2 - 1 2 6 24 120

3 - - - 4 16 80

4 - - - - - 30

β(n, k) =

{

(n− 3)! for k = 0, 1

(n− 3)!(2k − 2)/k! for 2 < 2k ≤ n

Table 4. Number of independent primitive amplitudes, β(n, k), in the full n-point amplitude with

k distinguishable quark pairs and (n− 2k) gluons, after imposing the BCJ relations.

Thus the length of the basis is

β(n, k) =

empty brackets
︷ ︸︸ ︷

(2k − 2)!

k!(k − 1)!
×(k − 1)!

︸ ︷︷ ︸

dressed quark brackets

× (2k − 2)(2k − 1) . . . (n− 3)
︸ ︷︷ ︸

insertions of (n−2k) gluons

=
(n− 3)!(2k − 2)

k!
. (4.34)

For the amplitudes that only have one quark/antiquark pair, k = 1, it is not possible

to pick the third particle to be a quark. So instead we pick it to be the gluon 3, giving

the basis A(1, 2, 3, σ). Except for the bars on the labels, this is the same basis as for the

pure-gluon case [31], thus the basis for k = 0, 1 is of size (n − 3)!. The basis counts for

different quark-gluon configurations are exemplified and summarized in table 4.

The full solution to the BCJ relations are given by first solving the numerators ni in

terms of the primitives in the BCJ basis (4.33), and then plugging them into the primitives

that are not part of this basis. Since the color-algebra basis (3.19) already has legs 1 and 2

next to each other, we only need to give the reduction formula for the primitives with the

first quark leg q separated from leg 2 by a set of gluonic legs α and followed by a mixed

set of quark-gluon legs β:

A(1, 2, α, q, β) . (4.35)

To simplify the subsequent formulas, we choose q = 3 and take the leg labels in sets α and

β to be consecutive numbers:

α ≡ {4, 5, . . . , p− 1, p} , q ≡ 3 , β ≡ {p+ 1, p+ 2, . . . , n− 1, n} . (4.36)

As already mentioned, α consists strictly of gluon legs, and the particles in β can be of

any type: quark/antiquark/gluon. The consecutive labeling choice can always be undone

in the final expressions by relabeling of legs 3, 4, . . . , n.

By extrapolating from the structure of the solutions evaluated up through eight exter-

nal particles, we obtain the following all-multiplicity formula:

A(1, 2, α, 3, β) =
∑

σ∈S(α)⊔⊔β

A(1, 2, 3, σ)

p
∏

i=4

F(3, σ, 1|i)
s2,4,...,i −m2

2

, (4.37)
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where the sum runs over partially ordered permutations of the merged sets α and β. The

shuffle product is used in S(α) ⊔⊔β to obtain all permutations of α ∪ β that preserve

the order of the elements of β. Note that such permutations maintain the valid bracket

structure of the quark labels. The kinematic function F associated with the gluon leg i is

given by

F(3, σ1, σ2, . . . , σn−3, 1|i) ≡ F(ρ|i)

=

{∑n−1
l=ti

G(i, ρl) if ti−1 < ti
−∑ti

l=1 G(i, ρl) if ti−1 > ti

}

+







s2,4,...,i −m2
2 if ti−1 < ti < ti+1

−s2,4,...,i +m2
2 if ti−1 > ti > ti+1

0 else







,
(4.38)

and where tk is the position of leg k in the set ρ, except for t3 and tp+1, which are always

defined to be12

t3 ≡ t5 , tp+1 ≡ 0 . (4.39)

(Note that for p = 4 this implies t3 = tp+1 = 0.) The function G is given by

G(i, j) =
{

sij −m2
j if i < j or j = 1, 3

0 else

}

. (4.40)

For the case that α consists of a single gluon, the formula (4.37) becomes equivalent to

eq. (4.28). If the amplitude has a single massive quark line, k = 1, the relations (4.37) still

hold after converting leg q to a gluon: 3 → 3. Similarly, in the pure-gluon case, dropping

all bars reduces eq. (4.37) to the standard BCJ relations [31]. We have explicitly checked

that all QCD amplitudes through eight points satisfy the BCJ relations (4.37).

A known feature of the BCJ relations is that they are very general. We expect eq. (4.37)

to be valid not only for ordinary QCD, but for more generic gauge theories describing the

interactions of adjoint vectors and massive matter transforming in any representation of

the gauge group. In particular, supersymmetric versions of QCD, as well as D-dimensional

extensions of QCD, are examples of theories that should obey eq. (4.37). At tree level there

is little difference between super-QCD amplitudes and those of QCD. The reason is that the

gluons and quarks directly translate to supersymmetric adjoint and fundamental multiplets,

and the structure of the supersymmetric tree-level interactions are dictated by those of the

gluon and quark states (which are top components of respective supermultiplets).

The pure-gluon BCJ relations are known to be valid in any space dimension [31, 71,

72, 85], and we find the same is true for the quark-gluon amplitudes considered in this

paper. For example, we used only D-dimensional properties to show that the numerators

generated from the Feynman rules in sections 4.1–4.3 obey the color-kinematics duality.

The observation that it holds for D-dimensional quark-gluon amplitudes explains why the

generalization to massive (Dirac) quarks is straightforward. As is well known, the mass of

the quarks can be reinterpreted as a component of a higher-dimensional massless momenta,

living in some an internal space (i.e. similar to the Kaluza-Klein construction). Indeed, the

factors (s2,4,...,i−m2
2) and (sij −m2

j ) that appear in eqs. (4.37)–(4.40) can be thought of as

12An alternative choice is t3 ≡ ∞, tp+1 ≡ 0, which is equivalent to eq. (4.39) by momentum conservation.
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being higher-dimensional versions of s2,4,...,i and sij , given that the quarks have momenta

(kµi ,mi), antiquarks momenta (kµi ,−mi), and gluons have momenta (kµi , 0).

4.6 New mixed decomposition

Finally, we can combine our color decomposition (2.9) with the solution to the BCJ relations

to decompose the full amplitude in the BCJ basis of primitives (4.33).

For simplicity, let us start with the case of k = 0, 1. We can rewrite both eqs. (2.11)

and (2.12) as

Atree
n,k =

∑

σ∈Sn−2({3,...,n})

C(1, 2, σ)A(1, 2, σ) , (4.41)

where C(1, 2, σ) =
(
T aσ(3) . . . T aσ(n)

)

̄2i1
in the fundamental or adjoint representation. The

sum over permutations of arguments 3, . . . , (n − 3) can be divided into those terms with

with particles 1, 2, 3 appear together, and those terms where 2 and 3 are separated by α,

Atree
n,k =

∑

σ∈Sn−3({4,...,n})

C(1, 2, 3, σ)A(1, 2, 3, σ) +
∑

α∪β={4,...,n}
α∩β= ∅

C(1, 2, α, 3, β)A(1, 2, α, 3, β) . (4.42)

The BCJ relations [31] allow us to convert all the primitives in the second sum to the BCJ

basis, with the three first legs fixed,

A(1, 2, α, 3, β) =
∑

σ∈S(α)⊔⊔β

A(1, 2, 3, σ)

|α|
∏

i=1

F(3, σ, 1|i)
s2,α1,...,αi

−m2
2

, (4.43)

where for non-canonical orderings the function F is defined via label permutations of

eq. (4.38). By construction, since the permutation σ is an element in S(α) ⊔⊔β, it follows
that β is a subset of σ. Hence, after plugging eq. (4.43) into eq. (4.42), one can rearrange the

order of summations by defining β ⊂ σ and α ∈ S(σ\β). This gives the BCJ decomposition

Atree
n,k≤1 =

∑

σ∈Sn−3({4,...,n})

A(1, 2, 3, σ) (4.44)

×
{

C(1, 2, 3, σ) +
∑

β⊂σ

∑

α∈S(σ\β)

C(1, 2, α, 3, β)

|α|
∏

i=1

F(3, σ, 1|i)
s2,α1,...,αi

−m2
2

}

.

This expresses the full amplitude in terms of the basis of primitives independent under

both KK and BCJ relations. Note that their gauge-invariant coefficients now contain not

only color but also kinematic factors.

It is now straightforward to generalize the decomposition (4.44) to the general quark-

gluon case. For that, the external sum should run over the BCJ basis (4.33), in which the

quarks q directly succeed 1, 2, while the internal sum over β should include all quark and
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antiquark labels, and thus the complement set σ \ β should be purely gluonic:

Atree
n,k≥2 =

∑

(q,σ)∈BCJ basis

A(1, 2, q, σ) (4.45)

×
{

C(1, 2, q, σ) +
∑

β⊂σ
σ\β gluonic

∑

α∈S(σ\β)

C(1, 2, α, q, β)

|α|
∏

i=1

F(q, σ, 1|i)
s2,α1,...,αi

−m2
2

}

,

where the color structures are defined as in eq. (3.22). This decomposition should hold for

any k = 2, . . . , ⌊n/2⌋. In fact, it also holds in the k = 0, 1 case. Indeed, once the bars are

dropped and q → 3, it becomes indistinguishable from eq. (4.44). In the pure-quark case,

n = 2k, the internal sum over the gluon set α vanishes, and the BCJ basis collapses to the

Melia basis, making eq. (4.45) equivalent to the color decomposition (3.21).

We have explicitly checked the decompositions (4.44) and (4.45) through eight points,

as well as for the nine-point case with four quark-antiquark pairs.

5 Summary and discussion

In this paper we explored and organized the color and kinematic content of general tree

amplitudes in QCD with flavored massive quarks and massless gluons. We decomposed

the amplitudes into reduced sets of color-ordered primitive amplitudes and associated color

coefficients, and found that the amplitudes obey the color-kinematics duality.

A familiar observation is that the true color space of a gauge-theory amplitude is

smaller than the space spanned by the classic SU(Nc) color basis expansion. Exploiting

this fact, we obtained a new color decomposition for n-point QCD amplitudes with k quark-

antiquark pairs, which involves only the (n − 2)!/k! planar color-stripped primitives that

belong to the Melia basis [37, 38]. This decomposition can be regarded as a natural (n, k)-

generalization of the known Del Duca-Dixon-Maltoni decomposition for gluons [33, 34],

which uses only the (n−2)! color-ordered primitives comprising the Kleiss-Kuijf basis [30].

The DDM decomposition is advantageous because of its analytic compactness. For ex-

ample, it has been successfully used for efficient computations of the color-subleading parts

of QCD loop amplitudes [65, 94]. Similarly, one can hope that the new decomposition

can be used to improve on the efficiency of calculations relevant for LHC phenomenol-

ogy. However, for calculations of color-averaged cross-sections, properties other than those

sought after in formal amplitude calculations may become more important. For instance,

it can be more convenient to have color factors that are orthogonal to each other (e.g. see

the recent ref. [95]). The color factors used in the decomposition presented here consist

of those appearing in the Feynman diagrams of the amplitude, thus they are completely

general and can encode any gauge group and any group representation.

The new color decomposition has an interesting hierarchy of nested structures of quark

lines. For the least nested configurations the color factors are planar and similar to the

multi-peripheral diagrams, whereas the color coefficients of the more nested primitives have

an intricate nonplanar (with respect to particle ordering) structure. This structure is con-

trolled by multi-tensor representations of the gauge group, with generators Ξa
l , suggesting
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that a deeper understanding of the Lie-algebraic structure of the decomposition could be

advantageous. Using the higher-representation generators Ξa
l , we obtain surprisingly com-

pact expressions for the color coefficients of the primitive amplitudes, which can be rather

formidable expressions when expressed in terms of ordinary color factors. The color dia-

grams that we use for the color coefficients generalize the multi-peripheral diagrams used

in the DDM decomposition.

Nested color structures of quark lines and gluons also appear in other gauge-invariant

observables, e.g. in processes where massive quarks and hard gluons can be approximated

by Wilson lines. These are important for understanding the soft and collinear singularity

structure of gauge-theory amplitudes [96]. Non-abelian exponentiation theorems allow the

Wilson line calculations to be reduced to simpler web diagrams. Similar to the amplitudes

considered in this paper, the color factors arising from webs are not independent, and the

mixing of color and kinematic degrees of freedom, which plays an essential role for the

infrared exponentiation [97–99], is governed by nontrivial combinatorics [100]. It would be

interesting to better understand the common aspects of the new color decomposition and

well-known properties of Wilson lines and webs.

In this paper we provided substantial evidence that the color-kinematics duality [31, 32]

is present in QCD. In particular, we considered the duality for the first time in the

context of arbitrary numbers of distinctly flavored massive fundamental Dirac fermions

(quarks), and show that they mesh well with it. By explicit calculations up to eight

particles (quarks and gluons), we showed that one can find kinematic numerators that obey

the same commutation/Jacobi identities as the corresponding color factors. This suggests

that a kinematic algebra, analogous to the color algebra, controls the QCD amplitudes.

We do not explicitly consider loop amplitudes in this paper, but given the existence of

the duality at tree level we conjecture that it should also be present in loop amplitudes

of QCD. Indeed, through the unitarity method [3–5] we know that any unitarity cut,

which breaks up a loop amplitude into products of tree amplitudes, will inherit the color-

kinematics duality of the corresponding trees. Every such unitarity cut should then have a

diagrammatic expansion where the numerators obey the color-kinematics duality, which is

highly suggestive of a kinematic algebra that exists at loop level. Certain simple massless

QCD amplitudes have already been shown to obey the color-kinematics duality at one and

two loops [44–47, 50], adding to the credibility of the conjecture.

Using the color-kinematics duality, we derived a complete set of gauge-invariant BCJ

amplitude relations for QCD at tree level. These amplitude relations are massive (n, k)-

generalizations of the purely gluonic BCJ relations [31]. While the analytic form of the

new relations is similar to the pure-gluon relations, their implications differ substantially.

In particular, the new relations clarify the different roles that gluons (vectors) and quarks

(matter) play in the context of the color-kinematics duality. The existence of the BCJ

relations is directly tied to the presence of external gluons. Pure-quark amplitudes have no

BCJ relations, while pure-gluon amplitudes have the maximum number of such relations.

The most elementary type of BCJ relations corresponds to the action of moving a single

gluon around and inserting it at possible locations along the color-ordered amplitude. This

is similar to the action of a Ward identity, or, indeed, the action of a Lie algebra. That
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BCJ relations arise only from the presence of external gluons supports the observation that

these relations are intimately tied to the gauge freedom of the theory [31, 32, 39].

Using the new BCJ amplitude relations, we found a new basis of (n − 3)!(2k − 2)/k!

primitives for k ≥ 2, which should be contrasted to the well-known BCJ basis of size

(n − 3)! for pure-gluon or single-quark-line amplitudes, k = 0, 1. The new basis allows

us to construct an amplitude decomposition that uses only these primitives. In doing so,

we introduce a mixture of kinematic dependence and dependence on color factors into the

coefficients of the primitives. It is interesting to note that for k ≥ 2 this decomposition

sidesteps (n−2k)(n−3)!/k! of the Melia basis primitives, and for k = 0, 1 it sidesteps (n−
3)(n−3)! of the Kleiss-Kuijf basis primitives. For the reader’s convenience, a Mathematica

implementation of the amplitude decompositions is provided in the ancillary file.13

Finally, we note that due to the duality of color and kinematics one should be able to

swap color structures for kinematic structures in several formulas of this paper, since they

obey the same general Lie-algebraic relations, from which most results were derived. For

example, if one takes the new color decomposition introduced in section 3.3 and replaces

the color coefficients C(1, 2, σ) with the corresponding kinematic coefficients K(1, 2, σ), it

should give a gravitational scattering amplitude

Mtree
n,k =

∑

σ∈Melia basis

K(1, 2, σ)A(1, 2, σ) , (5.1)

where the gravitational coupling has been suppressed. Analogous to the color coefficient,

K(1, 2, σ) is a local kinematic function that consists of a sum over kinematic numerators.

Like the numerators, this function is generically gauge-dependent. By the color-kinematics

duality, K(1, 2, σ) should have a formula that mimics the formula for C(1, 2, σ). This sug-

gest that the higher-representation generator Ξa
l should have a kinematic analogue, which

would represent the action of a gluon on tensor products of fermion lines. Improved under-

standing of this kinematic object would most likely be a concrete step towards unraveling

the kinematic Lie algebra of QCD.
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A Color-ordered Feynman rules

For completeness, in this appendix we give the color-stripped Feynman rules [56], which

are consistent with the color vertices in figure 1. All momenta are considered outgoing.

k, λ

p, µ

q, ν

=
i√
2

[
gλµ(k − p)ν + gµν(p− q)λ + gνλ(q − k)µ

]
, (A.1a)

µ ν

λ ρ

= i gλνgµρ − i

2

(
gλµgνρ + gλρgµν

)
, (A.1b)

µ

=
i√
2
γµ ,

µ

= − i√
2
γµ , (A.1c)

p
µ ν = − igµν

p2
,

p
=

i( 6p+m)

p2 −m2
. (A.1d)
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