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1 Introduction

Entanglement entropy has played an increasingly important role in theoretical physics.

Invented as a measure of quantum entanglement, it has been successfully applied in a

much broader context. Entanglement entropy can serve as an order parameter for certain

exotic phase transitions [1, 2]. It is likely very closely related to black hole entropy [3, 4].

Certain types of entanglement entropy order quantum field theories under renormalization

group flow [5–8]. It is the last result which is most relevant to this paper. In even space-time

dimension, the connection between entanglement entropy and renormalization group flow

is tied up in the existence of a Weyl, or trace, anomaly [5, 7, 8]. In fact, certain universal

terms in the entanglement entropy can be extracted from the anomaly. The moral of this

paper is that to use the anomaly correctly, one should understand how to write it down on

a manifold with a codimension one boundary.

To define entanglement entropy, we assume that the Hilbert space can be factorized,

H = HA ⊗ HB, where HA corresponds to the Hilbert space for a spatial region A of the

original quantum field theory.1 Given such a factorization one can construct the reduced

density matrix ρA = trB ρ by tracing over the degrees of freedom in the complementary

region B, where ρ is the initial density matrix. The entanglement entropy is the von

Neumann entropy of the reduced density matrix:

SE ≡ − tr(ρA ln ρA) . (1.1)

Only when ρ = |ψ〉〈ψ| is constructed from a pure state |ψ〉 does SE measure the quantum

entanglement. Otherwise, it is contaminated by the mixedness of the density matrix ρ.

In a quantum field theory context, the definition of SE presents a challenge because

the infinite number of short distance degrees of freedom render SE strongly UV divergent.

Consider for example a d-dimensional conformal field theory (CFT) in the vacuum. Let d

be even so that the theory may have a Weyl anomaly, and let A be a (d− 1)-dimensional

ball of radius `. In this case, the entanglement entropy has an expansion in a short distance

cut-off δ of the form

SE = α
Area(∂A)

δd−2
+ . . .+ 4a(−1)d/2 ln

δ

`
+ . . . (1.2)

The constant α multiplying the leading term is sensitive to the definition of the cut-off δ

and thus has no physical meaning. The fact that the leading term scales with the area of

the boundary of A, however, is physical and suggests that most of the correlations in the

vacuum are local.

Most important for this paper, the subleading term in eq. (1.2) proportional to the

logarithm is “a”, the coefficient multiplying the Euler density in the trace anomaly [13]

〈Tµµ〉 =
∑
j

cjIj − (−1)d/2
4a

d! Vol(Sd)
Ed + DµJ

µ, (1.3)

1This factorization is a nontrivial assumption. The boundary between A and B, ∂A, plays an impor-

tant role in recent discussons regarding the entanglement entropy of gauge theory [9–12]. The boundary

terms associated with ∂A we find in this paper suggests that the factorization is not always a clean and

unambiguous procedure even for non-gauge theories.
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with Dµ the covariant derivative. In this expression, Ed is the Euler density normalized

such that integrating Ed over an Sd yields d! Vol(Sd). See section 3 for more details about

the definition of Ed. The Ij are curvature invariants which transform covariantly with

weight −d under Weyl rescalings. There is also a total derivative DµJ
µ whose precise form

depends on the particular regularization scheme used in defining the partition function.2

The motivation for this paper is a puzzle described in ref. [14]. The authors describe

several different methods for verifying the logarithmic contribution to the entanglement

entropy in (1.2). One is to conformally map the causal development of the ball, D, to the

static patch of de Sitter spacetime, and then exploit the trace anomaly (1.3). Another

method runs into difficulties. They attempt to compute SE by mapping D to hyperbolic

space. Here, the authors were not able to use the anomaly directly. Instead, they resorted

to an effective anomaly action, which here fails because hyperbolic space has a boundary.

As we explain, and as was anticipated in ref. [14], getting the correct answer requires a

careful treatment of boundary terms in the effective anomaly action.

To our knowledge, the relation between these boundary terms and entanglement en-

tropy has not been considered carefully before.3 In d = 2, the boundary contribution to

the trace anomaly is textbook material [16]. In d = 4 and d = 6, the bulk anomaly induced

dilaton effective actions are written down in refs. [8] and [17] respectively. (See also [18]

for d = 4.) Given the importance of the dilaton effective action in understanding the a-

theorem [8], and the recent “b-theorem” in d = 3 [19], it seems conceivable the boundary

correction terms may be useful in a more general context. In this paper we generalize

these dilaton effective actions with boundary terms for a manifold with codimension one

boundary and we show that these boundary terms are crucial in computing entanglement

entropy. We also provide a general procedure, valid in any even dimension, for computing

these boundary terms.

We begin with the two-dimensional case in section 2, where we illustrate our pro-

gram and use an anomaly action with boundary terms to recover the well-known results

of the interval Rényi entropy [20, 21] and the Schwarzian derivative. In section 3, we con-

struct the boundary terms in the trace anomaly in d > 2 and present an abstract formula

for the anomaly action in arbitrary even dimension. We demonstrate the result satisfies

Wess-Zumino consistency. In section 4, we compute the anomaly action in four and six

dimensions, keeping careful track of the boundary terms. (In six dimensions, our boundary

action is only valid in a conformally flat space time, while in four dimensions, the answer

provided is completely general.) In section 5, we resolve the puzzle of how to compute the

entanglement entropy of the ball through a map to hyperbolic space in general dimension.

The resolution of this puzzle constitutes the main result of the paper. We also revisit

the computation of the entropy in de Sitter spacetime. Finally, we conclude in section 6.

We relegate various technical details to appendices. Appendix A reviews some useful dif-

ferential geometry for manifolds with boundary. Appendix B contains a detailed check of

2In the terminology of ref. [13], the Euler term is a type-A anomaly and the Weyl-covariants Ij are

type-B.
3In a somewhat different vein, there is a discussion of entanglement entropy on spaces with boundary in

ref. [15].
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Wess-Zumino consistency in four dimensions. Appendix C contains details of the derivation

of the anomaly action in four and six dimensions. Appendix D provides a corresponding

holographic calculation of entanglement entropy through a map to hyperbolic space.

2 The two dimensional case and Rényi entropy

In two dimensions, the stress tensor has the well known trace anomaly

〈Tµµ〉 =
c

24π
R , (2.1)

where we have replaced the anomaly coefficient a with the more common central charge

c = 12a which appears in the two-point correlation function of the stress tensor. Eq. (2.1)

is the Ward identity for the anomalous Weyl symmetry. It is equivalent to the variation

of the generating functional W [gµν ] = − lnZ[gµν ] under a Weyl variation δgµν = 2gµνδσ.

However, on a manifold with boundary, the anomalous variation of W may contain a

boundary term. In this section, we show how to construct the anomaly effective action with

boundary terms for the simplest case, d = 2. We will reproduce the classic entanglement

entropy result using the boundary term in the anomaly action. We also show that the

boundary term correctly recovers the universal term in the single-interval d = 2 Rényi

entropy.

2.1 Anomaly action with boundary and entanglement entropy

In d = 2, the most general result for the Weyl variation of the partition function consistent

with Wess-Zumino consistency is [16]

δσW = − c

24π

[ ∫
M

d2x
√
g R δσ + 2

∫
∂M

dy
√
γ K δσ

]
. (2.2)

To write this expression, we have introduced some notation. In d = 2, the notation is

overkill, but we need the full story in what follows in d > 2. We denote bulk coordinates as

xµ and boundary coordinates as yα. Let nµ be the unit-length, outward pointing normal

vector to ∂M and γαβ the induced metric on ∂M . We can define K in two equivalent ways.

First, locally near the boundary we can extend nµ into the bulk. We can choose to extend

it in such a way that nµDµnν = 0, in which case the extrinsic curvature is defined to be

Kµν ≡ D(µnν). The trace of the extrinsic curvature is K = Kµ
µ. Alternatively, we can also

define K purely from data on the boundary. The bulk covariant derivative Dµ induces a

covariant derivative D̊α on the boundary. It can act on tensors with bulk indices, boundary

indices, or mixed tensors with both. We specify the boundary through a map ∂M → M ,

which amounts to a set of d embedding functions Xµ(yα). The ∂αX
µ are tensors on the

boundary, and their derivative gives the extrinsic curvature as Kαβ = −nµD̊α∂βX
µ, and its

trace K = γαβKαβ . For more details on differential geometry of manifolds with boundary,

see appendix A.

Observe that, for a constant Weyl rescaling δσ = λ, the Weyl anomaly (2.2) is equiv-

alent to

δλW = − c
6
χλ , (2.3)
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where χ is the Euler characteristic of M . That is, the boundary term in the Weyl anomaly

is simply the boundary term in the Euler characteristic.

The stress tensor is defined as

〈Tµν〉 = − 2
√
g

δW

δgµν
, (2.4)

in which case (2.2) leads to a boundary term in the trace of the stress tensor,

〈Tµµ〉 =
c

24π

(
R+ 2Kδ(x⊥)

)
, (2.5)

where δ(x⊥) is a Dirac delta function with support on the boundary.

We now wish to write down a local functional which reproduces the variation (2.2).

To do so we introduce an auxiliary “dilaton” field τ which transforms under a Weyl trans-

formation gµν → e2σgµν as τ → τ + σ. The quantity

ĝµν ≡ e−2τgµν , (2.6)

is invariant under this generalized Weyl scaling and so too the effective action Ŵ ≡
W [e−2τgµν ] = W [ĝµν ]. Then

W
[
gµν , e

−2τgµν
]
≡W − Ŵ , (2.7)

will vary to reproduce the anomaly, δσW = δσW .

In what follows, we refer to W as a “dilaton effective action”, given its similarities

with the dilaton effective action presented in refs. [8, 17]. However, unlike those works

we are only considering conformal fixed points and not renormalization group flows, and

so this name is a bit of a misnomer. More precisely, W is a Wess-Zumino term for the

Weyl anomaly, or alternatively an anomaly effective action. Analytically continuing to

Lorentzian signature, it computes the phase picked up by the partition function under the

Weyl rescaling from a metric gµν to e−2τgµν .

What exactly is W in d = 2? The first quick guess is

W0 = − c

24π

[ ∫
M

d2x
√
g Rτ + 2

∫
∂M

dy
√
γ Kτ

]
. (2.8)

But the metric scales, and we should take into account that under Weyl scaling in d = 2,

R
[
e2σgµν

]
= e−2σ

(
R[gµν ]− 2�σ

)
,

K
[
e2σgµν

]
= e−σ

(
K[gµν ] + nµ∂µσ

)
.

(2.9)

To cancel these variations, we add a (∂τ)2 ≡ (∂µτ)(∂µτ) term to the effective action. The

total effective anomaly action is then

W = − c

24π

[ ∫
M

d2x
√
g
(
R[gµν ]τ − (∂τ)2

)
+ 2

∫
∂M

dy
√
γ K[gµν ]τ

]
+ (invariant) . (2.10)

– 5 –



J
H
E
P
0
1
(
2
0
1
6
)
1
6
2

The right-hand side is computed with the original unscaled metric gµν .4 In writing (2.10),

we have allowed for the possibility of additional terms invariant under the Weyl symmetry.

There are only two such terms with dimensionless coefficients,∫
M

d2x
√
ĝ R̂ ,

∫
∂M

dy
√
γ̂ K̂ . (2.11)

However, now we use that by definition W = 0 when τ = 0. Thus neither of these terms

can appear in W, so

W = − c

24π

[ ∫
M

d2x
√
g
(
R[gµν ]τ − (∂τ)2

)
+ 2

∫
∂M

dy
√
γ K[gµν ]τ

]
. (2.12)

The second step, which involved adding by hand a (∂τ)2 term to cancel some unwanted

pieces of the Weyl variation, seemed to involve some guess work which could become a

problem in d > 2 where the expressions are much more complicated. In fact, there are

several constructive algorithms which remove this element of guesswork. One method

involves integrating the anomaly [23–25]:

W = − c

24π

∫ 1

0
dt

[ ∫
M

d2x
√
g′R[g′µν ]τ + 2

∫
∂M

dy
√
γ′K[g′µν ]τ

]∣∣∣∣
g′µν=e−2tτgµν

= −
∫ 1

0
dt

∫
M

d2x
√
g′ 〈Tµµ[g′νρ]〉τ

∣∣∣∣
g′µν=e−2tτgµν

.

(2.13)

Thus, given the trace anomaly 〈Tµµ〉, it is straightforward albeit messy to reconstruct W.

The second method (which we elaborate in this paper) is dimensional regularization [26,

27]. We define W̃ [gµν ] in n = 2 + ε dimensions:

W̃ [gµν ] ≡ − c

24π(n− 2)

[ ∫
M

dnx
√
g R+ 2

∫
∂M

dn−1y
√
γ K

]
, (2.14)

where R, K, gµν , and γαβ are dimensionally continued in the naive way. We claim then that

W = lim
n→2

(
W̃ [gµν ]− W̃ [e−2τgµν ]

)
, (2.15)

as one may verify after a short calculation, using the more general rules for the Weyl

transformations in n dimensions,

R
[
e2σgµν

]
= e−2σ

(
R[gµν ]− 2(n− 1)�σ − (n− 2)(n− 1)(∂σ)2

)
,

K
[
e2σgµν

]
= e−σ

(
K[gµν ] + (n− 1)nµ∂µσ

)
.

(2.16)

In all three cases, we are computing the same difference between two effective actions.

It would be preferable to have access to the effective actions themselves. There are two

problems here. The full actions depend on more than the anomaly coefficients. They are

also likely to be ultraviolet and perhaps also infrared divergent. If we focus just on the

anomaly dependent portion, it could easily be that some of this anomaly dependence is

4This action corrects a typo in eq. (1.2) of ref. [22], as well as accounts for the boundary term.
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invariant under Weyl scaling and drops out of the difference we have computed. Interest-

ingly, the dimensional regularization procedure offers a regulated candidate W̃ [gµν ] for the

anomaly dependent portion of W [gµν ].

Let us try to extract some information from the regulated candidate action in flat

space:

W̃ [δµν ] = − c

12π(n− 2)

∫
∂M

dn−1y
√
γK . (2.17)

A simple case, which also turns out to be relevant for the entanglement entropy calculations

we would like to perform, is where M is a large ball of radius Λ with a set of q smaller,

non-intersecting balls of radius δj removed. For each ball, we can work in a local coordinate

system where r is a radial coordinate. For the smaller balls,
√
γK = −rn−2 while for the

large ball
√
γK = rn−2. It then follows that

W̃ [δµν ] = − c
6

[
1

n− 2
(1− q) +

q + 1

2
(γ + lnπ) + ln Λ−

q∑
j=1

ln δj +O(n− 2)

]
. (2.18)

The leading divergent contribution is proportional to the Euler characteristic χ = 1− q of

the surface.

We claim that the ln δj pieces of the expression (2.18) can be used to identify a universal

contribution to the entanglement entropy of a single interval in flat space. We will justify

the computation through a conformal map to the cylinder, but in brief, the computation

goes as follows. For an interval on the line with left endpoint u and right endpoint v, to

regulate the UV divergences in the entanglement entropy computation we place small disks

around the points u and v with radius δ. The entanglement entropy then turns out to be

the logarithmic contribution of these disks to −W̃ [δµν ]:

SE ∼ −
c

3
ln δ . (2.19)

As the underlying theory is conformal, the answer can only depend on the conformal cross

ratio of the two circles 4δ2/|u− v|2. Thus we find the classic result [21, 28]

SE ∼
c

3
ln
|v − u|
δ

. (2.20)

Here and henceforth, the ∼ indicates that the l.h.s. has a logarithmic dependence given by

the r.h.s. We neglect the computation of the constant quantity in SE , as it depends on the

precise choice of regulator and so is unphysical.

A more thorough justification of this computation occupies the next two subsections.

In broad terms, the same result turns out to be valid in even dimensions d > 2, a fact

whose demonstration will occupy most of the remainder of the paper. More specifically, we

mean that the logarithmic contribution to W̃ [δµν ] for flat space with D × Sd−2 removed,

where D is a small disk of radius δ, yields a universal contribution to entanglement entropy

for a ball shaped region in flat space.

To return to d = 2, we describe the plane to the cylinder map and its relevance for

entanglement entropy in section 2.3. The demonstration however requires we also know

– 7 –
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how the stress tensor transforms under conformal transformations. The transformation

involves the Schwarzian derivative which can be found in most textbooks on conformal

field theory. In an effort to be self contained we will use our effective anomaly action to

derive the Schwarzian derivative in section 2.2. In d = 2, the effective action turns out to

be useful to compute not only the entanglement entropy but also the single interval Rényi

entropies. A calculation of the Rényi entropies is provided in section 2.4.

2.2 The Schwarzian derivative

To calculate the change in the stress tensor under a Weyl scaling from gµν to ĝµν = e−2τgµν ,

we begin with a variation of W = W − Ŵ with respect to the metric gµν ,

δW = δW − δŴ

= −1

2

∫
M

d2x
(√
g δgµν〈Tµν〉g −

√
ĝ δĝµν〈Tµν〉ĝ

)
= −1

2

∫
M

d2x
√
g δgµν

(
〈Tµν〉g − e−4τ 〈Tµν〉ĝ

)
,

(2.21)

where in the last line we have used that
√
ĝδĝµν =

√
g e−(d+2)τδgµν in d dimensions. The

subscript g on the expectation value refers to 〈Tµν〉 on the space with metric g, and similarly

for ĝ. Using the explicit expression for W in (2.12), we compute its variation

δW = − c

24π

∫
M

d2x
√
g δgµν

[
∂µτ∂ντ + Dµ∂ντ − gµν

(
1

2
(∂τ)2 + �τ

)]
− c

24π

∫
∂M

dy
√
γ δgµνh

µνnρ∂ρτ ,

(2.22)

where hµν is the projector to the boundary,

hµν = gµν − nµnν . (2.23)

In obtaining (2.22) we have used that in two dimensions the Einstein tensor Rµν − R
2 gµν

vanishes, and that the variation of the Ricci tensor is a covariant derivative δRµν =

DρδΓ
ρ
µν −DνδΓ

ρ
µρ. Putting (2.22) together with (2.21), we find

〈Tµν〉ĝ = 〈Tµν〉g −
c

12π

[
∂µτ∂ντ + Dµ∂ντ − gµν

(
1

2
(∂τ)2 + �τ

)]
− c

12π
δ(x⊥)hµνn

ρ∂ρτ .

(2.24)

Suppose we consider a Weyl rescaling which takes us from flat space, gµν = δµν , to

the new metric ĝµν = e−2τδµν . The stress tensor for a conformal theory in vacuum on

the plane is usually defined to vanish. Thus the stress tensor on the manifold with metric

e−2τδµν will be

〈Tµν〉 = − c

12π

[
∂µτ∂ντ + ∂µ∂ντ − δµν

(
1

2
(∂τ)2 + (�τ)

)]
(2.25)

(dropping the boundary contribution). The Schwarzian derivative describes how the stress

tensor transforms under a conformal transformation, i.e. a combination of a Weyl rescaling
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Figure 1. The causal development of an interval of length L. The dots indicate the endpoints of

the interval.

and a diffeomorphism that leaves the metric invariant. If the complex plane is parametrized

initially by z and z̄, we introduce new variables w(z) and w̄(z̄) and require that the Weyl

rescaling satisfies

e−2τ =

(
∂w

∂z

)(
∂w̄

∂z̄

)
. (2.26)

Start with the stress tensor in the w-plane, and perform a diffeomorphism to go to the z

variables. That transformed stress tensor should be related by a Weyl rescaling by e−2τ to

the stress tensor on the flat complex z-plane. Recalling that gzz = 0, we find that

(∂zw)2〈Tww(w)〉 = 〈Tzz(z)〉e−2τ δµν = − c

12π

[
(∂zτ)2 + (∂2

zτ)
]

=
c

48π

2(∂3
zw)(∂zw)− 3(∂2

zw)2

(∂zw)2
, (2.27)

which is the usual result for the Schwarzian derivative.

2.3 Entanglement entropy from the plane and cylinder

We now consider the entanglement entropy of an interval with left endpoint u and right

endpoint v. The information necessary to compute the entropy is contained in the causal

development of this interval, i.e. the diamond shaped region bounded by the four null lines

x± t = u and x± t = v. See figure 1. We will indirectly deduce the entanglement entropy

by conformally mapping to a thermal cylinder, keeping careful track of the phase picked

up by the partition function under the transformation.

Consider the following change of variables

e2πw/β =
z − u
z − v

, (2.28)

where z = x − t = x + itE, and correspondingly for z̄ and w̄. If we let w = σ1 + iσ2,

then σ2 is periodic with periodicity β, σ2 ∼ σ2 + β. In other words, the theory on the

– 9 –
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w-plane is naturally endowed with a temperature 1/β. The other nice property of this map

is that the the interval at time t = 0 is mapped to the real line Re(w). Thus the reduced

density matrix ρA associated with the interval is related by a unitary transformation to

the thermal density matrix ρβ on the line. As the entanglement entropy is invariant under

unitary transformations, the entanglement entropy of the interval is the thermal entropy

associated with the cylinder, that is the thermal entropy on the infinite line. If we let

ρ =
e−βH

tr e−βH
, (2.29)

where H is the Hamiltonian governing evolution on the line, then

SE = − tr(ρ ln ρ) = β tr(ρH) + ln tr(e−βH) = β〈H〉 −Wcyl , (2.30)

where Wcyl ≡ − ln tr e−βH is the partition function on the cylinder. This entropy is infinite

because the cylinder is infinitely long in the σ1 direction, and we need to regulate the

divergence. The natural way to regulate is to cut off the cylinder such that −Λ < σ1 < Λ.

In the z = x+ itE plane, these cut-offs correspond to putting small disks of radius δ around

the endpoints u and v, where now

δ

v − u
= e−2πΛ/β . (2.31)

We have two quantities to compute, β〈H〉 and Wcyl. We can use the Schwarzian

derivative from the previous subsection to compute

β〈H〉 =

∫
cyl
〈T 00〉dσ1, (2.32)

where we have analytically continued σ0 = −iσ2. From the transformation rules (2.27)

and (2.28), the ww component of the stress tensor on the cylinder is

〈Tww(w)〉 =
πc

12β2
. (2.33)

In Cartesian coordinates, T 22 = −1
4(Tww + T w̄w̄). Thus we have, analytically continuing

to real time σ0 = −iσ2, a positive thermal energy 〈T 00〉 = πc
6β2 from which follows the first

quantity of interest

β〈H〉 =
πc

3β
Λ =

c

6
ln
|v − u|
δ

. (2.34)

Toward the goal of computing Wcyl, we first compute the difference in anomaly actions

W[δµν , e
−2τδµν ] where the dilaton τ is derived from the plane to cylinder map

τ = −1

2
ln

[
β

2π

(
1

v − z
− 1

u− z

)]
+ c.c. (2.35)

Given the dilaton, we can compute the bulk contribution to the difference in effective

actions ∫
d2x
√
g (∂τ)2 =

(
π

β

)2∫
cyl

dw dw̄

∣∣∣∣ coth
πw

β

∣∣∣∣2 =
8π2

β
Λ , (2.36)
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and the boundary contribution

− 2

∫
dy
√
γ Kτ ∼ 8π ln δ ∼ −16π2

β
Λ . (2.37)

Assembling the pieces, the difference in anomaly actions is then

W
[
δµν , e

−2τδµν
]
∼ −πc

3β
Λ = − c

6
ln
|v − u|
δ

. (2.38)

The last component we need is the universal contribution to W [δµν ], which we claimed

was actually equal to the universal contribution to single interval entanglement entropy.

Indeed, everything works as claimed since the contributions from β〈H〉 andW[δµν , e
−2τδµν ]

cancel out:

SE = β〈H〉+W
[
δµν , e

−2τδµν
]
−W [δµν ] ∼ −W̃ [δµν ] ∼ c

3
ln
|v − u|
δ

. (2.39)

2.4 Rényi entropies from the annulus

In d = 2, the anomaly effective action also allows us to compute the Rényi entropies of an

interval A,

Sn ≡
1

1− n
ln tr ρnA . (2.40)

We use the replica trick to compute Sn. We can replace tr ρnA with a certain ratio of

Euclidean partition functions

tr ρnA =
Z(n)

Z(1)n
, (2.41)

where Z(n) is the path integral on an n-sheeted cover of flat space, branched over the

interval A. In the present case, we can use the coordinate transformation,

w =
z − u
z − v

, (2.42)

to put the point u at the origin and the point v at infinity. As is familiar from the

computation in the previous subsection, we need to excise small disks around the points u

and v, or correspondingly restrict to an annulus in the w plane of radius rmin < r < rmax.

To get the Rényi entropies, we would like to compare the partition function on the

annulus to an n-sheeted cover of the annulus. In two dimensions, these two metrics are

related by a Weyl transformation. We take the metric on the annulus to be

g = dr2 + r2dθ2, (2.43)

while on the n-sheeted cover we have

ĝ = e−2τg = dρ2 + n2ρ2dθ2, (2.44)

with e−τ = nrn−1 and ρ = rn. With this choice of τ , the difference in anomaly actions

becomes

W
[
δµν , e

−2τδµν
]

=
c

12

[ ∫ rmax

rmin

(∂τ)2r dr − 2τ |rmax
rmin

]
=

c

12
(n2 − 1) ln

rmax

rmin
.

(2.45)
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Now to isolate the universal contribution to W [e−2τδµν ], we should remove the universal

contribution from W [δµν ]:

W
[
e−2τδµν

]
∼ − c

12
(n2 + 1) ln

rmax

rmin
∼ − c

12

(
n+

1

n

)
ln
ρmax

ρmin
. (2.46)

We can tentatively identity this quantity with − lnZ(n). To compute the Rényi entropies,

we need to subtract off n lnZ(1). There is an issue here, however: both lnZ(n) and

lnZ(1) are divergent quantities, and in comparing them we must arrange for the cutoffs to

be congruous. We claim that in order to compare lnZ(n) with lnZ(1) we ought to use the

ρ-cutoffs so that we excise discs of the same radius in each case. Thus, we need to subtract

nW [δµν ] using the cut-offs in the ρ coordinate system,

lnZ(n)− n lnZ(1) ∼ c

12

(
− n+

1

n

)
ln
ρmax

ρmin
. (2.47)

Using the definition (2.40) of the Rényi entropy, we find that

Sn ∼
c

12

(
1 +

1

n

)
ln
ρmax

ρmin
. (2.48)

Translating back to the z plane, this result recovers the classic result [20, 21]5

Sn ∼
c

6

(
1 +

1

n

)
ln
|v − u|
δ

. (2.49)

Taking n→ 1, it reduces to the previous entanglement entropy result (2.20). Note that in

d > 2, one still has an n-sheeted cover of an annulus, but it is less clear what to do with

the remaining d− 2 dimensions.

3 Anomaly actions in more than two dimensions

The trace anomaly (1.3) and effective anomaly action W have an increasingly complicated

structure as the dimension increases. Several issues need to be addressed for a complete

treatment of the effective action. Before embarking, we warn the reader that this section

is technical. The chief results are 1) the boundary term in the a-type anomaly (3.9)

and (3.16), 2) two equivalent forms for the a-type anomaly action in (3.17) and (3.61), and

3) a demonstration that the a-type anomaly, including the boundary term we obtain, is

Wess-Zumino consistent in any dimension in subsection 3.3. Finally, 4) in (3.56) we present

the most general form of the trace anomaly in d = 4, including boundary central charges.

3.1 Boundary term of the Euler characteristic

As this paper was motivated by the problem of universal contributions to the entanglement

entropy across a sphere in flat space, our main focus is on how the a contribution to the

anomaly action is modified in the presence of a boundary. Regarding the other issues, we

5The calculation we have just presented is very similar in spirit if not in detail to ones in refs. [29, 30].
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make a few preliminary comments which will be developed minimally in the rest of the

paper.

The presence of a boundary affects the cj contributions to the trace anomaly (1.3)

trivially. Let us dispose of this issue immediately. The Ij are, by definition, covariant

under Weyl scaling. In fact the
√
gIj are invariant under Weyl scaling and so the cj

contributions to W[gµν , e
−2τgµν ] are simply

Wc ≡ −
∑
j

cj

∫
M

ddx
√
g τIj , (3.1)

with no additional boundary term.

The total derivative term in the trace anomaly (1.3) depends on the choice of scheme.

As we focus on universal aspects of the trace anomaly, with some exceptions we shall

largely ignore this object in what follows. A fourth issue we have little to say about, with

one exception, is the possible existence of additional terms in the trace anomaly associated

purely with the boundary. These additional terms are best understood when the bulk CFT

is odd-dimensional, so that the trace anomaly only has boundary terms. Those boundary

terms can include the boundary Euler density as well as Weyl-covariant scalars [31, 32], in

analogy with the trace anomaly of even-dimensional CFT. See ref. [19], which argued for a

boundary “c-theorem” using this boundary anomaly. In this work we focus on CFTs in even

dimension, with an odd-dimensional boundary. In d = 4, using Wess-Zumino consistency,

we identify two allowed boundary terms in the trace anomaly, but have nothing to add

in d ≥ 6.

To return to the a-type anomaly, the central observation is that the a dependent

contribution to the trace anomaly (1.3) integrates to give a quantity proportional to the

Euler characteristic for a manifold without boundary. The natural guess is then that in the

presence of a boundary, one should add whatever boundary term is needed such that the

integral continues to give a quantity proportional to the Euler characteristic. (Indeed we

saw precisely this story play out in two dimensions in section 2.) The requisite boundary

term is well known in the mathematics literature. See for example the review [33]. It is a

Chern-Simons like term constructed from the Riemann and extrinsic curvatures. To write

it down, we need some notation.

We start by introducing the orthonormal (co)frame one forms eA = eAµdxµ, in terms

of which the metric on M is gµν = δABe
A
µ e

B
ν . Here and there, we also need their inverse

EµA, satisfying EµAe
A
ν = δµν and EµAe

B
µ = δAB. From the eA and the Levi-Civita connection

Γµνρ, we construct the connection one-form ωAB via

∂µe
A
ν − Γρνµe

A
ρ + ωABµe

B
ν = 0 . (3.2)

From this definition, it follows that ωAB = −ωBA and the torsion one-form vanishes,

deA + ωAB ∧ eB = 0 . (3.3)

Further, the curvature two-form built from ωAB,

RAB ≡ dωAB + ωAC ∧ ωCB =
1

2
RABµνdxµ ∧ dxν , (3.4)
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is related to the Riemann curvature by

EµAR
A
Bρσe

B
ν = Rµνρσ . (3.5)

The curvature two-form satisfies the Bianchi identity

dRAB + ωAC ∧RCB −RAC ∧ ωCB = 0 . (3.6)

The Euler form is then

Ed ≡ RA1A2 ∧ · · · ∧ RAd−1AdεA1···Ad , (3.7)

where εA1···Ad is the totally antisymmetric Levi-Civita tensor in dimension d. The Euler

form and Euler density are related in the obvious way Ed = Ed vol(M), for vol(M) the

volume form on M . In writing (3.7) we have normalized the Euler form so that its integral

over an Sd is d! Vol(Sd).

To define the Chern-Simons like boundary term, it is convenient to define a connection

one-form and curvature two-form that interpolate linearly between a reference one-form ω0

and the actual one-form of interest ω:

ω(t) ≡ tω + (1− t)ω0 ,

R(t)AB ≡ dω(t)AB + ω(t)AC ∧ ω(t)CB .
(3.8)

The boundary term is constructed from the d− 1 form:

Qd ≡
d

2

∫ 1

0
dt ω̇(t)A1A2 ∧R(t)A3A4 ∧ · · · ∧ R(t)Ad−1AdεA1···Ad . (3.9)

(The density Qd is given by Qd = Qd vol(∂M).) If we also define

E(t)d ≡ R(t)A1A2 ∧ · · · ∧ R(t)Ad−1AdεA1···Ad , (3.10)

then it follows, as we show below,

E(1)d − E(0)d = dQd . (3.11)

The relevance of this construction to the Euler characteristic is that we can calculate

the Euler characteristic for a manifold M with boundary by comparing it to a manifold M0

with the same boundary and zero Euler characteristic. Because χ(A×B) = χ(A)χ(B) and

because χ vanishes in odd dimensions, one such zero characteristic manifold is a product

manifold where both A and B are odd dimensional. In a patch near the boundary, we can

always choose to express the metric in Gaussian normal coordinates,

g = dr2 + f(r, x)µνdxµdxν , (3.12)

where the boundary is located at r = r0. In this patch, we can choose a reference metric

g0 so that the patch is a product space,

g0 = dr2 + f(r0, x)µνdxµdxν . (3.13)
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Let ω0 be the connection one-form associated with the metric g0. By construction Ed(1) =

Ed, and it follows from the local relation (3.11) that the Euler characteristic for a manifold

with boundary is

χ(M) =
2

d! Vol(Sd)

(∫
M
Ed −

∫
∂M
Qd
)
. (3.14)

We have normalized the characteristic so that χ(Sd) = 2.

On the boundary ∂M , we can give an explicit formula for ω̇AB in terms of the extrinsic

curvature,

ω̇(t)AB = ωAB − ωAB0 = KAnB −KBnA, (3.15)

where we have defined the extrinsic curvature one-form Kα ≡ Kαβdyβ , and converted

its index to a flat index through the eA, metric, and embedding functions. Similarly,

nA = eAµn
µ.

In analogy with the two dimensional variation (2.2), we therefore posit that the a-

dependent piece of the Weyl anomaly is

δσW = (−1)d/2
4a

d! Vol(Sd)

(∫
M
Edδσ −

∫
∂M
Qdδσ

)
+ . . . (3.16)

where the ellipsis denotes terms depending on ci, the total divergence in the trace anomaly,

and possibly other purely boundary contributions. We verify this claim in subsection 3.3 by

showing that the anomaly (3.16) is Wess-Zumino consistent. With this variation in hand,

we can integrate it in one of the same three ways we used in d = 2: guess work, using the

integral (2.13), or dimensional regularization. The integral (2.13) gives the a dependent

contribution to the effective anomaly action,

W
[
gµν , e

−2τgµν
]

= (−1)d/2
4a

d! Vol(Sd)

∫ 1

0
dt

{∫
M
τEd[g′]−

∫
∂M

τQd[g′]
}∣∣∣∣

g′µν=e−2tτgµν

.

(3.17)

We also deduce W from dimensional regularization in subsection 3.5.

Let us next study the relation between Ed and Qd. The relation (3.11) is an example

of a “transgression form” (see e.g. [34] for a modern summary of transgression forms). To

prove it, consider
d

dt
E(t)d = Ṙ(t)AB ∧

∂E(t)d
∂R(t)AB

. (3.18)

It is convenient to introduce an exterior covariant derivative D. It takes tensor-valued p-

forms to tensor-valued p+ 1-forms. For example it acts on a matrix-valued p-form, fAB as

DfAB = dfAB + ωAC ∧ fCB − (−1)pfAC ∧ ωCB , (3.19)

and correspondingly for (co)vector-valued forms. It has the Lifshitz property, e.g.

d(fAB ∧ gAB) = D(fAB ∧ gAB) = DfAB ∧ gAB + (−1)pfAB ∧DgAB . (3.20)

Defining D(t), we then have

D(t)R(t)AB = 0 , Ṙ(t)AB = D(t)ω̇(t)AB . (3.21)
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The metric δAB and antisymmetric Levi-Civita tensor εA1...Ad are also constant under

D(t), provided that we let the eA depend on t so that ω(t) is associated with a metric g(t).

Consequently,

D(t)
∂E(t)d
∂R(t)AB

=
d

2
D(t)

(
R(t)A1A2 ∧ . . . ∧R(t)Ad−3Ad−2εABA1...Ad

)
= 0 , (3.22)

and we can rewrite (3.18) as

d

dt
E(t)d = d

(
ω̇(t)AB ∧ ∂E(t)d

∂R(t)AB

)
= d

(
d

2
ω̇(t)A1A2 ∧R(t)A3A4 ∧ . . . ∧R(t)Ad−1AdεA1...Ad

)
.

(3.23)

Integrating this equality over t ∈ [0, 1] immediately yields (3.11).

3.2 An explicit expression for the boundary term

It will be expedient in the rest of this section to have an explicit expression for the boundary

term
∫
∂M Qd, that is to perform the integral over t in (3.9). The final result is (3.29).

Before doing so, we will use that the pullback of RAB to the boundary can be expressed

in terms of the intrinsic and extrinsic curvatures of the boundary. The relations between

RAB and the boundary curvatures are known as the Gauss and Codazzi equations, and we

discuss them in appendix A.

Denoting the intrinsic Riemann curvature tensor of the boundary as R̊αβγδ, we define

the intrinsic curvature two-form

R̊αβ ≡
1

2
R̊αβγδdy

γ ∧ dyδ, (3.24)

and thereby R̊AB. Using the boundary covariant derivative D̊α, we define a boundary

exterior covariant derivative D̊ just like D. The Gauss and Codazzi equations can then be

summarized as

RAB = R̊AB −KA ∧ KB + nBD̊KA − nAD̊KB . (3.25)

We can similarly decompose the pullback of R(t). On the boundary

ω(t)AB = ωAB + (t− 1)
(
KAnB − nAKB

)
, (3.26)

which implies that on the boundary

R(t)AB = RAB + (t−1)D̊
(
KAnB − nAKB

)
+ (t−1)2

(
KAnC − nAKC

)
∧
(
KCnB − nCKB

)
= RAB − (t2−1)KA ∧ KB + (t−1)

(
nBD̊KA − nAD̊KB

)
, (3.27)

where we have used that D̊nA = KA. Putting this together with (3.25), we have

R(t)AB = R̊AB − t2KA ∧ KB + t
(
nBD̊KA − nAD̊KB

)
. (3.28)

– 16 –



J
H
E
P
0
1
(
2
0
1
6
)
1
6
2

Then on the boundary the definition of Qd (3.9) becomes

Qd = d

∫ 1

0
dt nA1KA2 ∧

(
R̊A3A4 − t2KA3∧ KA4

)
∧ . . . ∧

(
R̊Ad−1Ad − t2KAd−1∧ KAd

)
εA1...Ad

= d
m−1∑
k=0

(
m− 1

k

)
(−1)k

2k + 1
R̊m−1−k ∧ K2k+1nAεA... , (3.29)

where we have defined m ≡ d
2 and in the last line we have suppressed the indices of the

curvature forms, all of which are dotted into the epsilon tensor. We have also used that

only one index of the epsilon tensor can be dotted into the normal vector nA, and so the

factors of D̊KA in R(t) never appear in Qd.
The integral representation of Qd in the first line of (3.29) is not new. A similar

expression appears in e.g. ref. [35].

For example, in four and six dimensions we have

Q4 = 4nAKB∧
(
R̊CD − 1

3
KC ∧ KD

)
εABCD , (3.30)

Q6 = 6nAKB∧
(
R̊CD∧ R̊EF− 2

3
R̊CD∧ KE∧ KF +

1

5
KB∧ KC∧ KD∧ KE∧ KF

)
εABCDEF .

3.3 Wess-Zumino consistency

We now verify that the posited term proportional to a in the Weyl anomaly (3.16) is Wess-

Zumino consistent. In this setting, Wess-Zumino consistency requires that the anomaly

satisfies

[δσ1 , δσ2 ]W = 0 . (3.31)

Notating the anomalous variation proportional to a as

δσWa = A

(∫
M
δσ Ed −

∫
∂M

δσQd
)
, A ≡ (−1)d/2

4a

d! Vol(Sd)
,

we consider

δσ1δσ2Wa = A

(∫
M
δσ2δσ1Ed −

∫
∂M

δσ2δσ1Qd
)
. (3.32)

The variation of Ed is a total derivative,

δσEd = d

(
δσω

AB ∧ ∂Ed
∂RAB

)
, (3.33)

with

δσω
AB = (eAeBµ − eBeAµ )∂µδσ . (3.34)

It then follows that the bulk part of the second variation is

δσ1δσ2Wa = 2dA

∫
M
eA1eA2

µ ∂µδσ1∧dδσ2 ∧RA3A4∧ . . . ∧RAd−1AdεA1...Ad+ (boundary term) ,

= A

∫
M

ddx
√
gX µνd ∂µδσ1∂νδσ2 + (boundary term) , (3.35)
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where we have defined

X µνd ≡
d

2d/2
Rν1ν2ρ1ρ2 . . . Rνd−3νd−2ρd−3ρd−2

εµρν1...νd−2ενρ
ρ1...ρd−2 . (3.36)

X µνd is symmetric, X µνd = X νµd , on account of Rµνρσ = Rρσµν . The symmetry of X µνd
together with the variation (3.35) imply

[δσ1 , δσ2 ]Wa = (boundary term) . (3.37)

In other words, the bulk term in the a-anomaly is Wess-Zumino consistent. It suffices now

to show that the boundary term also vanishes.

To proceed, we require the Weyl variations of the extrinsic and intrinsic curvatures.

The variation of Kαβ and so KA is

δσKαβ = δσKαβ + γαβn
µ∂µδσ , δσKA = eAnµ∂µδσ = (δσω

A
B)nB, (3.38)

where eA in the variation of KA is pulled back to the boundary, while the variation of

R̊AB is

δσR̊AB = D̊δσω̊
A
B , (3.39)

for ω̊AB the connection one-form on the boundary. The variation of ωAB on the boundary

is related to those of ω̊AB via

δσω
A
B = δσω̊

A
B + (nBδσω

A
C − nAδσωCB)nC . (3.40)

Under a general variation of KA and R̊AB, Qd in (3.29) varies as

δQd = d

m−1∑
k=0

(
m−1

k

)
(−1)k

{
δKB ∧ R̊CD +

m−1−k
2k+1

δR̊BC ∧ KD
}
∧ R̊m−2−k ∧ K2knAεABCD... .

(3.41)

Specializing to Weyl variations, this becomes

1

d
δσQd = δσω

B
Cn

CRm−1nAεAB...

+ δσω̊
BC ∧

m−2∑
k=0

(
m− 2

k

)
(−1)k(m− 1)D̊KD ∧ R̊m−2−k ∧ K2knAεABCD...

+ d

{
δσω̊

BC ∧
m−2∑
k=0

(
m− 2

k

)
(−1)k

m− 1

2k + 1
R̊m−2−k ∧ K2k+1nAεABC...

}
,

(3.42)

where we have used the Gauss equation in simplifying the δσK variation along with D̊R̊ = 0

in simplifying the δσR̊ variation. Using the Codazzi equation, RABnB = D̊KA, the second

line combines with the first to give

δσQd = δσω
AB ∧ ∂Ed

∂RAB
+ d
{

(m− 1)δσω̊
AB ∧ (Qd−2)AB

}
. (3.43)
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In writing the boundary term, we have defined the matrix-valued (d − 3)-form (Qd−2)AB
to be

(Qd−2)AB ≡ d
m−2∑
k=0

(
m− 2

k

)
(−1)k

2k + 1
R̊m−2−k ∧ K2k+1nCεABC... (3.44)

The reason for the name is the similarity with the explicit expression (3.29) for Qd: the

sum (3.44) is identical to that in the expression for Qd, except it runs to k = m− 2 rather

than k = m− 1.

Putting δσQd together with the variation of the Euler form (3.33), the boundary term

in the variation of
∫
M δσ2δσ1Ed cancels against the first half of the variation of Qd in (3.43),

so that

δσ1δσ2Wa = A

(∫
M

ddx
√
gX µν∂µδσ1∂νδσ2 − 2(m−1)

∫
∂M

eAeBα ∂
αδσ1 ∧ dδσ2 ∧ (Qd−2)AB

)
= A

(∫
M

ddx
√
gX µν∂µδσ1∂νδσ2 −

∫
∂M

dd−1y
√
γ Yαβ∂αδσ1∂βδσ2

)
, (3.45)

where Yαβ is

Yαβ = dεαγγ1...γd−3εβγ
δ1...δd−3

m−2∑
k=0

(
m− 2

k

)
(−1)k

m− 1

(2k + 1)2m−3−k

× R̊γ1γ2δ1δ2 · · · R̊γd−2k−5γd−2k−4δd−2k−5δd−2k−4
Kγd−2k−3δd−2k−3

· · ·Kγd−3δd−3
.

(3.46)

Yαβ is symmetric owing to the symmetry of the boundary curvatures, R̊αβγδ = R̊γδαβ and

Kαβ = Kβα. Then (3.45) yields

[δσ1 , δσ2 ]Wa = 0 , (3.47)

which is what we sought to show.

3.4 A complete classification in d = 4 and boundary central charges

The previous subsection was somewhat abstract. Let us see how the consistency works

in d = 4. Along the way, we will also classify the potential boundary terms in the Weyl

anomaly, finding two “boundary central charges”. To our knowledge, one of these “central

charges” was first noted in [36] and the other later in ref. [37, 38].

In d = 4, E4 and Q4 are equivalent to the scalars

E4 = RµνρσR
µνρσ − 4RµνR

µν +R2,

Q4 = 4

(
2E̊αβK

αβ +
2

3
tr(K3)−KKαβK

αβ +
1

3
K3

)
,

(3.48)

where E̊αβ = R̊αβ − R̊
2 γαβ is the boundary Einstein tensor, and the a-type term in the

anomaly is

δσWa = A

(∫
M

d4x
√
g δσE4 −

∫
∂M

d3y
√
γ δσQ4

)
, A =

a

16π2
. (3.49)
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The Weyl variations of E4 and Q4 are

δσE4 = −4δσE4 + 8Dµ(Eµν∂νδσ) , (3.50)

δσQ4 = −3δσQ4−4
{
Rαβαβn

µ∂µ−2D̊α

(
Kαβ−Kγαβ

)
D̊β

}
δσ−8D̊α

{(
Kαβ−Kγαβ

)
∂βδσ

}
.

Using the Gauss and Codazzi equations (3.25), which here are

Rαβγδ = R̊αβγδ −KαγKβδ +KαδKβγ , nµRµαβγ = D̊γKαβ − D̊βKαγ , (3.51)

we can rewrite the variation of Q4 as

δσQ4 = −3δσQ4 + 8nµE
µν∂νδσ − 8D̊α

{(
Kαβ −Kγαβ

)
∂βδσ

}
. (3.52)

The second variation of Wa is then

δσ1δσ2Wa = −8A

(∫
M

d4x
√
g Eµν(∂µδσ1)(∂νδσ2) +

∫
∂M

d3y
√
γ
(
Kαβ −Kγαβ

)
(∂αδσ1)(∂βδσ2)

)
,

(3.53)

which is manifestly symmetric under δσ1 ↔ δσ2, so that

[δσ1 , δσ2 ]Wa = 0 . (3.54)

In this instance, the tensors X µν and Yαβ are

X µν = −8Eµν , Yαβ = 8
(
Kαβ −Kγαβ

)
. (3.55)

So much for showing that the a-type anomaly is consistent. Are there any other

boundary terms which may be allowed in the anomaly? This is essentially a cohomological

question, which we answer in three steps:

1. Posit the most general boundary variation of W characterized by dimensionless co-

efficients.

2. Use the freedom to add local boundary counterterms to remove as many of these

coefficients as possible.

3. Demand that the residual variation is Wess-Zumino consistent.

We perform this algorithm in appendix B. The final result is that the total Weyl

anomaly for a d = 4 CFT is

δσW =
1

16π2

∫
M

d4x
√
g δσ

(
aE4 − cW 2

µνρσ

)
−
∫
∂M

d3y
√
γ δσ

(
AQ4 − b1 tr K̂3 − b2γαγK̂βδWαβγδ

)
,

(3.56)

where K̂αβ is the traceless part of the extrinsic curvature, K̂αβ = Kαβ − K
d−1γαβ , and

Wαβγδ is the pullback of the Weyl tensor. The terms proportional to b1 and b2 are the

additional type-B boundary terms in the anomaly. We refer to b1 and b2 as “boundary

central charges”, and they are formally analogous to c insofar as they multiply Weyl-

covariant scalars. The purely extrinsic term proportional to b1 first appeared in [36], and

the second term proportional to b2 later appeared in [37, 38].
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It is an interesting exercise to compute b1 and b2 for a conformally coupled scalar field.

The simplest way to proceed is to look at existing heat kernel calculations for a scalar

field in the presence of a boundary and then restrict to the conformally coupled case. The

action for such a conformally coupled scalar is

S =

∫
M

d4x
√
g

(
(∂φ)2 +

1

6
Rφ2

)
+

1

3

∫
∂M

d3y
√
γKφ2. (3.57)

Note that the last term ensures Weyl invariance. It is also necessary for coupling the

theory to gravity.6 By comparing this result with heat kernel calculations for a conformally

coupled scalar field in the presence of a boundary, we can extract values for b1 and b2.

There are two Weyl-invariant boundary conditions to consider, Dirichlet φ|∂M = 0 (in

which case the boundary term can be neglected) and the conformally-invariant Robin

(nµ∂µ + 1
3K)φ|∂M = 0. Comparing with for example (1.17) of [39] or the expressions for

a4 on p. 5 of [40], we deduce that

b1(Robin) = − 1

(4π)2

2

45
, b1(Dirichlet) = − 1

(4π)2

2

35
, b2 =

1

(4π)2

1

15
. (3.58)

The value for b1(Dirichlet) was computed before in eq. (19) of ref. [36], while b1(Robin)

can be found in eq. (55) of ref. [41]. The coefficient b2 was computed in the Dirichlet

case in eq. (15) of ref. [37, 38]. (In our conventions, a = 1/360 and c = 1/120 for a

4d conformally coupled scalar.) As |b1(Dirichlet)| > |b1(Robin)|, and one can flow from

the Robin theory to the Dirichlet theory by deforming the Robin theory by a “boundary

mass”
∫

d3ymφ2; it is tempting to speculate that b1 satisfies a monotonicity property under

boundary renormalization group flows, similar to the one conjectured for a by Cardy and

now proven in d = 4 by ref. [8]. This conjecture is different from the “boundary F -

theorem” conjectured in [42–44] for d = 4 boundary flows. We leave further analysis of

these boundary central charges b1 and b2 for the future.

3.5 Dimensional regularization

In the two dimensional case, we saw that an effective anomaly action could be constructed

in dimensional regularization using a combination of the Einstein-Hilbert action and the

Gibbons-Hawking surface term in n = 2 + ε dimensions. In the limit ε→ 0, these objects

sum together to give the Euler characteristic. The obvious guess, which we shall verify,

is that to construct the anomaly action in d dimensions, we need to continue the Euler

density along with the Qd Chern-Simons like term to n = d + ε dimensions. In the

mathematics community, such a dimensionally continued Euler density is called a Lipschitz-

Killing curvature, while in the physics community, these objects are used to construct

actions for Lovelock gravities.

6If we are not interested in dynamical gravity, we could add an additional boundary term of the form

φ(K+3nµ∂µ)φ with arbitrary coefficient. This term preserves Weyl invariance. However, it does not modify

the boundary conditions or the scalar functional determinant. Consequently the boundary central charges

that we determine below do not depend on this term. See the appendix of [19] for a related discussion.
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The mth Lipschitz-Killing curvature form in dimension n, 2m ≤ n, is:

En,m ≡
( m∧
i=1

RA2i−1A2i

)
∧
( n∧
i=2m+1

eAi
)
εA1···An , (3.59)

where εA1···An is the totally antisymmetric Levi-Civita tensor in dimension n. In n = 2m

dimensions, the Lipschitz-Killing form reduces to the Euler form, E2m,m = E2m. The analog

of the Gibbons-Hawking term we call Qn,m:

Qn,m ≡ m
∫ 1

0
ω̇(t)A1A2 ∧

( m∧
i=2

R(t)A2i−1A2i

)
∧
( n∧
i=2m+1

eAi
)
εA1···An dt . (3.60)

It is a n− 1 degree Chern-Simons like form which is only defined on the boundary, which

reduces to Qd in n = 2m dimensions.

The obvious guess for the effective action W̃ [gµν ] in n = d + ε dimensions, i.e. the d

dimensional analog of (2.14), is

W̃ [gµν ] = (−1)m
4a

(n− 2m)(2m)! Vol(S2m)

(∫
M
En,m −

∫
∂M
Qn,m

)
, (3.61)

where d = 2m. The effective anomaly action is then just

W
[
gµν , e

−2τgµν
]

= lim
n→d

(
W̃ [gµν ]− W̃ [e−2τgµν ]

)
. (3.62)

Note that this effective action only recovers the a dependent portion of the trace anomaly.

As in subsection 3.2, we can perform the integral over t in the definition of Qn,m to

deduce an explicit expression for Qn,m in terms of the extrinsic and intrinsic curvatures

of the boundary. The integration over t is identical to that performed in subsection 3.2,

except now we have n− 2m factors of eA to account for. The final result is

Qn,m = 2m

m−1∑
k=0

(
m− 1

k

)
(−1)k

2k + 1
R̊m−1−k ∧ K2k+1 ∧ en−2mnAεA... , (3.63)

where for brevity we have suppressed the indices of the curvatures and factors of eA, all of

which are contracted with the remaining indices of the epsilon tensor.

Next we show that dimensional regularization (3.61) reproduces the a portion of the

Weyl anomaly. Our approach is almost identical to the demonstration that the a-anomaly is

Wess-Zumino consistent in subsection 3.3. We begin with the expressions (3.59) and (3.63)

for En,m and Qn,m. We consider the Weyl variation of∫
M
En,m −

∫
∂M
Qn,m , (3.64)

in n dimensions. We compute this variation in two steps. First we show that this difference

does not depend on any variation of the connection one-form ωAB while keeping the eA

fixed.7 Then the Weyl variation only arises from the Weyl variation of the eA while keeping

7This same computation shows that the Lovelock gravities have a well-defined variational principle for

the metric gµν on a space with boundary (see ref. [45]).
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the ωAB fixed. This last variation is rather simple, as the eA only appear through wedge

products in En,m and Qn,m.

Now consider a variation of the connection one-form ωAB whilst keeping the eA and

embedding of the boundary fixed. The bulk and boundary curvatures vary as

δωRAB = DδωAB , δωR̊AB = D̊δω̊AB , δωKA = (δωAB)nB, (3.65)

where ω̊AB is the connection one-form on the boundary. The computation of this variation

is virtually identical to that in subsection 3.3, as the only difference between En,m and Ed,
and Qn,m and Qd, is an extra wedge product of n − 2m factors of the eA. The analogues

of (3.33) and (3.43) are

δωEn,m = d

(
δωAB ∧ ∂En,m

∂RAB

)
,

δωQn,m = δωAB ∧ ∂En,m
∂RAB

+ (total deriative) ,

(3.66)

so that

δω(En,m − dQn,m) = 0 , (3.67)

as claimed.

Now consider a variation under which ωAB is fixed and the eA vary as in an infinitesimal

Weyl rescaling,

δσe
A = δσeA. (3.68)

Then

δσ(En,m − dQn,m) = (n− 2m)δσ(En,m − dQn,m) , (3.69)

so that the variation of the dimensionally regulated anomaly action W̃ in (3.61) is

δσW̃ = (−1)m
4a

(2m)! Vol(S2m)

(∫
M
En,mδσ −

∫
∂M
Qn,mδσ

)
. (3.70)

In the n→ 2m limit, this variation coincides with the a-anomaly (3.16).

4 Dilaton effective actions and boundary terms

In this section, we present the a contribution to the dilaton effective action in a spacetime

with boundary in four and six dimensions. The d = 2 dilaton effective action with a

bounday term is given by (2.12). For d > 2, the computation of boundary terms is more

laborious. The details of a derivation using dimensional regularization are provided in

appendix C in dimensions four and six. We save the general discussion of how the universal

entanglement entropy arises from the boundary terms of these dilaton actions for the next

section.
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4.1 The dilaton effective action in d = 4

The Euler density in d = 4 is given by

E4 =
1

4
δµ1···µ4ν1···ν4 R

ν1ν2
µ1µ2R

ν3ν4
µ3µ4 = RµνρσR

µνρσ − 4RµνR
µν +R2, (4.1)

where δµ1···µ4ν1···ν4 is the fully antisymmetrized product of four Kronecker delta functions. The

boundary term is

Q4 = −4δµ1µ2µ3ν1ν2ν3 Kν1
µ1

(
1

2
Rν2ν3µ2µ3 +

2

3
Kν2
µ2K

ν3
µ3

)
= 4

(
2E̊αβK

αβ +
2

3
tr(K3)−KKαβK

αβ +
1

3
K3

)
.

(4.2)

Denote the Einstein tensor as

Eµν = Rµν − 1

2
gµνR . (4.3)

In appendix C, we find the dilaton effective action in d = 4 to be

W
[
gµν , e

−2τgµν
]

=
a

(4π)2

∫
M

d4x
√
g
[
τE4 + 4Eµν(∂µτ)(∂ντ) + 8(Dµ∂ντ)(∂µτ)(∂ντ) + 2(∂τ)4

]
− a

(4π)2

∫
∂M

d3y
√
γ

[
τQ4 + 4(Kγαβ −Kαβ)(∂ατ)(∂βτ) +

8

3
τ3n

]
, (4.4)

where τn = nµ∂µτ is a normal derivative of the Weyl scale factor. The bulk term agrees

with ref. [8, 18] while the boundary contribution is to our knowledge a new result.

4.2 The dilaton effective action in d = 6

The Euler density in d = 6 is given by

E6 =
1

8
δµ1···µ6ν1···ν6 R

ν1ν2
µ1µ2R

ν3ν4
µ3µ4R

ν5ν6
µ5µ6 (4.5)

and the boundary term is

Q6 = −6δβ1···β5α1···α5
Kα1
β1

[(
1

2
Rα2α3

β2β3 +
2

3
Kα2
β2
Kα3
β3

)(
1

2
Rα4α5

β4β5 +
2

3
Kα4
β5
Kα4
β5

)
+

4

45
Kα2
β2
Kα3
β3
Kα4
β5
Kα4
β5

]
.

(4.6)

To present the bulk dilaton action, we define

E(2)µν ≡ gµνE4 + 8RµρR
ρν − 4RµνR+ 8RρσR

µρνσ − 4RµρστR
νρστ ,

Cµνρσ ≡ Rµνρσ − gµρRνσ + gµσRνρ .
(4.7)

In appendix C, we use dimensional regularization to find the bulk dilaton action

W
[
gµν , e

−2τgµν
]
(Bulk)

=

a

3(4π)3

∫
M

d6x
√
g
{
− τE6 + 3E(2)

µν ∂
µτ∂ντ + 16Cµνρσ(Dµ∂ρτ)(∂ντ)(∂στ)

+16Eµν
[
(∂µτ)(∂ρτ)(Dρ∂

ντ)− (∂µτ)(∂ντ)�τ
]
− 6R(∂τ)4

−24(∂τ)2(D∂τ)2 + 24(∂τ)2(�τ)2 − 36(�τ)(∂τ)4 + 24(∂τ)6
}
.

(4.8)

This reproduces the bulk Wess-Zumino term first obtained in [17].
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We have not been able to generate the boundary term in a general curved background.

However, for a conformally flat geometry, we find

W
[
δµν , e

−2τδµν
]

=

− a

16π3

∫
M

d6x
√
g
{

2(∂τ)2(∂µ∂ντ)2 − 2(∂τ)2(�τ)2 + 3�τ(∂τ)4 − 2(∂τ)6
}

− a

3(4π)3

∫
∂M

d5y
√
γ

[
− τQ6[δµν ] + 48Pαβ (∂ατ)(∂βτ) + 3Q4[δµν ](D̊τ)2

+ 48Kαβ(�̊τ)(D̊α∂βτ) +24K(D̊α∂βτ)2−48Kαγ(D̊β∂ατ)(D̊γ∂βτ)

− 24K(�̊τ)2 − 32K(D̊τ)2�̊τ − 16K(∂ατ)(∂βτ)(D̊α∂βτ)

+ 16Kαβ(∂ατ)(∂βτ)�̊τ + 32Kαβ(D̊α∂βτ)(D̊τ)2 + 12Kτ4
n

+ 12K(D̊τ)4 + 24K(D̊τ)2τ2
n + 48(�̊τ)(D̊τ)2(τn) + 16(�̊τ)(τ3

n)

− 24(D̊τ)2τ3
n − 36τn(D̊τ)4 − 36

5
τ5
n

]
, (4.9)

where we have defined

Pαβ ≡
(
K2 − tr(K2)

)
Kα
β − 2KKαγKβγ + 2KγδK

αγKδ
β . (4.10)

5 The sphere entanglement entropy: general result

We consider the entanglement entropy across a sphere with radius ` in flat space. The

calculation is analogous to the discussion of the entanglement entropy for an interval in

d = 2 in section 2.3. The information necessary to compute the entropy is contained in

the causal development of the interior of the sphere, a ball of radius `. We can then map

that causal development to all of hyperbolic space cross the real line R ×Hd−1 using the

change of variables

t = `
sinh τ/`

coshu+ cosh τ/`
,

r = `
sinhu

coshu+ cosh τ/`
,

(5.1)

where τ labels the new time, u is the radial coordinate in hyperbolic space while (t, r) are

time and radius in polar coordinates in flat space. See figure 2. The line elements on flat

space and R×Hd−1 are related by a Weyl rescaling (see for example ref. [46])

η = −dt2 + dr2 + r2dΩ2
d−2 ,

= e2σ
[
− dτ2 + `2(du2 + sinh2 u dΩ2

d−2)
]
,

(5.2)

where e−σ = coshu + cosh τ/`. We proceed by using the Euclidean version of this map,

where τE is a periodic variable with period 2π` so that the theory is naturally at a temper-

ature T = 1
2π` , and the Euclidean geometry is conformal to S1 ×Hd−1. Note a difference

here with the d = 2 case where the temperature was a free parameter.
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Figure 2. (a) Blue dashed curves are constant u contours. Red curves are constant τ contours.

(b) Blue dashed curves are constant u contours. Red curves are constant τE contours. Note that we

have plotted negative values for r and u even though both technically are restricted to be positive.

The computation of the entanglement entropy across a sphere thus reduces to a com-

putation of the thermodynamic entropy of the hyperbolic space SE = 2π`〈H〉 −W where

W ≡ − ln tr e−2π`H . As it did in d = 2, this computation in turn breaks down into three

pieces, a computation of 〈H〉, a computation of the effective anomaly actionW[δµν , e
−2σδµν ]

and a computation of a universal contribution to W̃ [δµν ],

SE = 2π`〈H〉+W
[
δµν , e

−2σδµν
]
− W̃ [δµν ] . (5.3)

To compute 〈H〉, we shall not try to write down the Schwarzian derivative in arbitrary

even d, but instead rely on an earlier closely related computation performed in ref. [47].

We have not been able to compute W[δµν , e
−2σδµν ] in general d, but we shall argue

based on computations in d = 2, 4 and 6 that it precisely cancels the contribution to SE
from 〈H〉. Finally, we compute W̃ [δµν ] and show that the logarithmic contribution to it

always reproduces the universal part of the sphere entanglement entropy.

5.1 Casimir energy

The easy part of this computation is 〈H〉 because it has essentially been done in ref. [47].

In that paper, two of us computed the stress tensor in the vacuum on R× Sd−1 in even d,

within the scheme where the the trace anomaly takes the form

〈Tµµ〉 =
∑
j

cjIj − (−1)
d
2

4a

d! Vol(Sd)
Ed , (5.4)

i.e. in a scheme where local counterterms are used to remove the total divergence from the

stress tensor trace. Within that scheme, the stress tensor is unambiguously determined
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by a to be

〈T 0
0 〉 = − 4a

(−`2)d/2dVol(Sd)
, 〈T ij 〉 =

4a

(−`2)d/2d(d− 1) Vol(Sd)
δij . (5.5)

(Note the change in conventions for a between that paper and this.) On R×Hd−1 at the

temperature T = 1
2π` it follows that

〈T 0
0 〉 = − 4a

d `d Vol(Sd)
, 〈T ij 〉 =

4a

d(d− 1)`d Vol(Sd)
δij , (5.6)

because the Riemann tensor is the opposite sign, and the result is constructed from the

same product of d/2 Riemann tensors in each case. As the energy density is constant,

the total energy is given by multiplying the energy density by the (divergent) volume of

hyperbolic space, 〈H〉 = 〈T 00〉Vol(Hd−1). We need to isolate the logarithmic contribution

to this volume

Vol(Hd−1) = `d−1 Vol(Sd−2)

∫ umax

0
sinhd−2 u du (5.7)

where our cut-off is

umax = − ln
δ/`

2− δ/`
. (5.8)

We find that

Vol(Hd−1) = . . .+
(−1)d/2

π
`d−1 Vol(Sd−1) ln

δ

`
+ . . . (5.9)

and hence that

2π`〈H〉 = . . .+ (−1)d/2
8a

d

Vol(Sd−1)

Vol(Sd)
ln
δ

`
+ . . . (5.10)

Like the stress tensor on R × Sd−1, neither the stress tensor on R ×Hd−1 nor 〈H〉 is

independent of the choice of scheme. For example, if one computes the partition function

of a d = 4 conformal field theory in two different schemes in d = 4, their generating

functionals may differ by the local counterterm

ξ

∫
d4x
√
gR2, (5.11)

where the coefficient ξ is real. Taking a metric variation of the counterterm, it is clear

that the stress tensor on R × Sd−1, or 〈H〉 on R ×Hd−1, depends on the choice of ξ. See

refs. [47–49] for lengthier discussions of this issue. However, the dependence of W on ξ is

linear in β. Thus while 〈H〉 depends on the choice of scheme, the result we obtain for the

sphere entanglement entropy SE does not.

In principle, we should also worry about boundary contributions to 〈H〉. We claim

these contributions do not contribute to the logarithm. One way to compute them is to

look at the metric variation of the boundary Qn,m term in n = d + ε dimensions. As we

saw before, the variation of the metric through the spin connection will cancel against a

bulk variation of En,m. The remaining variation comes only from the vielbeins, and cannot

produce a logarithmic contribution.
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5.2 Dilaton effective action

It is more involved to obtainW[δµν , e
−2σδµν ]. In d = 2, 4, and 6, we use the dilaton effective

actions that we found in sections 2 and 4. We will see that logarithmic contributions from

〈H〉 and W cancel out, i.e. that

2π`〈H〉+W
[
δµν , e

−2σδµν
]

(5.12)

has no logarithmic contribution. Thus, the entire entanglement entropy contribution comes

from W̃ [δµν ], which we will compute next.

In principle we, should be able to evaluate W[δµν , e
−2σδµν ] for general even d and

find the same cancelation of the logarithmic pieces. In practice, there is an issue of non-

commuting limits in dimensional regularization which makes the calculation difficult. The

correct order of limits is to take the metric to be completely general, take the n→ d limit,

and only then specialize to the metric of interest. To see that the other order of limits is

problematic, consider the following example. If we first fix the metric e−2σδµν to be that

of S1 ×Hn−1 and then take the limit n → d, we get a divergence that disappears in the

other order of limits. Because S1 ×Hn−1 contains an S1 factor, the Euler characteristic,

i.e. the leading 1/(n − d) singularity in W̃ [e−2σδµν ], will vanish. In contrast, the leading

1/(n − d) singularity from the boundary contribution to W̃ [δµν ] will not vanish. Thus

W[δµν , e
−2σδµν ] computed in this order will not even be finite.

We identify the conformal factor σ in the metric (5.2) with the dilaton τ of section 4

(not to be confused with hyperbolic time). For convenience, we divide up the bulk and

boundary contributions to W. We find the following results.

d = 2. The d = 2 case can be evaluated from the effective action (2.12). Denoting c
12 = a

and recalling that an interval has two endpoints, we find the bulk contribution to W is

W
[
δµν , e

−2σδµν
]
Bulk

= −
(
a

2π

)(
2πu− 4π ln(sinhu)

)
Vol(S0) + . . . . (5.13)

The boundary action contributes the following relevant divergence (the logarithmic diver-

gence)

W
[
δµν , e

−2σδµν
]
Boundary

= −
(
a

2π

)
(4πu) Vol(S0) + . . . , (5.14)

so that the logarithmic contribution to W is

W
[
δµν , e

−2σδµν
]

= −2au+ . . . . (5.15)

Using the expression (5.10) for 〈H〉, we see that 2π`〈H〉+W[δµν , e
−2σδµν ] has no logarithmic

term.

d = 4. In d = 4, we find that the bulk and boundary terms in the expression (4.4) for

W contribute the following logarithmically divergent terms

W
[
δµν , e

−2σδµν
]
Bulk

=
a

(4π)2

(
6πu− 16π ln(sinhu)

)
Vol(S2) + . . . ,

W
[
δµν , e

−2σδµν
]
Boundary

=
a

(4π)2
(16πu) Vol(S2) + . . . .

(5.16)
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d = 6. In d = 6, we find that the bulk and boundary terms in the expression (4.9) for

W give

W
[
δµν , e

−2σδµν
]
Bulk

= − a

(4π)3

(
30πu− 96π ln(sinhu)

)
Vol(S4) + . . . ,

W
[
δµν , e

−2σδµν
]
Boundary

= − a

(4π)3
(96πu) Vol(S4) + . . . .

(5.17)

In sum, using the dilaton effective action in d = 2, 4, 6, we confirm that there is no

logarithmic contribution to 2π`〈H〉+W[δµν , e
−2σδµν ], as advertised.

5.3 The boundary contribution to W in general dimension

The last calculation to do is then an evaluation of the logarithmic contribution to W̃ [δµν ]

in general dimension. To keep the boundary parametrization simple, it is useful to work

in the (τ, u) coordinate system. In that system, we have that the extrinsic curvature takes

the form

Kτ
τ = −sinhu

`
, Ku

u = 0 , Kj
i =

1

`

(
cosh

τ

`
cothu+ cschu

)
δij . (5.18)

The bulk term in W̃ vanishes identically in flat space, so it remains to evaluate the boundary

term. Two useful integrals for evaluating that boundary term in flat space are, for even d,∫ 2π

0

(1 + coshu cos t)d−2

(coshu+ cos t)d−1
dt =

π

sinhu

(d− 2)!

2d−3
(
d−2

2 !
)2 ,∫ 1

0
(1− s2)d/2−1ds =

√
π
(
d−2

2

)
!

2
(
d−1

2

)
!
.

(5.19)

Starting with the expression (3.29) and using the Gauss equation to replace the non-zero

R̊αβγδ with the vanishing Rµνρσ, the logarithmic contribution to the boundary term is∫
∂M
Qn,d/2 = . . .+

2π(n− d)d!

d− 1
Vol(Sd−2) ln

δ

`
+ . . . . (5.20)

Using that for even d,
Vol(Sd−2)

Vol(Sd)
=
d− 1

2π
, (5.21)

we then find the logarithmic contribution

− W̃ [δµν ] = . . .+ (−1)d/24a ln
δ

`
+ . . . . (5.22)

Using the expression (5.3) for SE and that 2π`〈H〉 +W[δµν , e
−2σδµν ] has no logarithmic

term, we indeed find that the universal term in the entanglement entropy SE across a

sphere is

SE = . . .+ (−1)d/24a ln
δ

`
+ . . . , (5.23)

as claimed in ref. [14].
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This computation is in fact almost a topological one. Under a constant rescaling

σ = λ, the a-contribution to the Weyl anomaly guarantees that the generating functional

W varies on a manifold with Euler characteristic χ as (focusing just on the contribution

proportional to a)

δλW = (−1)d/2(2a)χλ . (5.24)

Now, the 4a in the entanglement entropy is essentially (2a)χ(Sd−2), and χ(Sd−2) is the

change in the Euler characteristic of flat space when a D×Sd−2 is removed where D is an

open two dimensional disk. To see this, we use that the Euler characteristic satisfies an

inclusion/exclusion principle χ(A∪B)+χ(A∩B) = χ(A)+χ(B). Let A be Rd with a D×
Sd−2 removed. Let B = D× Sd−2 be a closed set. From the inclusion/exclusion principle,

it follows that removing the D×Sd−2 subtracts a χ(Sd−2) from the Euler characteristic of

the original space A ∪B.

There is a sense in which introducing a boundary was not helpful. Often in these types

of computations, knowing the value of a difference like W[δµν , e
−2σδµν ] is useful because

there are symmetry reasons to believe that for the reference background W̃ [δµν ] will vanish.

Here, precisely because we had a boundary, W̃ [δµν ] did not vanish. As a result, we needed

an independent way of calculating W̃ [δµν ], and in fact, when the dust settled, we saw that

we only needed to calculate W̃ [δµν ]. Everything else canceled.

That W̃ [δµν ] gives the right answer could perhaps have been anticipated. From ref. [7],

it is known at least in four dimensions that the a dependent contribution to the entangle-

ment entropy for a general entangling surface Σ is proportional to the Euler characteristic

of that surface, SE ∼ 2aχ(Σ) ln(δ/`). The fact that W̃ [δµν ] gives us the entanglement

entropy in our case could be viewed as confirmation of ref. [7] in the case when Σ is a

sphere. It is not too much of a stretch to imagine that in general even d, the a dependent

part of the entanglement entropy will be SE ∼ (−1)d/22aχ(Σ)(ln δ/`). Indeed, there are

arguments to this effect in refs. [50, 51]. That we are confirming in d = 4 a specific case

of a more general result is reassuring because evaluating W̃ [δµν ] involves taking limits in a

problematic order, as we already described above, first fixing the metric and then taking

the number of dimensions n→ d.

Before proceeding, we write down an expression for the thermal partition function

WH = − lnZH on Hd−1 at temperature T = 1/(2π`) whose logarithmic pieces agree with

the results above

WH = a
4π`

(4π`2)d/2
(
d
2

)
!

[
Γ(d)− 2d−1Γ

(
1 +

d

2

)
Γ

(
d

2

)]
Vol(Hd−1) + . . . . (5.25)

The first term is proportional to 〈H〉 and the second term gives the entanglement entropy.

The quantity in brackets is A160481 in the Online Encyclopedia of Integer Sequences [53].

5.4 A different conformal transformation: de Sitter spacetime

As we just saw, computing the entanglement entropy of a ball using the map to hyper-

bolic space is a rather intricate calculation that boils down, at the end of the day, to a

computation in flat space of W̃ [δµν ]. In some sense, then, the conformal transformation is
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unnecessary and does not give us extra information. We can try to see this phenomenon in

a different example, a map from the causal development of the ball in flat space to the static

patch of de Sitter spacetime. Ref. [14] already used this map in a successful calculation

of the universal term in the entanglement entropy across a sphere, but we should revisit

this computation in light of our boundary terms. In the Euclidean version of this map, the

target space is an even-dimensional sphere Sd with no boundary. Naively, we can ignore

boundary terms. Nevertheless, the Weyl scale factor is not well behaved everywhere, and

to be rigorous, we can introduce an artificial boundary to regulate its divergences.

The metric η on Minkowski space is related by a Weyl rescaling to the metric on the

static patch of de Sitter

η = −dt2 + dr2 + r2dΩ2
d−2

= e2σ
[
− cos2 θdτ2 + `2(dθ2 + sin2 θ dΩ2

d−2)
]
,

(5.26)

where

σ = − ln
(
1 + cos θ cosh(τ/`)

)
, (5.27)

and 0 < θ < π/2 while −∞ < τ <∞. The coordinates are related via the transformation

t = `
cos θ sinh(τ/`)

1 + cos θ cosh(τ/`)
,

r = `
sin θ

1 + cos θ cosh(τ/`)
.

(5.28)

The causal development of the ball, cut out by ` = ±(t − r) and ` = ±(t + r) is mapped

to e±τ/` = tan
(
θ
2 −

π
4

)
. In the Euclidean version of this map τ → iτE , the boundary is

reduced to the point (τE , θ) = (0, π/2). In contrast to the map to hyperbolic space where

the boundary of the causal development mapped to the boundary of Hd−1, here the point

(0, π/2) is a smooth interior point of the Sd. The bulk integrals will not diverge here, and

we do not need to introduce a regulated boundary.

In contrast, the Weyl scaling factor σ is divergent at the point (π`, 0), and technically

we should regulate the anomaly action by introducing a boundary here. To do so, we

introduce a local coordinate system in the vicinity of the point (π`, 0), θ ≈ ρ sinφ and

τE/`− π ≈ ρ cosφ where 0 < φ < π in order to keep θ > 0. Near this point, the metric on

flat space can be written

η ≈ 4

ρ4
(dρ2 + ρ2dφ2 + ρ2 sin2 φ dΩ2

d−2) . (5.29)

Introducing a boundary at ρ = δ � 1, the nonzero components of the extrinsic curvature

are Kα
β = ρ

2δ
α
β . It follows that∫

∂M
Qd =

(∫ π

0
sind−2 dφ

)(∫ 1

0
(1− s2)ds

)
Vol(Sd−2) d! 2 ln δ

=
2πd!

d− 1
ln δ .

(5.30)
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It is then straightforward to see that the logarithmic contribution to W̃ [δµν ] and the bound-

ary logarithmic contribution to W[δµν , e
−2σδµν ] are identical. Moreover, these logarithmic

contributions are the same as was found using a different boundary and the map to hy-

perbolic space. This equivalence is not surprising since the contributions are topological in

nature, and the boundaries, though different, are still topologically the same.

As already mentioned in ref. [14], the Casimir energy in de Sitter spacetime does

not contribute to the logarithmic divergence and the full logarithmic term of the en-

tropy is dictated by the partition function evaluated in the curved metric. The expression

W[δµν , e
−2σδµν ] has bulk contributions from de Sitter and from the ball but also, now in

light of our results, a boundary contribution from the surface ρ = δ. Ref. [14] got the right

answer purely from the bulk contribution to W[δµν , e
−2σδµν ]. As follows from the previous

paragraph, had they computed the boundary contribution as well, they would have found,

like us, that 2π`〈H〉+W[δµν , e
−2σδµν ] has no logarithmic contribution and that the entire

log contribution can be attributed to W̃ [δµν ]. For example, using our explicit anomaly

action in d = 4, we find

W
[
δµν , e

−2σδµν
]
|Bulk ∼

a

(4π)2
16π ln δVol(S2) = 4a ln δ , (5.31)

where we integrate only from −π`+ δ < τE < π`− δ.
Interestingly, though, the bulk contribution to W[δµν , e

−2σδµν ] considered in ref. [14]

did give the correct answer for the entanglement entropy on its own. Similarly, in our

case of the map to hyperbolic space, we could have thrown out the equal and opposite

contributions from W[δµν , e
−2σδµν ]|Boundary and W̃ [δµν ] and also gotten the correct an-

swer purely from W[δµν , e
−2σδµν ]|Bulk. As the split between bulk and boundary terms in

W[δµν , e
−2σδµν ] is arbitrary up to a choice of which total derivatives to include in the bulk

action, getting the correct answer from W[δµν , e
−2σδµν ]|Bulk alone appears to be a coinci-

dence. In fact, at least regarding logarithmic terms, we have specified a separation between

bulk and boundary terms by insisting that the only place in which τ appears without a

derivative in the boundary action is multiplying Qd. This split has the advantage of giving

the boundary contribution a topological interpretation when the reference metric is flat.

Indeed, given this choice, it becomes manifest for the two maps we considered that both

W[δµν , e
−2σδµν ]|Boundary and W̃ [δµν ] will yield the Euler characteristic of the flat space

multiplied by a logarithm of the UV cut-off.

6 Discussion

We resolved the puzzle described in ref. [14]: the universal logarithmic term in the en-

tanglement entropy (1.2) across a sphere in flat space (for a conformal theory) can be

recovered by a Weyl transformation to hyperbolic space, provided one keeps careful track

of boundary terms. One interesting consequence of our results is that the logarithmic term

can be interpreted as a purely boundary effect. With the help of the conformal map to

hyperbolic space cross a circle, focusing on the universal part, we identify the logarithmic

contribution to the entanglement entropy SE and the dimensionally regularized effective
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action W̃ [δµν ]:

SE ≡ − tr(ρA ln ρA) ∼ −W̃ [δµν ] , (6.1)

where W̃ [δµν ] is given by eq. (3.61). W̃ [δµν ] corresponds to a dimensionally continued

Euler characteristic of the causal development of the interior of the sphere, a ball, which

in turn receives contributions purely from the spherical boundary of the ball since the

Riemann curvature and hence the Euler density vanish in flat space. The leading area law

divergence in the entanglement entropy is also usually interpreted to be a boundary effect:

entanglement entropy scales with the area of the boundary because in the ground state

most of the entanglement is assumed to be local. But here we see that the subleading

logarithmic divergence is also a boundary effect. Perhaps this result should have been

anticipated since both divergences are regulated by a short distance cut-off δ, which one

could think of as the distance between lattice points on either side of the boundary.

As we discussed in section 5, that W̃ [δµν ] on its own gives the correct answer for the

log term in the entanglement entropy across a sphere can be viewed as a special case of

Solodukhin’s result [7] using a squashed cone in d = 4 that the a contribution to the

entanglement entropy across a general surface Σ can be written

SE ∼ 2aχ(Σ) ln(δ/`) . (6.2)

For non-spherical entangling surfaces, there will of course be other contributions to SE , for

example from the cj central charges. While we are not aware of a derivation (refs. [50, 51]

come close but ultimately only consider the sphere case), it seems reasonable that in general

dimension, the only modification needed to make this formula correct in our conventions

is a factor of (−1)d/2.

In the process of resolving this puzzle, we produced a number of auxiliary results

which are interesting in their own right. In two dimensions, where the trace anomaly

is perhaps most powerful, we were able to use an effective anomaly action to reproduce

three well-known results in conformal field theory, namely the Schwarzian derivative, the

entanglement entropy of an interval, and also the Rényi entropies for the interval. Neither

the effective anomaly action we use nor the results are new. However, we have not seen our

form of the effective anomaly action used to derive these three results before.8 Additionally,

the story in two dimensions provides a simple warm-up example for the story in general

dimension which we pursued next.

Between d = 4 and d = 6, our story is the most complete in d = 4. In four dimensions,

we derived from general principles the most general Wess-Zumino consistent result for the

trace anomaly on a manifold with a codimension one boundary, including two boundary

central charges we denoted b1 and b2. It would be interesting to study b1 and b2 further (as

well as their counter-parts in higher dimensions). What values9 do they take for massless

fermions? for a gauge field? for superconformal field theories? Might they be ordered

under renormalization group flows, like the coefficient a?

8See however ref. [29] for a similar calculation.
9Note added. Shortly after the first version of this paper appeared on the arXiv, these boundary

central charges for fermions and gauge fields were computed in d = 4 in ref. [52].

– 33 –



J
H
E
P
0
1
(
2
0
1
6
)
1
6
2

Another pair of key results in this paper are explicit formulae with boundary terms

for the a contribution to the effective anomaly action in d = 4 and d = 6 dimensions.

Previously, to our knowledge, only the bulk contribution had been worked out [8, 17, 18].

Unfortunately, in d = 6, we were only able to detail the boundary contribution to the

action for a conformally flat metric. The conformally flat case was enough to study the

entanglement entropy across a sphere. Nevertheless, it would be nice to write down the

boundary contribution for a general metric.

It would also of course be interesting to see if the a contribution to the effective

anomaly action can be given an explicit and simple form in any dimension. That the sphere

entanglement comes solely from W̃ [δµν ] depended on cancellation between the Casimir

energy 〈H〉 and the effective anomaly action W[δµν , e
−2σδµν ] that we were only able to

verify explicitly in d = 2, 4 and 6. In general even dimension, we were hampered by

non-commuting limits that forced us to fix d before choosing a metric in order to calculate

W[δµν , e
−2σδµν ].

In appendix D we reproduce the holographic computation of the sphere entanglement

entropy using hyperbolic space. Holographic renormalization allows us to write down a

regulated effective action WH for S1×Hd−1 itself without need for a reference background.

Thus we are saved the trouble that we faced with our dilaton effective action of needing to

compute W for the reference background.

Another interesting result of the holographic calculation is the vanishing of the second

derivative of the effective action WH (D.12). While experience suggests that the result is

the consequence of a Maxwell relation combined with scale invariance, we have not been

able to prove the vanishing for a general conformal field theory.

Finally, in this paper we mostly adopted the dimensional regularization to construct

W. It would be interesting to construct W using the integral formula (3.17).
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A Differential geometry with a boundary

Let M be a d-dimensional, orientable, Riemannian manifold with metric g. In general M

will have a boundary ∂M . We use xµ to indicate coordinates on patches of M and yα for

coordinates on patches of ∂M . The boundary can be specified by means of the embedding

functions Xµ(yα). These do not transform as tensors under reparameterizations in M , but

their derivatives

fα
µ ≡ ∂αXµ, (A.1)

do. Rather, the fµα transform as a vector under reparameterizations of the xµ and as a

one-form under reparameterizations of the yα. The fµα allow us to pull back covariant
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tensors on M to covariant tensors on ∂M . For instance, the metric g pulls back to the

induced metric γ with components

g̊αβ(y) = fα
µ(y)fβ

ν(y)gµν
(
X(y)

)
. (A.2)

We also define

fαµ ≡ gµνγαβfβν , (A.3)

which satisfies

fαµfβ
µ = δαβ , fαµfα

ν ≡ hνµ , (A.4)

with hµν a tangential projector. We can also define a unit-length vector field nµ after

picking an orientation on ∂M via

nµ =
1

(d− 1)!
εµν1...νd−1

εα1...αd−1fα1
ν1 . . . fαd−1

νd−1 . (A.5)

Throughout we take the orientation on ∂M to be such that nµ is always pointing outward.

A.1 The covariant derivative and the second fundamental form

We use the Levi-Civita connection built from g to take derivatives D on M . From this

connection we construct a connection on ∂M that allows us to take derivatives D̊ of tensors

on ∂M . D̊ acts on e.g. a mixed tensor Tµα via

D̊αT
µ
β = ∂αT

µ
β + ΓµναT

ν
β − Γ̊γβαT

µ
γ , (A.6)

with

Γµνα = Γµνρfα
ρ , Γ̊αβγ = fαµ(∂γδ

µ
ν + Γµνc)fβ

ν . (A.7)

It is easy to show that Γ̊αβγ is the Levi-Civita connection constructed from the induced

metric γαβ , and furthermore that the derivative satisfies

D̊αgµν = 0 , D̊αγβγ = 0 . (A.8)

There is a single tensor with one derivative that can be built from the data at hand,

namely the second fundamental form IIµαβ ,

IIµαβ ≡ D̊αfβ
µ. (A.9)

One can show that

IIµαβ = IIµβα , hµνIIναβ = 0 , (A.10)

and the latter implies that

IIµαβ = −nµKαβ , (A.11)

where Kαβ is the extrinsic curvature of the boundary. From this and nµD̊αn
µ = 0 we

also find

D̊αnµ = fβµKαβ . (A.12)
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Let us relate this presentation to the more common one in terms of Gaussian normal

coordinates. For some patch on M which includes a patch of ∂M , we choose coordinates

so that g takes the form

g = dr2 + ĝαβ(r, y)dyαdyβ , (A.13)

where the boundary is extended in the yα at r = 0. That is, the embedding functions are

fα
r = 0, fα

β = δβα, and consequently the induced metric is

γαβ(y) = ĝαβ(r = 0, y) . (A.14)

In this coordinate choice we have

nr = 1 , IIrαβ = Γrαβ = −1

2
∂rĝαβ

∣∣
y=0

. (A.15)

Note that the trace of the extrinsic curvature, K = γαβKαβ is

K =
1

2
ĝαβ∂rĝαβ

∣∣
r=0

=
£n
√
ĝ√
ĝ

∣∣∣∣
r=0

, (A.16)

with £n the Lie derivative along nµ, which coincides with a common formula used by

physicists for the extrinsic curvature of a spacelike boundary.

A.2 Gauss and Codazzi

Consider the Levi-Civita connection one-form Γµν = Γµνρdx
ρ and its curvature

Rµν = dΓµν + Γµρ ∧ Γρν =
1

2
Rµνρσdxρ ∧ dxσ. (A.17)

Here Rµνρσ is the Riemann curvature which can also be defined through the commutator

of derivatives

[Dρ,Dσ]vµ = Rµνρσv
ν , (A.18)

for vµ a vector field. The pullback of Rµν to ∂M can be expressed in terms of the curvature

R̊µν of Γ̊ and the second fundamental form. The resulting expressions are the Gauss and

Codazzi equations. They can be summarized as

P[Rµν ] = R̊αβfα
µfβν + D̊Mµ

ν −Mµ
ρ ∧Mρ

ν , (A.19)

where D̊ is the covariant exterior derivative and

Mµ
ν = IIµαf

α
ν − fαµIIν

α, IIµα ≡ IIµαβdyβ . (A.20)

Alternatively, we can define

Γ̃µν = Γµναdyα −Mµ
ν , (A.21)

whose curvature satisfies

R̃µν = R̊αβfα
µfβν . (A.22)

In components, the Gauss and Codazzi equations read

Rαβγδ = R̊αβγδ −KαγKβδ +KαδKβγ ,

Rµαβγn
µ = −D̊βKαγ + D̊γKαβ ,

(A.23)

and we have used the embedding scalars to convert indices on the bulk Riemann tensor

into indices on ∂M .
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B Wess-Zumino consistency in d = 4

We now perform the algorithm described in subsection 3.4, beginning with step 1. We need

to parameterize the most general variation of W , which we denote as δσWb. After some

computation, we find that this variation contains sixteen independent terms10

δσWb =

∫
∂M

d3y
√
γ

{ 8∑
I=1

bIBI +
8∑

J=1

BJDJ
}
δσ , (B.1)

indexed by the eight bI and eight BJ . (The coefficients bI and BJ are used to denote

boundary central charges.) We organize the terms in the following way. The eight BI are

three-derivative scalars. The eight DJ all involve derivatives of the Weyl variation δσ, and

so we denote them with a calligraphic D to suggest a derivative. We distinguish the BI
and DJ for two reasons. First, the allowed three-derivative counterterms are given by the

BI . Second, we will see shortly that those local counterterms redefine the coefficients of

the DJ .

In any case, the BI are

B1 = R̊K , B2 = RK , B3 = R̊αβK
αβ , B4 = trK3,

B5 = K3, B6 = nµ∂µR , B7 = tr K̂3, B8 = Wαβγδγ
αγK̂βδ.

(B.2)

Here Wαβγδ is the pullback of the Weyl tensor to the boundary, and we have defined K̂ to

be the traceless part of the extrinsic curvature,

K̂αβ ≡ Kαβ −
K

d− 1
γαβ , (B.3)

which transforms covariantly under Weyl rescaling as K̂αβ → eσK̂αβ . B7 and B8 are then

manifestly covariant under Weyl rescaling. They are the only nonzero scalars that can be

formed from either three factors of K̂, or one factor of K̂ and one of the Weyl tensor. They

cannot be eliminated by the addition of a local counterterm and are trivially Wess-Zumino

consistent, and so represent genuine boundary anomalies. The tr(K̂3) term first appeared

in ref. [36], while the Wαβγδγ
αγK̂βδ term appeared later in ref. [37, 38]. The DJ are

D1 = �̊K , D2 = D̊αD̊βK
αβ , D3 = R̊nµ∂µ , D4 = Rnµ∂µ .

D5 = KαβK
αβnµ∂µ , D6 = K2nµ∂µ , D7 = KnµnνDµDν , D8 = nµnνnρDµDνDρ .

(B.4)

Continuing with step 2, the most general local boundary counterterm is

WCT =

∫
∂M

d3y
√
γ

6∑
I=1

dIBI . (B.5)

The dI represent a choice of scheme. They can be adjusted to eliminate various coefficients

in δσWb. We would like to deduce which coefficients can be eliminated. This is an exercise

10In compiling the list of these sixteen terms, we have made extensive use of the Gauss and Codazzi

equations (3.51). We also use that the action of nµDµ is only well-defined on bulk tensors.
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in linear algebra. As
√
γB7 and

√
γB8 are invariant under Weyl rescalings, we do not

include them in WCT. The Weyl variation of WCT may then be understood as a linear

map Σ : R6 → R8 which maps the {BI} (for I = 1, . . . , 6) to the {DJ} as

δσ

∫
∂M

d3y
√
γ BI =

∫
∂M

d3y
√
γ

8∑
J=1

ΣJ
IDJδσ . (B.6)

The number of DJ which can be eliminated is given by the dimension of the image of

Σ, and the null vectors of Σt encode the linear combinations of the DJ which cannot be

removed by a judicious choice of scheme.

A straightforward computation gives

Σ =



−4 −6 −1 0 0 6

0 0 −1 0 0 0

3 0 1 0 0 −3

0 3 0 0 0 1

0 0 0 3 0 3

0 −6 0 0 9 3

0 −6 0 0 0 −6

0 0 0 0 0 −6


. (B.7)

The map Σ is injective, so six of DJ can be eliminated. The null vectors of Σt are given by

χ1 =
(

3 1 4 0 0 0 −3 4
)
, χ2 =

(
0 0 0 6 0 0 3 −2

)
, (B.8)

so the image of Σ is given by R8 modulo the R2 spanned by χ1 and χ2. In terms of the

DJ , the linear combinations

3D1 +D2 + 4D3 − 3D7 + 4D8 , 6D4 + 3D7 − 2D8 , (B.9)

are never generated from the variation of WCT. Said another way, the dI can be adjusted

to eliminate all of the DJ except for D1 and D4. So the most general boundary Weyl

variation, having modded out by local counterterms, is

δσWb =

∫
∂M

d3y
√
γ

{ 8∑
I=1

bIBI +B1�̊K +B4Rn
µ∂µ

}
δσ . (B.10)

Now we implement step 3, by computing the second Weyl variation. The second

variations of B1δσ2 through B8δσ2 follow (almost) immediately from the δσWCT that we

computed above. Let us then consider carefully the second Weyl variation of the terms

proportional to B1 and B4. From these terms we get

δσ1δσ2Wb =

∫
∂M

d3y
√
γ
{
B1

(
3(nµ∂µδσ1)(�̊δσ2) + 2K(∂αδσ1)(∂αδσ2)

)
− 6B4(nµ∂µδσ2)(�̊ + nνnρDνDρ +Knν∂ν)δσ1 + . . .

}
, (B.11)
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where the ellipsis denotes terms that depend on b1 through b6. The only terms with a nor-

mal derivative of δσ2 come from B4. Given that fact, it is impossible to symmetrize under

δσ1 ↔ δσ2 the term involving one normal derivative of δσ2 and two normal derivatives of

δσ1. Thus Wess-Zumino consistency forces B4 = 0.

It is slightly more involved to see that B1 must vanish. First, observe that the B6

term is the only one which produces a second variation δσ2D8δσ1, which has three normal

derivatives and is not symmetric under δσ1 ↔ δσ2 and so is not WZ consistent. So b6 = 0.

In fact, the same sort of reasoning tells us that b2 = b4 = b5 = 0 and that b3 is proportional

to b1 as b3 = −3b1. In terms of the remaining parameters b1, B1, the second Weyl variation

is simply

δσ1δσ2Wb =

∫
∂M

d3y
√
γ
{

3b1δσ2K̂
αβD̊αD̊βδσ1 +B1

(
3(nµ∂µδσ1)(�̊δσ2) + 2K(∂αδσ1)(∂αδσ2)

)}
.

(B.12)

This expression is not symmetric under δσ1 ↔ δσ2 for any nonzero value of b1 and B1, and

so WZ consistency enforces that they both vanish b1 = B1 = 0.

The only “boundary central charges” that survive are b7 and b8, and the boundary

term in the anomaly is

δσWb =

∫
∂M

d3y
√
γ
{
b7 tr K̂3 + b8γ

αγK̂βδWαβγδ

}
. (B.13)

Putting the pieces together, the total anomaly is given by (3.56) as advertised in subsec-

tion 3.4. In the text, we relabel: b7 → b1 and b8 → b2.

C Effective action from dimensional regularization

In this appendix we consider the anomaly effective action W in even d dimensions as

obtained from dimensional regularization via the expression (3.62), which we recall here

W
[
gµν , e

−2τgµν
]

= A lim
n→d

1

n− d

{(∫
M
En,m −

∫
∂M
Qn,m

)
−
(∫

M
Ên,m −

∫
∂M
Q̂n,m

)}
,

(C.1)

where m = d/2 and A = (−1)d/24a/(d! Vol(Sd)). Here we obtain the explicit forms of W
in d = 4, 6 including boundary terms. (In d = 6 the boundary action will be evaluated

in a conformally flat geometry.) The bulk dilaton effective actions can be found in the

literature; the boundary terms to our knowledge are new results.

We begin with the Lipschitz-Killing curvature En,m and the associated boundary term

Qn,m defined in (3.59) and (3.60) respectively. Denote the densities associated with these

forms as En,m and Qn,m. The first step in evaluating the expression (3.62) for W is to

deduce how En,m and Qn,m change under Weyl rescalings. Starting with the metric gµν
and performing a Weyl transformation to ĝµν = e−2τgµν , the transformed curvatures Ên,m
and Q̂n,m are√

ĝ Ên,m =
√
g e−(n−d)τ

{
Ed + DµJ

µ + (n− d)G+O(n− d)2
}
,√

γ̂ Q̂n,m =
√
γ e−(n−d)τ

{
Qd + nµJ

µ + D̊αH
α + (n− d)B +O(n− d)2

}
,

(C.2)
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where it remains to determine Jµ, G, Hα, and B. Note that, in the n → d limit, (C.2)

implies

lim
n→d

(∫
M
Ên,m −

∫
∂M
Q̂n,m

)
= lim

n→d

(∫
M
En,m −

∫
∂M
Qn,m

)
, (C.3)

which is just a consequence of the fact that the Euler characteristic is a topological in-

variant and so is invariant under Weyl rescalings. This has the practical effect that the

dimensionally regulated formula (3.62) for W is well-defined. From (C.2) we see that the

integrand of (C.1) is√
ĝ Ên,m −

√
g En,m =

√
g
{

DµJ
µ − (n− d)

(
τEd − Jµ∂µτ −G+ Dµ(τJµ)

)
+O(n− d)2

}
,√

γ̂ Q̂n,m −
√
γ Qn,m =

√
γ
{
nµJ

µ + D̊αH
α − (n− d)

(
τQd + τ(nµJ

µ + D̊αH
α)−B

)
+O(n− d)2

}
.

In order to write W in as simple a way as possible, it will be useful to decompose G as

G = G0 + DµK
µ, (C.4)

for some current Kµ. Putting the pieces together, we find that the anomaly action W is

W
[
gµν , e

−2τgµν
]

= A

(∫
M

ddx
√
g
{
τEd − Jµ∂µτ −G0

}
−
∫
∂M

dd−1y
√
γ
{
τQd −Hα∂ατ −B + nµKµ

})
.

(C.5)

We see that besides obtaining B and G defined in (C.2), we also need to determine Jµ, Kµ

and Hα.

C.1 d = 4

To obtain the bulk action in d = 4, we find that Jµ is

Jµ = −8
{
Eµν∂ντ + (Dµ∂ντ)∂ντ + (∂µτ)(∂τ)2 − (�τ)∂µτ

}
, (C.6)

and we find it useful to split G into G0 and Kµ as

Kµ =
3

2
Jµ + 4Eµν∂ντ ,

G0 = 4Eµν(∂µτ)(∂ντ)− 8�τ(∂τ)2 + 6(∂τ)4.
(C.7)

We find that the boundary data Hα and B are given by

Hα = 8
{(
Kαβ − γαβK

)
∂βτ + τn∂

ατ
}
,

B = nµKµ + 4D̊α

{
∂βτ

(
Kαβ − γαβK

)}
− 4
(
Kαβ − γαβK

)
(∂ατ)(∂βτ)

− 8(D̊τ)2τn −
8

3
τ3
n ,

(C.8)

where we have denoted the normal derivative of τ as τn ≡ nµ∂µτ . Substituting these

expressions into the general formula (C.5) for W, we find the result (4.4) quoted in sub-

section 4.1.
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C.2 d = 6

After some tedious computation, we find that the current Jµ in d = 6 for general gµν is

given by

Jµ(6d) = Jµ1 + Jµ2 + Jµ3 + Jµ4 + Jµ5 , (C.9)

where Jµn contains n powers of τ , and

Jµ1 = 6E(2)µ
ν (∂ντ) ,

Jµ2 = 48Eµν
(
(Dρ∂

ντ)(∂ρτ)− (∂ντ)�τ
)

+ 48Rµρνσ(∂ντ)(Dσ∂ρτ)

+ 48Rνρ
(
(∂ντ)(Dρ∂µτ)− (Dρ∂ντ)(∂µτ)

)
,

Jµ3 = 48Eµν (∂ντ)(∂τ)2 + 48(∂µτ)(�τ)2 − 96�τ(∂ντ)(Dν∂
µτ) (C.10)

+ 96(∂ντ)(Dρ∂ντ)(Dρ∂µτ)− 48(D∂τ)2(∂µτ) ,

Jµ4 = −144(∂τ)2�τ(∂µτ) + 144(∂τ)2(∂ρτ)(Dρ∂µτ) ,

Jµ5 = 144(∂τ)4(∂µτ) .

The quantities E(2)µν and Cµνρσ are defined in (4.7).

We have also computed G for a general metric gµν . We split it into G0 and Kµ so that

the bulk part of the anomaly action W matches the expression obtained in ref. [17]. The

resulting Kµ is

Kµ =
11

6
Jµ − 5E(2)µν∂ντ + 16Eµν

(
(∂ντ)�τ − (Dρ∂ντ)(∂ρτ)

)
+ 16Cµνρσ(Dρ∂ντ)(∂στ)

+ 48(Dµ∂ντ)(∂ντ)(∂τ)2 + 72(∂τ)4(∂µτ)− 48(∂τ)2�τ(∂µτ) , (C.11)

and the expression for G0 is too lengthy to be worth writing here. It can be deduced by

comparing the general expression for W given in (C.5) with the bulk part of the anomaly

action in (4.8), using the formulae for Jµ and Kµ above.

Similarly we decompose Hα into powers of τ as

Hα = Hα
1 +Hα

2 +Hα
3 +Hα

4 . (C.12)

The computation on the boundary becomes much more tedious. We have computed B

in general but its expression is too lengthy to present here. We have not yet succeeded

in finding the current Hα when for a general metric gµν . When ĝµν is conformally flat,

ĝµν = e−2τδµν , we find

Hα
1 = 48Pαβ ∂

βτ + 6Q4[δµν ]∂ατ ,

Hα
2 = 48Kα

β (∂βτ)�̊τ − 48Kα
β (D̊γ∂

βτ)(∂γτ)− 48K(∂ατ)�̊τ

+ 48Kβ
γ (D̊γ∂βτ)(∂ατ) + 48K(∂βτ)(D̊α∂βτ)− 48Kβ

γ (D̊α∂βτ)(∂γτ) ,

Hα
3 = −48Kα

β (∂βτ)(D̊τ)2 + 48K(D̊τ)2(∂ατ) + 48Kτ2
n(∂ατ)− 48τ2

nK
α
β (∂βτ)

+ 96τn�̊τ(∂ατ)− 96τn(D̊α∂βτ)(∂βτ) ,

Hα
4 = −144τn(D̊τ)2∂ατ − 48τ3

n(∂ατ) ,

(C.13)

where we defined Pαβ in (4.10). Using the expressions present above and the general

expression for the boundary term of W in (C.5), we obtain the explicit form in d = 6 given

in (4.9).
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D Holographic calculation

In this appendix, we study d-dimensional conformal field theories with a dual gravitational

description via the AdS/CFT correspondence. We then use the correspondence to compute

the thermodynamics of these conformal field theories when they live on a hyperbolic space

Hd−1 with radius of curvature ` at temperature T . In the special case T = 1/(2π`), we

will be able to compare with the previous anomaly calculations.

Much of the following calculation can be found already in ref. [54] and [14]. In par-

ticular, the expression for the thermal entropy on Hd−1 at temperature T = 1/(2π`) in

terms of a is given in section 3 of [14]. Our new result is the thermal partition function on

hyperbolic space at any temperature and in any d.

We start with the usual bulk plus Gibbons-Hawking plus counterterm action for these

holographic calculations (see for example ref. [55]):

S = Sbulk + Ssurf + Sct ,

Sbulk = − 1

2κ2

∫
M

dd+1X
√
−G
{
R+

d(d− 1)

L2

}
,

SGH = − 1

κ2

∫
∂M

ddx
√
−g K ,

SCT =
1

2κ2

∫
∂M

ddx
√
−g
[

2(d− 1)

L
+

L

d− 2
R

+
L3

(d− 4)(d− 2)2

(
RµνRµν −

d

4(d− 1)
R2

)
+ . . .

]
.

(D.1)

We denote the bulk metric as G, bulk coordinates as X, and R is the bulk scalar curva-

ture. The bulk spacetime M is asymptotically AdS, and so the on-shell Einstein-Hilbert

action Sbulk diverges owing to the infinite volume “near” the AdS boundary. To compute

thermodynamic quantities, we must holographically renormalize the bulk gravity. In the

usual way, we introduce a “cutoff surface” ∂M near the AdS boundary; the induced metric

on the cutoff surface is g, coordinates on it are denoted as xµ, and Rµνρσ refers to the Rie-

mann tensor constructed from g. We introduce the Gibbons-Hawking term on this cutoff

surface, along with various counterterms SCT, and ultimately take the limit where we send

the cutoff surface to the AdS boundary. The counterterms are tuned so that this limit

exists.

To obtain the thermodynamic partition function WH = − lnZH on hyperbolic space,

we first identify the gravitational solution dual to the thermal state on hyperbolic space,

namely the AdS-black hole with hyperbolic boundary. We then Wick rotate the bulk

spacetime to Euclidean signature and compute the on-shell, holographically renormalized,

Euclidean action.

The AdS-black hole metric with hyperbolic boundary is a solution to the equations of

motion:

G = −
(
r2

L2
f(r)− 1

)
L2

`2
dt2 + r2(du2 + sinh2 u dΩd−2) +

dr2

r2

L2 f(r)− 1
, (D.2)
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with f(r) = 1−m/rd where m is an integration constant related to the temperature. The

constant m can be expressed in terms of the horizon radius rh: m = (r2
h − L2)rd−2

h . In

terms of the horizon radius, the temperature is

T =
1

β
=
r2
hd− (d− 2)L2

4πL`rh
, (D.3)

which can be inverted to give the horizon radius as a function of β:

rh
L
d =

2π`

β
+

√
d(d− 2) +

(
2π`

β

)2

.

Note that at m = 0, the metric becomes that of pure AdS with a hyperbolic slicing, and

the horizon radius is the same as the radius L of curvature of AdS. The temperature at

this point is T = 1/(2π`), and the black hole is “topological” in the sense that it is simply

a causal horizon.

The most direct way to check the entanglement entropy calculation is to compute the

area of the black hole horizon and use the Bekenstein-Hawking area law for black hole

entropy. One finds straightforwardly that

SBH =
2πrd−1

h

`d−1κ2
Vol(Hd−1) , (D.4)

where the hyperbolic space has radius of curvature `. This entropy diverges for the simple

reason that hyperbolic space has infinite volume, in the same way that the total entropy

in flat space diverges. However, unlike in flat space, we may appropriately regulate the

volume of Hd−1 and thereby identify a universal logarithmic term in Vol(Hd−1) as in (5.9).

To check the calculation of the entanglement entropy across a sphere in flat space, we work

with the “topological” black hole at T = 1/(2π`) with horizon radius rh = L.

To compare the holographic entropy result (D.4) with field theory, we need an expres-

sion relating a to the gravitational coupling constant κ in general dimension:

a =
1

2
Vol(Sd−1)

Ld−1

κ2
. (D.5)

This relation is consistent with the holographic Weyl anomaly computed in d = 2, 4 and 6

dimensions in ref. [56]. In general d, this relation can be extracted from ref. [57].11 As we

11It is straightforward to derive eq. (D.5) by placing the field theory on an Sd, computing the Euclidean

partition function and using the relation

WSd = − lnZSd = (−1)d/24a ln(µ`) + . . . ,

where µ is an energy scale introduced in the course of defining the theory. The “sphere free energy” WSd

is equal to the holographically renormalized, on-shell action S evaluated on the asymptotically hyperbolic

metric with Sd boundary,

G = r2`2dΩ2
d + L2 dr2

r2 + L2/`2
.

The logarithmic ambiguity in S arises purely from a logarithmic divergence in the on-shell bulk action

Sbulk at large r, and using some of the same steps we employ below to compute the partition function on

S1 ×Hd−1, we find eq. (D.5).
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did in the previous section, we now extract the logarithmic contribution to Vol(Hd−1) and

use the formula (D.5) for a to obtain

SBH = SE = . . .+ (−1)d/24a ln
δ

`
+ . . . (D.6)

in agreement with the universal result (1.2). This holographic result was also obtained

in [14] although their result is stronger as it allows for higher derivative curvature correc-

tions to the gravity action.

We are also interested in looking at the partition function WH which can be equated

holographically to the on-shell value of the gravity action on the Euclidean version of (D.2).

Einstein’s equations imply that the Lagrangian density evaluates to

R+
d(d− 1)

L2
= − 2d

L2
(D.7)

on shell. To avoid a lengthy discussion of counter-terms, we note that because the time

direction in the boundary is flat, the counterterms can depend on rh only through the

metric determinant
√
g. It is therefore convenient to divide out a factor of

√
−gtt from

on-shell quantities. The bulk and Gibbons-Hawking actions evaluate to

Sbulk + SGH

`
r

√
−gtt

=

[
(d− 1)

(
r

L

)d√
1−

(
L

r

)2

− 1

2

(
rh
L

)d
− 1

2

(
rh
L

)d−2

+O(r−2)

]
× βLd−1 Vol(Hd−1)

`κ2
.

(D.8)

The counterterms should be whatever they need to be to cancel the divergent factors

coming from the square root. By dimensional analysis, a counterterm with 2n derivatives

of the boundary metric will cancel a divergence at O(rd−2n). In a minimal counterterm

prescription where we add no finite terms with d derivatives, e.g. (Rµνρσ)d/2, expanding

out the square root, the on-shell action is

WH = −

[
(d− 1)!

2d−1
(
d
2

)
!
(
d−2

2

)
!
− 1

2

(
rh
L

)d
− 1

2

(
rh
L

)d−2
]
βLd−1 Vol(Hd−1)

`dκ2
. (D.9)

We have the partition function as a function of β and ` and not just in the “topological”

limit β = 2π`.

It is straightforward to verify the black hole entropy calculation above using standard

thermodynamic identities. We can compute the thermal energy from the effective action

by taking a β derivative:

〈H〉 = −∂WH

∂β
. (D.10)

The black hole entropy is then SBH = β〈H〉 −WH , in agreement with the event horizon

area (D.4). Note that the energy and WH itself are ambiguous quantities. The first term

in WH can be altered if we decide to add a local counterterm like (Rµνρσ)d/2. Because the
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first term is linear in β, the energy suffers a similar ambiguity, but this scheme-dependence

drops out of the black hole entropy.

Because not all field theories have classical gravity duals, this partition function will

not hold generally, but we can compare with the other parts of the paper when β = 2π`.

In the “topological” case, making use of the expression (D.5) for a, we see that WH agrees

with the general CFT result (5.25). Interestingly, the derivative of the rh dependent terms

of WH with respect to β vanishes at β = 2π`. Thus the entire contribution to the energy

comes from the first (regulator dependent) piece linear in β when β = 2π`:

〈H〉 = −∂WH

∂β
= 2a

Γ(d)

(4π`2)d/2
(
d
2

)
!

Vol(Hd−1) . (D.11)

Note this result agrees with the general CFT calculation (5.10) as well.

A peculiar observation about this holographic thermal partition function is that

∂2

∂` ∂β

(
WH

`β

)∣∣∣∣
β=2π`

= 0 . (D.12)

Note that WH = f(2π`/β) is essentially a function of one variable, the ratio 2π`/β. It

follows that β∂βWH = −`∂`WH . As ∂βWH is proportional to the energy while ∂`WH is

proportional to a trace of the stress tensor over the Hd−1 directions, the fact that WH

depends on `/β encodes the fact that the integral of the trace of the stress tensor vanishes.

The relation (D.12) is a stronger statement, which naively relates integrals of the two-point

function of the stress tensor. Perhaps it follows from the form of the two-point function of

the stress tensor on S1×Hd−1 at T = 1/(2π`), which is determined by conformal symmetry.
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