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1 Introduction

Entanglement entropy has played an increasingly important role in theoretical physics.
Invented as a measure of quantum entanglement, it has been successfully applied in a
much broader context. Entanglement entropy can serve as an order parameter for certain
exotic phase transitions [1, 2]. It is likely very closely related to black hole entropy [3, 4].
Certain types of entanglement entropy order quantum field theories under renormalization
group flow [5-8]. It is the last result which is most relevant to this paper. In even space-time
dimension, the connection between entanglement entropy and renormalization group flow
is tied up in the existence of a Weyl, or trace, anomaly [5, 7, 8]. In fact, certain universal
terms in the entanglement entropy can be extracted from the anomaly. The moral of this
paper is that to use the anomaly correctly, one should understand how to write it down on
a manifold with a codimension one boundary.

To define entanglement entropy, we assume that the Hilbert space can be factorized,
H =Hs® Hp, where H 4 corresponds to the Hilbert space for a spatial region A of the
original quantum field theory.! Given such a factorization one can construct the reduced
density matrix pq = trp p by tracing over the degrees of freedom in the complementary
region B, where p is the initial density matrix. The entanglement entropy is the von
Neumann entropy of the reduced density matrix:

Sp=—tr(palnpa). (1.1)

Only when p = |¢)(¢] is constructed from a pure state |¢)) does Sg measure the quantum
entanglement. Otherwise, it is contaminated by the mixedness of the density matrix p.

In a quantum field theory context, the definition of Sg presents a challenge because
the infinite number of short distance degrees of freedom render Sg strongly UV divergent.
Consider for example a d-dimensional conformal field theory (CFT) in the vacuum. Let d
be even so that the theory may have a Weyl anomaly, and let A be a (d — 1)-dimensional
ball of radius £. In this case, the entanglement entropy has an expansion in a short distance
cut-off § of the form

Area(0A)

1)

The constant « multiplying the leading term is sensitive to the definition of the cut-off §
and thus has no physical meaning. The fact that the leading term scales with the area of
the boundary of A, however, is physical and suggests that most of the correlations in the
vacuum are local.

Most important for this paper, the subleading term in eq. (1.2) proportional to the
logarithm is “a”, the coefficient multiplying the Euler density in the trace anomaly [13]

4a
(T",) = Z cily — (—1)d/2mEd + D, J", (1.3)
J

!This factorization is a nontrivial assumption. The boundary between A and B, 0A, plays an impor-
tant role in recent discussons regarding the entanglement entropy of gauge theory [9-12]. The boundary
terms associated with A we find in this paper suggests that the factorization is not always a clean and
unambiguous procedure even for non-gauge theories.



with D, the covariant derivative. In this expression, Fy is the Euler density normalized
such that integrating Ey over an S¢ yields d! Vol(S%). See section 3 for more details about
the definition of E4. The I; are curvature invariants which transform covariantly with
weight —d under Weyl rescalings. There is also a total derivative D, J# whose precise form
depends on the particular regularization scheme used in defining the partition function.?

The motivation for this paper is a puzzle described in ref. [14]. The authors describe
several different methods for verifying the logarithmic contribution to the entanglement
entropy in (1.2). One is to conformally map the causal development of the ball, D, to the
static patch of de Sitter spacetime, and then exploit the trace anomaly (1.3). Another
method runs into difficulties. They attempt to compute Sg by mapping D to hyperbolic
space. Here, the authors were not able to use the anomaly directly. Instead, they resorted
to an effective anomaly action, which here fails because hyperbolic space has a boundary.
As we explain, and as was anticipated in ref. [14], getting the correct answer requires a
careful treatment of boundary terms in the effective anomaly action.

To our knowledge, the relation between these boundary terms and entanglement en-
tropy has not been considered carefully before.?> In d = 2, the boundary contribution to
the trace anomaly is textbook material [16]. In d = 4 and d = 6, the bulk anomaly induced
dilaton effective actions are written down in refs. [8] and [17] respectively. (See also [18]
for d = 4.) Given the importance of the dilaton effective action in understanding the a-
theorem [8], and the recent “b-theorem” in d = 3 [19], it seems conceivable the boundary
correction terms may be useful in a more general context. In this paper we generalize
these dilaton effective actions with boundary terms for a manifold with codimension one
boundary and we show that these boundary terms are crucial in computing entanglement
entropy. We also provide a general procedure, valid in any even dimension, for computing
these boundary terms.

We begin with the two-dimensional case in section 2, where we illustrate our pro-
gram and use an anomaly action with boundary terms to recover the well-known results
of the interval Rényi entropy [20, 21] and the Schwarzian derivative. In section 3, we con-
struct the boundary terms in the trace anomaly in d > 2 and present an abstract formula
for the anomaly action in arbitrary even dimension. We demonstrate the result satisfies
Wess-Zumino consistency. In section 4, we compute the anomaly action in four and six
dimensions, keeping careful track of the boundary terms. (In six dimensions, our boundary
action is only valid in a conformally flat space time, while in four dimensions, the answer
provided is completely general.) In section 5, we resolve the puzzle of how to compute the
entanglement entropy of the ball through a map to hyperbolic space in general dimension.
The resolution of this puzzle constitutes the main result of the paper. We also revisit
the computation of the entropy in de Sitter spacetime. Finally, we conclude in section 6.
We relegate various technical details to appendices. Appendix A reviews some useful dif-
ferential geometry for manifolds with boundary. Appendix B contains a detailed check of

’In the terminology of ref. [13], the Euler term is a type-A anomaly and the Weyl-covariants I; are
type-B.

3In a somewhat different vein, there is a discussion of entanglement entropy on spaces with boundary in
ref. [15].



Wess-Zumino consistency in four dimensions. Appendix C contains details of the derivation
of the anomaly action in four and six dimensions. Appendix D provides a corresponding
holographic calculation of entanglement entropy through a map to hyperbolic space.

2 The two dimensional case and Rényi entropy

In two dimensions, the stress tensor has the well known trace anomaly

(1",) = 3R (2.1)

where we have replaced the anomaly coefficient a with the more common central charge
¢ = 12a which appears in the two-point correlation function of the stress tensor. Eq. (2.1)
is the Ward identity for the anomalous Weyl symmetry. It is equivalent to the variation
of the generating functional Wg,,] = —In Z[g,,| under a Weyl variation dg,, = 2g,.00.
However, on a manifold with boundary, the anomalous variation of W may contain a
boundary term. In this section, we show how to construct the anomaly effective action with
boundary terms for the simplest case, d = 2. We will reproduce the classic entanglement
entropy result using the boundary term in the anomaly action. We also show that the
boundary term correctly recovers the universal term in the single-interval d = 2 Rényi
entropy.

2.1 Anomaly action with boundary and entanglement entropy

In d = 2, the most general result for the Weyl variation of the partition function consistent
with Wess-Zumino consistency is [16]

S, W = _C[/ de\/§R60+2/ dyWKCSO’] - (2.2)
241 M oM

To write this expression, we have introduced some notation. In d = 2, the notation is
overkill, but we need the full story in what follows in d > 2. We denote bulk coordinates as
z* and boundary coordinates as y®. Let n* be the unit-length, outward pointing normal
vector to M and 7,4 the induced metric on M. We can define K in two equivalent ways.
First, locally near the boundary we can extend n* into the bulk. We can choose to extend
it in such a way that n*D,n, = 0, in which case the extrinsic curvature is defined to be
K, = D(,ny). The trace of the extrinsic curvature is K = K* . Alternatively, we can also
define K purely from data on the boundary. The bulk covariant derivative D, induces a
covariant derivative D, on the boundary. It can act on tensors with bulk indices, boundary
indices, or mixed tensors with both. We specify the boundary through a map oM — M,
which amounts to a set of d embedding functions X#(y*). The 0, X" are tensors on the
boundary, and their derivative gives the extrinsic curvature as K,3 = —nuf)a(?ﬂX # and its
trace K = 8 K ,p. For more details on differential geometry of manifolds with boundary,
see appendix A.
Observe that, for a constant Weyl rescaling o = A, the Weyl anomaly (2.2) is equiv-
alent to
S\W = —gXA, (2.3)



where  is the Euler characteristic of M. That is, the boundary term in the Weyl anomaly
is simply the boundary term in the Euler characteristic.

The stress tensor is defined as

2 oW
() = - = 2 (2.4)
V909w
in which case (2.2) leads to a boundary term in the trace of the stress tensor,
c
TH,) = — 2K6(xt 2.
(T) = 5o (R4 265(2)). 25)

where 6(z) is a Dirac delta function with support on the boundary.

We now wish to write down a local functional which reproduces the variation (2.2).
To do so we introduce an auxiliary “dilaton” field 7 which transforms under a Weyl trans-
formation g, — ezag,w as 7 — 7 + 0. The quantity

G = 6_2T9W, (2.6)

is invariant under this generalized Weyl scaling and so too the effective action W =
Wie 2 gu] = W[guw]. Then

W[QW, 672Tguy] =W - W ) (27)

will vary to reproduce the anomaly, i,V = 6, W.

In what follows, we refer to W as a “dilaton effective action”, given its similarities
with the dilaton effective action presented in refs. [8, 17]. However, unlike those works
we are only considering conformal fixed points and not renormalization group flows, and
so this name is a bit of a misnomer. More precisely, W is a Wess-Zumino term for the
Weyl anomaly, or alternatively an anomaly effective action. Analytically continuing to
Lorentzian signature, it computes the phase picked up by the partition function under the
Weyl rescaling from a metric g,,,, to e_QTgW.

What exactly is W in d = 27 The first quick guess is

Cc

Wo=—-— / d*z\/g Rt + 2/ dy/v K| . (2.8)
247 M OM
But the metric scales, and we should take into account that under Weyl scaling in d = 2,

R[e%gw,] =20 (R[gw,] — QDJ) ,

B (2.9)

K[e%gw/] =e U(K[gw,} + n“@ua) .
To cancel these variations, we add a (97)2 = (9,,7)(0"7) term to the effective action. The
total effective anomaly action is then

c

W = 5 [/Mde\/g(R[g;w]T _ ((97‘)2) ) /(‘)Mdyﬁ[([guy]'r} + (invariant) . (2.10)



The right-hand side is computed with the original unscaled metric g,ﬂ,.4 In writing (2.10),
we have allowed for the possibility of additional terms invariant under the Weyl symmetry.
There are only two such terms with dimensionless coefficients,

/ d?z\/G R, / dy/AK . (2.11)
M oM

However, now we use that by definition W = 0 when 7 = 0. Thus neither of these terms
can appear in W, so

W = —i [/M d*z/g(Rlgu]r — (07)%) + 2/8M dyv/7 Klguw]T| - (2.12)

The second step, which involved adding by hand a (97)? term to cancel some unwanted
pieces of the Weyl variation, seemed to involve some guess work which could become a
problem in d > 2 where the expressions are much more complicated. In fact, there are
several constructive algorithms which remove this element of guesswork. One method
involves integrating the anomaly [23-25]:

1
w=— [ a / d2a:\/?R[g’V]T+2/ dy /Y Klg, )7
247 J, Y " oM g

1
— _/0 dt/M dz\/g (T" g, 1)

/ —e—2t
gy.u_e Tgl»“/

(2.13)

/I —e—2t
gul/_e Tgl“/

Thus, given the trace anomaly (T%,), it is straightforward albeit messy to reconstruct W.
The second method (which we elaborate in this paper) is dimensional regularization [26,
27]. We define Wg,,| in n = 2 4 € dimensions:

fp C

w =——7- d" R+2 dnt K|, 2.14
(9] 247m(n — 2) [/M TVORE /8M ad ] (2.14)
where R, K, g, and 7,4 are dimensionally continued in the naive way. We claim then that

W = lim (W[gw/] - W[e_%gw]) , (2.15)

n—2

as one may verify after a short calculation, using the more general rules for the Weyl
transformations in n dimensions,

R[e%guy] =e % (R[gu,,] —2(n—1)00 — (n—2)(n — 1)(80)2) ,

K[ 9] = e (Klgu] + (n — 1)n*d,0) . (2.16)

In all three cases, we are computing the same difference between two effective actions.
It would be preferable to have access to the effective actions themselves. There are two
problems here. The full actions depend on more than the anomaly coefficients. They are
also likely to be ultraviolet and perhaps also infrared divergent. If we focus just on the
anomaly dependent portion, it could easily be that some of this anomaly dependence is

4This action corrects a typo in eq. (1.2) of ref. [22], as well as accounts for the boundary term.



invariant under Weyl scaling and drops out of the difference we have computed. Interest-
ingly, the dimensional regularization procedure offers a regulated candidate W[guy] for the
anomaly dependent portion of W/g,,].

Let us try to extract some information from the regulated candidate action in flat

space:
—~ c

W(buw] = “Ton(n_2) /aM A"ty K. (2.17)
A simple case, which also turns out to be relevant for the entanglement entropy calculations
we would like to perform, is where M is a large ball of radius A with a set of ¢ smaller,
non-intersecting balls of radius ¢; removed. For each ball, we can work in a local coordinate
system where 7 is a radial coordinate. For the smaller balls, \/YK = —7"=2 while for the
large ball /7K = r" 2. It then follows that

q

W[éu,,] = —g ﬁ(l —q)+ %(’y +Inm) +InA - z;lnéj +O(n — 2)] . (2.18)

j=
The leading divergent contribution is proportional to the Euler characteristic y = 1 — ¢ of
the surface.

We claim that the In §; pieces of the expression (2.18) can be used to identify a universal
contribution to the entanglement entropy of a single interval in flat space. We will justify
the computation through a conformal map to the cylinder, but in brief, the computation
goes as follows. For an interval on the line with left endpoint v and right endpoint v, to
regulate the UV divergences in the entanglement entropy computation we place small disks
around the points v and v with radius §. The entanglement entropy then turns out to be

the logarithmic contribution of these disks to —W[d,,]:
c
S~ —Ind. (2.19)

As the underlying theory is conformal, the answer can only depend on the conformal cross
ratio of the two circles 462 /|u — v|?. Thus we find the classic result [21, 28]

v — ul

5

Sp ~ gln (2.20)
Here and henceforth, the ~ indicates that the l.h.s. has a logarithmic dependence given by
the r.h.s. We neglect the computation of the constant quantity in Sg, as it depends on the
precise choice of regulator and so is unphysical.

A more thorough justification of this computation occupies the next two subsections.
In broad terms, the same result turns out to be valid in even dimensions d > 2, a fact
whose demonstration will occupy most of the remainder of the paper. More specifically, we
mean that the logarithmic contribution to W[dw] for flat space with D x S92 removed,
where D is a small disk of radius ¢, yields a universal contribution to entanglement entropy
for a ball shaped region in flat space.

To return to d = 2, we describe the plane to the cylinder map and its relevance for
entanglement entropy in section 2.3. The demonstration however requires we also know



how the stress tensor transforms under conformal transformations. The transformation
involves the Schwarzian derivative which can be found in most textbooks on conformal
field theory. In an effort to be self contained we will use our effective anomaly action to
derive the Schwarzian derivative in section 2.2. In d = 2, the effective action turns out to
be useful to compute not only the entanglement entropy but also the single interval Rényi
entropies. A calculation of the Rényi entropies is provided in section 2.4.

2.2 The Schwarzian derivative

To calculate the change in the stress tensor under a Weyl scaling from g,,,, to g, = e 2" Guvs
we begin with a variation of W = W — W with respect to the metric g, ,

SW = W — §W
1 2 v A S v
Y /Md (VG091 (T" Vg = /309, (T )5) (2.21)

- 7% /M d2$\/§5guu(<Tﬂy>g - 6_4T<TW>§1) )

where in the last line we have used that v/§dg., = /g e_(d+2)76gu,, in d dimensions. The
subscript g on the expectation value refers to (T#") on the space with metric g, and similarly
for g. Using the explicit expression for W in (2.12), we compute its variation

W=—=— | d\/ggu [aMTaVT + DHOVT — g (1(87)2 + Dfﬂ
247 Jyy 2

(2.22)
C 4
~ oan /8M dy/7 0g,u W' nf0,T ,
where h*" is the projector to the boundary,
h,uz/ = Guv — NNy - (223)

In obtaining (2.22) we have used that in two dimensions the Einstein tensor R, — % Y
vanishes, and that the variation of the Ricci tensor is a covariant derivative 0R,, =
D,6I?,, —D,dI”,,. Putting (2.22) together with (2.21), we find

(2H)hyunPd,r .
(2.24)
Suppose we consider a Weyl rescaling which takes us from flat space, g, = .., to

c c
(Tyw)g = (Tyw)g — 107 — Eé

Out0, T+ D0, T — g <;(87)2 + D’T>:|

the new metric g,, = 6_275W. The stress tensor for a conformal theory in vacuum on
the plane is usually defined to vanish. Thus the stress tensor on the manifold with metric
6_275,“, will be

(T) = OO + 0,0, — Sy G(af)? + (m))} (2.25)

c

127
(dropping the boundary contribution). The Schwarzian derivative describes how the stress
tensor transforms under a conformal transformation, i.e. a combination of a Weyl rescaling



Figure 1. The causal development of an interval of length L. The dots indicate the endpoints of
the interval.

and a diffeomorphism that leaves the metric invariant. If the complex plane is parametrized
initially by z and z, we introduce new variables w(z) and w(z) and require that the Weyl

e 2 = (?j)(gf) . (2.26)

Start with the stress tensor in the w-plane, and perform a diffeomorphism to go to the z

rescaling satisfies

variables. That transformed stress tensor should be related by a Weyl rescaling by e =27 to
the stress tensor on the flat complex z-plane. Recalling that g,, = 0, we find that

Cc

(azw)2<Tww(w)> = <TZZ(Z)>6—2T6W = - 127 [(azT)Q + (827')}

_c 2(03w) (0,w) — 3(9%w)?
T 487 (8.w)? ’

(2.27)

which is the usual result for the Schwarzian derivative.

2.3 Entanglement entropy from the plane and cylinder

We now consider the entanglement entropy of an interval with left endpoint « and right
endpoint v. The information necessary to compute the entropy is contained in the causal
development of this interval, i.e. the diamond shaped region bounded by the four null lines
x+t=wand x+t=wv. See figure 1. We will indirectly deduce the entanglement entropy
by conformally mapping to a thermal cylinder, keeping careful track of the phase picked
up by the partition function under the transformation.

Consider the following change of variables

e2rw/f 2% (2.28)
Z—U

where z = & — t = x + itg, and correspondingly for zZ and w. If we let w = o' + i0?,
then o2 is periodic with periodicity 3, 6> ~ o2 + . In other words, the theory on the



w-plane is naturally endowed with a temperature 1/5. The other nice property of this map
is that the the interval at time ¢ = 0 is mapped to the real line Re(w). Thus the reduced
density matrix p4 associated with the interval is related by a unitary transformation to
the thermal density matrix pg on the line. As the entanglement entropy is invariant under
unitary transformations, the entanglement entropy of the interval is the thermal entropy
associated with the cylinder, that is the thermal entropy on the infinite line. If we let

e BH
e — 2.29
p tre—BH’ ( )
where H is the Hamiltonian governing evolution on the line, then
Sp=—tr(plnp) = Btr(pH) + Intr(e Py = B(H) — Weyt s (2.30)
where Wiy = —Intr e PH is the partition function on the cylinder. This entropy is infinite

because the cylinder is infinitely long in the ¢! direction, and we need to regulate the
divergence. The natural way to regulate is to cut off the cylinder such that —A < o' < A.
In the z = x +itg plane, these cut-offs correspond to putting small disks of radius § around
the endpoints u and v, where now

0 _ s (2.31)
V—Uu

We have two quantities to compute, S(H) and Wcy. We can use the Schwarzian
derivative from the previous subsection to compute

B(H) = / 1<T00>d01, (2.32)

where we have analytically continued ¢ = —io?. From the transformation rules (2.27)

and (2.28), the ww component of the stress tensor on the cylinder is

e
(Tww(w)) = g2 (2.33)
In Cartesian coordinates, T2 = —%(T ww 4 TWW) - Thus we have, analytically continuing

to real time 0¥ = —io?, a positive thermal energy (1) = g5z from which follows the first

quantity of interest

_mc, ¢ v — ul
B(H}-gﬁA—Gln 5

Toward the goal of computing Wy, we first compute the difference in anomaly actions

(2.34)

W0, 6_2T5W] where the dilaton 7 is derived from the plane to cylinder map

1 1 1
T:_iln |:267T(U—Z_U—Z>:| + c.c. (2.35)

Given the dilaton, we can compute the bulk contribution to the difference in effective

/de\/§(87)2 = (g)Q/CYI dw dw

actions
2

2
W 8
coth—| = —A, 2.36
B ‘ B (2.36)

~10 -



and the boundary contribution

1672

—2/dyﬁKT~87rln5~— A. (2.37)

Assembling the pieces, the difference in anomaly actions is then

oy e c. |v—ul
W[éluy,e 2 5'[“/] ~ _QA: —gln 6

The last component we need is the universal contribution to W[d,,|, which we claimed

(2.38)

was actually equal to the universal contribution to single interval entanglement entropy.
Indeed, everything works as claimed since the contributions from 8(H) and W[, € 270,,,]
cancel out:

o —~ ¢, |Jv—u
Sp = BUH) + W [0, e 5#”]_W[5MV]N_W[5MV]N3ID| 5 |

(2.39)

2.4 Rényi entropies from the annulus

In d = 2, the anomaly effective action also allows us to compute the Rényi entropies of an
interval A,

1
Snzl

Intrp’y . (2.40)
-n

We use the replica trick to compute S,. We can replace trpy with a certain ratio of
Euclidean partition functions
Z(n)
trp’ = 2.41
rpa Z(l)n ) ( )

where Z(n) is the path integral on an n-sheeted cover of flat space, branched over the

interval A. In the present case, we can use the coordinate transformation,

Z—U

(2.42)

w = 5
Z—U

to put the point w at the origin and the point v at infinity. As is familiar from the
computation in the previous subsection, we need to excise small disks around the points u
and v, or correspondingly restrict to an annulus in the w plane of radius rmyn < 7 < Tmax-

To get the Rényi entropies, we would like to compare the partition function on the
annulus to an n-sheeted cover of the annulus. In two dimensions, these two metrics are
related by a Weyl transformation. We take the metric on the annulus to be

g =dr? +1r%d6?, (2.43)

while on the n-sheeted cover we have

G =e g =dp*+n%p?de?, (2.44)
with e™™ = nr"~! and p = r”. With this choice of 7, the difference in anomaly actions
becomes

—27 c fmax 2 T
W[éﬂy,e 5#,,] =1 (O7)“rdr — 27'|T$?;‘
. T'min . (2.45)
2 max
=—(n*—-1)1 .
Dk

- 11 -



Now to isolate the universal contribution to W[e=276,,], we should remove the universal
contribution from W[d,,|:

W e 6] ~ =5+ 1) 22 <n + ;) i 20 (2.46)
We can tentatively identity this quantity with —In Z(n). To compute the Rényi entropies,
we need to subtract off nln Z(1). There is an issue here, however: both In Z(n) and
In Z(1) are divergent quantities, and in comparing them we must arrange for the cutoffs to
be congruous. We claim that in order to compare In Z(n) with In Z(1) we ought to use the
p-cutoffs so that we excise discs of the same radius in each case. Thus, we need to subtract
nWd,.] using the cut-offs in the p coordinate system,

1 max
InZ(n) — nln Z(1) ~ 162<—n-|—> I Pmax (2.47)

n Pmin

Using the definition (2.40) of the Rényi entropy, we find that

c 1 Pmax
Snr = <1 + n) In P (2.48)

Pmin

Translating back to the z plane, this result recovers the classic result [20, 21]°

c 1 v — ul
Sp~=(1+—]In——. 2.49

" 6< + n> . 0 ( )
Taking n — 1, it reduces to the previous entanglement entropy result (2.20). Note that in
d > 2, one still has an n-sheeted cover of an annulus, but it is less clear what to do with
the remaining d — 2 dimensions.

3 Anomaly actions in more than two dimensions

The trace anomaly (1.3) and effective anomaly action WV have an increasingly complicated
structure as the dimension increases. Several issues need to be addressed for a complete
treatment of the effective action. Before embarking, we warn the reader that this section
is technical. The chief results are 1) the boundary term in the a-type anomaly (3.9)
and (3.16), 2) two equivalent forms for the a-type anomaly action in (3.17) and (3.61), and
3) a demonstration that the a-type anomaly, including the boundary term we obtain, is
Wess-Zumino consistent in any dimension in subsection 3.3. Finally, 4) in (3.56) we present
the most general form of the trace anomaly in d = 4, including boundary central charges.

3.1 Boundary term of the Euler characteristic

As this paper was motivated by the problem of universal contributions to the entanglement
entropy across a sphere in flat space, our main focus is on how the a contribution to the
anomaly action is modified in the presence of a boundary. Regarding the other issues, we

5The calculation we have just presented is very similar in spirit if not in detail to ones in refs. [29, 30].
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make a few preliminary comments which will be developed minimally in the rest of the
paper.

The presence of a boundary affects the c; contributions to the trace anomaly (1.3)
trivially. Let us dispose of this issue immediately. The I; are, by definition, covariant
under Weyl scaling. In fact the ,/gI; are invariant under Weyl scaling and so the c¢;
contributions to W{g,w, e 27 g, are simply

WCE—ch /Mddx\/ﬁTIj, (3.1)
J

with no additional boundary term.

The total derivative term in the trace anomaly (1.3) depends on the choice of scheme.
As we focus on universal aspects of the trace anomaly, with some exceptions we shall
largely ignore this object in what follows. A fourth issue we have little to say about, with
one exception, is the possible existence of additional terms in the trace anomaly associated
purely with the boundary. These additional terms are best understood when the bulk CFT
is odd-dimensional, so that the trace anomaly only has boundary terms. Those boundary
terms can include the boundary Euler density as well as Weyl-covariant scalars [31, 32], in
analogy with the trace anomaly of even-dimensional CFT. See ref. [19], which argued for a
boundary “c-theorem” using this boundary anomaly. In this work we focus on CFTs in even
dimension, with an odd-dimensional boundary. In d = 4, using Wess-Zumino consistency,
we identify two allowed boundary terms in the trace anomaly, but have nothing to add
ind> 6.

To return to the a-type anomaly, the central observation is that the a dependent
contribution to the trace anomaly (1.3) integrates to give a quantity proportional to the
Euler characteristic for a manifold without boundary. The natural guess is then that in the
presence of a boundary, one should add whatever boundary term is needed such that the
integral continues to give a quantity proportional to the Euler characteristic. (Indeed we
saw precisely this story play out in two dimensions in section 2.) The requisite boundary
term is well known in the mathematics literature. See for example the review [33]. It is a
Chern-Simons like term constructed from the Riemann and extrinsic curvatures. To write
it down, we need some notation.

We start by introducing the orthonormal (co)frame one forms e = efdx“, in terms
of which the metric on M is g, = ¢ ABe;‘ef . Here and there, we also need their inverse

E', satisfying Ef‘e{f‘ = 0F and Eﬁef = 5@. From the e? and the Levi-Civita connection
A

I'*,,, we construct the connection one-form w” g via
A A A B
opey, —TPyue, +w'pue, =0. (3.2)
AB _ _, B

From this definition, it follows that w wB4 and the torsion one-form vanishes,

det +wignef =0. (3.3)
Further, the curvature two-form built from w g,

1
RAg=dw?s +wrc AwCp = §RABWdJ:“ A dz”, (3.4)
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is related to the Riemann curvature by
ENRAp,pel = RY,,, . (3.5)
The curvature two-form satisfies the Bianchi identity
dRAs + wlc ARYE —RAG AW 5 =0. (3.6)
The Euler form is then
Eg=RMA2 N ARAG Ade Y (3.7)

where €4,...4, is the totally antisymmetric Levi-Civita tensor in dimension d. The Euler
form and Euler density are related in the obvious way £; = Egvol(M), for vol(M) the
volume form on M. In writing (3.7) we have normalized the Euler form so that its integral
over an S? is d! Vol(S%).

To define the Chern-Simons like boundary term, it is convenient to define a connection
one-form and curvature two-form that interpolate linearly between a reference one-form wy
and the actual one-form of interest w:

w(t) =tw+ (1 —t)wo,

Rt 5 =dw®)?s +w®)?c Aw(t) 5. (3.8)
The boundary term is constructed from the d — 1 form:
Q= g /0 1 dt ()41 42 AR(H) A3 A - AR(E) A1 ey g (3.9)
(The density Qg is given by Q4 = Q4 vol(9M).) If we also define
Et)g=RHMA2 A AR(D) A1 ey g, (3.10)
then it follows, as we show below,
E(1)g—E(0)g =dQy. (3.11)

The relevance of this construction to the Euler characteristic is that we can calculate
the Euler characteristic for a manifold M with boundary by comparing it to a manifold M°
with the same boundary and zero Euler characteristic. Because x(A x B) = x(A4)x(B) and
because x vanishes in odd dimensions, one such zero characteristic manifold is a product
manifold where both A and B are odd dimensional. In a patch near the boundary, we can
always choose to express the metric in Gaussian normal coordinates,

g =dr* + f(r,x),,datdz", (3.12)

where the boundary is located at r = rg. In this patch, we can choose a reference metric
go so that the patch is a product space,

go = dr? + f(ro, ) datda. (3.13)

— 14 —



Let wg be the connection one-form associated with the metric go. By construction £4(1) =
&4, and it follows from the local relation (3.11) that the Euler characteristic for a manifold

xX(M) = M(/Mﬁd—/w Qd>. (3.14)

We have normalized the characteristic so that x(S%) = 2.

with boundary is

On the boundary OM, we can give an explicit formula for wA? in terms of the extrinsic
curvature,
w(t)AB = AP — Wit = KAnP — KBnA, (3.15)
where we have defined the extrinsic curvature one-form K, = agdyﬂ , and converted
its index to a flat index through the e?, metric, and embedding functions. Similarly,
nd = ednt
= eqnk.

In analogy with the two dimensional variation (2.2), we therefore posit that the a-
dependent piece of the Weyl anomaly is

4a
W = (-1 R / — 1
W = (-1) d!Vol(Sd)< MSdéa - Quo0 | + (3.16)

where the ellipsis denotes terms depending on ¢;, the total divergence in the trace anomaly,
and possibly other purely boundary contributions. We verify this claim in subsection 3.3 by
showing that the anomaly (3.16) is Wess-Zumino consistent. With this variation in hand,
we can integrate it in one of the same three ways we used in d = 2: guess work, using the
integral (2.13), or dimensional regularization. The integral (2.13) gives the a dependent
contribution to the effective anomaly action,

Wione ) = 0% [Cad [ st [ i)

We also deduce W from dimensional regularization in subsection 3.5.

/! —p—2
gp.u_e t’rgp‘y

(3.17)

Let us next study the relation between &; and Q4. The relation (3.11) is an example
of a “transgression form” (see e.g. [34] for a modern summary of transgression forms). To
prove it, consider

%S(t)d =R(t)A B A fm . (3.18)

It is convenient to introduce an exterior covariant derivative D. It takes tensor-valued p-
forms to tensor-valued p + 1-forms. For example it acts on a matrix-valued p-form, f* 5 as

Df'p =df's +wlc Afp — (1P fAc nwCs, (3.19)
and correspondingly for (co)vector-valued forms. It has the Lifshitz property, e.g.
d(f*P A gap) =D(f*P Agap) =Df*P Agap + (=1)P f*P ADgap . (3.20)
Defining D(¢), we then have

DR =0, R@t) p=Dt)wt)s. (3.21)
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The metric 45 and antisymmetric Levi-Civita tensor €4,..4, are also constant under
D(t), provided that we let the e# depend on t so that w(t) is associated with a metric g(t).

Consequently,
oE(t d
D(t)a'R,(Sf))AdB == §D(t) (R(t)A1A2 FANPAAN R(t)Ad*SAd72€ABA1...Ad) = 07 (322)

and we can rewrite (3.18) as

d . DE(t
(D)= d(w(t)AB A C{mé))jjg>

3.23
d. A A, A3 Ay Ag_14q | )

Integrating this equality over ¢ € [0, 1] immediately yields (3.11).

3.2 An explicit expression for the boundary term

It will be expedient in the rest of this section to have an explicit expression for the boundary
term [,,, Qq, that is to perform the integral over ¢ in (3.9). The final result is (3.29).

Before doing so, we will use that the pullback of R4 to the boundary can be expressed
in terms of the intrinsic and extrinsic curvatures of the boundary. The relations between
RAB and the boundary curvatures are known as the Gauss and Codazzi equations, and we
discuss them in appendix A.

Denoting the intrinsic Riemann curvature tensor of the boundary as R 8~s, we define
the intrinsic curvature two-form

. 1.
R%5 = R gyady” A dy’, (3.24)

and thereby R4g. Using the boundary covariant derivative f)a, we define a boundary
exterior covariant derivative D just like D. The Gauss and Codazzi equations can then be
summarized as

RAg =R — KA AKp 4+ ngDKA — n4DK5. (3.25)
We can similarly decompose the pullback of R(¢). On the boundary
wt)p =wlp + (t — 1)(ICAnB - nAICB) , (3.26)
which implies that on the boundary

'R(t)AB = RAB + (t—l)]o)(’CAnB - nAICB) + (t—l)Q(/CATLC — nAKc) A (ICCRB - nC/CB)
=RAp — (2~ 1)KAAKp + (t—1) (npDKA — nDK3p) , (3.27)

where we have used that Dn? = KA. Putting this together with (3.25), we have

R(t)Ap = RAp — 24 A Kp + t(npDKA — n'DKp) . (3.28)
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Then on the boundary the definition of Q4 (3.9) becomes

1
Q4= d/ dtn1 A2 A (RASA — 204 A KCA) A LA (RAIA — g2 CAa1 A KA ey, g,
0

-1 (—1)k
_ - B Sm—1—k 2k+1 A
_dkgo ( . ) 2k:+1R AK neq., (3.29)

where we have defined m = g and in the last line we have suppressed the indices of the

curvature forms, all of which are dotted into the epsilon tensor. We have also used that

only one index of the epsilon tensor can be dotted into the normal vector n?

, and so the
factors of DK4 in R(t) never appear in Q.

The integral representation of Qg in the first line of (3.29) is not new. A similar
expression appears in e.g. ref. [35].

For example, in four and six dimensions we have
o 1
Qq = anA KB A <T\’,CD — g]CC A ICD) €EABCD , (3.30)
o o 2 o 1
Q¢ = 6n KB A <RCD/\ REF—gRCD/\ KF A ICF+5KBA KEAKPAKEA ICF> €ABCDEF -

3.3 Wess-Zumino consistency

We now verify that the posited term proportional to a in the Weyl anomaly (3.16) is Wess-
Zumino consistent. In this setting, Wess-Zumino consistency requires that the anomaly
satisfies

(051500, ]W = 0. (3.31)

Notating the anomalous variation proportional to a as

4a
=A - A= (-1)?——
(Sa'Wa (/M 50'5d /@M o Qd) ) ( ) dl VOl(Sd) ;
we consider
05105 Wo = A</ 00205, Eq — 00204, Qd> . (3.32)
M oM
The variation of &; is a total derivative,
0&y
b5Eq = d<50wAB Nom AB) : (3.33)
with
SowiP = (eAe;LB — eBeﬁ)(?“da. (3.34)

It then follows that the bulk part of the second variation is
85100, Wa = 2dA [ eMe20M50 AdSoyg ARABAIN .. ARAG1Ade 4 4 boundary term),
1Y%02 i 1. Ag
M

= A/ d%z\/g X} 9,001,002 + (boundary term), (3.35)
M
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where we have defined

d
— ppvL...Vg—2 V P1..-Pd—2
2d/2 RV1V2p1p2 e Ryd—SVd—QPd—3pd—2€ €p . (3.36)

wyo__

X =
X;W is symmetric, X;W = XC'Z“, on account of R0 = Rpopy. The symmetry of XC’IW
together with the variation (3.35) imply

(0515 05y | Wy = (boundary term) . (3.37)

In other words, the bulk term in the a-anomaly is Wess-Zumino consistent. It suffices now
to show that the boundary term also vanishes.

To proceed, we require the Weyl variations of the extrinsic and intrinsic curvatures.
The variation of K,z and so K4 is

0o Kap = 00K op + Yasn” 0,00,  6,K* = et 60 = (6,0 p)n”, (3.38)

A

where e” in the variation of K4 is pulled back to the boundary, while the variation of

702‘43 is
5,RA s =Déyo’ s, (3.39)

for A g the connection one-form on the boundary. The variation of w5 on the boundary
is related to those of &4 g via

A

5gw B = 50(:)143 =+ (anowAc — TLA(SJLUCB)TLC. (3.40)

Under a general variation of K* and R4p, Qg in (3.29) varies as

m—1
m—1 k B ,pcep , M—1-k _<po D Sm—2—k 2k, A
= —1 . .
6Q4 d%( " )( ){(SIC ARV 4 =5 ORPCARD E AR AKntespop..
(3.41)

Specializing to Weyl variations, this becomes

m—2
—92 ° °
+ 3,0PY A Z (m ) (=D)k(m —1)DKP AR™ 27k A K nAeapep...

m—2
_ 1.
+d{5ao°JBC A (mk 2) (_1)k;27+173m—2—k /\lCQk—i-lnAEABCW}’

(3.42)

where we have used the Gauss equation in simplifying the §,/C variation along with DR =0
in simplifying the §,R variation. Using the Codazzi equation, R4 gn® = DK, the second
line combines with the first to give

0&q

AB
5:Qu = 300™ N 5

+d{(m - 1)5,0*8 A (Qu—2)aB} - (3.43)
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In writing the boundary term, we have defined the matrix-valued (d — 3)-form (Qg-2)an
to be

-2 (1)
(Qu2)ap=d ) < . ) ST 1Rm*H AKHFHnCeypo.. (3.44)
k=0

The reason for the name is the similarity with the explicit expression (3.29) for Q4: the
sum (3.44) is identical to that in the expression for Qg4, except it runs to k = m — 2 rather
than k =m — 1.

Putting d, Q4 together with the variation of the Euler form (3.33), the boundary term

in the variation of [, 60204, &4 cancels against the first half of the variation of Q4 in (3.43),
so that

05100, Wa = A(/ ddx\/gX“”ﬁuéalﬁ,,&ag — 2(m—1)/ e‘%f@aéol Addos A (Qd_z)AB>
M o

M

= A( / d%z\/g X" 0,6010, 609 — / dd_lyﬁyaﬂ&lém@gdag) , (3.45)
M oM

where Y8 is

m—2
af _ JeCV1-Yd-3 B 01043 m—2 —1)* m—1
y € €y Z ( L ( ) (2]{3+1)2m737k (346)
k=0
X R71725152 o 'R’m—zk—5’7d—2k—45d—2k—55d—2k—4K’Yd—%—séd—zk—s T K’Yd—35d—3 :

Y8 is symmetric owing to the symmetry of the boundary curvatures, éa575 = ]ngag and
Kop = Kgo. Then (3.45) yields
[5017502]Wa =0, (3.47)

which is what we sought to show.

3.4 A complete classification in d = 4 and boundary central charges

The previous subsection was somewhat abstract. Let us see how the consistency works
in d = 4. Along the way, we will also classify the potential boundary terms in the Weyl
anomaly, finding two “boundary central charges”. To our knowledge, one of these “central
charges” was first noted in [36] and the other later in ref. [37, 38].

In d =4, £ and Q4 are equivalent to the scalars

Es = Ryuypo R"™P — AR, R* + R?,

o 2 1 3.48
Q4 = 4<2Ea5Kaf8 +3 tr(K3%) — KK,g K + 3}(3) , (3.48)

where ang = ]—?ag — gfyag is the boundary Einstein tensor, and the a-type term in the
anomaly is

a

SoWy = A / dz\/g60Ey — / dPyy70Qy ), A= —. (3.49)
M OM 167’(’2
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The Weyl variations of F4 and Q4 are

do By = —400E4 + 8D, (E* 0,00), (3.50)
0oQ1 = —300Qs—4{ R 1 4n"0, — 2D, (K*P — K7*?) Dy} o0 —8D o { (K** — K~v*%) 0500} .
Using the Gauss and Codazzi equations (3.25), which here are
Rapys = Raprs — Koy Kgs + KoKy, 0" Ruapy = DyKag —DgKay (3.51)
we can rewrite the variation of Q4 as
35Qs = —360Q4 + 81, B 9,00 — 8D { (K — Ky*) 950} . (3.52)

The second variation of W, is then

05,00, Wa = —8A< / d*z\/g E" (0,001)(9,009) + / By (K — Kwﬁ)(aa(sal)(aﬂaag)) ,
M OM

3.53
which is manifestly symmetric under do; <> dog, so that .
0515005 ]Wa = 0. (3.54)

In this instance, the tensors X* and Y*? are
X = —8pr, Y =g§(K — Ky*P). (3.55)

So much for showing that the a-type anomaly is consistent. Are there any other
boundary terms which may be allowed in the anomaly? This is essentially a cohomological
question, which we answer in three steps:

1. Posit the most general boundary variation of W characterized by dimensionless co-
efficients.

2. Use the freedom to add local boundary counterterms to remove as many of these
coefficients as possible.

3. Demand that the residual variation is Wess-Zumino consistent.

We perform this algorithm in appendix B. The final result is that the total Weyl
anomaly for a d =4 CFT is

1 ( A o
O W = 6.2 /Md4x\/§5cr(aE4 - CW/EW)U) —/(?Md‘iy\/»’yda(AQél — b tr K3 — byy 7KB‘SVVQ[;,Y(S) ,

(3.56)

where K,z is the traceless part of the extrinsic curvature, K,z = K,3 — %’yag, and

Wagys is the pullback of the Weyl tensor. The terms proportional to by and by are the
additional type-B boundary terms in the anomaly. We refer to b1y and by as “boundary
central charges”, and they are formally analogous to ¢ insofar as they multiply Weyl-
covariant scalars. The purely extrinsic term proportional to b; first appeared in [36], and
the second term proportional to by later appeared in [37, 38].
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It is an interesting exercise to compute b; and by for a conformally coupled scalar field.
The simplest way to proceed is to look at existing heat kernel calculations for a scalar
field in the presence of a boundary and then restrict to the conformally coupled case. The
action for such a conformally coupled scalar is

_ 4 2, 19 1 3 2
S— /Md x\/§<(8¢) +2Ro > 2 /Wd YT, (3.57)

Note that the last term ensures Weyl invariance. It is also necessary for coupling the
theory to gravity.® By comparing this result with heat kernel calculations for a conformally
coupled scalar field in the presence of a boundary, we can extract values for b; and bs.
There are two Weyl-invariant boundary conditions to consider, Dirichlet ¢|gys = 0 (in
which case the boundary term can be neglected) and the conformally-invariant Robin
(n*0, + %K)¢|5M = 0. Comparing with for example (1.17) of [39] or the expressions for
a4 on p. 5 of [40], we deduce that

1 2 1 2 1

Z Dirichlet) = — ——— — = .
Gmpape  Dichlet) == ess =G

b1 (Robin) = — (3.58)
The value for by (Dirichlet) was computed before in eq. (19) of ref. [36], while b; (Robin)
can be found in eq. (55) of ref. [41]. The coefficient by was computed in the Dirichlet
case in eq. (15) of ref. [37, 38]. (In our conventions, a = 1/360 and ¢ = 1/120 for a
4d conformally coupled scalar.) As |by(Dirichlet)| > |b;(Robin)|, and one can flow from
the Robin theory to the Dirichlet theory by deforming the Robin theory by a “boundary
mass” [ d3y m¢?; it is tempting to speculate that by satisfies a monotonicity property under
boundary renormalization group flows, similar to the one conjectured for a by Cardy and
now proven in d = 4 by ref. [8]. This conjecture is different from the “boundary F-
theorem” conjectured in [42-44] for d = 4 boundary flows. We leave further analysis of
these boundary central charges b; and by for the future.

3.5 Dimensional regularization

In the two dimensional case, we saw that an effective anomaly action could be constructed
in dimensional regularization using a combination of the Einstein-Hilbert action and the
Gibbons-Hawking surface term in n = 2 4 € dimensions. In the limit ¢ — 0, these objects
sum together to give the Euler characteristic. The obvious guess, which we shall verify,
is that to construct the anomaly action in d dimensions, we need to continue the Euler
density along with the Qg Chern-Simons like term to n = d + ¢ dimensions. In the
mathematics community, such a dimensionally continued Euler density is called a Lipschitz-
Killing curvature, while in the physics community, these objects are used to construct
actions for Lovelock gravities.

SIf we are not interested in dynamical gravity, we could add an additional boundary term of the form
¢(K +3n"0,)¢ with arbitrary coefficient. This term preserves Weyl invariance. However, it does not modify
the boundary conditions or the scalar functional determinant. Consequently the boundary central charges
that we determine below do not depend on this term. See the appendix of [19] for a related discussion.
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The mth Lipschitz-Killing curvature form in dimension n, 2m < n, is:

Enm = (/\ RA2i1A2i> A ( A eAi>6A1...An, (3.59)

i=1 1=2m-+1

where €4,...4, is the totally antisymmetric Levi-Civita tensor in dimension n. In n = 2m

n

dimensions, the Lipschitz-Killing form reduces to the Euler form, &5, , = €21, The analog
of the Gibbons-Hawking term we call Q, ,,:

n

1 m
Qum =m / w(t)142 A ( A\ R(t)AQi—1A2i> A < A\ eAi>eA1...An dt . (3.60)
0 i=2

i=2m+1

It is a n — 1 degree Chern-Simons like form which is only defined on the boundary, which
reduces to Q4 in n = 2m dimensions.

The obvious guess for the effective action W[g,w] in n = d + € dimensions, i.e. the d
dimensional analog of (2.14), is

Tlo) = V" g (fy om = [ @) 000

where d = 2m. The effective anomaly action is then just

W[g/w, 672T9;w] = 7111151 (W[g,w] - W[eiwguu]) . (3.62)

Note that this effective action only recovers the a dependent portion of the trace anomaly.

As in subsection 3.2, we can perform the integral over ¢ in the definition of Q,,,, to
deduce an explicit expression for O, ,, in terms of the extrinsic and intrinsic curvatures
of the boundary. The integration over ¢ is identical to that performed in subsection 3.2,
except now we have n — 2m factors of e to account for. The final result is

T (m—1) (—1)F

=2m - R A R A @2 Ae 3.63

Qn,m Z ( L ) 2% + 1 A ( )
k=0

where for brevity we have suppressed the indices of the curvatures and factors of e4, all of

which are contracted with the remaining indices of the epsilon tensor.

Next we show that dimensional regularization (3.61) reproduces the a portion of the
Weyl anomaly. Our approach is almost identical to the demonstration that the a-anomaly is
Wess-Zumino consistent in subsection 3.3. We begin with the expressions (3.59) and (3.63)
for &, m and Q,, . We consider the Weyl variation of

/ Sn,m - Qn,m ) (364)
M oM

in n dimensions. We compute this variation in two steps. First we show that this difference

A

does not depend on any variation of the connection one-form w4p while keeping the e?

fixed.” Then the Weyl variation only arises from the Weyl variation of the e while keeping

"This same computation shows that the Lovelock gravities have a well-defined variational principle for
the metric g,, on a space with boundary (see ref. [45]).
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the w?p fixed. This last variation is rather simple, as the e only appear through wedge
products in &, ,, and Qy, .

A

Now consider a variation of the connection one-form w” g whilst keeping the e4 and

embedding of the boundary fixed. The bulk and boundary curvatures vary as

5,RAp =Déwlp, 0, RAB=Décp,  6.L = (dwip)n”, (3.65)

45 is the connection one-form on the boundary. The computation of this variation

where w
is virtually identical to that in subsection 3.3, as the only difference between &, ,, and &g,
and Q9 ,, and 9y, is an extra wedge product of n — 2m factors of the e”. The analogues

of (3.33) and (3.43) are

o€
_ AB n,m
0uEnm = d(éw A 3 AB) ,

o€ (3.66)
00 Qnm = WP A 87271’:; + (total deriative),
so that
5o.)(gn,m - dQn,m) = O, (367)
as claimed.

Now consider a variation under which w4 g is fixed and the e” vary as in an infinitesimal
Weyl rescaling,

Spet = doe. (3.68)

Then
0o(Enm — dQpm) = (n —2m)do (Enm — dQnm) (3.69)

so that the variation of the dimensionally regulated anomaly action W in (3.61) is

= m 4a
W = (1) s < /M Eunbr— [ Qn,maa> . (3.70)

In the n — 2m limit, this variation coincides with the a-anomaly (3.16).

4 Dilaton effective actions and boundary terms

In this section, we present the a contribution to the dilaton effective action in a spacetime
with boundary in four and six dimensions. The d = 2 dilaton effective action with a
bounday term is given by (2.12). For d > 2, the computation of boundary terms is more
laborious. The details of a derivation using dimensional regularization are provided in
appendix C in dimensions four and six. We save the general discussion of how the universal
entanglement entropy arises from the boundary terms of these dilaton actions for the next
section.
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4.1 The dilaton effective action in d =4

The Euler density in d = 4 is given by

1
Ey = 15’“"'”4RV1V2M1MQRV3V4M3M4 = Ryupo R'"P7 — 4Ry R + R?, (4.1)

[ 2R

where 40}, is the fully antisymmetrized product of four Kronecker delta functions. The

boundary term is

1 2
Qi = —45511#221/;;3 Kﬁ <2RV2VSM2M3 4 3KZ§KZ§>
(4.2)
. 2 1
- 4<2Ea5KQB +3 tr(K3%) — KK,sK* + 3K3> .
Denote the Einstein tensor as
E* = RMY — %g’“’R. (4.3)
In appendix C, we find the dilaton effective action in d = 4 to be
W[guw 6727‘%”] _ # / d4x\/§[rE4 +4E#(0,7)(0,7) + 8(D,,0,7)(0%T) (0" T) + 2(87)4]
M
e / PPy | TQu + 4Ky — K°P)(0a7)(0p7) + §T§ ; (4.4)
(4m)* Jour 3

where 7, = n*0,7 is a normal derivative of the Weyl scale factor. The bulk term agrees
with ref. [8, 18] while the boundary contribution is to our knowledge a new result.

4.2 The dilaton effective action in d = 6

The Euler density in d = 6 is given by

1o
Ee = géﬁll_,_,ﬁ? R2 1 R i RS s e (4.5)
and the boundary term is
1 2 1 2
Q= ~002y 251 (R + KA ) (G + S HEE:)
(4.6)
4 (0% (6% Q. Q.
s ey Ko K K| -
To present the bulk dilaton action, we define
E®M = gty + 8RERP — ARM R + 8Rpe R*"7 — ARV 50 R°7, )
C/u/pa = R;u/pa - gupRua + guaRVp . '
In appendix C, we use dimensional regularization to find the bulk dilaton action
—27
WGy € guv] (Bulk) —
a 6 2
5 /Md 2\/g{— TEs + 3EQ) 0" 10" T + 16C,ups (D*0°7)(0"7)(8°7) 48)

+16EW[(6“7')(8”7')(D,)0”T) — (3"7)(8“7’)DT] — 6R(07)4
—24(07)*(DOT)? + 24(07)*(Or)* — 36(07)(97)* + 24(07)°} .
This reproduces the bulk Wess-Zumino term first obtained in [17].
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We have not been able to generate the boundary term in a general curved background.
However, for a conformally flat geometry, we find

WS 76,] =

a

T dﬁm\/§{2(87)2(8H8V7)2 — 2(87’)2(D7)2 + 3DT(87')4 — 2(87')6}
™ JM

- 3(462)3/61\4(151/\” [_ 7Qs[d] + 48FF (9a7)(077) + 3Qu[0,,)(DT)?

+ 48K % (0r) (Dadp7) +24K (D0 d7)% —48 K o (DP0%7) (DY 857)
— 24K (0r)? — 32K (D7)?0r — 16K (9%7)(8°7)(DadsT)

+ 16K 03(0°7)(0°1)00r 4 32K ,3(D*8%7)(Dr)? + 12K 7

+ 12K (D7)* + 24K (D7)272 + 48(07) (D7) (7)) + 16(CI7) (73)

. . 36
— 24(D7')27n3 — 367’n(D7')4 — 372 , (4.9)
where we have defined
Py = (K? —tr(K?)K§ — 2KK* Kz, + 2K,s KK} . (4.10)

5 The sphere entanglement entropy: general result

We consider the entanglement entropy across a sphere with radius ¢ in flat space. The
calculation is analogous to the discussion of the entanglement entropy for an interval in
d = 2 in section 2.3. The information necessary to compute the entropy is contained in
the causal development of the interior of the sphere, a ball of radius £. We can then map
that causal development to all of hyperbolic space cross the real line R x H% ! using the
change of variables

sinh /¢
coshu + cosht/0’
sinh u
coshu + cosh /¢’

(5.1)

where 7 labels the new time, u is the radial coordinate in hyperbolic space while (¢,r) are
time and radius in polar coordinates in flat space. See figure 2. The line elements on flat
space and R x H%! are related by a Weyl rescaling (see for example ref. [46])

n=—dt* + dr* + r2dQ7_,,

2 2 0 200,21 winh2 2 (5.2)
=e U[—dT + ¢ (du” 4 sinh ude_Q)] ,

where e~? = coshu + cosh7/¢. We proceed by using the Euclidean version of this map,

where 7g is a periodic variable with period 27¢ so that the theory is naturally at a temper-

ature T' = Q%TZ, and the Euclidean geometry is conformal to S x H?!. Note a difference

here with the d = 2 case where the temperature was a free parameter.
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Figure 2. (a) Blue dashed curves are constant u contours. Red curves are constant 7 contours.
(b) Blue dashed curves are constant u contours. Red curves are constant 75 contours. Note that we
have plotted negative values for r and u even though both technically are restricted to be positive.

The computation of the entanglement entropy across a sphere thus reduces to a com-
putation of the thermodynamic entropy of the hyperbolic space Sg = 2m¢(H) — W where
W = —Intre 2™H_ As it did in d = 2, this computation in turn breaks down into three
pieces, a computation of (H), a computation of the effective anomaly action W[, e~270,,]
and a computation of a universal contribution to /I/I\?[d,w],

Sp=2ml(H) + W0, e 28] — Wdw). (5.3)

To compute (H), we shall not try to write down the Schwarzian derivative in arbitrary
even d, but instead rely on an earlier closely related computation performed in ref. [47].

We have not been able to compute W[é,w,e_%éw] in general d, but we shall argue
based on computations in d = 2, 4 and 6 that it precisely cancels the contribution to Sg
from (H). Finally, we compute W[éw,] and show that the logarithmic contribution to it
always reproduces the universal part of the sphere entanglement entropy.

5.1 Casimir energy

The easy part of this computation is (H) because it has essentially been done in ref. [47].
In that paper, two of us computed the stress tensor in the vacuum on R x S9! in even d,
within the scheme where the the trace anomaly takes the form

@) = Yol = (<) g o (5.4)

J

i.e. in a scheme where local counterterms are used to remove the total divergence from the
stress tensor trace. Within that scheme, the stress tensor is unambiguously determined
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by a to be

4a . 4a

<T(?> = _(—52)d/2dV01(Sd) ) (T7) = (_52)d/2d(d — 1) Vol(S4)

; i (55)

(Note the change in conventions for a between that paper and this.) On R x H%! at the

temperature T' = ﬁ it follows that

B 4a (T7) = 4a
d ¢4 Vol(S1)’ IT7d(d — 1)04Vol(S9)

(TO) = 8% (5.6)
because the Riemann tensor is the opposite sign, and the result is constructed from the
same product of d/2 Riemann tensors in each case. As the energy density is constant,
the total energy is given by multiplying the energy density by the (divergent) volume of
hyperbolic space, (H) = (T%) Vol(H9~!). We need to isolate the logarithmic contribution
to this volume

Vol(H4-1) = 41 vl (59-2) / " b2 udu (5.7)
0
where our cut-off is 5/
umaxz—ln2i5/£. (5.8)
We find that
d—1 (_1)d/2 d—1 d—1 d
Vol(H*):...—l—iﬁ*Vol(S*)lnz—i—... (5.9)
T
and hence that i
2ml(H) :...+(—1)d/28—aV01(S )lné—l—... (5.10)

d Vol(§%) ¢

Like the stress tensor on R x S9!, neither the stress tensor on R x H%! nor (H) is
independent of the choice of scheme. For example, if one computes the partition function
of a d = 4 conformal field theory in two different schemes in d = 4, their generating
functionals may differ by the local counterterm

€/d4x\/§R2, (5.11)

where the coefficient £ is real. Taking a metric variation of the counterterm, it is clear
that the stress tensor on R x S%1, or (H) on R x H%! depends on the choice of £&. See
refs. [47-49] for lengthier discussions of this issue. However, the dependence of W on ¢ is
linear in $. Thus while (H) depends on the choice of scheme, the result we obtain for the
sphere entanglement entropy Sg does not.

In principle, we should also worry about boundary contributions to (H). We claim
these contributions do not contribute to the logarithm. One way to compute them is to
look at the metric variation of the boundary @y, ,, term in n = d + € dimensions. As we
saw before, the variation of the metric through the spin connection will cancel against a
bulk variation of E, ;,. The remaining variation comes only from the vielbeins, and cannot
produce a logarithmic contribution.
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5.2 Dilaton effective action

It is more involved to obtain W[d,,, e 276,,]. Ind = 2,4, and 6, we use the dilaton effective
actions that we found in sections 2 and 4. We will see that logarithmic contributions from
(H) and W cancel out, i.e. that

2mU(H) + W [0, e 27 0] (5.12)

has no logarithmic contribution. Thus, the entire entanglement entropy contribution comes
from W[&LW], which we will compute next.

In principle we, should be able to evaluate W[(S#,,,e_%&w,] for general even d and
find the same cancelation of the logarithmic pieces. In practice, there is an issue of non-
commuting limits in dimensional regularization which makes the calculation difficult. The
correct order of limits is to take the metric to be completely general, take the n — d limit,
and only then specialize to the metric of interest. To see that the other order of limits is
problematic, consider the following example. If we first fix the metric 6_2”6,“, to be that
of 81 x H™ ! and then take the limit n — d, we get a divergence that disappears in the
other order of limits. Because S' x H"~! contains an S! factor, the Euler characteristic,
i.e. the leading 1/(n — d) singularity in /V[v/[e_%éw,], will vanish. In contrast, the leading
1/(n — d) singularity from the boundary contribution to W[(SW] will not vanish. Thus
Wb, e 276,,] computed in this order will not even be finite.

We identify the conformal factor o in the metric (5.2) with the dilaton 7 of section 4
(not to be confused with hyperbolic time). For convenience, we divide up the bulk and
boundary contributions to WW. We find the following results.

d = 2. The d = 2 case can be evaluated from the effective action (2.12). Denoting {5 = a
and recalling that an interval has two endpoints, we find the bulk contribution to W is

W b€ 7 0] gupe = — (;) (2ru — 4 In(sinh u)) Vol(S°) + ... . (5.13)
The boundary action contributes the following relevant divergence (the logarithmic diver-
gence)
—20 _ a 0
W[&ulj, (& 6#1}] Boundary —_— <27‘(‘> (477”) VO](S ) + ceey (514)
so that the logarithmic contribution to W is
W[ e 278, = —2au+... . (5.15)

Using the expression (5.10) for (H), we see that 2m¢(H)+W[6,,, e~2%,,] has no logarithmic
term.

d = 4. Ind =4, we find that the bulk and boundary terms in the expression (4.4) for
W contribute the following logarithmically divergent terms

Wb, 6720511”] 6mu — 167 In(sinh u)) Vol(§%) + ...,

a
Bulk — (4@2(
. a
Boundary (471-)2

(5.16)

W [0, 6_205W] (167u) Vol(S?) + ... .
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d = 6. In d = 6, we find that the bulk and boundary terms in the expression (4.9) for
W give

W[ € 28,] (30mu — 96 In(sinh w)) Vol(S*) + ...,

pulk _W (5.17)

4% [5HV7 67205;11/] (967TU) VOI(S4) +

Boundary = (471')3
In sum, using the dilaton effective action in d = 2,4,6, we confirm that there is no
logarithmic contribution to 2m¢(H) + W[, e 276,,], as advertised.

5.3 The boundary contribution to W in general dimension

The last calculation to do is then an evaluation of the logarithmic contribution to AW/[éw]
in general dimension. To keep the boundary parametrization simple, it is useful to work
in the (7,u) coordinate system. In that system, we have that the extrinsic curvature takes
the form

KT = _sinl}lu

1 ,
, K'=0, K] = E(cosh;cothu —|—cschu> d; - (5.18)

The bulk term in W vanishes identically in flat space, so it remains to evaluate the boundary
term. Two useful integrals for evaluating that boundary term in flat space are, for even d,

/27r (1 + coshucost)?—2 i T (d—2)!
o (coshu+cost)1 = sinhu 2d—3(@1)2
) 2y, 2 (5.19)
e
0

25!

Starting with the expression (3.29) and using the Gauss equation to replace the non-zero
Rapys with the vanishing R, 0, the logarithmic contribution to the boundary term is

/ Qnaj2 = (d_ f)d Vol(S%72) In i +. (5.20)

Using that for even d,

Vol(S92)  d—1
= 21
Vol(S5%) 2 (5:21)

we then find the logarithmic contribution

- W[éw] =+ (=1)¥%4q ln% +.... (5.22)

Using the expression (5.3) for Sg and that 2ml(H) + W[0,, e~ 2%3,,] has no logarithmic
term, we indeed find that the universal term in the entanglement entropy Sg across a
sphere is

§
SE:...+(—1)d/24aan+..., (5.23)

as claimed in ref. [14].
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This computation is in fact almost a topological one. Under a constant rescaling

o = A, the a-contribution to the Weyl anomaly guarantees that the generating functional

W varies on a manifold with Euler characteristic x as (focusing just on the contribution
proportional to a)

W = (—=1)¥2(2a)x . (5.24)

Now, the 4a in the entanglement entropy is essentially (2a)x(S%2), and x(S972) is the
change in the Euler characteristic of flat space when a D x S92 is removed where D is an
open two dimensional disk. To see this, we use that the Euler characteristic satisfies an
inclusion /exclusion principle x (AU B) 4+ x(ANB) = x(A) +x(B). Let A be R? with a D x
S92 removed. Let B = D x S92 be a closed set. From the inclusion/exclusion principle,
it follows that removing the D x S9~2 subtracts a x(S%~2) from the Euler characteristic of
the original space AU B.

There is a sense in which introducing a boundary was not helpful. Often in these types
of computations, knowing the value of a difference like W[4, e7274,,] is useful because

there are symmetry reasons to believe that for the reference background W[d,, | will vanish.
Here, precisely because we had a boundary, WN/[@W] did not vanish. As a result, we needed
an independent way of calculating V[N/[dlw], and in fact, when the dust settled, we saw that
we only needed to calculate W[duy]. Everything else canceled.

That W[éuy] gives the right answer could perhaps have been anticipated. From ref. [7],
it is known at least in four dimensions that the a dependent contribution to the entangle-
ment entropy for a general entangling surface ¥ is proportional to the Euler characteristic
of that surface, Sg ~ 2ax(X)In(6/¢). The fact that /W/[(FW] gives us the entanglement
entropy in our case could be viewed as confirmation of ref. [7] in the case when X is a
sphere. It is not too much of a stretch to imagine that in general even d, the a dependent
part of the entanglement entropy will be Sg ~ (—1)%?2ax(X)(Ind/¢). Indeed, there are
arguments to this effect in refs. [50, 51]. That we are confirming in d = 4 a specific case
of a more general result is reassuring because evaluating W[(Sw] involves taking limits in a
problematic order, as we already described above, first fixing the metric and then taking
the number of dimensions n — d.

Before proceeding, we write down an expression for the thermal partition function
Wy = —InZy on HY ! at temperature T = 1/(27¢) whose logarithmic pieces agree with
the results above

Wy = a(ZLTrE;;Z/i(Z)! [F(d) - 2d—1r<1 + ;l)r(;l)} Vol(HT Y + ... . (5.25)

The first term is proportional to (H) and the second term gives the entanglement entropy.
The quantity in brackets is A160481 in the Online Encyclopedia of Integer Sequences [53].
5.4 A different conformal transformation: de Sitter spacetime

As we just saw, computing the entanglement entropy of a ball using the map to hyper-
bolic space is a rather intricate calculation that boils down, at the end of the day, to a
computation in flat space of W[, ]. In some sense, then, the conformal transformation is
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unnecessary and does not give us extra information. We can try to see this phenomenon in
a different example, a map from the causal development of the ball in flat space to the static
patch of de Sitter spacetime. Ref. [14] already used this map in a successful calculation
of the universal term in the entanglement entropy across a sphere, but we should revisit
this computation in light of our boundary terms. In the Euclidean version of this map, the
target space is an even-dimensional sphere S with no boundary. Naively, we can ignore
boundary terms. Nevertheless, the Weyl scale factor is not well behaved everywhere, and
to be rigorous, we can introduce an artificial boundary to regulate its divergences.

The metric 7 on Minkowski space is related by a Weyl rescaling to the metric on the
static patch of de Sitter

n=—dt? + dr? 4+ r2dQ3_,

5.26
= e* [ — cos® 0dr? + £*(d6? + sin® 0 dQ7_,)], (5.26)

where

o = —1In (14 cosf cosh(r/¢)), (5.27)

and 0 < 6 < 7/2 while —oo < 7 < 0o. The coordinates are related via the transformation

‘ cos O sinh(7/¢)
~ 1+ cosfcosh(r/l)’
sin 6 (5.28)
T =

1+ cos@cosh(r/¢)

The causal development of the ball, cut out by £ = +(¢t — r) and ¢ = +(¢ + r) is mapped
[% s

to eF™/! = tan (5 - Z)' In the Euclidean version of this map 7 — i7g, the boundary is
reduced to the point (7g,6) = (0,7/2). In contrast to the map to hyperbolic space where
the boundary of the causal development mapped to the boundary of H%~!, here the point
(0,7/2) is a smooth interior point of the S¢. The bulk integrals will not diverge here, and
we do not need to introduce a regulated boundary.

In contrast, the Weyl scaling factor o is divergent at the point (7¢,0), and technically
we should regulate the anomaly action by introducing a boundary here. To do so, we
introduce a local coordinate system in the vicinity of the point (7¢,0), § ~ psin¢ and
T/l — T = pcos ¢ where 0 < ¢ < 7 in order to keep 6 > 0. Near this point, the metric on
flat space can be written

4

nx G (dp? + p2d¢* + p?sin? pdQ2_,). (5.29)

Introducing a boundary at p = § < 1, the nonzero components of the extrinsic curvature
are K = £65. It follows that

™ 1
Q4= ( / sin?~2 d¢)( / (1 —32)d3> Vol(8972)d! 21n 6
oM > 2' 0 (5.30)
UL

d—1
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It is then straightforward to see that the logarithmic contribution to W[(SW] and the bound-
ary logarithmic contribution to W0, 6_2"5W] are identical. Moreover, these logarithmic
contributions are the same as was found using a different boundary and the map to hy-
perbolic space. This equivalence is not surprising since the contributions are topological in
nature, and the boundaries, though different, are still topologically the same.

As already mentioned in ref. [14], the Casimir energy in de Sitter spacetime does
not contribute to the logarithmic divergence and the full logarithmic term of the en-
tropy is dictated by the partition function evaluated in the curved metric. The expression
W(6,w, €276, has bulk contributions from de Sitter and from the ball but also, now in
light of our results, a boundary contribution from the surface p = §. Ref. [14] got the right
answer purely from the bulk contribution to W0, e_zoéu,,]. As follows from the previous
paragraph, had they computed the boundary contribution as well, they would have found,
like us, that 2m¢(H) + W[5, e278,,] has no logarithmic contribution and that the entire
log contribution can be attributed to W[(SW]. For example, using our explicit anomaly
action in d = 4, we find

W [0y €28, |Butk ~ #IGW In & Vol(S?%) = 4alns, (5.31)
where we integrate only from —7f 4+ < 7 < 7l — 6.
Interestingly, though, the bulk contribution to W[d,., 6_2"5“,,] considered in ref. [14]
did give the correct answer for the entanglement entropy on its own. Similarly, in our
case of the map to hyperbolic space, we could have thrown out the equal and opposite
contributions from W[(Suy,e*%éw]hgoundary and W[duy] and also gotten the correct an-
swer purely from W0, e*QUéuy]]Bulk. As the split between bulk and boundary terms in
Wb, e 276,,] is arbitrary up to a choice of which total derivatives to include in the bulk
action, getting the correct answer from W[éw,, 6_2”5,“,“]31111{ alone appears to be a coinci-
dence. In fact, at least regarding logarithmic terms, we have specified a separation between
bulk and boundary terms by insisting that the only place in which 7 appears without a
derivative in the boundary action is multiplying @)4. This split has the advantage of giving
the boundary contribution a topological interpretation when the reference metric is flat.
Indeed, given this choice, it becomes manifest for the two maps we considered that both
Wb,y € 276 ,] | Boundary and V[N/[dlw] will yield the Euler characteristic of the flat space
multiplied by a logarithm of the UV cut-off.

6 Discussion

We resolved the puzzle described in ref. [14]: the universal logarithmic term in the en-
tanglement entropy (1.2) across a sphere in flat space (for a conformal theory) can be
recovered by a Weyl transformation to hyperbolic space, provided one keeps careful track
of boundary terms. One interesting consequence of our results is that the logarithmic term
can be interpreted as a purely boundary effect. With the help of the conformal map to
hyperbolic space cross a circle, focusing on the universal part, we identify the logarithmic
contribution to the entanglement entropy Sg and the dimensionally regularized effective
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action W[cSW]:
Sg = —tr(palnpa) ~ =W, (6.1)

where /W\?[éw,} is given by eq. (3.61). W[éu,,] corresponds to a dimensionally continued
Euler characteristic of the causal development of the interior of the sphere, a ball, which
in turn receives contributions purely from the spherical boundary of the ball since the
Riemann curvature and hence the Fuler density vanish in flat space. The leading area law
divergence in the entanglement entropy is also usually interpreted to be a boundary effect:
entanglement entropy scales with the area of the boundary because in the ground state
most of the entanglement is assumed to be local. But here we see that the subleading
logarithmic divergence is also a boundary effect. Perhaps this result should have been
anticipated since both divergences are regulated by a short distance cut-off §, which one
could think of as the distance between lattice points on either side of the boundary.

As we discussed in section 5, that W[éw] on its own gives the correct answer for the
log term in the entanglement entropy across a sphere can be viewed as a special case of
Solodukhin’s result [7] using a squashed cone in d = 4 that the a contribution to the
entanglement entropy across a general surface ¥ can be written

SEg ~2ax(X)In(d/¢). (6.2)

For non-spherical entangling surfaces, there will of course be other contributions to Sg, for
example from the ¢; central charges. While we are not aware of a derivation (refs. [50, 51]
come close but ultimately only consider the sphere case), it seems reasonable that in general
dimension, the only modification needed to make this formula correct in our conventions
is a factor of (—1)%2.

In the process of resolving this puzzle, we produced a number of auxiliary results
which are interesting in their own right. In two dimensions, where the trace anomaly
is perhaps most powerful, we were able to use an effective anomaly action to reproduce
three well-known results in conformal field theory, namely the Schwarzian derivative, the
entanglement entropy of an interval, and also the Rényi entropies for the interval. Neither
the effective anomaly action we use nor the results are new. However, we have not seen our
form of the effective anomaly action used to derive these three results before.® Additionally,
the story in two dimensions provides a simple warm-up example for the story in general
dimension which we pursued next.

Between d = 4 and d = 6, our story is the most complete in d = 4. In four dimensions,
we derived from general principles the most general Wess-Zumino consistent result for the
trace anomaly on a manifold with a codimension one boundary, including two boundary
central charges we denoted by and by. It would be interesting to study b and bs further (as
well as their counter-parts in higher dimensions). What values” do they take for massless
fermions? for a gauge field? for superconformal field theories? Might they be ordered
under renormalization group flows, like the coefficient a?

8See however ref. [29] for a similar calculation.
9Note added. Shortly after the first version of this paper appeared on the arXiv, these boundary
central charges for fermions and gauge fields were computed in d = 4 in ref. [52].

— 33 —



Another pair of key results in this paper are explicit formulae with boundary terms
for the a contribution to the effective anomaly action in d = 4 and d = 6 dimensions.
Previously, to our knowledge, only the bulk contribution had been worked out [8, 17, 18].
Unfortunately, in d = 6, we were only able to detail the boundary contribution to the
action for a conformally flat metric. The conformally flat case was enough to study the
entanglement entropy across a sphere. Nevertheless, it would be nice to write down the
boundary contribution for a general metric.

It would also of course be interesting to see if the a contribution to the effective
anomaly action can be given an explicit and simple form in any dimension. That the sphere
entanglement comes solely from W[(SW] depended on cancellation between the Casimir
energy (H) and the effective anomaly action W[d,,,e 276,,] that we were only able to
verify explicitly in d = 2, 4 and 6. In general even dimension, we were hampered by
non-commuting limits that forced us to fix d before choosing a metric in order to calculate
Wb, e 2768,

In appendix D we reproduce the holographic computation of the sphere entanglement
entropy using hyperbolic space. Holographic renormalization allows us to write down a
regulated effective action Wy for S1 x H%~1 itself without need for a reference background.
Thus we are saved the trouble that we faced with our dilaton effective action of needing to
compute W for the reference background.

Another interesting result of the holographic calculation is the vanishing of the second
derivative of the effective action Wy (D.12). While experience suggests that the result is
the consequence of a Maxwell relation combined with scale invariance, we have not been
able to prove the vanishing for a general conformal field theory.

Finally, in this paper we mostly adopted the dimensional regularization to construct
W. It would be interesting to construct ¥ using the integral formula (3.17).
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A Differential geometry with a boundary

Let M be a d-dimensional, orientable, Riemannian manifold with metric g. In general M
will have a boundary 0M. We use z* to indicate coordinates on patches of M and y® for
coordinates on patches of 9M. The boundary can be specified by means of the embedding
functions X*#(y®). These do not transform as tensors under reparameterizations in M, but
their derivatives

fo' = 0, X", (A.1)

do. Rather, the f5 transform as a vector under reparameterizations of the z# and as a
one-form under reparameterizations of the y®. The f5 allow us to pull back covariant
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tensors on M to covariant tensors on dM. For instance, the metric g pulls back to the
induced metric v with components

éaﬁ(y) = faﬂ(y)fﬂy(y)g;w (X(y)) . <A2)

We also define
fa‘u = g‘u,yfyaﬁfﬁya (Ag)

which satisfies
fufs! =05, fEufa” = hy, (A.4)

with h*” a tangential projector. We can also define a unit-length vector field n* after
picking an orientation on OM via

1

e i TR

GrGd=1 f MU fag T (A.5)
Throughout we take the orientation on M to be such that n* is always pointing outward.

A.1 The covariant derivative and the second fundamental form

We use the Levi-Civita connection built from g to take derivatives D on M. From this
connection we construct a connection on M that allows us to take derivatives D of tensors
on OM. D acts on e.g. a mixed tensor T+, via

Do%H5 = 0aFH 5 + TH,0 %" 5 — 175,57, (A.6)
with
Moo =THpfa”, Ty = [7u(0y0, + T ) 5" (A7)

It is easy to show that fam is the Levi-Civita connection constructed from the induced
metric 7,8, and furthermore that the derivative satisfies

o o

Daguw =0, Davgy = 0. (A.8)

There is a single tensor with one derivative that can be built from the data at hand,
namely the second fundamental form II* g,

H'uag = f)afg'u. (Ag)
One can show that
I, = "3, , hul¥ o5 =0, (A.10)
and the latter implies that
"og = —n"'Kugs, (A.11)

where K,g is the extrinsic curvature of the boundary. From this and n“f)an“ = 0 we
also find
Dony = 2 Kap - (A.12)
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Let us relate this presentation to the more common one in terms of Gaussian normal
coordinates. For some patch on M which includes a patch of M, we choose coordinates
so that g takes the form

9= dr® + jap(r, y)dy*dy’, (A.13)
where the boundary is extended in the y* at r = 0. That is, the embedding functions are
W =0, fof = 5§, and consequently the induced metric is

'Yaﬁ(y) = gaﬁ(r =0, y) . (A'14)

In this coordinate choice we have

L.
n =1, M p =T 0p = _§arga5|y:0_ (A.15)

Note that the trace of the extrinsic curvature, K = 8 K,z is

1 ogn - £n\G
K = =§*%0:4ap|,_, = (A.16)

2 \/g r:O’

with £, the Lie derivative along n*, which coincides with a common formula used by

physicists for the extrinsic curvature of a spacelike boundary.

A.2 Gauss and Codazzi

Consider the Levi-Civita connection one-form I'*, = I'*, ,dz” and its curvature
1
RV, =drt, +TH, AT*, = §R“l,pgdx” Adx?. (A.17)

Here R*,,, is the Riemann curvature which can also be defined through the commutator
of derivatives

Dy, Dot = R*) 0", (A.18)
for v* a vector field. The pullback of R*, to OM can be expressed in terms of the curvature
R, of T' and the second fundamental form. The resulting expressions are the Gauss and
Codazzi equations. They can be summarized as

P[R%,] = R fol 2, + DM*, — MF, A MP,, (A.19)
where D is the covariant exterior derivative and
Mur/ = Huafau - fauﬂuav H#a = Huaﬁdyﬂ' (AQO)
Alternatively, we can define
TH, =TH,ody® — M*, (A.21)
whose curvature satisfies
R, = RO f"f5,. (A.22)

In components, the Gauss and Codazzi equations read

o

Rogys = Rapys — Koy Kps + KasKpy

. . A.23
R“ag,yn‘u = _D[}Kow + DWKQB y ( )

and we have used the embedding scalars to convert indices on the bulk Riemann tensor
into indices on OM.
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B Wess-Zumino consistency in d = 4

We now perform the algorithm described in subsection 3.4, beginning with step 1. We need
to parameterize the most general variation of W, which we denote as d,W;. After some

computation, we find that this variation contains sixteen independent terms'®

8 8
50Wb:/ dSyﬁ{Zb]B[—I—ZBJ'DJ}(SJ, (Bl)
oM I=1 J=1

indexed by the eight b; and eight Bj. (The coefficients b; and B; are used to denote
boundary central charges.) We organize the terms in the following way. The eight B; are
three-derivative scalars. The eight D all involve derivatives of the Weyl variation do, and
so we denote them with a calligraphic D to suggest a derivative. We distinguish the B;
and Dy for two reasons. First, the allowed three-derivative counterterms are given by the
Br. Second, we will see shortly that those local counterterms redefine the coefficients of
the D.
In any case, the By are

Bi = RK, Bs = RK, Bs = Ros K%, By =tr K3,

. . B.2
Bs = K3, Bs = n"9,R, By =tr K3, Bs = Wapy sy K. (B2)

Here W,p+s is the pullback of the Weyl tensor to the boundary, and we have defined K to
be the traceless part of the extrinsic curvature,

- K
Kap = Kap = o= a8 » (B.3)

which transforms covariantly under Weyl rescaling as Kag — eUKag. B7 and Bg are then
manifestly covariant under Weyl rescaling. They are the only nonzero scalars that can be
formed from either three factors of K, or one factor of K and one of the Weyl tensor. They
cannot be eliminated by the addition of a local counterterm and are trivially Wess-Zumino
consistent, and so represent genuine boundary anomalies. The tr(f( 3) term first appeared
in ref. [36], while the Wamg’y’”f(ﬂ‘s term appeared later in ref. [37, 38]. The D are

D, = UK, Dy =D DK D3 = Rn"9,, Dy = Rn*d, .
Dy = Kaf;Ko‘ﬁn“GM, De = K%Hau, D; = Kn'n"D,D,, Dg=nt'n"n’D,D,D,.
(B.4)
Continuing with step 2, the most general local boundary counterterm is

6
Wer = / dPyyy Y diBr . (B.5)
oM =1

The dj represent a choice of scheme. They can be adjusted to eliminate various coefficients
in 0, Wp. We would like to deduce which coefficients can be eliminated. This is an exercise

10Tn compiling the list of these sixteen terms, we have made extensive use of the Gauss and Codazzi
equations (3.51). We also use that the action of n*D, is only well-defined on bulk tensors.
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in linear algebra. As /yB7 and ,/yBg are invariant under Weyl rescalings, we do not
include them in Wgp. The Weyl variation of Wer may then be understood as a linear
map X : R — R® which maps the {B;} (for I =1,...,6) to the {D,} as

8
8o / d3y\/7 Br = / &Py 27D b0 (B.6)
oM oM =

The number of Dj; which can be eliminated is given by the dimension of the image of
¥, and the null vectors of X! encode the linear combinations of the D; which cannot be
removed by a judicious choice of scheme.

A straightforward computation gives

—4-6-100 6
0 0 =100 O
3 0 100-3
w 0 3 0001 (B.7)
0 0 0303
0 -6 009 3
0 -6 0 00-6
0 0 000-6

The map ¥ is injective, so six of D can be eliminated. The null vectors of ¥ are given by
vi=(314000-34), x=(0006003-2), (B.8)

so the image of ¥ is given by R® modulo the R? spanned by x; and 2. In terms of the
Dy, the linear combinations

3Dy + Dy 4+ 4D3 — 3D7 + 4Dy, 6D4 + 3D7 — 2Dy, (B.9)

are never generated from the variation of Wer. Said another way, the d; can be adjusted
to eliminate all of the Dj except for D; and D4. So the most general boundary Weyl
variation, having modded out by local counterterms, is

8
5o Wy = /a y d3yﬁ{ > bBr + BiOK + B4Rn“6u}6a. (B.10)
I=1

Now we implement step 3, by computing the second Weyl variation. The second
variations of Bidoy through Bgdoy follow (almost) immediately from the 6, Wer that we
computed above. Let us then consider carefully the second Weyl variation of the terms
proportional to B; and By. From these terms we get

5o Gy Wiy = / Ayy/7{ B (3(n#0,601) ((602) + 2K (8%601)(0ad02))
oM

— 6B4(n"9,009) (1 + n*n’D,D, + Kn"d, )00 + ...}, (B.11)
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where the ellipsis denotes terms that depend on b; through bg. The only terms with a nor-
mal derivative of oo come from By. Given that fact, it is impossible to symmetrize under
do1 < doo the term involving one normal derivative of dos and two normal derivatives of
do1. Thus Wess-Zumino consistency forces By = 0.

It is slightly more involved to see that B; must vanish. First, observe that the Bg
term is the only one which produces a second variation §osDgdo, which has three normal
derivatives and is not symmetric under do; <> dog and so is not WZ consistent. So bg = 0.
In fact, the same sort of reasoning tells us that by = by = b5 = 0 and that bs is proportional
to by as b3 = —3b;. In terms of the remaining parameters by, By, the second Weyl variation
is simply

S, 0y Wiy = / APy /7{3b160 K*PD,Dgdoy + B (3(n#9,001)(0602) + 2K (9%601)(0ad02)) } -
o (B.12)
This expression is not symmetric under do; <> doo for any nonzero value of by and By, and
so WZ consistency enforces that they both vanish by = B; = 0.

The only “boundary central charges” that survive are by and bg, and the boundary
term in the anomaly is

S Wp = /8 y By {brtr K2 + bgy T KP W5} . (B.13)

Putting the pieces together, the total anomaly is given by (3.56) as advertised in subsec-
tion 3.4. In the text, we relabel: by — b; and bg — bs.

C Effective action from dimensional regularization

In this appendix we consider the anomaly effective action W in even d dimensions as
obtained from dimensional regularization via the expression (3.62), which we recall here

o] = Al (e [ Q) = ([ [ €
W[g,uzue g/u/] _ArlLligin—d{< Mgn,m aMQn,m) < Mgn,m 8MQn,m )
(1)

where m = d/2 and A = (—1)%?4a/(d! Vol(S?)). Here we obtain the explicit forms of W
in d = 4,6 including boundary terms. (In d = 6 the boundary action will be evaluated

in a conformally flat geometry.) The bulk dilaton effective actions can be found in the
literature; the boundary terms to our knowledge are new results.

We begin with the Lipschitz-Killing curvature &, ,, and the associated boundary term
Qpnm defined in (3.59) and (3.60) respectively. Denote the densities associated with these
forms as Ey, ;, and Qpm,. The first step in evaluating the expression (3.62) for W is to
deduce how E, ;, and Q. change under Weyl rescalings. Starting with the metric g,
and performing a Weyl transformation to g, = e_QTgW, the transformed curvatures Emm
and Qnm are

ViEum=vge "D E;+ D" + (n— d)G + O(n — d)?*},

. ) (C.2)
VA Qnm = VA€ " D{Qq+n,J* + Do H® + (n — d)B + O(n — d)*}
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where it remains to determine J*, G, H®, and B. Note that, in the n — d limit, (C.2)

implies
n—d M oM n—d M OM

which is just a consequence of the fact that the Euler characteristic is a topological in-
variant and so is invariant under Weyl rescalings. This has the practical effect that the
dimensionally regulated formula (3.62) for W is well-defined. From (C.2) we see that the
integrand of (C.1) is

\/gEn,m - \/gEn,m =
VI{DuJ* — (n—d)(TEq — J"0,m — G+ Du(1J")) + O(n — d)*}

ﬂ@n,m - ﬁQn,m =
VA {1 J* + Do H® — (n — d) (1Qq + T(ny J* + Do HY) — B) + O(n — d)*} .

In order to write W in as simple a way as possible, it will be useful to decompose G as
G =Go+D,K", (C.4)
for some current K*. Putting the pieces together, we find that the anomaly action W is

W[gw, e_2TgW] = A(/ ddm\/ﬁ{TEd - Jro, T — Go}
M (C.5)

—/ ddilyﬁ{TQd — H*0,m— B+ n”KM}> )
oM

We see that besides obtaining B and G defined in (C.2), we also need to determine J#, K*
and H®.

Cl d=4
To obtain the bulk action in d = 4, we find that J* is
Jt = —8{E" 9, + (D'9,7)d"T + (O*7)(07)? — (Or)orr}, (C.6)

and we find it useful to split G into Gy and K* as

Kt = %J” +4EM 9,

Go = 4B (9,7)(8,7) — 80r(97)? + 6(9r)™. (D
We find that the boundary data H* and B are given by
H* = 8{ (K — 4*PK)0s7 + 7,0°7},
B = 0K, + 4D {937 (K =y K)} = 4(K* — 4" K)(8a7)(957) (C.8)
- 8(f)7')27'n — gTS ,

where we have denoted the normal derivative of 7 as 7, = n*0,7. Substituting these
expressions into the general formula (C.5) for W, we find the result (4.4) quoted in sub-
section 4.1.
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C2 d=6
After some tedious computation, we find that the current J* in d = 6 for general g, is
given by
Joay = 1+ Iy + 5 + I+ JE (C.9)
where J} contains n powers of 7, and
Ji=6EPH(0"T),
JY = 48EL((D,0"7)(0°7) — (0¥7)07) + 48R* ;5 (9" 7)(D70PT)
+ 48Ry, ((8"7) (DP9 1) — (DP9 1)(0"T)),
J§ = 48EH(9"1)(07)% + 48(9%7)(Or)? — 9607 (9 7) (D, 0"7) (C.10)
+96(8"7)(D,0,7)(DPOFT) — 48(DAT)?(9"7),
Ji = —144(97)*07(0%7) + 144(07)*(9,7)(DPO"7)
JE =144(07)*(0"7).
The quantities E* and C**? are defined in (4.7).
We have also computed G for a general metric g,,,. We split it into G and K# so that
the bulk part of the anomaly action W matches the expression obtained in ref. [17]. The
resulting K* is

KH = %J“ —5E@my -y 16E’“’((81,7')D7' — (Dp&,T)(@pT)) +16C* ;6 (DP0"7)(07T)

+ 48(DH97)(9,7)(97)? + 72(07)4 (9" 1) — 48(07)* 07 (dM7) , (C.11)

and the expression for Gg is too lengthy to be worth writing here. It can be deduced by
comparing the general expression for W given in (C.5) with the bulk part of the anomaly
action in (4.8), using the formulae for J# and K* above.

Similarly we decompose H® into powers of 7 as

H® = H® + HS + HS + HS . (C.12)

The computation on the boundary becomes much more tedious. We have computed B
in general but its expression is too lengthy to present here. We have not yet succeeded
in finding the current H® when for a general metric g,,,,. When §,, is conformally flat,
Juv = 6*276,“,, we find
HY = 48P§0°7 + 6Q4[6,,)0°T ,
HY = 48K§(9°r)Or — 48K§(D,0°7)(977) — 48K (9°7)Ur
+48KP(D1957)(0%7) + 48K (957)(D*9°1) — 48 KF (D*0s7)(977) ,
HS = —48K§(9°7)(D7)? + 48K (D7)%(9%7) + 48K 72(9°T) — 4872 K§(9°T)
+ 967,007(0%T) — 967,(DY8p7)(8°7)
H$ = —1447,(D7)%0% — 4872(8°7)

(C.13)

where we defined P’ in (4.10). Using the expressions present above and the general
expression for the boundary term of W in (C.5), we obtain the explicit form in d = 6 given
in (4.9).
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D Holographic calculation

In this appendix, we study d-dimensional conformal field theories with a dual gravitational
description via the AdS/CFT correspondence. We then use the correspondence to compute
the thermodynamics of these conformal field theories when they live on a hyperbolic space
H1 with radius of curvature ¢ at temperature 7. In the special case T = 1/(2nf), we
will be able to compare with the previous anomaly calculations.

Much of the following calculation can be found already in ref. [54] and [14]. In par-
ticular, the expression for the thermal entropy on H%! at temperature T = 1/(27¢) in
terms of a is given in section 3 of [14]. Our new result is the thermal partition function on
hyperbolic space at any temperature and in any d.

We start with the usual bulk plus Gibbons-Hawking plus counterterm action for these
holographic calculations (see for example ref. [55]):

S = Sbulk + Ssurf + Sct )
1 —1
Sbulk:_2/ dd+1X /_G{R+ d(d)},
2K M

L2
1
Scg=—— d% /=g K,
T2 Jom / (D.1)
1 2d-1) L
Sor = — dz/—g R
cT 2/<62 OM «T g|: L + d—2

s (P )

We denote the bulk metric as G, bulk coordinates as X, and R is the bulk scalar curva-
ture. The bulk spacetime M is asymptotically AdS, and so the on-shell Einstein-Hilbert
action Spyuk diverges owing to the infinite volume “near” the AdS boundary. To compute
thermodynamic quantities, we must holographically renormalize the bulk gravity. In the
usual way, we introduce a “cutoff surface” M near the AdS boundary; the induced metric
on the cutoff surface is g, coordinates on it are denoted as x#, and R*,,, refers to the Rie-
mann tensor constructed from g. We introduce the Gibbons-Hawking term on this cutoff
surface, along with various counterterms Scr, and ultimately take the limit where we send
the cutoff surface to the AdS boundary. The counterterms are tuned so that this limit
exists.

To obtain the thermodynamic partition function Wy = —In Zg on hyperbolic space,
we first identify the gravitational solution dual to the thermal state on hyperbolic space,
namely the AdS-black hole with hyperbolic boundary. We then Wick rotate the bulk
spacetime to Euclidean signature and compute the on-shell, holographically renormalized,
FEuclidean action.

The AdS-black hole metric with hyperbolic boundary is a solution to the equations of
motion:

G— _ ﬁf(r)—l Edt2+r2(du2+sinh2udﬂ )4—(117702 (D.2)
-\ Iz R - |
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with f(r) = 1 —m/r? where m is an integration constant related to the temperature. The

constant m can be expressed in terms of the horizon radius rp: m = (ri — LQ)Tz_Q. In
terms of the horizon radius, the temperature is
1 rid—(d—2)L?

8 A Llry, ’

which can be inverted to give the horizon radius as a function of S:

T, 2w 270\
Ld_ﬂ+\/d(d_2)+(,3> .

Note that at m = 0, the metric becomes that of pure AdS with a hyperbolic slicing, and

the horizon radius is the same as the radius L of curvature of AdS. The temperature at
this point is 7' = 1/(27¢), and the black hole is “topological” in the sense that it is simply
a causal horizon.

The most direct way to check the entanglement entropy calculation is to compute the
area of the black hole horizon and use the Bekenstein-Hawking area law for black hole
entropy. One finds straightforwardly that

d—1
27rrh

Spn = WVOI(Hd’l) : (D.4)
where the hyperbolic space has radius of curvature £. This entropy diverges for the simple
reason that hyperbolic space has infinite volume, in the same way that the total entropy
in flat space diverges. However, unlike in flat space, we may appropriately regulate the
volume of H?~! and thereby identify a universal logarithmic term in Vol(H%~!) as in (5.9).
To check the calculation of the entanglement entropy across a sphere in flat space, we work
with the “topological” black hole at T' = 1/(2m¢) with horizon radius r, = L.

To compare the holographic entropy result (D.4) with field theory, we need an expres-
sion relating a to the gravitational coupling constant x in general dimension:

Ldfl
K2

a= %Vol(Sd_l) (D.5)

This relation is consistent with the holographic Weyl anomaly computed in d = 2, 4 and 6
dimensions in ref. [56]. In general d, this relation can be extracted from ref. [57].11 As we

17t is straightforward to derive eq. (D.5) by placing the field theory on an S9, computing the Euclidean
partition function and using the relation

Wea = —InZga = (fl)d/24a1n(/xé) +...,

where p is an energy scale introduced in the course of defining the theory. The “sphere free energy” Wga
is equal to the holographically renormalized, on-shell action S evaluated on the asymptotically hyperbolic
metric with S* boundary,

dr?
The logarithmic ambiguity in S arises purely from a logarithmic divergence in the on-shell bulk action

G = r20?d0% + L*

Shulk at large r, and using some of the same steps we employ below to compute the partition function on
St x H?! we find eq. (D.5).
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did in the previous section, we now extract the logarithmic contribution to Vol(H9~!) and
use the formula (D.5) for a to obtain

SBH:SE:...+(—1)d/24aln%+... (D.6)

in agreement with the universal result (1.2). This holographic result was also obtained
in [14] although their result is stronger as it allows for higher derivative curvature correc-
tions to the gravity action.

We are also interested in looking at the partition function Wy which can be equated
holographically to the on-shell value of the gravity action on the Euclidean version of (D.2).
Einstein’s equations imply that the Lagrangian density evaluates to

RaddoD)_ 3 o)
on shell. To avoid a lengthy discussion of counter-terms, we note that because the time
direction in the boundary is flat, the counterterms can depend on 7, only through the
metric determinant /g. It is therefore convenient to divide out a factor of /—gs from
on-shell quantities. The bulk and Gibbons-Hawking actions evaluate to

sy (2 oo (52 3() o]

BLY Vol (H1)
X .
0K?

The counterterms should be whatever they need to be to cancel the divergent factors
coming from the square root. By dimensional analysis, a counterterm with 2n derivatives

d=2n) " In a minimal counterterm

of the boundary metric will cancel a divergence at O(r
prescription where we add no finite terms with d derivatives, e.g. (Rm,pg)d/ 2 expanding

out the square root, the on-shell action is

= (1!  rfm\' 1\ B Vol(H )
WH__[W_2<L> _2<L> ] I : (D.9)

We have the partition function as a function of 8 and ¢ and not just in the “topological”
limit 8 = 2.
It is straightforward to verify the black hole entropy calculation above using standard

thermodynamic identities. We can compute the thermal energy from the effective action
by taking a 8 derivative:

(H) = (D.10)

0B

The black hole entropy is then Spy = B(H) — Wy, in agreement with the event horizon
area (D.4). Note that the energy and Wy itself are ambiguous quantities. The first term
in Wy can be altered if we decide to add a local counterterm like (Rng)d/ 2. Because the
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first term is linear in 3, the energy suffers a similar ambiguity, but this scheme-dependence
drops out of the black hole entropy.

Because not all field theories have classical gravity duals, this partition function will
not hold generally, but we can compare with the other parts of the paper when 8 = 2x/.
In the “topological” case, making use of the expression (D.5) for a, we see that Wy agrees
with the general CFT result (5.25). Interestingly, the derivative of the r; dependent terms
of Wy with respect to 8 vanishes at 8 = 2wf. Thus the entire contribution to the energy
comes from the first (regulator dependent) piece linear in § when 8 = 27¢:

oWy I'(d)

(H) = — % :2a(47r€2)d/2(d)|Vol(Hd_l). (D.11)
)1

Note this result agrees with the general CFT calculation (5.10) as well.
A peculiar observation about this holographic thermal partition function is that

0> (Wy B

Note that Wy = f(2m¢//3) is essentially a function of one variable, the ratio 27¢/8. It
follows that 0sWy = —£0yWp. As 0gWy is proportional to the energy while 0,Wp is
proportional to a trace of the stress tensor over the H?! directions, the fact that Wy

depends on /3 encodes the fact that the integral of the trace of the stress tensor vanishes.
The relation (D.12) is a stronger statement, which naively relates integrals of the two-point
function of the stress tensor. Perhaps it follows from the form of the two-point function of
the stress tensor on S' x H%~! at T = 1/(2x¢), which is determined by conformal symmetry.

Open Access. This article is distributed under the terms of the Creative Commons
Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
any medium, provided the original author(s) and source are credited.
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