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1 Introduction

String theory is, at present, the best framework for understanding a theory of quantum

gravity. This generalises the framework of quantum field theory, which is based on point-

particles, to fundamental one-dimensional strings and, using quantum mechanics and the

special theory of relativity as inputs, naturally generates a quantum theory of general

relativity. One of the principal reasons that we are successful in understanding the theory

of quantised strings is the power of symmetry, especially conformal symmetry which arises

on the worldsheet of the string as a residual gauge symmetry in the conformal gauge. The

lack of conformal symmetry is also the principal reason why attempts at understanding a

theory of quantised higher dimensional membranes has eluded us thus far.

1.1 High energy string theory

The study of the extreme high energy limit of string theory has remained an enigmatic

subject since the discovery by Gross and Mende that string scattering amplitudes behave

in a particularly simple way in this limit [1, 2]. String theory is a very unique framework

in the sense that it is described by only a very few parameters. It is thus very likely

that it would have a very high degree of symmetry. This is however not manifest in the

formulation of the theory. The likely explanation for this lies in the analogous field theory

example. If one considers a spontaneously broken gauge theory, the low energy dynamics

of the theory would never capture the details of the unbroken gauge group. But it is likely,

just as in the case of the electro-weak theory in a limit where the gauge boson masses are

negligible, that the high energy scattering amplitudes see the unbroken larger symmetry

structure. Extending this analogy to string theory where the analogue of the weak-scale

would be the Planck mass, in [1, 2], the authors explored a particular limit of string theory.

This limit, where the Planck mass would be negligible, phrased in terms of the only string

variable α′, was the α′ → ∞ or the tensionless sector of string theory. This limit is the

diametric opposite to the limit to supergravity where one takes α′ → 0 making the string

shrink to a point. The tensionless sector of strings is expected to capture a large hitherto

unknown symmetry of string theory. In [3], Gross found an infinite number of linear

relations between the scattering amplitudes of different string states that are valid order

by order in perturbation theory as the string tension went to zero. This was an indication

of the aforesaid symmetry structure.

The initiation of the study of tensionless or null strings predates the above discussions

by a decade and the first effort in this goes back to [4]. In a modern perspective, the

study of tensionless strings has been linked with the emergence of higher spin symmetries

in the space-time. Vasiliev’s higher spin theories [5] hold the promise for realizing at least
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partially the huge unseen symmetry of string theory described above. The tensionless limit

of string theory is the limit where the masses of all states go to zero and hence one obtains

massless higher spin states in this sector [6, 7]. The hope is that the generation of masses

in string theory would occur by the breaking of this higher spin theory. All of this has

come to the forefront of research in the recent years with the discovery of new higher spin

holographic dualities following Klebanov-Polyakov-Sezgin-Sundell [8, 9] and more recently

Gaberdiel-Gopakumar [10], and subsequent attempts to connect these to string theory (e.g.

see [11]–[14]).

1.2 Symmetries of tensionless strings

Our motivations in the current paper are somewhat more old-fashioned. We consider the

theory of tensionless strings propagating in flat space and wish to construct the theory

from first principles in the analogue of the conformal gauge following [15]. The reason why

we wish to do this is because like in the case of tensile strings, where conformal field theory

offers a guiding principle for the construction of the theory, it has been established that

a new symmetry structure governs the theory of tensionless strings. This is the so-called

Galilean conformal symmetry, which has made its appearance earlier in the context of the

non-relativistic limit of AdS/CFT [16] and somewhat more surprisingly in the construction

of flat holography [17]. Galilean conformal symmetry arises in the case of the tensionless

string as the residual symmetry on the worldsheet when the analogue of the conformal

gauge is fixed [18]. We wish to make use of the techniques of Galilean Conformal Field

Theories (GCFTs) which have been developed earlier, now to the case of the tensionless

string and thereby provide a organizing principle to the study of the subject.

Like the early work in the usual tensile case, we begin by considering the theory of

tensionless strings on a flat background. This may be an immediate concern for the reader.

The tensionless limit of string theory, as described before, is connected with the theory

of higher spins and thus there is an obvious problem. In flat space times of dimensions

four and higher, there is no consistent theory of interacting higher spins. As shown by

Fradkin and Vasiliev [19], consistent interacting higher spin theories require a non-zero

cosmological constant. This would mean that once we include interactions in our theory,

we would inevitably be lead to inconsistencies. In spite of the above, there are many

reasons that we want to consider tensionless strings in flat space times and let us list these

now. First, in this paper, we are interested only in free tensionless strings and thus would

not encounter these problems. Secondly, we want to set up the formalism of tensionless

strings in the light of the Galilean conformal symmetry on the worldsheet and exploit the

known symmetry structure to understand this rather old problem. Thus understanding

the simplest case of the strings in the flat background is the obvious first task before one

attempts to understand it in more complicated situations like AdS space times which this

programme eventually wishes to address. Lastly, we want to mention that there is a theory

of higher spins in flat spacetimes that is free from the above difficulties and this is a theory in

three dimensions [20, 21]. Our present considerations may be of use there. It is interesting

to note that in light of recent work in strings in three space-time dimensions which give

rise to anyonic particles in its spectrum [22], there has been an effort to understand the
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tensionless limit of this theory [23]. Since three dimensions is usually simpler to deal with,

it would be of interest to see how all of these fit together with our analysis in this paper,

adapted for the D = 3 case, fits together with the analysis of [22, 23]. A list of other older

work on the subject relevant for our present paper is [24]–[36].

1.3 New degrees of freedom: a window to Hagedorn physics?

In the present paper, as described above, we look at the construction of the tensionless

string from the point of the symmetries of the worldsheet, both in terms of a limiting

principal as well as a fundamental analysis. A brief description of the outline is provided

later, but let us stress on one particularly important point. Perhaps the most interesting

finding of this paper is the natural emergence of new degrees of freedom in the tensionless

limit. As will be made clear in our analysis, these new degrees of freedom are very different

from the usual perturbative states. We discover a new vacuum which we call the tensionless

vacuum that is clearly not the same as the usual vacuum of perturbative tensile string

theory. The new vacuum and the excitations around it are described in terms of new

creation and annihilation operators which can be related to the usual ones by Bogoliubov

transformations on the worldsheet. The new tensionless vacuum can be understood as

a coherent or squeezed state in terms of the oscillators of the tensile theory. We make

these mappings precise in our work and offer an explanation of how this new worldsheet

phenomenon can be linked to physics of strings at very high temperatures.

The extreme high energy limit of string theory has been of interest due to the possible

existence of a mysterious Hagedorn phase [37]. The statistical mechanics of string theory

at high temperatures is very unlike the behaviour of point-particles. Here we encounter

an exponential growth in the single-string density of states. The string theory partition

function converges only at temperatures less than a certain limiting temperature TH known

as the Hagedorn temperature. This has been given different physical interpretations in the

literature. One suggestion is that the Hagedorn temperature defines an absolute limiting

temperature. Another interpretation is that this signals a transition to a phase where the

fundamental degrees of freedom differ from usual string theory.

When considering the non-interacting theory, it can be shown that as one approaches

the Hagedorn temperature, it becomes thermodynamically more favourable to form a single

long string as opposed to heating up a gas of strings [38, 39]. This picture is made more

complicated when one includes interactions.

It has been long suspected that the tensionless limit of string theory would have some-

thing to say about the physics at the Hagedorn scale as the effective string tension at TH

goes to zero. We interpret the natural emergence of the aforementioned new degrees of

freedom in the tensionless limit as the worldsheet manifestation of the onset of the Hage-

dorn phase. The tensionless vacuum, we claim, is the emergent long string at the Hagedorn

temperature. As opposed to the popular view that the worldsheet picture breaks down near

the Hagedorn temperature, we advocate that there indeed is a worldsheet, albeit very dif-

ferent from the usual tensile case. We also suggest that the thermal nature of this vacuum

can be understood by entanglement between the left and right moving degrees of freedom

on the original tensile string theory worldsheet.
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1.4 Plan of the paper

Having motivated our goals in the present paper, let us now go on to describe the contents

and structure of our work.

We begin by reviewing the symmetries of the tensionless closed bosonic string follow-

ing [15] in section 2. Parts of our paper is motivated by this work and we shall try to

elaborate and extend their analysis. The connection to Galilean conformal symmetry was

first made in [18] and it was shown how one can view the limit on the string worldsheet.

We briefly review this and also enlist some of the basic features of GCFTs, especially in

two dimensions, in an accompanying appendix (appendix A). The uninitiated reader is

encouraged to read this for a quick review of GCFTs.

In section 3, we present the oscillator construction for the solutions of the classical

string. We show how the constraints nicely fit into the structure of the GCFT described

in the above mentioned appendix. We recover our answers by looking at the systematic

limiting procedure from the tensile string theory. We comment on another limit which was

presented in [18] and conjectured to lead to the same local physics. Further details of this

limit are presented in an appendix (appendix B).

We venture into the quantum aspects of the theory after this and first show how the

usual lore of the link between tensionless strings and higher spins appear in our picture in

section 4. We then consider the fundamentally tensionless theory in section 5 and show the

emergence of the new vacuum state. We show how worldsheet Bogoliubov transformations

link the tensile and tensionless sectors.

In section 6, we turn our attentions to particular examples where our construction of

the tensionless string is applicable. We devote the bulk of this section to connections of

the tensionless strings to Hagedorn physics and also comment on other situations where

tensionless strings appear. We conclude with a summary, further comments and a roadmap

of possible future directions in section 7.

2 Symmetries of tensionless strings

In this section, we shall first review the construction of the action of the tensionless strings

and its symmetries following [15]. Then we shall remind the reader how one can view this

limit as the scaling of co-ordinates on the worldsheet following [18].

2.1 Classical tensionless closed strings: constructing the action

We start off with a description of the classical theory of tensionless strings [15]. The

Nambu-Goto action of the usual tensile bosonic string is:

S = T
∫

d2ξ
√

− det γαβ , (2.1)

where ξa are worldsheet coordinates (τ, σ), T is the tension and γαβ is the induced metric

γαβ = ∂αX
m∂βX

nηmn. (2.2)
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Here Xn are the spacetime co-ordinates of the string and ηmn is the flat background metric.

Taking the tensionless limit on this action is not possible as we have an explicit factor of

the tension multiplying the action. Following [15], we resort to rewriting the action in a

form which makes taking the limit easier. To this end, we derive the generalised momenta:

Pm =
∂L
∂Ẋm

= T (Ẋ ·X ′)X ′
m − (X ′2)Ẋm

√

(Ẋ ·X ′)2 − (Ẋ2)(X ′2)
= T √−γγ01∂σXm , (2.3)

where the dot represents differentiation with respect to worldsheet time τ and the dash

represents that with respect to σ, the spatial worldsheet coordinate. The generalised

momenta satisfy the following constraints

P 2 + T 2γγ00 = 0, Pm∂σX
m = 0. (2.4)

The canonical Hamiltonian of the system vanishes due to the diffeomorphism invariance of

the worldsheet. The total Hamiltonian of the system is just made up of the constraints:

H = λ(P 2 + T 2γγ00) + ρ Pm∂σX
m. (2.5)

We rewrite the action and then integrate out the momenta to obtain

S =
1

2

∫

d2ξ
1

2λ

[

Ẋ2 − 2ρẊm∂σXm + ρ2∂σX
m∂σXm − 4λ2T 2γγ00

]

. (2.6)

To recast the action (2.6) in the familiar Weyl invariant form

S = −T
2

∫

d2ξ
√−ggαβ∂αX

m∂βX
nηmn, (2.7)

we identify

gαβ =

(

−1 ρ

ρ −ρ2 + 4λ2T 2

)

. (2.8)

The tensionless limit can be taken from (2.6) or later. It is interesting to note here that the

metric density would degenerate T √−ggαβ in the limit. One can replace this by a rank

one matrix that can be written as V αV β where V α is a vector density

V α =
1√
2λ

(1, ρ). (2.9)

The action (2.6) in the T → 0 limit then becomes

S =

∫

d2ξ V αV β∂αX
m∂βX

nηmn. (2.10)

2.2 Residual symmetries

Under a diffeomorphism ξα → ξα + ǫα, the vector density V α transforms as:

δV α = −V β∂βǫ
α + ǫβ∂βV

α +
1

2
(∂βǫ

β)V α. (2.11)
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The action of the tensionless string is invariant under these worldsheet diffeomorphisms

and hence we need to fix a gauge. It is particularly useful to look at the tensionless action

in the analogue of the conformal gauge for the tensile string

V α = (v, 0), (2.12)

where v is a constant. Just as in the tensile case, there is a residual symmetry that is left

over after this gauge fixing. In the tensile case, the residual symmetry in the conformal

gauge is two copies of the Virasoro algebra for the closed string. This infinite dimensional

symmetry structure has been central to understand the theory of usual tensile strings. The

form of ǫα which leaves the gauge fixed action (the action (2.10) in gauge (2.12)) invariant is

ǫα = (f ′(σ)τ + g(σ), f(σ)). (2.13)

For a function F (ξa), The effect of such a transformation is given by:

δF = [f ′(σ)τ∂τ + f(σ)∂σ + g(σ)∂τ ]F = [L(f) +M(g)]F. (2.14)

Thus the generators can be defined as:

L(f) = f ′(σ)τ∂τ + f(σ)∂σ, M(g) = g(σ)∂τ . (2.15)

They satisfy the commutation relations:

[L(f1), L(f2)] = L(f1f
′
2 − f ′

1f2), [L(f),M(g)] = M(fg′ − f ′g), [M(g1),M(g2)] = 0.

(2.16)

The symmetry algebra can be cast in the following form:

[Lm, Ln] = (m− n)Lm+n, [Lm,Mn] = (m− n)Mm+n, [Mm,Mn] = 0. (2.17)

where we can expand functions f , g in terms of fourier modes: f =
∑

ane
inσ, g =

∑

bne
inσ

and written:

L(f) =
∑

n

ane
inσ(∂σ + inτ∂τ ) = −i

∑

n

anLn, M(g) =
∑

n

bne
inσ∂τ = −i

∑

n

bnMn.

(2.18)

The algebra of the generators of the residual gauge symmetry can be identified with the

2D Galilean Conformal Algebra (A.5). We refer the uninitiated reader to appendix A for

a quick tour of the basics of the GCA and its field theoretic aspects.

2.3 Tensionless limit from worldsheet contractions

For the tensile string, two copies of the Virasoro algebra arise as the residual symmetry in

the conformal gauge, gαβ = eφηαβ . In case of the tensionless strings, the Virasoro symmetry

is replaced by 2D Galilean conformal symmetry in the equivalent of the conformal gauge

as discussed above. The form of the generators is given by

Ln = ieinσ(∂σ + inτ∂τ ), Mn = ieinσ∂τ . (2.19)

– 6 –
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Again, referring the reader back to appendix A, we note that (2.19) is identical to the

ultra-relativistic limit (A.11) of the conformal algebra where one performs a contraction

of a linear combination of the two copies of the Virasoro algebra for the tensile residual

symmetries.

The physical interpretation of this limit on the string theory worldsheet is quite

straightforward and discussed at length in [18]. Here we recall the basic argument. The

tensionless limit of string theory is the limit where the string becomes floppy and the length

of the string becomes infinite. Re-expressed in terms of co-ordinates on the worldsheet,

this limit can be interpreted as a limit of σ → ∞. Since the ends of a closed string are

identified σ ∼ σ + 2π, instead of sending σ → ∞, this is better viewed as a limit where

(σ → σ, τ → ǫτ, ǫ → 0). In terms of worldsheet velocities v and the worldsheet speed of

light c, this is v
c = σ

τ → ∞ and hence the limit where the speed of light on the worldsheet

goes to zero. The interpretation of the tensionless limit in terms of an ultra-relativistic

limit on the worldsheet is thus justified.

With the relativistic central charges c, c̄ included in the Virasoro algebra, the limit

leads to the quantum 2d GCA (A.5). The central charges have the expression cL = c− c̄,

cM = ǫ(c + c̄) (A.13). When the original CFT has c = c̄, then cL = 0, which means for

parent theories without diffeomorphism anomalies the Virasoro central term of the GCFT

is zero. We also note that to keep cM finite, we would need to scale c, c̄ to be infinitely

large. This essentially means that we would have to deal with an infinite number of fields on

the worldsheet. Thus, if we are interested in the tensionless sector of a well-defined string

theory, it must have vanishing cL and cM [18]. This is in keeping with the various claims

in the literature that the tensionless string is consistent in any spacetime dimension [25].

We should remark that it is possible to think of tensionless strings which are not

derived as a limit from tensile string theories and are fundamental objects in their own

right. The analysis of these strings may lead to residual symmetry algebras that are the 2d

GCA but with non-zero central terms as there is no algebraic constraint forcing the central

terms cL, cM to be zero.

3 Tensionless strings: oscillator construction

In this section, we look at various aspects of the tensionless string. We start out by looking

at the conserved charges from the tensionless action and show that these close to form the

GCA. We then move on to the analysis of the equations of motion of the tensionless string

and work out its mode expansion. We show how GCFT structures naturally arise from the

analysis and also recover various results by looking carefully at the limit from the tensile

string theory.

3.1 Equations of motion and tensionless mode expansions

The equations of motion of the tensionless string are easily obtainable from the tensionless

action (2.10). These are

∂α(V
αV β∂βX

µ) = 0, V βγαβ = 0. (3.1)

– 7 –
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The second equation in (3.1) indicates that the metric γαβ is degenerate [15]. In our gauge

of interest, viz. V α = (v, 0), the equations take a particularly simple form:

Ẍµ = 0; Ẋ2 = 0, Ẋ ·X ′ = 0. (3.2)

This implies that the tensionless string behaves as a bunch of massless point particles

constrained to move transversely to the direction of the string.

We now concentrate on the solutions of the equations of motion. For this we are inter-

ested in a mode expansion for tensionless string. A convenient expansion which solves (3.2)

is the following:

Xµ(σ, τ) = xµ +
√
2c′Aµ

0σ +
√
2c′Bµ

0 τ + i
√
2c′

∑

n 6=0

1

n
(Aµ

n − inτBµ
n) e

−inσ. (3.3)

Here c′ is a constant with the dimensions of [L]2 which replaces α′ that appears in the

usual tensile string expansion. We demand that the tensionless closed string satisfy the

boundary condition

Xµ(τ, σ) = Xµ(τ, σ + 2π). (3.4)

In order for the mode expansion (3.3) to be valid, we must then have have Aµ
0 = 0. The

derivatives w.r.t. τ and σ are:

X ′µ =
√
2c′

∑

n

(Aµ
n − inτBµ

n) e
−inσ, Ẋµ =

√
2c′

∑

n

Bµ
ne

−inσ. (3.5)

The two contraints of the system are Ẋ2 = 0 and X ′ · Ẋ = 0. This translates to:

Ẋ2 = 2c′
∑

n

[

∑

m

B−m ·Bm+n

]

e−inσ =
∑

n

Mne
−inσ = 0, (3.6)

X ′ · Ẋ = 2c′
∑

n,m

(A−m − inτB−m) ·Bm+ne
−inσ =

∑

n

[Ln − inτMn] e
−inσ = 0. (3.7)

It is illuminating at this juncture to point out that the above expressions of the constraints

translate to conditions on the GCFT stress tensor, if we compare (3.6) with (A.22) and (3.7)

with (A.21). Thus, the constraints of the tensionless string take the form:

T1(σ, τ) =
∑

n

[Ln − inτMn] e
−inσ = 0, T2(σ, τ) =

∑

n

Mne
−inσ = 0 , (3.8)

in analogy with the usual tensile theory where the constraints are linked with the EM

tensor of the Virasoro algebra. (Note that here we have switched off cL and cM . This is

because we are still in the classical regime.)

In the above, we have introduced:

Ln =
1

2

∑

m

A−m ·Bm+n, Mn =
1

2

∑

m

B−m ·Bm+n . (3.9)

The classical constraints can be equivalently written as

Ln = 0, Mn = 0. (3.10)
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We shall later proceed to use these as constraints on the physical states on the Hilbert space

in the quantum theory when we look to build a theory of quantum tensionless strings. Let

us check the Poisson bracket between our newly constructed oscillator algebra. The Poisson

bracket relations between X and P require

{Aµ
m, Aν

n}P.B = {Bµ
m, Bν

n}P.B = 0, {Aµ
m, Bν

n}P.B = −2imδm+nη
µν . (3.11)

Correspondingly this gives the relations between Lm and Mn s:

{Lm, Ln}P.B = −i(m− n)Lm+n {Lm,Mn}P.B = −i(m− n)Mm+n {Mm,Mn}P.B = 0 .

(3.12)

This is the classical version of the GCA which when quantized in the canonical way

{ , }P.B → − i
~
[ , ] yields the usual GCA (A.5).

3.2 Conserved charges of the tensionless string

To lend further support to the connection of the energy-momentum tensor of the GCFT

with the constraints of the tensionless string, let us now look at the construction of charges

directly from the tensionless action (2.10). We consider an infinitesimal transformation

of (2.10)

σα → σ′α = σα + δσα . (3.13)

The Noether current is given by

Jα = Tα
βδσ

β . (3.14)

We can construct the energy momentum tensor by looking at the above transforma-

tion (3.13) on the action (2.10) and this turns out to be:

Tα
β = V αV ρ∂ρX

µ∂βXµ − 1

2
V λV ρ∂λX

µ∂ρXµδ
α
β . (3.15)

We have been interested in the gauge choice V α = (v, 0). The form of δσα in this case is:

δσα = (f ′τ + g, f) (3.16)

where f and g are functions of σ only. The non-trivial components of Tα
β are

T 0
0 = −T 1

1 =
1

2
v2Ẋ2, T 0

1 = v2Ẋ ·X ′ . (3.17)

So, we see that

T 0
1 = T1(σ, τ), T 0

0 = −T 1
1 = T2(σ, τ) . (3.18)

We integrate the zeroth component of the Noether current to generate the charge, which

is given by:

Q =

∫

dσJ0 =

∫

dσ
[

T 0
0(f

′τ + g) + T 0
1f

]

=

∫

dσ
[

(T 0
0f

′τ + T 0
1f) + T 0

0g
]

. (3.19)

Expanding f and g in fourier modes: f =
∑

ane
inσ and g =

∑

bne
inσ we get:

Q =
∑

n

an

∫

dσ(T 0
0inτ + T 0

1)e
inσ +

∑

n

bn

∫

dσT 0
0e

inσ =
∑

n

anLn +
∑

n

bnMn . (3.20)
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Thus we have:

Ln =

∫

dσ
[

T 0
0inτ + T 0

1

]

einσ, Mn =

∫

dσ T 0
0 einσ . (3.21)

So in the above, we have derived the expressions for the charges from a Noetherian prescrip-

tion. Needless to say, these charges close to form the 2d GCA. The point of this exercise

was to show that the construction of the EM tensor and the generators of the GCA can be

achieved by looking at the construction of charges as well.

3.3 Limit from tensile closed string

The mode expansion and the oscillator algebra above were derived “intrinsically” from the

equations of motion and we did not talk about any limiting procedure in the above. It is

important to check whether we can arrive at the same expressions by taking a careful limit

of appropriate expressions of the tensile string theory. We start off by comparing mode

expansions. The mode expansion for closed tensile string is given by

Xµ(σ, τ) = xµ + 2
√
2α′αµ

0τ + i
√
2α′

∑

n 6=0

1

n
[αµ

ne
−in(τ+σ) + α̃µ

ne
−in(τ−σ)] , (3.22)

where αµ
0 = α̃µ

0 . We know that the process of contraction to the tensionless string entails

taking the limit τ → ǫτ and σ → σ. We are looking at the tensionless limit and hence α′

should also transform as α′ → c′/ǫ, where c′ is finite. Thus the modes for closed tensile

string take the form:

Xµ(σ, τ) = xµ + 2
√
2c′(

√
ǫ)αµ

0τ + i
√
2c′

∑

n 6=0

1

n

[

αµ
n − α̃µ

−n√
ǫ

− inτ
√
ǫ(αµ

n + α̃µ
−n)

]

e−inσ .

(3.23)

Comparing with eq. (3.3), we find that

Aµ
n =

1√
ǫ
(αµ

n − α̃µ
−n), Bµ

n =
√
ǫ(αµ

n + α̃µ
−n) . (3.24)

Using the relations above (3.24) and the Poisson bracket relations between α’s and α̃’s:

{αµ
m, αµ

n}P.B = −imδm+nη
µν = {α̃µ

m, α̃µ
n}P.B, {αµ

m, α̃µ
n}P.B = 0, (3.25)

we get back the relations (3.11) that we obtained earlier.

It is also instructive to look at the constraints of the tensile string and take the limit

and obtain the constraints in the tensionless case that we have obtained above. Due to the

conspiracy of factors of ǫ, one needs to be careful in this analysis. We will be explicit in

this calculation to demonstrate that one needs to be careful with these factors of ǫ. The

constraint in the tensile case is:

Ẋ2 +X
′2 = 0 . (3.26)

On taking the limit τ → ǫτ :

1

ǫ2
Ẋ2 +X

′2 = 0 or Ẋ2 + ǫ2X
′2 = 0 . (3.27)
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This is equivalent of the constraint Ẋ2 = 0 in the fundamental case. It is very important

to keep track of this extra ǫ2 piece in the above equation. Starting from the mode ex-

pansion (3.23), one can take explicit derivatives with respect of τ and σ and square them

to obtain

Ẋ2 = 2c′
∑

m

∑

n

ǫ [α−m · αm+n + α−m · α̃−m−n + α̃m · αm+n + α̃−m · α̃m−n] e
−inσ . (3.28)

Taking ǫ2X ′2 and keeping terms upto 1st order in ǫ

ǫ2X
′2 = 2c′

∑

m

∑

n

ǫ [α−m · αm+n − α−m · α̃−m−n − α̃m · αm+n + α̃−m · α̃m−n] e
−inσ .

(3.29)

So adding the equations (3.28) and (3.29) above we get

Ẋ2 + ǫ2X
′2 ≈ Ẋ2 = 4c′

∑

m,n

ǫ [α−m · αm+n + α̃−m · α̃m−n] e
−inσ

= 4c′
∑

n

ǫ
[

Ln + L̄−n

]

e−inσ = 0 . (3.30)

Comparing with (3.8) we identify:

Mn = ǫ
[

Ln + L̄−n

]

. (3.31)

Similarly the other constraint gives

Ln =
∑

m

(α−m · αm+n − α̃−m · α̃m−n) = Ln − L̄−n . (3.32)

Thus the tensionless constraints in terms of the tensile ones in this limit generate the UR

limit of the residual conformal algebra to the GCA (A.11) on the string theory worldsheet:

Ln = Ln − L̄−n, Mn = ǫ
[

Ln + L̄−n

]

. (3.33)

3.4 The non-relativistic limit on the worldsheet

At this juncture, it is of interest to revisit one of the novel claims of [18]. There it was

argued that if one works on the Euclidean worldsheet, there is no distinction locally between

the σ and τ direction. Hence, a contraction of one co-ordinate would be equivalent to a

contraction of the other, i.e. the contractions (σ, τ) → (σ, ǫτ) and (σ, τ) → (ǫσ, τ) should

locally yield the same physics. This is rather counter intuitive as we are claiming that the

tensionless limit of string theory, where the fundamental string becomes infinitely long,

share features with the point particle limit.

The limit on the worldsheet described above is the ultra-relativistic limit where one

takes the worldsheet speed of light to zero. This, as we have seen above, is the (σ, τ) →
(σ, ǫτ) limit and is intimately linked to the choice of gauge (2.12).

We now will show that the other limit, viz. (σ, τ) → (ǫσ, τ), which can be interpreted as

a worldsheet non-relativistic limit, arises out of a different choice of gauge in the tensionless
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string. We wish to look at the tensionless string theory action (2.10) again which has gauge

symmetry and we need to fix gauge. The gauge of choice now would be

V α = (0, v) , (3.34)

which is clearly different from (2.12). As before, there is a residual gauge symmetry. It can

easily be seen that the gauge fixed action is now left invariant under infinitesimal variations

ǫα of the form

ǫα =

{

σ
d

dτ
f(τ) + g(τ), f(τ)

}

, (3.35)

which is just the σ ↔ τ flipped version of (2.13). The rest of the analysis follows trivially

with the same exchanges of the co-ordinates and we can show that the residual symmetry

is the 2D GCA now with generators

Ln = ieinτ (∂τ + inσ∂σ), Mn = ieinτ∂σ. (3.36)

We recognise this to be the generators (A.9) which arise from the non-relativistic contrac-

tion of the Virasoro algebra (A.6). Hence we see that at the level of symmetries, on the

worldsheet the two different contractions are related just by a different choice of gauge.

We can push further with this limit and in appendix B, we perform the mode expansions

and discuss the limiting procedure which throws up some peculiarities.

We conclude this section by pointing out that although the UR and NR limits seem

to lead to the same algebra and also that the physics seem to differ just by the choice

of a gauge, there are some interesting differences which we still don’t understand. We

have pointed out that the UR limit seems to lead us to conclude that there are no central

extensions to the GCA which arises on the worldsheet of the tensionless string. In the NR

limit, the identifications of the central terms change (see (A.7)) and this limit leads to a

non-vanishing cL starting from a diffeomorphism invariant string theory. So, it seems that

the NR limit would lead to a tensionless theory with a critical dimension. Further analysis

is required to see if this can be related to the differences of opinion in the literature about

the presence or absence of a critical dimension in the tensionless theory. We defer this to

future work.

4 Tensionless strings and higher spins

In this section, we explore the much anticipated claim of a link between tensionless strings

and higher spin theories in our formalism. The analysis of constraints in the previous

sections has lead us to the following physical state conditions that are to be imposed on

the states of the Hilbert space:

〈Φ1|T1|Φ2〉 = 0, 〈Φ1|T2|Φ2〉 = 0 , (4.1)

where |Φ1〉 and |Φ2〉 are physical states. This equivalently boils down to the statement

Ln|Φ〉 = Mn|Φ〉 = 0, ∀n ≥ 0 , (4.2)

where again Φ is a state in the physical Hilbert space.
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We now need to identify the physical Hilbert space. To this end, let us look at the

following situation. Suppose we are in a well defined tensile string theory and we are

tuning the tension of this theory to zero from a non-zero value. The physical Hilbert space

is built on the vacuum state of the tensile string theory which we would call |0〉α. This is

defined by:

αµ
n|0〉α = 0 = α̃µ

n|0〉α ∀n > 0. (4.3)

Up on quantisation, the tensile theory has states built out of the tensile creation operators

acting on this vacuum. The states are of the following form at a general level (N,M):

|Φ〉 = αµ1

−n1
αµ2

−n2
. . . αµN

−nN
α̃ν1
−m1

α̃ν2
−m2

. . . α̃νM
−mM

|0〉α . (4.4)

We now use the two constraints (4.2) on the states that arise from the tensile theory.

The L0 constraint imposes left-right level matching N = M in (4.4). The M0 constraint

gives us the mass of the physical states.

M0|Φ〉 =
∑

m

B−m ·Bm|Φ〉 = 0. (4.5)

The momentum is Pµ = 1
2πc′ Ẋµ. However the total momentum of the string is:

pµ =

∫ 2π

0
Pµ dσ =

√

2

c′
B0 µ . (4.6)

Thus we get,

m2|Φ〉 = −pµpµ|Φ〉 = − 2

c′
B0 ·B0|Φ〉 =

2

c′





∑

m 6=0

B−m ·Bm



 |Φ〉 . (4.7)

Here in the last line we have used the M0|Φ〉 = 0 constraint to re-write the sum. The mass

of the state Φ is then given by the following:

m2|Φ〉 = 2

c′





∑

m 6=0

B−m ·Bm



αµ1

−n1
. . . αµN

−nN
α̃ν1
−m1

. . . α̃νN
−mN

|0〉 (4.8)

= lim
ǫ→0

2

c′





∑

m 6=0

ǫηµν(α
µ
−m + α̃µ

m)(αν
m + α̃ν

−m)



αµ1

−n1
. . . αµN

−nN
α̃ν1
−m1

. . . α̃νN
−mN

|0〉 .

This leads to

m2|Φ〉 = 0. (4.9)

We see that we recover (trivially) the expected result that the tensionless sector of a usual

tensile string theory has a massless spectrum. We also see that we would be able to

generate fields of arbitrary spin which are massless. So in this sense, we have shown that

the tensionless limit of string theory generates a theory of massless higher spins. But none

of this is very profound in terms of the limit. There is a factor of ǫ which sits in front of

the mass-spectrum and makes all masses vanish.
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5 The tensionless vacuum

In this section, we will uncover the most interesting findings of this paper. We will consider

tensionless strings as fundamental objects without recourse to any limit and see that we

are naturally led to degrees of freedom which are very different from the ones in usual

tensile string theory. We shall then look at the mapping between the tensionless theory

and the tensile theory in terms of a novel type of Bogoliubov transformation on the string

worldsheet and give a description of Rindler-like physics on the worldsheet. We also relate

tensionless closed strings to open strings by looking at the truncation of the symmetry

algebra on the worldsheet.

5.1 States in the tensionless theory

To this end, we first note that the oscillator construction of the previous sections lead to

a form of the mode algebra (3.11) which was somewhat unfamiliar when one is concerned

about the construction of states on a Hilbert space. To put (3.11) into a more familiar

looking form, we make the following redefinitions:

Cµ
n =

1

2
(Aµ

n +Bµ
n) C̃µ

n =
1

2
(−Aµ

−n +Bµ
−n) , (5.1)

or equivalently,

Aµ
n = Cµ

n − C̃µ
−n Bµ

n = Cµ
n + C̃µ

−n. (5.2)

This means that the Poisson brackets take the usual familiar form:

{Cµ
n , C

ν
m} = −inδn+m,0 ηµν , {C̃µ

n , C̃
ν
m} = −inδn+m,0 ηµν , {Cµ

n , C̃
ν
m} = 0. (5.3)

The very important point to note here is that the vacuum of the tensionless theory is fun-

damentally different from that of the tensile theory. The natural tensionless vacuum (|0〉C)
is defined in the tensionless theory with respect to the C, C̃ oscillators. This is given by

Cµ
n |0〉C = 0 = C̃µ

n |0〉C ∀n > 0 . (5.4)

We shall make the relation between the two vacua |0〉C and |0〉α precise in the next section.

For now it is sufficient to understand that the C oscillators are a combination of creation and

annihilation operators in the α language. Hence the two vacua are definitely not the same.

Let us now describe the states that appear in the fundamentally tensionless sector.

These would be states that are built out of the |0〉C with creation operators. A general

state is given by

|Ψ〉 = Cµ1

−n1
Cµ2

−n2
. . . CµN

−nN
C̃ν1
−m1

C̃ν2
−m2

. . . C̃νM
−mM

|0〉C . (5.5)

One can easily rework the computations of the previous section in terms of the C, C̃ oscil-

lators. The expressions for the classical constraints become

Ln =
1

2

∑

m

(C−m · Cm+n − C̃−m · C̃m−n) = 0 , (5.6)

Mn =
1

2

∑

m

(C−m · Cm+n + C̃−m · C̃m−n + 2C−m · C̃−m−n) = 0 . (5.7)
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The constraints on the physical states are as usual:

Ln|Ψ〉 = 0, Mn|Ψ〉 = 0 ∀n ≥ 0. (5.8)

The L0 constraint now gives us

L0|Ψ〉 =
∑

m

(C−m · Cm − C̃−m · C̃m)|Ψ〉 = (NC −NC̃)|Ψ〉 = 0 , (5.9)

which implies that the physical tensionless states should have equal number of C and C̃

oscillators.

The interesting constraint is the M0 constraint. Like before, we can compute the

momentum as Pµ = 1
2πα′ Ẋµ. The total momentum of the string is:

pµ =

∫ 2π

0
Pµ dσ =

√

2

c′
(C0 µ + C̃0 µ) . (5.10)

Thus,

m2|Ψ〉 = −pµpµ|Ψ〉 = − 2

c′
(Cµ

0 +C̃µ
0 )

2|Ψ〉 = 2

c′

∑

m 6=0

(C−m ·Cm+C̃−m ·C̃m+2C−m ·C̃−m)|Ψ〉 .

(5.11)

The last term in the above equation is problematic. This means that these states don’t

have well defined mass. It is abundantly clear from (5.11) that the states that we have

constructed out of the tensionless vacuum are very unlike the states in the usual tensile

theory Hilbert space.

5.2 Tensile vacuum to tensionless vacuum: Bogoliubov transformations

We have in previous sections seen how to map between the oscillators α, α̃ and A,B. The

exact mapping is given by (3.24). Combining this with (5.1), we find that the tensionless

oscillators C, C̃ are related to α, α̃ by

Cµ
n(ǫ) = β+α

µ
n + β−α̃

µ
−n (5.12)

C̃µ
n(ǫ) = β−α

µ
−n + β+α̃

µ
n ,

where

β± =
1

2

(√
ǫ± 1√

ǫ

)

. (5.13)

Since the canonical commutation relations are preserved in going from the α basis to the

C basis, the above equations define a Bogoliubov transformation on the string worldsheet.

It is easy to see that ǫ = 1 just lands one on the usual tensile string theory (Cµ
n =

αµ
n, C̃µ

n = α̃µ
n), while as usual, the ǫ → 0 limit is the tensionless limit. The parameter ǫ

runs from 1 to 0. As one dials ǫ from 1 to 0, the effective string tension becomes smaller

and smaller and in the exact limit one lands on the tensionless string. We will now be

interested in the whole range of ǫ and not only in the strict limit.
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We can redefine the coefficients in a form more familiar to applications of Bogoliubov

transformations [46]:

β+ = cosh θ, β− = sinh θ, (5.14)

With this new defination of coefficients the Bogoliubov transformation can be recasted as,

Cµ
n = e−iGαµ

ne
iG = cosh θ αµ

n − sinh θ α̃µ
−n (5.15)

C̃µ
n = e−iGα̃µ

ne
iG = − sinh θ αµ

−n + cosh θ α̃µ
n .

The generator of the above transformation can be written as,

G = i
∞
∑

n=1

θ
[

a†n.ã
†
n − an.ãn

]

, where αk =
√
k ak, α−k =

√
k a†k. (5.16)

In the above all the spacetime indices of the oscillators are contracted. Now we are in a

position to write down the mapping between the two vacua |0〉α and |0〉C . This is given by

the following

|0〉C = exp[iG]|0〉α

= exp
[

− θ
∞
∑

n=1

[a†n.ã
†
n − an.ãn]

]

|0〉α

=

(

1

cosh θ

)1+1+1+1+...∞ ∞
∏

n=1

exp[tanh θ a†n.ã
†
n]|0〉α . (5.17)

We now regulate our answer by replacing the diverging sum: 1+1+1+ . . .∞ = ζ(0) = −1
2

in the usual way to get:

|0〉C =
√
cosh θ

∞
∏

n=1

exp[tanh θ a†n.ã
†
n]|0〉α . (5.18)

In terms of the original vacuum |0〉α and its oscillators α, the new vacuum |0〉C is a coherent

state, or more precisely a squeezed state. This is hence a highly energised state with respect

to the old vacuum.

As is very well known, when one looks at accelerated observers in Minkowski space-

times, these Rindler observers detect particles in their vacuum state. In close analogy to

Rindler physics, the new string theory vacuum state would be one which is also bubbling

with particles. It is easy to observe this by computing the expectation value of the left and

right handed number operator for any given mode:

C〈0|nL
k |0〉C = C〈0|a†k.ak|0〉C = sinh2 θ . (5.19)

Similarly,

C〈0|nR
k |0〉C = C〈0|ã†k.ãk|0〉C = sinh2 θ , (5.20)

where again the operators ã have been defined as above (5.19). Similar to Rindler physics,

the observer who is in the |0〉C vacuum would always observe a thermal spectrum and

– 16 –



J
H
E
P
0
1
(
2
0
1
6
)
1
5
8

effectively be at a finite temperature. We will provide some more arguments in this direction

in the next section. It is good to see that when you look at the case of the tensile theory

ǫ = 1, then sinh θ = 0 and there are no particles in the ground state |0〉α.
Before moving on, it is of interest to take stock of the situation at hand. We have

argued in previous sections that when one looks at the tensionless string theory, there is

the emergence of a new vacuum state. This vacuum is the one which is natural in the

fundamentally tensionless theory. The states in the fundamentally tensionless theory are

excitations created by C creation operators on this new ground state |0〉C . We have seen

that these states are very different from usual tensile states; they are not mass eigenstates.

So we have seen the emergence of new degrees of freedom in the tensionless limit. Above we

have looked at a situation where one dials the string tension from the usual value to zero.

We have seen in this situation, we can find a mapping between the two Hilbert spaces in

terms of Bogoliubov transformations, especially we can view the new vacuum as a coherent

state in terms of the usual tensile theory. This gives a manifestation of Rindler-like physics

on the string worldsheet.

The careful reader may be worried that some of the equations become singular in the

ǫ → 0 limit. This is actually to be expected for any contraction. For example, the ground

state seems to have a diverging constant prefactor. But one finds that the norm C〈0|0〉C
remains equal to 1 in the limit. Now, if we come to (5.19), (5.20), we see that there is a

divergence for any given k. The number density is a physical observable and its divergence

is something we are very familiar with in thermodynamics. If we treat the number density

as an order parameter, this just means that there is a phase transition taking place when

we dial the tension of the string to zero. This gives us some further evidence that at the

tensionless limit, we indeed have a transition where the usual string degrees of freedom are

replaced by new ones. We will have more comments to make about this phase transition

in the next section.

5.3 Relating tensionless closed strings and open strings

In this subsection, we wish to report on another very interesting feature which also emerges

directly from the construction described earlier. As we have seen earlier, the classical

constraints can be rewritten as operator equations on the Hilbert space of the tensionless

string:

Ln|Ψ〉 = Mn|Ψ〉 = 0 ∀n > 0 . (5.21)

For the zero modes, we can have additionally some normal ordering constant

L0|Ψ〉 = aL|Ψ〉, M0|Ψ〉 = aM |Ψ〉 . (5.22)

This would mean that the physical states are primary operators of the 2d GCFT with

(hL, hM ) = (aL, aM ).

If we are restricting ourselves to tensionless string theories arising out of tensile theories,

in which case |Ψ〉 is a state in the Hilbert space of the tensile theory as in our discussions

around (4.4). In this case, due to the limit, we would be lead to a sector where hM = 0. It
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was further argued in [18] that if this tensionless theory arises from a theory with a finite

number of worldsheet fields, cM = ǫ(c+ c̄) = 0.

In the fundamentally tensionless case, there seems to be the possibility of having non-

zero values for all of {hL, hM , cL, cM}. For the moment, let us focus on tensionless theories

which arise as a limit from well defined tensile theories. The physical operators which are

used to build physical states in the theory have hM = 0 as argued above and this is also a

theory which has vanishing cM . It can be shown through an analysis of null vectors that a

2d GCFT with hM = 0, cM = 0 is equivalent to a chiral half of a CFT with the symmetries

of a single copy of the Virasoro algebra, or in other words there is a consistent truncation

of the representations of the 2d GCA to the representations of a single copy of the Virasoro

algebra in this sector [60] and is called the chiral truncation of the GCA [66]. The analysis

of this phenomenon using null vectors of the GCA is presented in the appendix A for

completeness.

This seems to have very interesting physical significance. A theory of strings with

one copy of the Virasoro algebra as its residual symmetry is obviously reminiscent of open

strings. We thus see that closed tensionless strings rather naturally behave as open strings.

This strange behaviour of the tensionless strings has long been expected (see e.g. [27, 36])

but, to the best of our knowledge, never been explicitly demonstrated.1

The chiral truncation of the 2d GCA has been previously used to formulate an exact

correspondence between a theory of asymptotically gravity in 3 dimensions and a chiral

half of a CFT in 2 dimensions, providing the first concrete example of holography in flat

spacetimes [66]. Here we find that similar arguments on the worldsheet lead us from a

theory of closed tensionless strings to open strings.

Let us comment on the fundamental tensionless string theory before closing this section.

One could argue against setting cM = 0 for the fundamentally tensionless string and say

that this only arises in a certain sub-sector of the theory. We would like to point out that

if one imposes unitarity on the highest weight representations, following [60, 66, 75] one

naturally lands in the sub sector with hM = 0, cM = 0. So, demanding unitarity of the

underlying symmetry structure leads us to conclude that closed strings behave like open

strings in the tensionless sector.

6 Applications: Hagedorn physics and more

Having discussed so far a rather exotic limit of string theory, from the point of view of

worldsheet symmetries, it is now important to put things in perspective and discuss where

the construction that we have rather meticulously put together so far may be useful. To

this end we discuss first some aspects of strings at very high temperatures and then some

other possibly interesting situations. We should stress that the comments in this section

are essentially preliminary remarks and all of the points discussed would need to be backed

up with more substantial calculations, which we hope to present in upcoming work.

1See, however, [29] for a demonstration of the tensionless limit of the closed string as a constrained

sub-system of the open string.
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6.1 Strings near Hagedorn temperature

As discussed in the introduction, the extreme high energy limit of string theory is of interest

due to the possible existence of phase transitions between the normal and Hagedorn phase.

In string theory, one encounters an exponential growth in the single-string density of states

as a function of mass. The number of states at the nth level grows approximately like

exp(4πn1/2) (see e.g. [40, 41]). This rapid growth makes the canonical partition function

of a free string gas

Zstring = Tr e−βH , (6.1)

well-defined only at sufficiently low temperatures. The partition function diverges at tem-

peratures above

TH =
1

4π
√
α′

, (6.2)

where TH is the Hagedorn temperature. This has lead to the suggestion that the Hagedorn

temperature defines an absolute limiting temperature in physics or that the phenomenon

signals a transition to a different and unknown phase governed by fundamental degrees of

freedom which are very different from usual strings.

Following e.g. [40], we can compute the high energy limit of the single string density

of states for free closed strings and this is found to be

ω(ǫ) ∼ V e
ǫ

TH ǫ−d/2−1 , (6.3)

where V is the volume of the system and d is the number of non-compact space directions.

The energy distribution function D(ǫ, E) in the micro-canonical ensemble gives the average

number of strings characterised by the range of energies between ǫ and ǫ+ δǫ constrained

to the total energy E. This can be calculated from the above expression for the density

of states and it can be shown that at high energy density that the thermodynamically

favourable configuration is a single long string carrying the bulk share of the available

energy [38, 39, 42].

The above picture is made more complicated when one includes interactions. In the

thermodynamic limit, the above mentioned long string will traverse the entire system many

times over and intersect itself a large number of times. String interactions would then affect

the equilibrium configuration and this was investigated in [42] where it was found that the

long string phase would still exist which would be dominated by a large number of long

strings which may split and join.

The tensionless limit of string theory is intimately related to the physics at the Hage-

dorn scale as the effective string tension at TH goes to zero [43, 44]. The effective string

tension Teff is given by

Teff = T
√

1− T 2

T 2
H

. (6.4)

So, here ǫ =
√

1− T 2

T 2

H

, the parameter that we have been using all along to get to the

tensionless string from the tensile string. The analysis of the previous sections thus find a

very natural home in the theory of strings near the Hagedorn temperature. We have found
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that there is the emergence of degrees of freedom which are very different from the usual

tensile theory. We have also discovered a new vacuum state |0〉C that differs significantly

from the tensile vacuum |0〉α. As we have seen, the new vacuum state is a coherent state

in terms of the tensile theory and is hence a highly energised state. We propose that this

new vacuum state |0〉C is the worldsheet manifestation of the emergent long string at the

Hagedorn temperature.

The excitations around this new vacuum state are described by the creation operators

Ci, C̃i acting on |0〉C . We saw in the earlier sections that these excitations are very unlike

the usual string states, e.g. they don’t have a proper definition of mass. From the point

of view of the underlying algebra, this arises from the fact that when one looks at the

residual symmetry of the tensionless string, in the highest weight representation, the op-

erator M0 has a Jordon-block structure. There are numerous claims in the literature that

the fundamental degrees of freedom drastically change when one approaches the Hagedorn

temperature. We see from our analysis that from the worldsheet there is the emergence

of new degrees of freedom in terms of the excitations of the new vacuum state and we

interpret these as the above mentioned mysterious degrees of freedom near the Hagedorn

temperature which emerge when one excites the long string by pumping in further energy

into the system.

It is often claimed that the Hagedorn temperature is not a limiting temperature but

an indication of a phase transition. Here one appeals to the QCD story where hadrons

can be thought of as string-like electric flux tubes and hence low energy QCD can also

be described in terms of strings. When QCD is heated up, one similarly finds a limiting

temperature because the degeneracy of states of these flux tubes increases in the same

fashion described above for the fundamental string. This “limiting” temperature is however

simply an indication of the deconfining phase transition where the QCD strings disintegrate

into a quark gluon plasma. In string theory, the reason for the divergences at the Hagedorn

temperature is that a particular string mode becomes massless, indicating a second order

phase transition [45]. It was argued in [37] that before the second order transition can occur,

due to the coupling to dilatons an instability arises leading to a first order transition. In

flat space in the thermodynamic limit of infinite volume, it is possible for the string to exist

in the metastable phase and hence be sensitive to the Hagedorn temperature even though

there is a first order transition.

We don’t have a lot to say about the interacting picture in our present work. But one

of the claims usually presented in the above arguments is that the structure of the string

worldsheet breaks down near the Hagedorn temperature. What we would like to advocate

through our analysis is that (when one looks at the non-interacting case) the description

of the string in terms of the worldsheet does not break down, but changes in nature. We

have seen that in the tensionless limit, we don’t have a notion of a worldsheet metric any

more. This is degenerate. The usual string worldsheet is a Riemannian manifold with a

well-defined metric. The tensionless worldsheet, which is what the worldsheet becomes near

the Hagedorn temperature, is now replaced by a Carrollian manifold [47, 48]. Spacetimes

where the speed of light has been taken to zero are examples of Carrollian manifolds. These

are closely related to (or more accurately dual to) Newtonian-Cartan manifolds. In two
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dimensions, as is the case we are dealing with, Carrollian and Newtonian-Cartan manifolds

lead to isomorphic symmetry structures.

It has long been suspected that the structure of spacetime itself would change when one

considers strings near the Hagedorn temperature. Above we have argued that the structure

of the worldsheet manifold changes quite dramatically from Riemannian to Newton-Cartan.

This would induce a change in spacetime as well. In [48], the authors claim that the

tensionless strings move in what are known as Bargmann spacetimes. It would be of great

interest to investigate this in further detail and understand what sort of modification the

original Minkowski spacetime undergoes when one looks at the tensionless string. We hope

to be able to understand the deformations of the spacetime geometry by strings at high

temperatures by pushing this formalism further.

6.2 Entanglement on the worldsheet and thermal vacuum

Before moving on to other potential applications, we want to make another possibly inter-

esting suggestion. This is to do with the notion of temperature on the string worldsheet.

We have said that the usual string vacuum and the string states build above it with the

α, α̃ constitute what is the low temperature phase. The other vacuum |0〉C and its exci-

tations build up the high temperature phase. One way to understand the thermal phase

is to invoke the notion of the Thermo Field Double [49]. This formalism replaces thermal

averages by vacuum expectations in a suitable Fock space:

〈A〉 = Z−1(β) Tr(e−βH A) = 〈0(β)|A|0(β)〉 , (6.5)

where A is a generic observable. The thermal vacuum |0(β)〉 is a state that satisfies

〈0(β)|A|0(β)〉 = Z−1(β)
∑

n

〈n|A|n〉e−βEn , (6.6)

Here |n〉 are energy eigenstates of the underlying Hamiltonian H|n〉 = En|n〉. These are

also orthonormal 〈n|m〉 = δn,m. Expanding in terms of |n〉, the thermal vacuum is given by

|0(β)〉 =
∑

n

fn(β)|n〉 where f∗
n(β)fm(β) = Z−1(β)e−βEnδn,m , (6.7)

fn(β) are thus clearly not numbers, but the relation above is like the orthonormality of

vectors. If we consider a larger Hilbert space, obtained by doubling of the degrees of

freedom, |0(β)〉 can be thought of as living in this space. The construction has necessitated

the introduction of a fictitious dynamical system identical to the one under consideration:

H̃|ñ〉 = En|ñ〉 〈m̃|ñ〉 = δn,m . (6.8)

The energy is postulated to be the same of the one of the usual states. The thermal vacuum

is thus given by

|0(β)〉 = Z− 1

2 (β)
∑

n

e−
β

2
En |n〉 ⊗ |ñ〉 . (6.9)

This thermo-field double formalism has been used by Maldacena to construct a CFT dual

of an eternal AdS black hole [50]. This has been popular of late in the extended debate on

firewalls and calculations of entanglement entropy.
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In (6.5), A is an operator on the usual Hilbert space. The first step of (6.5) does not

contain any operators on the tilde Hilbert space and hence we can sum over all states of

the tilde copy. Doing this leads to a thermal density matrix for the original copy of the

field theory. The thermal density matrix arises out of entanglement and the entropy is the

entanglement entropy.

In close analogy with the above, we propose that our thermal vacuum |0〉C arises out of

entanglement between the right movers and the left movers of the 2D worldsheet residual

conformal symmetry. The underlying assumption is that the specific operators that we

would be dealing with are holomorphically factorisable. In order to make this connection

possible, let us revisit some of the earlier statements. In the tensile string, we have two

sets of commuting creation and annihilation operators:

[αn, αm] = nδn+m, [α̃n, α̃m] = nδn+m , (6.10)

where we have suppressed the spacetime indices. The Hamiltonian of the left-moving

(‘un’-tilde) sector is given by HL =
∑

α−n · αn and similarly for the right moving (tilde)

sector HR =
∑

α̃−n · α̃n. The thermal operators Cn, C̃n are defined by (5.15). In the

present context, θ = θ(β) which is a function to be determined. And the generator of the

transformation G is given by (5.16).

To identify the new vacuum state |0〉C with the thermal vacuum, we need to find an

explicit relation between θ and β. To this end, we look at the usual thermo field dynamics

procedure of minimising the potential

F = E − 1

β
S , (6.11)

with respect to the parameters of the Bogoliubov transformation. Hence F is a free energy

like potential. In this formalism, the thermal energy is given by computing the matrix

elements of the T = 0 Hamiltonian in the thermal vacuum. The function S develops a

natural interpretation of being thermal entropy of the system once it is computed by using

the entropy operator Ŝ defined for the left-movers of the closed string [49, 51, 52]. Explicit

form of the entropy operator is given by,

Ŝ = −
∑

n

[

a†kak log sinh
2 θ − aka

†
k log cosh

2 θ
]

. (6.12)

Here, as before:

an =
αn√
n
, a†n =

α−n√
n
, n > 0. (6.13)

The action of Ŝ can be interpreted as tracing over the right-moving degrees of freedom

and hence the entropy S is the entanglement entropy on the worldsheet of |0(θ)〉 after

tracing out the right-sector. (Here |0(θ)〉 is just |0〉C written out in terms of a general ǫ

and expressed in terms of θ.) Looking again at the left sector, the Hamiltonian is

H =
∑

n

ωna
†
nan, where ωn = n+

1

2
. (6.14)
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We wish to evaluate

Ω = 〈0(θ)|F | 0(θ)〉 = 〈0(θ)|
∑

k

[

1

β

(

a†kak log sinh
2 θ − aka

†
k log cosh

2 θ
)

+ ωka
†
kak

]

|0(θ)〉

=
∑

k

[

1

β

(

nL
k log nL

k − (1 + nL
k ) log(1 + nL

k )
)

+ ωkn
L
k

]

. (6.15)

Varying Ω by using (5.19) we get,

dΩ =
∑

k

[

1

β

(

dnL
k log nL

k + dnL
k − dnL

k log(1 + nL
k )− dnL

k

)

+ ωkdn
L
k

]

. (6.16)

Moreover by imposing the minimisation condition dΩ = 0 we get,

nL
k =

1

eβ(n+
1

2
) − 1

. (6.17)

We thus see that we indeed have a thermal Bose distribution and can conclude that our

new vacuum |0〉C is indeed the thermal vacuum |0(β)〉 and is generated in this doubled

formalism by means of the Bogoliubov transformations which results in the entanglement

of the left and right Virasoros on the string theory worldsheet.

Our proposed formalism of entanglement between the left and right sectors of the 2D

worldsheet CFT is similar to some recent discussions of left and right entanglement in

spacetime 2D CFTs [53, 54]. It is interesting to note that the thermal vacuum that we

have found here are similar to the boundary states that are considered in these references.

The fact that we have also found that closed tensionless strings behave like open strings

makes this connection even more tantalizing. We would like to investigate these issues in

future work.

6.3 Other applications

The tensionless limit of string theory is also of interest when one considers strings in strong

gravitational fields [55]. Strings behave like classical tensionless objects in the vicinity of

spacetime singularities. Here again, there is the increase in length of the string as one

approaches the singularity and once again, the emergent vacuum state |0〉C would be

important in understanding the dynamics.

We also expect our analysis to be of use for strings which approach black hole horizons

and get stretched to long strings [56]. In this context, we also hope that our construction

would be of interest to the recent attempt at solving some problems of quantum black holes

using long strings and tensionless branes advocated in [57, 58].

Our constructions of tensionless strings should apply to situations outside string the-

ory and in particular in the theory of QCD. There has been recent work linking the

deconfinement transition of large-N Yang-Mills theory to the condensation of very long

chromo-electric flux strings [59]. This has been argued to be analogous to the formation

of a black hole in string theory. Although in this picture, interactions of the intersecting

QCD strings play an important role, it is very plausible that the worldsheet picture could

provide interesting hints to the same physics.
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7 Conclusions and future directions

7.1 Summary of results

In this paper, we have looked closely at the theory of tensionless strings from the point

of view of the symmetries of the string worldsheet. We have treated the tensionless string

both as a limit from the usual tensile theory and as a fundamental object. We have

found that results in these two different ways of approaching the tensionless string agree

in the classical analysis. The expressions for the equations of motion, mode expansions,

constraints are all compatible with the algebraic structures arising out of the underlying

residual gauge symmetry governed by the Galilean Conformal Algebra. It was particularly

gratifying to see the emergence of the non-obvious form of the EM tensor of the 2D GCFT

from the constraints. We also recovered all of this analysis by carefully looking at the

ultra-relativistic limit on the string worldsheet.

Significant differences in the limiting and the fundamental approach become apparent

when studying the quantum tensionless strings. Here we found that the fundamentally

tensionless theory lead us to a vacuum which is clearly unlike the vacuum of the tensile

theory. We then distinguished between two distinct approaches, the limiting one and the

fundamental one. In the case where one deals with the tensionless limit of a particular well-

defined string theory, the physical states are given by the states of the original string theory.

Applying the constraints generated by the tensionless limit, we found, rather trivially, that

the masses of all these states became zero and this is in our analysis the emergence of the

infinite tower of massless particles of arbitrarily high spin.

The natural vacuum in the tensionless theory, is however very different. By looking at

worldsheet Bogoliubov transformations, we found that this new vacuum could be looked

at as a highly energised coherent state in terms of the tensile vacuum and the tensile

oscillators. We believe that is the most striking result of our paper. As a realisation of the

calculations of our work, we looked at the theory of strings near the Hagedorn temperature.

As one pumps energy into a gas of strings, near the Hagedorn temperature, it becomes

thermodynamically favourable to form a single long string and this is the dominant phase.

We proposed that the tensionless vacuum that we constructed as a coherent state out of

usual tensile operators was the worldsheet manifestation of the long-string phase near the

Hagedorn temperature. The excitations around this vacuum generate the often discussed

new degrees of freedom in the Hagedorn phase which are very unlike usual string states.

Some of the other interesting results of the paper are the following. We saw that

tensionless closed strings behave very much like open strings as there is a truncation of the

GCA to a single copy of the Virasoro algebra for the vanishing of a particular central term

(cM = 0). This is direct evidence of a property which has been hinted at before but never

demonstrated.

In the discussion relating Hagedorn physics and tensionless strings, we also proposed a

novel way of generating the thermal vacuum (or the long string) in terms of entanglement

between the two copies of the Virasoro algebra of the 2d CFT on the worldsheet.
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7.2 Connections to flat holography

We have seen the physics of tensionless strings is governed by the underlying structure of

the residual gauge symmetry, the 2d GCA. The most natural limit is the worldsheet ultra-

relativistic limit. As stated before, the construction of holography for flat spacetimes is

linked to the same limit. To elaborate a bit further, the essential idea that has been pursued

in the field of flat holography builds on the fact that flat space is obtained as an infinite

radius limit of AdS spacetimes. It is thus natural to look at flat holography as a limit of

AdS/CFT. The initial progress on flat holography has been principally focussed on the 3D

bulk and 2D boundary theory. On the side of the dual field theory, the infinite radius bulk

limit translates to an ultrarelativistic limit which contracts the 2d CFT to a 2d GCFT,

giving rise to a Flat/GCFT correspondence. This was originally dubbed the BMS/GCA

correspondence in [17] following the observation of the isomorphism between the 2d GCA

and the asympototic symmetries of a 3D Minkowski spacetime, the BMS algebra.

Our analysis in the present paper throws up interesting suggestions about flat holog-

raphy as well. The construction of the tensionless vacuum is inherently linked to the

discussions of GCFT and hence this could be a hint to understanding how fields and

operators in AdS map over to the corresponding ones in flat space. For holographic dis-

cussions, the highest weight representations of the corresponding asymptotic symmetry

algebras have always played a crucial role. So one needs a mapping between the highest

weight representations of the Virasoro algebra and that of the 2d GCA. But the ultra-

relativistic limit (A.11) mixes the creation and annihilation operators in the mapping and

hence under the UR map, the Virasoro highest weights don’t go over to the GCFT highest

weights, providing a conceptual hurdle in mapping some aspects of physics in AdS to that

in flat space.

But the discovery in the present paper of the Bogoliubov transformations between the

oscillators of the tensile and tensionless theory should pave the way to an answer to the

above problem. In particular, it is plausible that the Minkowski ground state is a coherent

state in terms of the AdS vacuum.

7.3 The road ahead

As should be obvious from the numerous discussions above, there are a large number of

avenues to pursue in future work. Let us systematically list a few of them.

What happens to spacetime? We have looked at the tensionless limit of string theory

by focussing on the worldsheet aspects of the theory. An obvious question is what effect

does this have on the spacetime. We had started out with closed bosonic strings propagating

on 26 dimensional Minkowski space. The limit on the worldsheet would naturally induce a

deformation of the spacetime. As stated in section 5, [48] indicates that tensionless strings

propagate on Bargmann spacetimes. It would be of great interest to see this more explicitly

and understand the deformation of the initial Minkowski space. We should be able to

arrive at similar considerations by looking at the quantum version of Galilean Conformal

invariance on the tensionless worldsheet, which should be analogous to the vanishing of the
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(relativistic) beta functions required for maintaining (relativistic) conformal invariance on

the tensile string worldsheet. This would be our immediate goal.

Open strings and D-branes. We have looked at closed bosonic strings in our construc-

tion and not ventured into open string theory. As was discussed in [18], from the point

of view of the symmetry algebra, it is far from obvious how to contract a single Virasoro

algebra, as is the case of the open string residual symmetry, to get something non-trivial.

One needs to develop the theory of Boundary Galilean Conformal Field Theories to get a

handle on this. It would be easier to first do the intrinsic analysis of the open string, arrive

at the results and then try and interpret what the precise limit on the open worldsheet

implies. This is work in progress. It would also be of importance to understand how the

tensionless limit works for branes. Here we would not have the luxury of the systematics

of GCFT to fall back to.

Superstrings and beyond. It is of course natural to look at closed superstring theories

as an immediate generalisation. We expect that the construction would be straight-forward

and the residual symmetry would also be a contraction of the two copies of the super-

Virasoro algebra to the Super-GCA. The construction of the map between the tensionless

and tensile operators would now also involve fermionic generators and the expressions of

the coherent state would change appropriately.

Hagedorn physics. We have only skimmed the surface and made a couple of suggestions

about how the construction of tensionless strings would be of importance to strings near

the Hagedorn temperature. It is vitally important to back this up with more concrete

calculations. For example, we wish to perform partition function calculations with the new

vacuum and the excitations above it to show how the Hagedorn divergence is tamed when

one looks at these emergent degrees of freedom. It would also be of great importance to

back up our picture of the thermal vacuum state being constructed out of entanglement

between left and right movers on the string worldsheet.

To conclude, we would like to say that we seem to have unearthed some interesting

new effects by studying systematically the theory of tensionless strings from the point of

view of the worldsheet symmetries. There are great many adventures that lie ahead and

many potential applications of our current results.
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A Tour of Galilean conformal field theories

We provide a quick review of the basic features of the Galilean Conformal Algebra (GCA)

and field theories with GCA symmetry, Galilean Conformal Field Theories (GCFTs) in

this appendix. Much of our understanding of the tensionless limit of string theory would

be based on algebraic structures that arise from this symmetry. So to make the paper self-

contained, at the cost of repeating ourselves for the experienced reader, we discuss the main

points of GCFTs, especially GCFTs in D = 2. This appendix heavily draws from earlier

work on the subject, especially [16] for general dimensions and [60] for specifics in D = 2.

A.1 Galilean conformal symmetries in general dimensions

The GCA were first understood as the symmetries of non-relativistic conformal systems.

The most intriguing feature of GCFTs is that, unlike relativistic CFTs, the underlying sym-

metry is infinite dimensional in all space-time dimensions [16]. Algebraically, the set of vec-

tor fields that generates these symmetries (in any spacetime dimension) can be denoted by:

Ln = tn+1∂t + (n− 1)tnxi∂i, M i
n = tn+1∂i , (A.1)

where n runs over all integral values. These vector fields follow the algebra

[Ln, Lm] = (n−m)Ln+m, [Ln,M
i
m] = (n−m)M i

n+m, [M i
n,M

j
m] = 0. (A.2)

Together with this, there are also the generalised rotation generators

Jn
ij = tn (xi∂j − xj∂i) , (A.3)

which lead to current-algebra like commutators with the rest of the algebra [16]. We would

not be interested in this here since we are looking to focus on two dimensions.

Before moving to D = 2, we would like to point out some important points. Firstly, the

finite dimensional subgroup {L0,±1,M
i
0,±1, J

0
ij} of the above Galilean Conformal Algebra

arises from the contraction of the relativistic conformal algebra in D dimension. The vector

fields in (A.1) for n,m = 0,±1 correspond to

L−1,0,+1 = H,D,K0 M i
−1,0,+1 = P i, Bi,Ki , (A.4)

where K0,Ki are the contracted versions of the temporal and spatial components of the

special conformal transformation and Bi are the Galilean boosts. H,D are the Hamiltonian

and the Dilatation operator while P i are the generators of spatial momenta. The infinite

enhancement is conjectured by grouping the generators of the contracted algebra in the

specific way mentioned above and by noting that the vector fields close to form the same

algebra for all integral values of the modes.

Secondly, since the infinite dimensional extension of symmetries in the non-relativistic

limit is conjectural and seems to be rather counterintuitive, it is essential that we present

some examples to back up the claim. These extended symmetries are indeed realised

in physical systems, viz. the Naiver-Stokes’ equation of non-relativistic hydrodynamics

– 27 –



J
H
E
P
0
1
(
2
0
1
6
)
1
5
8

realises all the time dependent boosts (M i
n’s) as symmetries [16]. More recently, it has

been shown that the equations of motion of Maxwell electrodynamics in the non-relativistic

limit exhibits the entire Galilean Conformal Algebra as their symmetry [73]. Current

investigations [74] show that this also extends to Yang-Mills theories and indeed one can

hope for a general proof that all CFTs in the non-relativistic limit will exhibit this extended

infinite dimensional symmetry.

A.2 Galilean conformal symmetries in D = 2

Much of our explorations in this paper would involve the details of GCFTs in D = 2 [60].

The generators of the GCA in D = 2 involves the Ln’s and the Mn’s (with the vectorial

index dropped) and, obviously, there are no Jij ’s due to the absence of spatial rotation in

D = 2. The quantum version of the GCA is given by:

[Ln, Lm] = (n−m)Ln+m +
cL
12

(n3 − n)δn+m,0 ,

[Ln,Mm] = (n−m)Mn+m +
cM
12

(n3 − n)δn+m,0 , [Mn,Mm] = 0. (A.5)

It should not be a surprise that the infinite dimensional 2D GCA can be obtained as a

contraction of two copies of the Virasoro algebra. If we define the relativistic conformal

algebra by Ln, L̄n, the following combination of the Virasoro generators give rise to the 2D

GCA in the limit ǫ → 0:

Ln + L̄n = Ln, Ln − L̄n =
1

ǫ
Mn . (A.6)

The central terms cL, cM in the quantum 2d GCA (A.5) can be linked to the original CFT

central terms in this non-relativistic limit:

c+ c̄ = cL, c− c̄ =
1

ǫ
cM . (A.7)

It is instructive to note that by looking at the representations of the Virasoro generators

on the complex plane, viz.

Ln = zn+1∂z, L̄n = z̄n+1∂z̄ , (A.8)

and taking z = t + ǫx, z̄ = t − ǫx, one can readily obtain the 2d version of the GCA

generators (A.1) in the limit ǫ → 0. One can also look at the limit on the cylinder

z = eiω, z̄ = eiω̄. Contraction of the generators then leads to

Ln = einτ (∂τ + inσ∂σ) , Mn = einτ∂σ , (A.9)

where we have written ω, ω̄ = τ ± ǫσ and taken the limit ǫ → 0. In purely non-

relativistic terms, the mapping between the “plane” co-ordinates (A.1)and the “cylinder”

co-ordinates (A.9) is given by

t = einτ , x = iσeinσ . (A.10)
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A.3 The ultra-relativistic limit in D = 2

The fact that one can obtain the 2d GCA by looking at the non-relativistic contraction of

two copies of the Virasoro algebra is not surprising. What is surprising, however, is that

there exists another contraction of the Virasoro algebra which generates the 2d GCA:

Ln − L̄−n = Ln, Ln + L̄−n =
1

ǫ
Mn . (A.11)

Looking at the expression for the generators on the cylinder, it is easy to convince oneself

that the correct space-time contraction that one is looking at now is σ → σ, τ → ǫτ . This

leads to

Ln = einσ (∂σ + inτ∂τ ) , Mn = einσ∂τ , (A.12)

which is exactly (A.9) with σ ↔ τ . The interpretation of this limit is reversed from the

previous one. This is the limit where the speed of light tends to zero and is hence the ultra-

relativistic limit of the conformal algebra. The mapping from the 2D CFT also changes

the interpretation of the central terms in this limit. Now the central terms are given by

cL = c− c̄, cM = ǫ(c+ c̄) , (A.13)

which is to be contrasted to (A.7).

The strange co-incidence of the non-relativistic and ultra-relativistic limit displaying

the same symmetry algebra is a feature unique to two dimensions where the space and time

directions can be swapped and the symmetry is (at least locally) blind to this exchange.

Thought about in terms of Euclidean 2D field theories, it is clear in hindsight that the

theory should not distinguish between what is time and what is space and hence a contrac-

tion in one is equivalent to a contraction in the other direction. In dimensions higher than

two, an ultra-relativistic and a non-relativistic contraction are no longer the same, if we

demand that all the spatial directions scale in the same way. This is simply because in the

ultra-relativistic case, there is only one contracted direction while in a (D+1) dimensional

theory, D of the spatial dimensions would scale in the non-relativistic limit.2

Very surprisingly, this ultra-relativistic contraction of the 2D conformal algebra has

been of use in understanding aspects of holography in 3D Minkowski space times. The

asymptotic symmetry algebra of flat space times in three and four bulk dimensions has

been known to be the Bondi-Metzner-Sachs (BMS) algebra [61, 62]. In 3D, the BMS3
algebra [63] is actually isomorphic to the 2d GCA [17]. The limit from AdS to flat-space can

be shown to induce an ultra-relativistic contraction on the 2D dual field theory converting

the relativistic conformal symmetries to Galilean Conformal symmetries [64]. (In higher

dimensions, as explained above, the contraction yields symmetries which are not isomorphic

to the GCA.) So the dual theory to 3D Minkowski space times is a 2D GCFT. This

proposal, which at times goes under the name of the BMS/GCA correspondence, has been

successfully employed to understand several aspects of bulk physics in flat space [64]–[70].

2One can obviously devise skewed limits where only one spatial dimension is non-relativistic and the rest

(D-1) are not. Such limits would again yield algebras isomorphic to the ones obtained by ultra-relativistic

contractions.
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A.4 Representations of 2D GCFT

We would be interested in building the representation theory of GCFTs in close anal-

ogy with regular CFTs and hence would concentrate on the highest weigh representa-

tions [60, 72]. The states would be labeled by their eigenvalues under the dilatation oper-

ator L0 and additionally under the boost M0, since [L0,M0] = 0:

L0|hL, hM 〉 = hL|hL, hM 〉, M0|hL, hM 〉 = hM |hL, hM 〉 . (A.14)

Using the two different limits, we see that the GCFT weights can be expressed in

terms of the Virasoro weights h, h̄ (where the Virasoro states are labeled as L0|h, h̄〉 =

h|h, h̄〉, L̄0|h, h̄〉 = h̄|h, h̄〉) as:

NR limit: h+ h̄ = hL, h− h̄ =
1

ǫ
hM ; UR limit: h− h̄ = hL, h+ h̄ =

1

ǫ
hM . (A.15)

In analogy with CFTs, there exists a notion of primary states which are annihilated

by all positive modes Ln,Mn. For this, we assume that hL is bounded from below. We

will also assume hM is bounded for later purposes. So,

Primary states: |hL, hM 〉p ⇒ Ln|hL, hM 〉p = Mn|hL, hM 〉p = 0, ∀n > 0 (A.16)

The GCA modules are built on these primary states by the action of the raising operators

L−n,M−n.

It is interesting to note here that the highest weight representations of the Virasoro

algebra descend to the highest weight representations of the GCA in the NR limit but since

there is a mixing of raising and lowering Virasoro operators in (A.11), the UR limit does

not work in the same way, i.e. one cannot obtain the highest weight representations of the

GCA from the Virasoro highest weights by the UR limit.

However, it is important to point out that the highest weights of the GCA can be

defined independent of any limit and the representations would just depend on intrinsically

GCFT quantities like the weights hL, hM and the central terms cL, cM .

A.5 Energy-momentum tensor for 2D GCFT

One of the central objects in a 2D CFT and indeed of any quantum field theory is the

Energy-Momentum tensor. It is important to define a similar object in the 2D GCFT.

The holomorphic and anti-holomorphic EM tensor for a 2D CFT is defined in terms of the

modes of the Viraroso algebra on the complex plane as:

T (z) =
∑

n

Lnz
−n−2, T̄ (z̄) =

∑

n

L̄nz̄
−n−2 . (A.17)

In the non-relativistic limit, one can define the combinations of the above which remain

finite [71]

T P

1 (x, t) = T + T̄ =
∑

n

(

Ln + (n+ 2)Mn
x

t

)

t−n−2, T P

2 (x, t) = ǫ(T − T̄ ) =
∑

n

Mnt
−n−2 ,

(A.18)
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where the P superscript denotes that the expressions are the ones for the plane represen-

tation. It is instructive to also look at the expressions of these on the cylinder. We need to

keep in mind that the expressions for the EM tensor on the cylinder of a 2D CFT involves

a central term arising from the Schawrzian derivative which reflects the fact that the EM

tensor is not a primary field. Taking similar limits on the transformed 2D CFT EM tensor,

we obtain:

TC

1 (σ, τ) = TC + T̄C =
∑

n

(Ln − inσMn) e
−inτ +

cL
12

, (A.19)

TC

2 (σ, τ) = ǫ
(

TC − T̄C
)

=
∑

n

Mne
−inτ +

cM
12

. (A.20)

In the ultra-relativistic case, if we look at the cylinder again, we need to use different linear

combinations to obtain finite answers in the limit:

TC

1 (σ, τ) = TC − T̄C =
∑

n

(Ln − inτMn) e
−inσ +

cL
12

, (A.21)

TC

2 (σ, τ) = ǫ
(

TC + T̄C
)

=
∑

n

Mne
−inσ +

cM
12

. (A.22)

So we see that (A.19) and (A.21) are related just by the exchange σ ↔ τ .

Thus, in a generic 2D GCFT with a contracted direction ξ1 and a non-contracted

direction ξ2, which is labeled by its central terms cL and cM , the generators on (the

degenerate version of) the cylinder are given by

Ln = einξ2 (∂2 + inξ1∂1) , Mn = einξ2∂1 , (A.23)

and the EM tensor is of the form:

TC

1 (ξ1, ξ2) =
∑

n

(Ln + inξ1Mn) e
inξ2 +

cL
12

, TC

2 (ξ1, ξ2) =
∑

n

Mne
inξ2 +

cM
12

. (A.24)

A.6 Truncation of symmetry algebra

Before we conclude our discussions of GCFTs, there is another important thing that is

going to be relevant to us in our analysis of tensionless strings. Let us briefly mention

this. Like in ordinary CFTs, in GCFTs there are null states (states that are orthogonal

to all states in the Hilbert space including themselves) which have to be removed from the

physical spectrum. The analysis in [60] treats this aspect of GCFTs in some detail. The

most interesting feature that arises out of this is that there exists a sector in a GCFT where

there is a truncation of the symmetry algebra. If we are dealing with a GCFT with cM = 0

and concentrate on a sector of the theory that has states with hM = 0, then through an

analysis of null vectors, it can be shown that the representations of the GCA naturally

reduce to the representations of the Virasoro algebra. This feature has been exploited

in [66] to construct a theory of gravity in flat-spacetimes that is chiral.

Let us revisit this analysis briefly. To find a null state at a given level, let us consider

a most general state for that level by considering a combination of L−n and M−n (n > 0)
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acting on the GCA primary state |hL, hM 〉. Then we impose the condition that Ln and Mn

for any n anhilate this state. We only require to check upto n = 2 to obtain the conditions

that fix the relative coefficients in the linear combination as well as give a relation between

hL, hM and the central charges cL,cM .

At the level n = 1 we can only have a combination of the states L−1|hL, hM 〉 and

M−1|hL, hM 〉. There exists only one null state for hM = 0. For level two we have to write

the general state |χ〉 as given below, and impose that L2 and M2 anhilate this state.

|χ〉 = (a1L−2 + a2L
2
−1 + b1L−1M−1 + d1M

2
−1 + d2M−2)|hL, hM 〉 . (A.25)

After using the GCA Algebra as in (A.5) we obtain six conditions:

3a1+2(hL+1)a2+2hMb1 = 0, (4hL+6cL)a1+6hLa2+6hMb1+(6cM+4hM )d2 = 0

2(hL+1)b1+4hMd1+3d2 = 0, (4hM+6cM )a1 = 0, 3a1+2a2+2hMb1 = 0, hMa2 = 0

We can analyse the above equations by considering various cases and fixing certain values

for some parameters. For cM 6= 0 we can obtain certain null states at a general level k,

with conditions relating k, hM and cM .

In section 5.3 we had argued the possiblilty of cM being zero in the tensionless string

theory. So we will restrict our analysis following [60] on the sector of the theory having

cM = 0. In this case we have non-trivial null states only for hM = 0. For hL = −3
2cL, we

will get a1, a2 6= 0, but only if hL = cL = 0, which is a trivial case. For hL 6= −3
2cL (the

only contraint on the value of cL and hL), we find that a1 = a2 = 0, d2 = −2(hL+1)
3 b1 and

d1 cannot be determined. This gives us the two null states as:

|χ(1)〉 = M2
−1|hL, 0〉, |χ(2)〉 =

[

L−1M−1 −
2(hL + 1)

3
M−2

]

|hL, 0〉. (A.26)

It is easily seen that |χ(1)〉 is a descendant of the level one null state M−1|hL, 0〉. So is the

state L−1M−1|hL, 0〉. Thus we see that if we set the level one null state to zero along with

the descendants then at level two the new null state is simply M−2|hL, 0〉. We can then

set this null state and its descendants to zero. In this manner if we proceed we will obtain

a new null state M−k|hL, 0〉 at the kth level setting all the other lower level null states and

their descendants to zero. Thus, if all the null states are truncated in a consistent manner,

we are left with only states that are given by the Virasoro descendants of the primary. As

seen above for level two, and is true for any general level, we only require hM = cM = 0

with no generic condition on cL, hL. Then the Hilbert space of the GCA can be truncated

to the Hilbert space of the Virasoro.

In the Virasoro module, by the usual analysis of 2d CFT null vectors, one can put

unitarity constraints on the values of central charge cL and weight hL. In conclusion, we

can have uni-tary representations of the GCA with cM = hM = 0. We call this the chiral

truncation of the GCA.
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B The worldsheet NR Limit

In our review of GCFTs, we had remarked that there are two different contractions of the

Virasoro algebra which result in the GCA. So far in our discussions, we have focused on

the ultra-relativistic limit on the worldsheet. We have also mentioned the non-relativistic

limit on the string world sheet briefly in section 3.4 where we showed that this limit arises

out of a different choice of gauge in the tensionless string. In this appendix, we attempt a

construction of mode expansions similar to that of the other limit dealt with in details in

the main paper.

B.1 Residual symmetries

We have already seen that the gauge that needs to be fixed in this limit is

V α = (0, v) , (B.1)

and the residual symmetry is the 2D GCA now with generators

Ln = ieinτ (∂τ + inσ∂σ), Mn = ieinτ∂σ. (B.2)

These generators are the same as (A.9) which arise from the non-relativistic contraction of

the Virasoro algebra (A.6).

B.2 Equation of motion and mode expansions

The equation of motion (3.1) in this gauge now takes the simplified form:

X ′′µ = 0; X ′2 = 0, Ẋ ·X ′ = 0. (B.3)

The mode expansion for this gauge turns out to be the following:

Xµ(σ, τ) = xµ +
√
2c′Ãµ

0τ +
√
2c′B̃µ

0 σ + i
√
2c′

∑

n 6=0

1

n

(

Ãµ
n − inσB̃µ

n

)

e−inτ . (B.4)

Boundary conditions Xµ(σ, τ) = Xµ(σ + 2π, τ) now dictates that B̃µ
0 = 0. The entire

analysis of constraints of section 3.1 and identification of this with the GCFT EM tensor

follows with an exchange of σ ↔ τ . One now compares the constraints with the expressions

of the Energy momentum tensor in the non-relativistic limit (A.19). The oscillators Ã, B̃

follow the same algebra

{Ãµ
m, Ãν

n}P.B = {B̃µ
m, B̃ν

n}P.B = 0, {Ãµ
m, B̃ν

n}P.B = −2imδm+nη
µν . (B.5)

Here the definitions of the modes of the algebra Ln and Mn in terms of Ã and B̃ stay the

same as before, viz. Ln =
∑

Ãn+mB̃−m, Mn =
∑

B̃n+mB̃−m.
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B.3 The peculiarities of the other contraction

The interesting departure in the analysis from the previous case arises in the limit from

the tensile theory. We now need to consider the limit

τ → τ, σ → ǫσ, α′ → c′/ǫ . (B.6)

on the mode expansion of the tensile theory (3.22). If we continue with the identifications

from the mode expansions, we get This yields (B.4) with the following identifications:

Ãµ
n =

1√
ǫ
(αµ

n + α̃µ
n) , B̃µ

n =
√
ǫ (αµ

n − α̃µ
n) . (B.7)

If one tries to reproduce (3.11), from here using the commutators of α and α̃, there is

a mismatch. We clearly see that we have to introduce a relative factor of i on the right

hand side of the definition (B.7) to rectify the situation. Reversing the argument, we now

demand

Ãµ
n =

1√
ǫ
(αµ

n + βµ
n) , B̃µ

n =
√
ǫ (αµ

n − βµ
n) . (B.8)

Requiring (3.11), then requires

{αµ
n, α

ν
m} = −inδn+m,0 ηµν , {βµ

n , β
ν
m} = inδn+m,0 ηµν . (B.9)

The above effectively means that β = iα̃ which in term implies that in order to repro-

duce (B.4), one needs to start off with a string theory solution which is

X = XL(τ + σ) + iXR(τ − σ) , (B.10)

instead of the usual X = XL + XR. This obviously solves the equation of motion of the

tensile string, but there are differences with the usual solution. The mode expansion of

this solution in the tensile theory is now

X(τ, σ) = i
√
2α′

∑

n 6=0

1

n
[αµ

ne
−in(τ+σ) + βµ

ne
−in(τ−σ)] . (B.11)

Demanding reality of the solution means that there can be no zero mode in this solution.

This additionally means that A0 = 0 which is a restriction on the solution (B.4). Reality

of X(σ, τ) also implies that the Hermiticity condition for the oscillators are

(αµ
n)

† = αµ
−n, (βµ

n)
† = −βµ

−n . (B.12)

There are obvious differences with the usual tensile theory when one attempts to quantize

this solution. At this juncture, we are not very clear about what lessons this has for the

tensionless theory we are looking to study. It is very clear that while the choice of gauge

V α = (0, v) locally yields the same residual gauge symmetry, the GCA as the previous case

V α = (v, 0), there are interesting differences.

Let us quickly revisit the constraint analysis in this limit on the string worldsheet. The

constraints in the tensile case are:

Ẋ2 +X
′2 = 0, Ẋ ·X ′ = 0. (B.13)
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On taking the limit (τ, σ) → (τ, ǫσ):

Ẋ2 +
1

ǫ2
X

′2 = 0, Ẋ ·X ′ = 0 or ǫ2Ẋ2 +X
′2 = 0, Ẋ ·X ′ = 0 . (B.14)

Repeating the analysis of section 3.3, we find the tensionless constraints in terms of the ten-

sile ones in this limit now generate the NR limit of the Virasoro algebras to the GCA (A.26)

on the worldsheet:

Ln = Ln + L̄n Mn = ǫ
[

Ln − L̄n

]

. (B.15)

Before we conclude this appendix, let us make a quick and curious observation. The

rather strange complex combinations of the left and right movers that we have advocated

in the construction of the NR limit on the worldsheet is reminiscent of similar complex

combinations in [76], where this analysis is also linked to the high energy scatterings of

string theory [1, 2]. It could be worthwhile to pursue this line of argument further and link

up to our present analysis of the non-relativistic limit on the worldsheet.
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