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examining an explicit class of examples based on step 2 nilmanifolds.

Keywords: Gauge Symmetry, String Duality, Sigma Models

ArXiv ePrint: 1509.01829

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP01(2016)154

mailto:a.chatzistavrakidis@rug.nl
mailto:andreas.deser@itp.uni-hannover.de
mailto:larisa@irb.hr
http://arxiv.org/abs/1509.01829
http://dx.doi.org/10.1007/JHEP01(2016)154


J
H
E
P
0
1
(
2
0
1
6
)
1
5
4

Contents

1 Introduction 1

2 Action and gauge symmetry 2

2.1 Preliminaries 2

2.2 Gauging without isometry 3

3 T-duality 6

3.1 Recovering the ungauged model 6

3.2 Obtaining the dual model 8

4 Example — 3d nilmanifold 9

4.1 The background and the action 9

4.2 Back to the original model 11

4.3 The dual model 12

5 A class of examples 13

6 Conclusions 16

1 Introduction

Dualities play a prominent role in many corners of modern theoretical physics (see ref. [1]

for a very interesting recent discussion). In string theory dualities are instrumental in

understanding the structure of the theory and study its fundamental properties. Notably,

T-duality [2] is a symmetry of string theory that relates compactified backgrounds with

inverse radii. The string background fields transform under T-duality according to a set of

rules determined by Buscher in the seminal papers [3, 4]. This symmetry was subsequently

proven a true symmetry between conformal field theories in ref. [5].

The approach followed by Buscher requires the existence of global isometries in the

2D sigma model, which are subsequently gauged. This approach was also followed in more

involved cases, such as when there is a non-Abelian set of vector fields [6–13]. In all cases

there is a set of invariance conditions and constraints to be obeyed. Most importantly the

vector fields generate isometries, which seems to be necessary in order to write down a

sigma model that is gauge invariant under standard gauge transformations.

Recently a new twist appeared in the construction of gauged sigma models. Kotov and

Strobl (KS) [14] proved the existence of gauged symmetries in sigma models which do not

correspond to global ones. This formulation is based on gauge symmetries associated to

Lie algebroids,1 a field pioneered by Strobl in the context of Yang-Mills theories [15] and

1For the purposes of this paper it will be sufficient to think of Lie algebroids simply as a generalization of

Lie algebras with X-dependent structure functions instead of structure constants for a bracket that satisfies

the Jacobi identity.
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studied further in refs. [16–20]. The essence of this formulation relies on an extension of

the standard infinitesimal gauge transformations for the gauge fields Aa to include a part

proportional to DX i, where Xi are the world sheet scalars and DX i is the gauge covariant

derivative on the world sheet obtained by minimal coupling. Then it is possible to construct

an action which is invariant under these extended gauge transformations upon a milder

condition than isometry. We will explain the basics of this formulation in section 2.

The above remarkable result immediately indicates that one can revisit Buscher’s pro-

cedure in a more general context where isometries are not present. Earlier attempts to

understand dualities on general backgrounds include Poisson-Lie T-duality [21–24], gen-

eralized T-duality for cases with no globally defined Killing vectors [8], and an approach

based on “covariant coordinates” [25]. In the string theory context this is an important

problem, given that one often encounters backgrounds that do not have isometries but one

would like to know their T-dual backgrounds. In this paper we take this challenge. In par-

ticular we employ the formulation of KS and study gauged sigma models without isometry.

These include a set of gauge fields as well as Lagrange multipliers in the same spirit as

in Buscher’s procedure. The conditions and constraints to be obeyed are determined and

shown to be milder than the isometric case. This allows us to obtain two dual models, one

by integrating out the Lagrange multipliers thus obtaining the original ungauged model,

and one by integrating out the gauge fields. The latter yields a dual model which we

describe in precise terms.

Given that several constraints appear in the formulation, it is natural to worry whether

any non-trivial cases exist at all, namely whether the formulation is empty of non-trivial

examples and isometry is always restored. We prove by an explicit toy example that

this is not the case. This example is based on a well-known manifold used in studies

of string duality, the 3D Heisenberg nilmanifold. This is a parallelizable manifold with

a global section of its tangent bundle. The vector fields that form a basis for any such

section are known and while one of them is Killing, the other two are not. Nevertheless, in

the formulation established in the present paper we are able to T-dualize along all three

directions. We perform this procedure in detail and discuss the dual model. Furthermore,

we show that this is not an isolated example; the full class of step 2 nilmanifolds can be

treated the same way, as we show in section 5. The examples we examine in this paper are

not proper string backgrounds as they are not conformal; however they are often discussed

in literature since they appear as T-dual of tori with H flux and have simple yet non-trivial

geometric description.

2 Action and gauge symmetry

2.1 Preliminaries

Let us consider the standard σ-model action for the bosonic sector of closed string theory

at leading order in α′,

S =

∫
Σ2

1

2
gijdX

i ∧ ?dXj +

∫
Σ3

1

6
HijkdX

i ∧ dXj ∧ dXk , (2.1)
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where Σ2 = ∂Σ3 is the 2D world sheet and X = (Xi) : Σ2 → M is the map from the world

sheet to the target space M. Here and in the following we ignore the dilaton coupling,

which enters the action at linear order in α′ and leave a discussion on this issue for the

future, since it requires different techniques than the ones we introduce here.

The standard approach to T-duality begins with the assumption of global target space

symmetries generated by vector fields υa = υia∂i. This means that the action is required

to be invariant under the global transformations

δεX
i = υia(X)εa , (2.2)

where εa are rigid transformation parameters. It is well-known that the invariance of the

action (2.1) is not automatic but imposes the constraints

Lυag = 0 , (2.3)

ιυaH = dθa , (2.4)

for some arbitrary 1-forms θa = θaidX
i. This is true regardless whether the vector fields

generate an Abelian or a non-Abelian algebra. We will let them here satisfy a non-Abelian

one with structure constants Ccab,

[υa, υb] = Ccabυc . (2.5)

The next step is to gauge the above global symmetry. This is performed via the usual

minimal coupling to gauge fields (1-forms) Aa, where the de Rham differentials on the

world sheet are substituted by

DX i = dXi − υia(X)Aa , (2.6)

and the local (gauge) transformations are given as

δεX
i = υia(X)εa(X) ,

δεA
a = dεa(X) + CabcA

bεc(X) , (2.7)

with εa = εa(X) the gauge parameters. The corresponding gauged action [6] includes

additional fields but we will not discuss its precise form yet because we are going to present a

more general result below. However let us mention that gauge invariance imposes additional

constraints on top of (2.3) and (2.4). All these conditions and constraints will appear as a

certain limit of the more general formulation that we present immediately below.

2.2 Gauging without isometry

As described in ref. [14], it is possible to write down gauged 2D σ-models even when there

is no isometry to begin with. This is rather unconventional from a standard gauge theory

viewpoint, where normally we gauge a symmetry that is already there as a rigid one. Here

we refer to local symmetries that do not possess a global counterpart.

– 3 –
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To be precise, let us consider the gauged action

S =

∫
Σ2

1

2
gijDX

i ∧ ?DXj +

∫
Σ3

1

6
HijkdX

i ∧ dXj ∧ dXk (2.8)

−
∫

Σ2

(θa + dηa) ∧Aa +

∫
Σ2

1

2
(ιυ[aθb] + Ccabηc)A

a ∧Ab −
∫

Σ2

ωabiηaA
b ∧DX i .

The explanation of the ingredients is as follows. First of all, we defined the 1-forms

DX i = dXi − υiaAa,
θa = θaidX

i, (2.9)

where Aa are again the gauge fields, and a set of auxiliary scalar fields ηa. The vector fields

υa satisfy

[υa, υb] = Ccab(X)υc ,

where now the structure functions Ccab are not necessarily constants, namely we allow them

to depend on Xi. This provides a straightforward generalization to sections in arbitrary

Lie algebroids.2 Finally, ωabi are the components of a connection 1-form ωab = ωabidX
i that

twines the spacetime indices with the gauge ones. Its role will be clarified immediately

below. Note that for vanishing ωabi the action (2.8) is precisely the one considered in

refs. [6, 13], where T-duality with isometry was studied.3 The geometric interpretation of

ω as a connection 1-form was first introduced in [20] (see also [26]); one can then introduce

the corresponding exterior covariant derivative

Dω = d+ ω∧ (2.10)

and curvature

Rab = Dωωab = dωab + ωac ∧ ωcb . (2.11)

The transformation properties of ωabi are the same as for the spin connection. In particular,

being an 1-form, it transforms covariantly in the index i.

Let us now specify the gauge transformations for the fields Xi, Aa and ηa. These have

the form

δεX
i = υiaε

a ,

δεA
a = dεa + CabcA

bεc + ωabiε
bDX i ,

δεηa = −ιυ(aθb)ε
b − Ccabεbηc + υiaω

d
biηdε

b , (2.12)

for X-dependent parameters εa(X). It is directly observed that the gauge transformation

for the gauge field Aa is extended in comparison to the standard one by an ω-dependent

2We point out that this is a possible generalization which is implemented here, but not a necessary one.

The formulation we present is already a generalization of the standard one even in the Lie algebra case.
3In ref. [6] the fields ηa do not play a crucial role. This was revisited in ref. [13] where these fields are

present and transform non-trivially under gauge transformations. This will be the case in our formula-

tion too.
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term proportional to DX i. This is a key ingredient of the present formulation. Note that

in 2D one can add a term proportional to ?DX i; this is currently under investigation [27].

The action (2.8) is invariant under the above ω-extended gauge transformations pro-

vided that the following conditions hold

Lυag = ωba ∨ ιυbg , (2.13)

ιυaH = dθa + θb ∧ ωba − ηbRba , (2.14)

where ∨ denotes the symmetric product.4 Similarly to the standard case there is a set of

additional constraints, which now become

Lυ[aθb] = Cdabθd − ιυdθ[aω
d
b] − ιυ[aω

d
b]θd −D

c
abηc , (2.15)

1

3
ιυaιυbιυcH = ιυ[aC

d
bc]θd − 2ιυ[aω

d
b ιυc]θd − 2D̃e

abcηe , (2.16)

where we defined the shorthand notation

De
ab = dCeab + Ccabω

e
c + 2Ced[aω

d
b] + 2ιυdω

e
[bω

d
a] + 2Lυ[bω

e
a] + ιυ[aR

e
b] ,

D̃e
abc = ιυ[aιυbR

e
c] . (2.17)

This result is obtained using the identity

Cd[abC
e
c]d + υk[c∂kC

e
ab] = 0 , (2.18)

which is the Jacobi identity in the Lie algebroid case where the structure functions are not

constant. Note that sending ωabi to zero and the functions Cabc to constants restores the

isometric case and all the conditions fully agree5 with the results of ref. [13]. One apparent

difference between our formulation and previously studied ones is the explicit dependence

of the constraints (2.15) and (2.16) on the scalar fields ηa. These scalar fields are essentially

the analogues of the Lagrange multipliers introduced in Buscher’s procedure, which become

the coordinates of the T-dual model upon integration of the gauge fields.

At this stage it is useful to discuss the field strength of the gauge fields Aa. Recall that

the 2-form that multiplies the Lagrange multipliers in Buscher’s procedure is precisely the

field strength of the corresponding gauge fields. In the present formulation this turns out

to be

Fa := dAa +
1

2
CabcA

b ∧Ac − ωabiAb ∧DX i , (2.19)

which is the same as the one considered in ref. [20]. A straightforward calculation confirms

the result of [20] on the gauge transformation of this field strength:

δεFa = (Cabc − ωaciυib)εcF b +Rabijε
bDX i ∧DXj +Da

bciε
cDX i ∧Ab , (2.20)

4This means that eq. (2.13) reads in components as (Lυag)ij = ωba(iυ
k
b gj)k and it is obviously covariant,

since ωbai is an 1-form.
5Note that our conventions and notation are slightly different.
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Although in the present paper we do not consider dynamics for the gauge fields, the above

transformation rule is very suggestive. A covariant transformation rule for the field strength

Fa requires

Rab = 0 and Da
bc = 0 , (2.21)

namely the flatness of the connection ω. In that case it is immediately observed that the

η dependence in the constraints (2.15) and (2.16) drops out. This will be the case in the

explicit examples that will be presented in later sections, where we will also make some

essential comments about this flatness condition.

3 T-duality

In the previous section we considered the gauged action for a σ-model and discussed under

which conditions it is gauge invariant. Now we would like to follow the spirit of Buscher’s

approach to T-duality and obtain the two T-dual models that stem from this action. In

order to do so, we have to integrate out two different sets of fields. The original model

should be obtained upon integration of the Lagrange multipliers ηa and gauge fixing, while

the dual model is obtained by integrating out the gauge fields Aa.

3.1 Recovering the ungauged model

In order to recover the ungauged original model (2.1) we follow the steps described in detail

below. First we lift the full action modulo the kinetic term to three dimensions:6

S =

∫
Σ2

1

2
gijDX

i ∧ ?DXj +

∫
Σ3

1

6
HijkdX

i ∧ dXj ∧ dXk −

−
∫

Σ3

d(θa + dηa − ωbaηb) ∧Aa +

∫
Σ3

(θa + dηa − ωbaηb) ∧ dAa +

+

∫
Σ3

1

2
d(ιυ[aθb] + Ccabηc − 2ωc[biυ

i
a]ηc) ∧A

a ∧Ab −

−
∫

Σ3

(ιυ[aθb] + Ccabηc − 2ωc[biυ
i
a]ηc)A

a ∧ dAb. (3.1)

Next, we covariantize the de Rham differentials of the H term and obtain:

S =

∫
Σ2

1

2
gijDX

i ∧ ?DXj +

∫
Σ3

1

6
HijkDX

i ∧DXj ∧DXk +

+

∫
Σ3

(
1

2
Hijkυ

i
aA

a ∧ dXj ∧ dXk − 1

2
Hijkυ

i
aυ

j
bA

a ∧Ab ∧ dXk +

+
1

6
Hijkυ

i
aυ

j
bυ
k
cA

a ∧Ab ∧Ac
)
−

−
∫

Σ3

d(θa + dηa − ωbaηb) ∧Aa +

∫
Σ3

(θa + dηa − ωbaηb) ∧ dAa +

+

∫
Σ3

1

2
d(ιυ[aθb] + Ccabηc − 2ωc[biυ

i
a]ηc) ∧A

a ∧Ab −

−
∫

Σ3

(ιυ[aθb] + Ccabηc − 2ωc[biυ
i
a]ηc)A

a ∧ dAb . (3.2)

6Using differentiation and Stoke’s theorem, and ignoring possible global issues.
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Using the constraints imposed by gauge invariance and after a long and tedious calculation

the action can be written in the following form:

S =

∫
Σ2

1

2
gijDX

i ∧ ?DXj +

∫
Σ3

1

6
HijkDX

i ∧DXj ∧DXk +

+

∫
Σ3

(θa − ιυ[bθa]A
b) ∧ (dAa +

1

2
CabcA

b ∧Ac − ωabiAb ∧DX i) + (3.3)

+

∫
Σ3

(dηa−CcbaηcAb−ωbaηb + 2ωc[aiυ
i
b]ηcA

b) ∧
(

dAa+
1

2
CabcA

b ∧Ac−ωabiAb ∧DX i

)
.

Now we integrate the Lagrange multiplier ηa from the gauged action. The equation of

motion for ηa is:

Fa = dAa +
1

2
CabcA

b ∧Ac − ωabiAb ∧DX i = 0. (3.4)

This is the field strength we discussed in the previous section, which is simply the standard

F a of the non-Abelian gauge fields Aa when ωabi = 0. Inserting (3.4) in the form (3.3) of

the action gives

S =

∫
Σ2

1

2
gijDX

i ∧ ?DXj +

∫
Σ3

1

6
HijkDX

i ∧DXj ∧DXk . (3.5)

This result is identified with the original model in the same spirit as in the (Abelian or

non-Abelian) isometric case [5, 9]. In particular, since Fa = 0 the gauge fields must be

pure gauges. Since at this stage we are working on-shell, these gauges may be fixed. The

simplest gauge choice, which is the same as the one that was considered in refs. [5, 9],

is Aa = 0. Then one immediately recovers the original model. Different gauge choices

are of course allowed too, and then the original model in different coordinate systems is

recovered.7

Finally let us note that introducing the shorthand notation8

Kc
ab = 2ιυ[bω

c
a] − C

c
ab , (3.6)

the action (3.3) can be rewritten in the form

S =

∫
Σ2

1

2
gijDX

i ∧ ?DXj +

∫
Σ3

1

6
HijkDX

i ∧DXj ∧DXk +

+

∫
Σ3

Fa ∧ θaiDX i +

∫
Σ3

Fa ∧ (Dωηa +Kc
abηcA

b) . (3.7)

Comparing with the Abelian, isometric case (i.e. setting ω and Cabc to zero) and disregarding

ηa we recover the action given earlier in the literature, e.g. [8]. Thus (3.7) is a natural

generalization thereof, obtained by replacing dAa by the appropriate field strength Fa

and introducing the auxiliaries ηa in a covariant way. Moreover, since eq. (3.3) gives our

starting action (2.8), this serves as an additional geometric motivation for the introduction

of the ω- and η-dependent terms.

7Note that since the metric depends on Xi this procedure has to be carefully performed. We will provide

a detailed account on that in a class of examples later on.
8Neither the structure constants Cabc nor the connection ωab transform as tensors, but the combination

Ka
bc does.
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3.2 Obtaining the dual model

Let us now turn our attention to the dual model. This is obtained by integrating out the

gauge fields Aa from the action. Varying the action (2.8) with respect to Aa results in the

equations of motion

−gijυia ? dXj + gijυ
i
aυ

j
b ? A

b + (ιυ[aθb] −K
c
abηc)A

b + θa +Dωηa = 0 . (3.8)

Similarly to [8, 13], it is useful to define the following tensors:

Gab = υiagijυ
j
b , (3.9)

Dab = ιυ[aθb] −K
c
abηc , (3.10)

and

ξa = θa +Dωηa , (3.11)

υ∗a = gijυ
i
adX

j , (3.12)

which now contain the components of ω. The equation of motion takes the simpler form

?υ∗a − ξa = Gab ? A
b +DabA

b . (3.13)

Inserting this into the action (2.8) yields an expression linear in the gauge fields:

S =

∫
Σ2

1

2
gijdX

i ∧ ?dXj −
∫

Σ2

1

2
Aa ∧ (?υ∗a − ξa) +

∫
Σ3

1

6
HijkdX

i ∧ dXj ∧ dXk . (3.14)

The next step requires solving equation (3.13). This can be done as follows. We make the

general Ansatz

Aa = Mabυ?b +Nabξb + P ab ? υ?b +Qab ? ξb , (3.15)

with coefficients to be determined. Inserting this Ansatz in the equation of motion and

using ?2 = 1 we obtain the matrix equations

GM +DP = 1 ,

GN +DQ = 0 ,

GP +DM = 0 ,

GQ+DN = −1 , (3.16)

with G and D given in (3.9) and (3.10). The solution of this system gives

Q = −(G−DG−1D)−1 , (3.17)

and the rest of the unknowns are determined in terms of Q as

M = −Q ,
N = −G−1DQ ,

P = G−1DQ . (3.18)

– 8 –
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Then Aa is determined and may be inserted in the action. The resulting action of the dual

model is

S =

∫
Σ2

(
1

2
(G−DG−1D)abea ∧ ?eb −

1

2

(
G−1D(G−DG−1D)−1

)ab
ea ∧ eb

)
, (3.19)

where

ea = dηa + θa − (ωbaiηb + (G−1D)baυ
k
b gki)dX

i . (3.20)

We observe that the dual action comprises a coframe that mixes the original coframe with

the dual one. Thus the generic result is that the coordinates of the original and the dual

model appear mixed and cannot always be disentangled. We will have more to say about

this in the following section, where we study a non-trivial example.

4 Example — 3d nilmanifold

In the previous section we presented the formulation that leads to two dual models in the

absence of isometry. Evidently this depends crucially on the connection 1-form coefficients

ωabi. In particular, when these coefficients vanish isometry is restored. Therefore in order

to be able to argue that this formulation is not an empty and useless theoretical method

it is necessary to show that it works in non-trivial cases. This is not obvious, given that

a lot of constraints were imposed and thus one might worry that they do not allow for

non-vanishing ωabi. In the present section we work out an explicit example which serves

as an existence proof and supports the non-triviality of our considerations. In the next

section we discuss a larger class of examples.

4.1 The background and the action

Let us consider the geometry of the 3D Heisenberg manifold and set H to zero. This means

that the ungauged action is simply

S =

∫
Σ2

1

2
gij(X)dXi ∧ ?dXj , (4.1)

where the metric is

ds2 = (dx1)2 + (dx2 − x1dx3)2 + (dx3)2, (4.2)

in a particular coordinate system where the global 1-forms of the coframe and the corre-

sponding dual vector fields are:

ea = {dx1, dx2 − x1dx3, dx3} ,
υa = {∂1, ∂2, ∂3 + x1∂2} , (4.3)

and they satisfy

de2 = −e1 ∧ e3 and [υ1, υ3] = υ2 . (4.4)

– 9 –
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Note that this is a case where the structure functions are constant. We are going to use

the vectors υa to perform the T-duality and to this end we calculate the Lie derivative of

the metric along them:

Lυ1g = −dx2 ⊗ dx3 − dx3 ⊗ dx2 + 2x1dx3 ⊗ dx3 ,

Lυ2g = 0 ,

Lυ3g = dx1 ⊗ dx2 + dx2 ⊗ dx1 − x1dx1 ⊗ dx3 − x1dx3 ⊗ dx1 . (4.5)

We note that only υ2 is a Killing vector. Recall that performing a standard T-duality

transformation along this Killing direction one gets the well-known case of a 3-torus with

H flux. Moreover, it should be mentioned that the vector field ∂3, which is not one of the

υa we considered, is also Killing and T-duality along this direction yields the case with

non-geometric Q23
1 flux. Here we take a different route.

Following the general approach of section 2, we gauge the action (4.1) along all three

vectors υa. In the present example we consider θa = 0 for simplicity. Then the gauged

action reads as

S =

∫
Σ2

1

2
gijDX

i∧?DXj−
∫

Σ2

dηa∧Aa+

∫
Σ2

1

2
CcabηcA

a∧Ab−
∫

Σ2

ωabiηaA
b∧DX i , (4.6)

where the metric is given above, C2
13 = 1 is the only non-vanishing component of Cabc, and

DX1 = dX1 −A1 , DX2 = dX2 −A2 −X1A3 , DX3 = dX3 −A3 . (4.7)

The next step is to determine the ωabi such that all the conditions and constraints are

satisfied. Performing this task, the constraints impose the only non-vanishing components

of ωabi to be

ω2
31 = −ω2

13 = 2 . (4.8)

Then the system of equations is consistent and the action is gauge invariant.

It is interesting to note that in this example the connection 1-form ω is a very particular

one. Using the basis ea of 1-forms it is a direct task to determine the connection Ω

compatible with this basis by the tetrad postulate:

DΩea = dea + Ωa
b ∧ eb = 0 . (4.9)

The only non-trivial relation de2 = −e1 ∧ e3 gives Ω2
31 = −Ω2

13 = 1
2 . Thus, the connection

ω in the gauged sigma model is a constant multiple of the connection compatible with

the orthonormal basis: ω = 4Ω. Moreover, the curvature 2-form of ωab vanishes, which

is in accord with the gauge covariance of the field strength Fa, as discussed in section

2. It is reasonable to worry that then one can always set ωab to zero by a suitable gauge

transformation. However, once the vector fields υa that implement the gauge symmetry

are chosen, this is not possible any more. Of course, the geometry of the model might also

possess sets of Killing vector fields, as in the present example, for which ωab vanishes; it is

however a legitimate choice not to perform T-duality along them.
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4.2 Back to the original model

In order to obtain the original model we should integrate out the Lagrange multiplier ηa.

The corresponding equations of motion are

dA1 = 0 ,

dA2 +A1 ∧A3 = 2A3 ∧DX1 − 2A1 ∧DX3 ,

dA3 = 0 . (4.10)

Plugging them in the gauged action we obtain

S =

∫
Σ2

1

2
gij(X)DX i ∧ ?DXj . (4.11)

At this stage we consider the gauge fixing procedure that was described in section 3. As

mentioned there, one choice that fixes the gauge of Aa is to set them to zero on-shell. Then

the original ungauged action is recovered. More generally, since A1 and A3 are closed we

can choose a gauge where

A1 = κ1dX1 and A3 = κ3dX3 , (4.12)

for some real constants κ1, κ3. Then

DX1 = (1− κ1)dX1 := dY 1 ,

DX3 = (1− κ3)dX3 := dY 3 , (4.13)

where we defined the new coordinates Y 1, Y 3 as indicated by the last equations. It remains

to gauge fix A2. In order to do this consistently first we note that the action (4.11) is now

written as

1

2

∫
Σ2

(
dY 1∧ ?dY 1+DX2 ∧ ?DX2+

(
1 +

(Y 1)2

(1−κ1)2

)
dY 3∧ ?dY 3 − 2Y 1

1−κ1
DX2 ∧ ?dY 3

)
.

(4.14)

This allows us to determine a gauge choice for A2 such that the original model is recovered:

A2 = −(κ1 + κ3 − κ1κ3)X1dX3 . (4.15)

Indeed then the action takes its final form in the new coordinate system (with Y 2 := X2):∫
Σ2

1

2
gij(Y )dY i ∧ ?dY j , (4.16)

as desired. The remaining consistency check is that the chosen A2 satisfies its equation of

motion. Studying this equation we find that it is obeyed by any set of (κ1, κ3) that satisfy

the relation

κ1 + κ3 = 2κ1κ3 . (4.17)

Clearly, the simplest consistent choice is (κ1, κ3) = (0, 0) as we noted before, but any other

choice is equally consistent, giving the original model in different coordinate systems.
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4.3 The dual model

Finally let us obtain the dual model, which is the most interesting instance of our analysis.

First we have to integrate out the gauge fields. Thus we vary the action (4.6) with respect

to Aa and obtain the equations of motion

A1 = dX1 − ?(dη1 − 3η2A
3 + 2η2dX3) ,

A2 = dX2 −X1dX3 − ?dη2 ,

A3 = dX3 − ?(dη3 + 3η2A
1 − 2η2dX1) . (4.18)

These equations are coupled but we can easily decouple them and find

A1 = dX1 − 3η2

1 + 9η2
2

(dη3 + η2dX1)− 1

1 + 9η2
2

? (dη1 − η2dX3) ,

A2 = dX2 −X1dX3 − ?dη2 , (4.19)

A3 = dX3 +
3η2

1 + 9η2
2

(dη1 − η2dX3)− 1

1 + 9η2
2

? (dη3 + η2dX1) .

It is obvious that convenience of notation suggests to define

e1 = dη1 − η2dX3 ,

e3 = dη3 + η2dX1 . (4.20)

Note that de1 6= 0 and de3 6= 0. Inserting the equations of motion in the action, a tedious

calculation leads to the simple result

S =

∫
Σ2

1

2

(
dη2 ∧ ?dη2 +

1

1 + 9η2
2

(e1 ∧ ?e1 + e3 ∧ ?e3) +
6η2

1 + 9η2
2

e1 ∧ e3

)
. (4.21)

Let us comment on this result. The action of the dual model looks like a Q-flux

background. Indeed the background fields in the basis {e1, e2 = dη2, e3} are

g = e2 ⊗ e2 +
1

1 + 9η2
2

(e1 ⊗ e1 + e3 ⊗ e3) , (4.22)

B =
6η2

1 + 9η2
2

e1 ∧ e3 , (4.23)

which are globally ill-defined if the direction η2 is assumed compact. At first sight this

seems to be a short cut for the following chain of standard T-dualities

C2
13

T2→ H123
T1→ C1

23
T3→ Q13

2 . (4.24)

However, this is not quite true. This can be argued via the following reasoning. When a

T-duality is performed the new coordinate along the dualized direction is the corresponding

Lagrange multiplier. When we write the action of the dual model in terms of these Lagrange
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multipliers ηa the result is

S =

∫
Σ2

1

2

(
dη2 ∧ ?dη2 +

1

1 + 9η2
2

(dη1 ∧ ?dη1 + dη3 ∧ ?dη3) +
6η2

1 + 9η2
2

dη1 ∧ dη3

)
+

+

∫
Σ2

1

2

1

1 + 9η2
2

(
η2

2(dX1∧ ?dX1+dX3∧ ?dX3)+2η2(dX1 ∧ ?dη3 − dX3 ∧ ?dη1)
)

+

+

∫
Σ2

3η2
2

1 + 9η2
2

(
η2dX1 ∧ dX3 − dX1 ∧ dη1 − dX3 ∧ dη3

)
. (4.25)

In order to compare with the literature, note that the first line of this action is precisely

what one obtains when the last step of the duality chain (4.24) is performed, namely the

standard non-geometric Q-flux background. If that was the case, namely had it been

true that ea = dηa, one could rename the coordinates {ηa} → {Xi} as is customary

and the result would have been a T-fold [28]. On the other hand, had it been true that

e1 = dη1−η2dη3 and e3 = dη3 the result would have been a twisted T-fold [29], namely the

non-geometric T-dual of a nilmanifold carrying additional H flux. However, the additional

two lines in eq. (4.25), obtained via the non-isometric procedure, mix the coordinates of

the original model with the coordinates of the dual model. This means that only η2 could

be renamed, but not the rest. The fact that the model can be written in the form (4.21)

however means that it is associated to a rank 3 subbundle of the cotangent bundle of the

manifold M × M̃ , where M is the original (nil)manifold and M̃ the T-fold associated to

the dual coordinates ηa. This statement requires a more precise geometric interpretation,

which will be provided elsewhere.

5 A class of examples

The toy example we studied in the previous section provides an existence proof for non-

trivial cases where the present formulation applies. Furthermore it indicates that there

exists a considerably large class of additional examples based on nilmanifolds. Here we

formulate non-isometric T-duality for an arbitrary step 2 nilmanifold in any dimension.

In all cases we are working with pure geometries, namely we set H = 0. We write the

ungauged action in the form

S =

∫
Σ2

1

2
δabe

a ∧ ?eb , (5.1)

where ea is a global coframe. In a coordinate basis where ea = eai dx
i, where eai are the

(inverse) vielbeins, the metric takes the form

g = δabe
a
i e
b
jdx

i ⊗ dxj , (5.2)

and the action becomes the same as in the previous sections. The set of vector fields that

we use for T-duality is the one given by the dual frame, i.e.

〈υa, eb〉 = δba . (5.3)

A useful relation is

Lυaeb = −Cbacec , (5.4)
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where Ccab are the structure constants of the algebra of vector fields,

[υa, υb] = Cabcυc , (5.5)

which also appear in the Maurer-Cartan equations

dea = −1

2
Cabce

b ∧ ec . (5.6)

Then it is simple to compute the Lie derivative of the metric along these vector fields. This

yields the result

Lυag = −2
∑
c

Ccabe
b ∨ ec . (5.7)

On the other hand, we have to solve the condition

Lυag = ωba ∨ ιυbg . (5.8)

This means that ∑
c

ωcabe
b ∨ ec = −2

∑
c

Ccabe
b ∨ ec . (5.9)

This equation is solved by

ωcab = −2Ccab , (5.10)

which is consistent with the results of our previous example. Moreover, assuming again

θa = 0, all the constraints imposed by gauge invariance are satisfied. Then the gauged

action is

S =

∫
2

(
1

2
δabE

a ∧ ?Eb − dηa ∧Aa +
1

2
CcabηcA

a ∧Ab − ωcabηcAa ∧ Eb
)

=

∫
2

(
1

2
δabE

a ∧ ?Eb − dηa ∧Aa +
1

2
CcabηcA

a ∧ (Ab + 4Eb)

)
, (5.11)

where Ea = ea −Aa.
As before, the original model is recovered by integrating out the Lagrange multipliers

ηa. This leads to the equations of motion

dAa +
1

2
CabcA

b ∧ (Ac + 4Ec) = 0 , (5.12)

which are then inserted to the gauged action and yield

S =

∫
Σ2

1

2
δabE

a ∧ ?Eb . (5.13)

Now we have to follow a gauge fixing procedure. We make the general Ansatz

Aa = κabe
b + λcdC

a
bcX

bed , (5.14)

for sets of real constants κ and λ. In order to proceed, we have to use some properties of

step 2 nilmanifolds. To this end we consider the splitting of the indices a = (a0, ā) such

that Ca0bc = 0 and C ābc 6= 0. This is always possible because by definition there is always
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a subset of vanishing structure constants for nilmanifolds, due to nilpotency. Using the

fundamental step 2 relation

CabcC
c
de = 0 , (5.15)

which is true even without summation in the index c, it is evident that Ca
b̄c

= 0 for all

indices with a bar. Under this splitting, the Ansatz for the gauge field becomes

Aa0 = κa0b e
b ,

Aā = κābe
b + λc0d C

ā
b0c0X

b0ed . (5.16)

First let us choose κāb = 0, κa0
b̄

= 0 and λa0
b̄

= 0. Then we compute

dEa0 = 0 (5.17)

identically, and

dEā = −1

2
C āb0c0E

b0 ∧ Ec0 , (5.18)

provided that

C āc0[b0
λc0d0] = C āp0c0κ

c0
[d0

(1− 1

2
κ)p0b0] . (5.19)

Then the Ansatz for the gauge fields leads to

dEa = −1

2
CabcE

b ∧ Ec . (5.20)

This means that the action (5.13) is precisely the action of the original model. As before,

it remains to guarantee that the gauge field satisfies the equations of motion. This is an

identity for Aa0 , while for Aā it yields the condition

C āp0c0κ
c0
[d0

(1− κ)p0b0] = 0 . (5.21)

Of course the simplest choice is to set all constants to zero, but this is clearly not the only

option. Let us note that for step 2 nilmanifolds of dimension d ≤ 7, which are anyway the

interesting cases, the number of unknowns in the above system is larger than the number of

equations that constrain them. Above 7 dimensions we cannot make a general claim since

there is no classification of nilmanifolds [30]; however it is true that when the index ā takes

only one or two values, then the result holds in any dimension. On the other hand, when

the index ā takes q ≥ 3 values a simple counting of unknowns and equations shows that the

result is true up to d dimensions with b q
q−2(q−1−

√
q − 1)c+1 ≤ d ≤ b q

q−2(q−1+
√
q − 1)c,

where the symbol b·c denotes the integer part.

Now let us integrate out the gauge fields. The corresponding equations of motion are

(δab − 3Ccabηc?)A
b = (δab − 2Ccabηc?)e

b − ?dηa . (5.22)

In order to insert this equation in the action we have to determine Aa. Following the same

procedure as in the general case, the result is

Aa = ea + 3δaqCrqpηrS
pb(−dηb + Cdbcηde

c) + Sab ? (−dηb + Cdbcηde
c) , (5.23)

– 15 –



J
H
E
P
0
1
(
2
0
1
6
)
1
5
4

where we defined

Sab = (δab + 9CdbpC
c
aqδ

pqηdηc)
−1 . (5.24)

Inserting this expression in the action we obtain

S =

∫
Σ2

(
1

2
Sab(dηa − Cdacηdec) ∧ ?(dηb − Cdbcηdec)−

−3

2
δbmCdmpηdS

pa(dηa − Ccaqηceq) ∧ (dηb − Crbsηres)
)
. (5.25)

This is a generalization for any step 2 nilmanifold of the dual model we found in the

example of the previous section.

6 Conclusions

The range of validity of the Buscher rules for the T-duality of string background fields is

limited to the case where isometries are present and additional invariance conditions are

imposed. In this paper we used a recent idea about gauge symmetries of 2D sigma models

without corresponding global symmetry [14] to study T-duality in a more general setting.9

In particular we were able to identify the conditions and constraints that guarantee that

a bosonic sigma model with a metric and B-field is gauge invariant under an extended

set of gauge transformations even when one does not have isometries at hand. All these

conditions are milder than their counterparts in the isometric case. The next step was

to follow the standard procedure of Buscher in this non-standard setting. Integrating out

the Lagrange multipliers from the gauged action and gauge fixing lead back to the original

ungauged model. On the other hand, integrating out the gauge fields from the action yields

a dual model which was precisely identified.

Since several constraints are involved in the formulation, it is natural to worry whether

there is any room for non-trivial applications. As a proof of existence, we studied a par-

ticular geometry which is often considered in string theory as a useful toy model. This

geometry corresponds to the 3D Heisenberg nilmanifold and carries no H flux. In that

case we determined a solution of all conditions and constraints that allows to T-dualize

along vector fields that are not Killing. This led to a dual model that mixes the cotangent

spaces of the original and dual spaces, yielding a generalization of a T-fold or a twisted

T-fold, as discussed for example in refs. [28, 29]. Additionally we showed that this is not

an isolated case, but in fact all step 2 nilmanifolds in dimensions up to and including 7

provide a class of working examples.

Although the above results are encouraging, there are certain limitations in their scope

as presented in this paper, and it is useful to mention some of them. First of all, the dilaton

was ignored. The transformation of the dilaton involves an 1-loop computation since the

corresponding coupling appears at first order in α′, which should be examined. Moreover,

we did not discuss at all the potential equivalence of the two dual models as conformal field

9Additional symmetries appearing in 2D sigma models and their role in the context of T-duality are

under investigation [31].
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theories, which is true in the standard case and requires a careful consideration for global

issues of the procedure [5]. Furthermore a better understanding of the underlying geometric

structures is due. In the cases we examined we found a mixing of the original coordinates

and the would-be dual coordinates, which is indicative of doubled formulations, such as

the doubled sigma models considered by Hull [32] or the ones recently studied in [33]. Last

but not least, it would be very interesting to apply this formalism in the case of the triple

T-dual of a torus with H flux, or equivalently to the T-dual of the Q flux background where

no isometry is available (recent attempts to understand this problem include [34–36]), and

even more so in cases of true string backgrounds. We will report on these and other issues

in future publications.
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[23] C. Klimč́ık and P. Ševera, Poisson-Lie T duality and loop groups of Drinfeld doubles, Phys.

Lett. B 372 (1996) 65 [hep-th/9512040] [INSPIRE].

[24] K. Sfetsos, Canonical equivalence of nonisometric sigma models and Poisson-Lie T duality,

Nucl. Phys. B 517 (1998) 549 [hep-th/9710163] [INSPIRE].
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[34] R. Blumenhagen, A. Deser, D. Lüst, E. Plauschinn and F. Rennecke, Non-geometric fluxes,

asymmetric strings and nonassociative geometry, J. Phys. A 44 (2011) 385401

[arXiv:1106.0316] [INSPIRE].
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