
J
H
E
P
0
1
(
2
0
1
6
)
1
5
3

Published for SISSA by Springer

Received: December 9, 2015

Accepted: January 11, 2016

Published: January 26, 2016

Open EFTs, IR effects & late-time resummations:

systematic corrections in stochastic inflation

C.P. Burgess,a,b R. Holmanc and G. Tasinatod

aPhysics & Astronomy, McMaster University,

Hamilton, ON, L8S 4M1, Canada
bPerimeter Institute for Theoretical Physics,

Waterloo, ON, N2L 2Y5, Canada
cPhysics Department, Carnegie Mellon University,

Pittsburgh PA 15213 U.S.A.
dDepartment of Physics, Swansea University,

Swansea, SA2 8PP, U.K.

E-mail: cburgess@perimeterinstitute.ca, rh4a@andrew.cmu.edu,

g.tasinato@swansea.ac.uk
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with the goal of making reliable late-time inflationary predictions. The main such tool is

Open EFTs which reduce in the inflationary case to Stochastic Inflation plus calculable

corrections. We apply this to a simple inflationary model that is complicated enough to have

dangerous IR behaviour yet simple enough to allow the inference of late-time behaviour.

We find corrections to standard Stochastic Inflationary predictions for the noise and drift,

and we find these corrections ensure the IR finiteness of both these quantities. The late-

time probability distribution, P(φ), for super-Hubble field fluctuations are obtained as

functions of the noise and drift and so these too are IR finite. We compare our results

to other methods (such as large-N models) and find they agree when these models are

reliable. In all cases we can explore in detail we find IR secular effects describe the slow

accumulation of small perturbations to give a big effect: a significant distortion of the

late-time probability distribution for the field. But the energy density associated with

this is only of order H4 at late times and so does not generate a dramatic gravitational

back-reaction.
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1 Introduction

Precision CMB measurements reveal a remarkable pattern of primordial correlations over

large scales. Part of the appeal of inflationary models is their ability to explain these as

vacuum fluctuations enormously stretched by universal expansion until writ large across

the sky [1–8]. The vacuum fluctuations used for this purpose are essentially those of free

massless fields in de Sitter space, as are believed to dominate in the weak-field regime of

central interest for most slow-roll models. Implicit in this belief is that any weak interac-

tions present can be neglected to leading order in a controlled approximation.

This picture is undermined by explicit calculations of perturbations within near-de

Sitter geometries. As has long been known [9–13], these generically reveal two related

problems [14–17]. The first is the infrared (IR) singularity of many quantities of interest

(such as n-point field correlations) and the second is the presence of ‘secular’ evolution

(see e.g. the review [18]), for which powers of perturbative couplings arise systematically

multiplied by powers of ln a = Ht. The first problem signals the importance of long-

wavelength modes to making predictions and the second causes perturbation theory to fail
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at late times. Although in single field models such IR problems are plausibly gauge arte-

facts [19–40] (see also the review [41]), this need not be true in more general models so their

presence threatens the perturbative control required to exclude large theoretical uncertain-

ties in predicting observable implications for the post-inflationary universe [14–17, 42, 43].

Some argue this breakdown suggests the development of a large back-reaction that might

indicate an instability of de Sitter space itself [14–17, 44–47].

IR issues are most transparent when expressed within the effective field theory (EFT)

of the longest-wavelength modes. We here follow [48] (see also [49, 50]) and identify the

relevant long-wavelength EFT for cosmology using the language of open systems, a research

area started with [51] (see also [52] for a review on applications to cosmology). Because

super-Hubble modes move through an environment of sub-Hubble modes with which in-

formation is exchanged (such as when modes pass from sub- to super-Hubble at horizon

exit) they form an open system. Consequently their effective description is less like EFTs

encountered elsewhere in gravity [53–55] and cosmology [56–69] than it is like the effective

description of a particle moving through a fluid.1 And like for a particle interacting with

an environment it is generic that even very small interactions can accumulate to cause

large effects at late times since the environment never goes away; no matter how small the

interaction, V , the evolution operator e−iV t is eventually not close to unity.

Experience with similar problems in non-gravitational settings suggests the key tool

for resumming late-time predictions starting from perturbative interactions is the coarse-

grained master equation that describes the evolution of the density matrix for the long-

wavelength part of the system that is of interest [73–76]. This master equation is obtained

from the Liouville equation by tracing out irrelevant short-distance modes and (as described

in [48]) when applied to inflationary cosmology the leading contribution for super-Hubble

modes gives Starobinsky’s stochastic inflation [12, 13]. Subleading interactions describe

various corrections including a description of the decoherence of the super-Hubble modes

by their shorter-wavelength brethren.

Because stochastic inflation arises as the leading approximation to a broader formalism

designed to resum late-time effects, one might expect stochastic calculations to resolve some

or all of the IR issues in cosmology. There is indeed evidence that this is true in several

simple examples [77], such as for a spectator scalar field in de Sitter space subject to a λφ4

interaction. We here build yet more evidence for this using a toy system that is complicated

enough to display IR and secular effects, but simple enough to solve explicitly to extract

reliably late-time evolution.

We start, in section 2, by reviewing briefly how master-equation techniques can be used

to extend perturbative calculations reliably to very late times. (Such arguments underlie,

for example, the ability to compute an index of refraction relevant to the geometrical

optics limit, despite the breakdown of naive perturbative techniques for the photon-atom

interactions well before this time.) This section also briefly recaps the stochastic limit in

cosmology and summarizes evidence for their relevance to late-time evolution in λφ4 theory.

1The open nature of the problem shares some features of — but is not equivalent to — an effective

description of the cosmic fluid, such as that described in [70–72].
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The toy model of interest is defined in section 3. We work with a multi-field inflationary

picture in order to circumvent no-go arguments specific to single-field models. For simplicity

we specialize to the case of a spectator scalar (or scalars) whose energy density plays no

role in driving the universal expansion. For such a scalar we investigate a three-parameter

deformation from a massless spectator scalar in de Sitter space:2 a free spectator scalar field

(or, sometimes, N scalars) with mass, m, time-dependent speed of sound, cs, within power-

law inflation (with constant slow-roll parameter ǫ = −Ḣ/H2). On one hand the model is

exactly solvable and its late-time behaviour can be exactly obtained; on the other hand it

exhibits IR singularities and secular issues when the parameters m/H, s = dcs/d ln t and

ǫ are perturbatively small.

Comparing the perturbative and exact solutions yields the following results:

• We construct the system’s mode functions and use these to compute explicitly how the

mean, 〈φ〉, and variance, 〈φ2〉− (〈φ〉)2, of the super-Hubble modes of the field evolve.

We then use these to identify the equivalent Fokker-Planck equation describing the

evolution of the corresponding probability distribution, P (φ, t) (and while doing so

simplify the arguments given for its derivation in [48]).

• In the naive derivation we compute the noise and drift coefficients, N and F , as a

function of the three parameters (m/H, s and ǫ) as well as time. Very little must be

assumed about the time-evolution of the state in this calculation, but the noise, N ,

in general also inherits the IR divergence and secular effects that are found in ∂t〈φ2〉.

• A better derivation of the Fokker-Planck equation instead identifies N and F as

functions ofm/H, s and ǫ and the field φ rather than time. This is better because it is

in this form that the Fokker-Planck equation can be integrated to obtain the late-time

limit P(φ) = limt→∞ P (φ, t) as a function of N and F . We perform this calculation

and find it reproduces standard expressions — N = H3/8π2 and F = V ′/3H — to

leading order in m/H, s and ǫ. Most importantly, however, we also find subdominant

corrections to both N and F as functions of m/H, s and ǫ.

• In general we find that although correlation functions like 〈φ2〉 diverge in the IR for

some choices of m and ǫ, because of the corrections mentioned in the previous bullet

point these divergences precisely cancel to give an IR finite noise and drift, N and

F . The IR finiteness of N and F is consistent with IR singularities in 〈φ2〉 because
these singularities arise from singularities in the fluctuations of F : 〈φF〉 − 〈φ〉〈F〉.

• The IR finiteness of N and F ensures that the late-time solution, P(φ), of the Fokker-

Planck equation is also IR finite. This is useful since it is likely a prerequisite for

proving more generally the IR finiteness of late-time observables.

• Our results for free massive fields can be used in whole cloth to compute the noise,

drift and late-time distributions for N scalars interacting through a quartic λφ4

interaction in the large-N limit, and we compute these as a function of g = λN for

2Appendix C extends the discussion to include non-standard dispersion relations.
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this system. We show how the late time result agrees in this case with results of

other methods in the large-N limit, in cases where these are known.

• We generalize our derivation to include the case where the scalar mass depends on

its vev and so also slowly changes in time. By doing so we derive the late-time

limit of spectator scalars self-interacting through a quartic λφ4 interaction, without

making recourse to the large-N limit. We find a result that approaches the standard

Starobinsky result plus corrections, that disagrees with what would be obtained for

this system using the Hartree approximation.

In the cases where we can compute the late-time limit we find secular evolution does

indeed accumulate to cause relatively large effects at late times. Usually the large effect

is a significant distortion of the late-time probability away from the initially gaussian

distribution experienced by each mode as it crosses the horizon. In no cases did we find

an equally large accumulation of energy density and gravitational back-reaction, with the

super-Hubble contribution to the stress-energy remaining only of order H4 at late times.

Consequently in none of our examples does secular evolution indicate an incipient instability

of de Sitter space.

We note that Langevin type equations can also appear if one considers a rolling inflaton

coupled to other scalars and then integrates these scalars out. This was done in refs. [78–80]

Our conclusions are briefly summarized in section 4, with a short outline of possi-

ble future directions. Various appendixes contain technical details and extensions of the

arguments used in the main text.

2 IR singularities, secular evolution and resummation

This section is meant to summarize two results. We first lay out the general case as to why

stochastic arguments should be expected to resum secular evolution and so to capture the

late-time evolution of inflationary perturbations. Following [48] this is done by showing it

to be a special case of a more general technique widely used outside of cosmology to resum

secular effects. We then briefly summarize the present concrete evidence for this argument,

coming from the explicit inflationary calculations of [77].

2.1 Stochastic inflation: the cosmic master (equation)

Why should stochastic methods be related to IR singularities and secular evolution in

cosmology? The starting point is the recognition that the basic problem is the breakdown

of perturbation theory at late times, and that this problem also arises (and has been solved)

in many other areas of physics. Master-equation methods are among the tools developed

to deal with this problem, and we here repeat the case made in [48] that these methods

reduce to those of Stochastic Inflation (plus systematic corrections) when applied in an

inflationary context. To do so we first give a very brief recap of Master-equation methods in

general [73–76], followed by a statement of their implications for simple inflationary models.
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Interacting open systems

The basic problem arises whenever two systems — call them A and B — interact over

arbitrarily long times. Given a hamiltonian of the form H = HA + HB + HAB consisting

of terms that evolve A and B separately plus an interaction between them, no matter

how small the interaction HAB is there is always a time, tp, beyond which it is a bad

approximation to evaluate exp[−iHABt] in powers of HAB. In this sense it is generic that

perturbative late-time predictions can be problematic whenever interactions do not turn

off with time.3

Our interest is situations where all measurements are performed exclusively on system

A and predictions are sought on how their late-time results are influenced by the presence

of sector B. It is useful to have a concrete example in mind when describing the formalism,

such as the interactions of a particle (sector A) traveling through a medium (sector B) —

perhaps a photon within a transparent material or a neutrino passing through the Sun.

In general knowing the evolution of any observable, A(t) = Tr(OA), involving only sector

A is equivalent to knowing the evolution of the reduced density matrix, ρA(t) = TrB[ρ(t)],

obtained by tracing the full density matrix, ρ, over the unobserved sector B, because for

such observables A(t) = TrA[ρA(t)OA].

In principle, the evolution ρA(t) is completely governed by the evolution of ρ(t), which

in the interaction picture is obtained by solving the Liouville equation

∂ρ

∂t
= −i

[

HAB , ρ
]

, (2.1)

and so has the familiar perturbative solution

ρ(t) = ρ0 − i

∫ t

0
dτ

[

HAB(τ) , ρ0

]

+ (−i)2
∫ t

0
dτ

∫ τ

0
dτ̃

[

HAB(τ̃) ,
[

HAB(τ) , ρ0

]]

+ · · ·

=

{

T exp

[

−i

∫ t

0
dτ HAB(τ)

]}

ρ0

{

T exp

[

−i

∫ t

0
dτ̃ HAB(τ̃)

]}∗

, (2.2)

where HAB(t) := exp(iH0t)HAB exp(−iH0t) with H0 := HA +HB, T denotes the appropri-

ate time-ordering of the integrals and so on. This explicitly shows the potential problem

with perturbative methods if the integrands do not vanish quickly enough at large times.

In general solving the equation that results for ρA is a mess, particularly at late times.

However relative simplicity can occur if: (i) the system starts in an initially uncorrelated

state, ρ0 = ̺A ⊗ ̺B; and (ii) the autocorrelation function of HAB in sector B vanishes for

large enough times — that is if there exists a tc for which

〈

δHAB(t) δHAB(t
′)
〉

B

→ 0 for t ≫ tc , (2.3)

where δHAB := HAB − 〈HAB〉B and 〈· · · 〉B := TrB[̺B HAB]. The simplicity arises because

the correlations between systems A and B become less and less important for the evolution

3The scattering problems studied in introductory courses on quantum field theory are among the few

cases where this is not an issue because the separation of particle wavepackets turns off the mutual inter-

actions.
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of A over times much longer than tc, allowing an approximate description that effectively

expands in the autocorrelations of HAB.

This mean-field/fluctuation split is most efficiently implemented in terms of the full

evolution operator, U(t) = T exp
[

−i
∫ t
0 dτ HAB(τ)

]

, as follows:

U(t) =: U(t) + U(t) , (2.4)

where U(t) := 〈U(t)〉B = TrB[̺B U(t)], because then the condition 〈 U(t)〉B = 0 ensures the

evolution of ρA(t) nicely splits into a ‘mean’ and ‘fluctuation’ part, with no cross terms:

ρA(t) = TrB[U(t) ρ0 U
∗(t)] = U(t) ̺A U

∗
(t) + TrB[U(t) ρ0 U∗(t)] . (2.5)

The mean Hamiltonian is then defined by U =: T exp
[

−i
∫ t
0 dτ H(τ)

]

, or equivalently

H = i

(

∂U

∂t

)

U
−1

= 〈HAB〉B − i

∫ t

0
dτ

〈

δHAB(t) δHAB(τ)
〉

B

+ · · · , (2.6)

and so on.

For the concrete case of light interacting with a polarizable medium it is U that de-

scribes the coherent evolution (with the second term in (2.6) turning out to be responsible

for the index of refraction), while U describes the incoherent ‘diffuse’ scattering that can

make a medium opaque. (Since both arise at second order in HAB a large-N argument

is required to allow materials to be transparent while still having an index of refraction

not too close to 1.) Similarly it is 〈HAB〉B that describes the medium-dependent interac-

tions responsible for MSW oscillations within the Sun [81, 82], while the terms quadratic

in HAB give the leading deviations [83–87] from the MSW approximation. (For neutrinos

there is no particular utility in distinguishing U from U at second order because of the

comparatively short neutrino wavelength and the very feeble nature of the interactions.)

Master-equation methods

Nothing said so far directly addresses the issue of making late-time predictions using per-

turbative methods. Progress on this is possible if there is a hierarchy between the charac-

teristic times: tc ≪ tp, because when this is true it is possible to define a ‘coarse-grained’

evolution for ρA(t):

DρA

Dt
:=

1

∆t

[

ρA(t+∆t)− ρA(t)
]

=
1

∆t
TrB

[

U(∆t) ρA(t)U
∗
(∆t)

]

+
1

∆t
TrB

[

U(∆t) ρ(t)U∗(∆t)
]

(2.7)

= − i

∆t

∫ t+∆t

t
dτ

[

〈HAB(τ)〉B , ρA(t)
]

+ · · · ,

where the ellipses represent terms at least second-order in HAB.

The assumed hierarchy allows the choice tc ≪ ∆t ≪ tp, which we now make. On

one hand the inequality ∆t ≪ tp ensures the integration over τ does not ruin the validity
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of perturbing in HAB. On the other hand the inequality tc ≪ ∆t means that the right-

hand side of (2.7) can ‘forget’ the correlations between A and B, potentially allowing a

dependence on the instantaneous value of ρ rather than on the entire history of what

happened within the interval (t, t+∆t). If so (2.7) can be written schematically as

DρA

Dt
= F(ρA, ρB) =

∞
∑

k=1

Fk(ρA, ρB) , (2.8)

where F is a calculable function that may be evaluated perturbatively in HAB (with Fk

denoting the contribution at k-th order). Given a specific function F one can read (2.8)

as a differential equation to be solved for ρA (and possibly also ρB if sector B also evolves

in response to A).

Now comes the main point. The requirement ∆t ≪ tp might lead one to think that no

progress has been made on learning the late-time behaviour, but this is incorrect. Solutions

to (2.8) can be trusted even for times t ≫ tp, provided (2.8) itself is valid for a window of

width ∆t around any specific t. Solutions found by integrating remain valid so long as an

overlapping set of windows of width ∆t exist for all the times of interest. The fact that

each window must have a limited width need not pose a problem so long as an overlapping

sequence of such windows can be found between the initial time and the final time of

interest, even if the total range considered, tf − ti, is much greater than tp.

Stochastic inflation within a master equation

What has this to do with cosmology? Ref. [48] shows in some detail how the above formal-

ism applies to the physics of extra-Hubble modes during inflation. (See also [88–93].) In

this case sector A is taken to be the set of field modes satisfying k/a ≪ H with the rest of

the modes making up sector B. Within a semiclassical calculation write a quantum field,

Φ, as Φ = ϕ+ φ where ϕ is the classical background and φ the quantum fluctuation, and

define HA and HB as the terms in H involving only super-Hubble (or only sub-Hubble)

modes. In practice for weakly interacting fields we take both to be quadratic in φ. In

the interaction picture this corresponds to taking the fields φ to evolve according to the

wave operator defined by the background spacetime. HAB contains all parts of H that mix

the long- and short-wavelength modes. The correlation time in this picture is of order the

Hubble time, tc ∼ H−1.

Within this framework the leading evolution of the state of the long-wavelength sector,

ρA, for times t ≫ tc ∼ H−1 is given by an equation of the form of (2.8) where all of the

interactions HAB are dropped. Consequently ρA does not evolve at all in the interaction

picture or, equivalently, in the Schrödinger picture ρA evolves with a ‘free’ Liouville equation

that sees only the interactions with the classical background. The functional Schrödinger

equation as applied to the diagonal elements, P [ϕ] = 〈ϕ|ρA|ϕ〉, of the density matrix

(in a field basis in coarse-grained position space) becomes the Fokker-Planck equation of

stochastic inflation [12, 13]. For the present purposes what is important is that its solutions

can reliably capture the late-time behaviour of extra-Hubble modes precisely because it can

be derived as the leading approximation to a master equation analysis (which, after all, is

designed precisely for this purpose).

– 7 –
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There is also a bonus. Because the neglect ofHAB means the system is basically free the

off-diagonal components, 〈ϕ|ρA|ϕ̃〉, do what they must for ρA to remain a pure state. This

is no longer true once one works to quadratic order in HAB, however, and [48] argues that

these instead get driven to zero with time (with the ‘pointer’ basis very generally chosen as

the field basis by the extra-Hubble squeezing of states). For a broad class of systems the

dimensional estimate given in [48] indicates that this decohering of long-wavelength modes

happens quickly enough that 50-60 e-foldings are likely ample for its completion.

2.2 Evidence for stochastic resummation

So much for generalities. If a stochastic formulation captures the late-time limit of the

master equation for fluctuations in inflationary cosmology, how does this help in practice

with the IR secular effects encountered [9–11] when making precise inflationary predictions?

In the stochastic picture correlation functions are computed using the probability dis-

tribution, P (ϕ, t), whose time evolution is predicted using the appropriate Fokker-Planck

equation. If late-time solutions of this equation are to capture the results of slowly accu-

mulating IR secular effects, then it should be true that the rate of change of correlators

predicted from the Fokker-Planck equation agree with the evolution found for these corre-

lators using standard techniques of quantum field theory on curved space, at least for the

IR singular part.

Ref. [77] tests this proposal in some detail for the specific case4 of a massless spectator

scalar field in de Sitter, self-interacting through a potential V = 1
4! λφ

4. They do so by

isolating the IR singular, time-dependent part of scalar-field correlators on de Sitter space

and computing their rate of change with time. Following [12, 13] they argue the IR fields

behave like stochastic variables and show that their evolution is governed by a probability

density, P (ϕ, t), that satisfies the appropriate Fokker-Planck equation:5

∂tP =
H3

8π2

(

∂2P

∂ϕ2

)

+
1

3H

∂

∂ϕ

(

∂V

∂ϕ
P

)

, (2.9)

with V (ϕ) = 1
4! λϕ

4. Since the evolution equation for the IR part of the field agrees over a

long time period with the Fokker-Planck equation, it shows that the late-time implications

of the IR secular evolution can be obtainable from the Fokker-Planck equation’s late-time

(i.e. static) solutions. For instance, on the stochastic side the predicted evolution for 〈φ2n〉
in ref. [77] is (up to an overall — potentially IR divergent — additive constant)

〈φ2n〉stoch = (2n− 1)!!

(

H2

4π2
ln a

)n [

1− n(n+ 1)

2

(

λ

36π2
ln2 a

)

(2.10)

+
n

280
(35n3 + 170n2 + 225n+ 74)

(

λ

36π2
ln2 a

)2

+ · · ·
]

,

where a = eHt is the inflationary scale factor, whose presence flags the secular evolution of

〈φ2n〉 and the eventual breakdown of the λ expansion at late times. This agrees with the

IR part of the same quantity computed using quantum field theory on de Sitter space.

4Ref. [77] also explores examples involving scalars self-interacting through derivative couplings.
5We argue for corrections to this equation in later sections.
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This example shows the virtue of the stochastic formulation. Although the logarithms

of a imply predictions like (2.10) must break down for moderately large t, the same is not

true for (2.9) which can be used to predict the late time-limit, P(ϕ) = limt→∞ P (ϕ, t),

usually taken to be the time-independent solutions,

P = C exp

(

−8π2V

3H4

)

= C exp

(

−π2λϕ4

9H4

)

, (2.11)

where C is a ϕ-independent normalization. This shows how the statistics of fluctuations at

very late times can be very non-gaussian despite the assumption that fluctuations for each

mode are individually gaussian as they pass through horizon exit. The secular evolution

is the theory’s way of telling us this is possible: small secular perturbations accumulating

over long times can build up to produce large effects.

3 The future is stochastic

We now explore some of the previous section’s implications; in particular of the conclu-

sion that late-time evolution of P (ϕ, t) = 〈ϕ|ρ(t)|ϕ〉 is governed by stochastic evolution,

dominated by instantaneously gaussian vacuum fluctuations as each mode passes through

horizon exit.

3.1 Implications of near-gaussian horizon-exit

The assumption that modes are gaussian at horizon exit (as would be driven by the Bunch-

Davies vacuum [94–96] of a weakly interacting quantum field) is a strong one since the

stochastic evolution is then determined by the evolution of the mean and variance.

In general the Fokker-Planck equation for the probability P (ϕ, t) of a gaussian system

has the form

∂P

∂t
=

∂

∂ϕ

{

N (ϕ, t)
∂P

∂ϕ
+K(ϕ, t)P

}

=
∂

∂ϕ

{

∂

∂ϕ

[

N (ϕ, t)P
]

+ F(ϕ, t)P

}

, (3.1)

whose coefficients N (ϕ, t) and K(ϕ, t) are in general functions of ϕ and time. The last

equality defines for later convenience the ‘force’ F := K− ∂N/∂ϕ. At least one derivative

must stand on the far left of the right-hand side of (3.1) to ensure the normalization of P

is preserved in time.

The functions N (ϕ, t) and F(ϕ, t) determine the time-evolution of the mean and vari-

ance. For instance, an integration by parts shows

∂t〈φ〉 =
∫

dϕ ϕ
∂

∂ϕ

[

∂

∂ϕ

(

N P
)

+ F P

]

= −〈F(φ)〉 , (3.2)

and similarly

∂t〈φ2〉 =
∫

dϕ ϕ2 ∂

∂ϕ

[

∂

∂ϕ

(

N P
)

+ F P

]

= 2〈N (φ)− φF(φ)〉 . (3.3)

The evolution of the variance is therefore given by

∂t

(

〈φ2〉 − 〈φ〉2
)

= 2〈N (φ)〉 − 2
[

〈φF(φ)〉 − 〈φ〉 〈F(φ)〉
]

, (3.4)
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and so receives contributions both from the ‘noise’ N and the fluctuations of the ‘work’

done by the force F .

In principle N and F can be computed given the wave-functional — in de Sitter space

the Bunch-Davies vacuum, for example — describing the state of each mode. However when

this is done explicit calculations (see appendix B and [48]) give coefficients, N = N (t) and

F = F(t), that are functions of time only. This is not so useful for forecasting late-time

evolution because these functions of time are themselves only known perturbatively, and

so are plagued by secularly growing terms.

More useful is if N and F are directly related to ϕ, if this can be done in a way that

holds instantaneously for all t, because then the Fokker-Planck equation integrates to give

nontrivial information about the late-time evolution. In general this is not possible, since

∂t〈φ〉 is usually not uniquely determined by 〈φ〉. It can be possible in certain circumstances,

however, and when this is possible the direct connection between ∂t〈φ〉 and 〈φ〉 allows F
and N to be determined as functions of ϕ.

An important example of this type is slow roll, for which the long-wavelength modes

of a quasi-free field satisfy

0 = ∂2
t 〈φ〉+ 3H∂t〈φ〉+m2〈φ〉 ≈ 3H∂t〈φ〉+m2〈φ〉 , (3.5)

where the approximate equality neglects ∂2
t 〈φ〉 relative to H∂t〈φ〉. Comparing with (3.2)

gives the usual result

F(ϕ) ≈
(

m2

3H

)

ϕ , (3.6)

(some corrections to which are described below). The Starobinsky result of the previous

section corresponds to assuming the noise is dominated by its massless limit, so N =

H3/8π2, and generalizing (3.6) to the case where the force is a slowly varying function of

〈φ〉, given in terms of the scalar potential, V , by F(ϕ) = V ′(ϕ)/3H.

But the generality of the argument is not restricted to these choices, and later sections

explore how they can differ for a few other cosmological scenarios. Before doing so we

first digress to give the general forecast for the late-time distribution, limt→∞ P (ϕ, t), as a

function of the coefficients N (ϕ) and F(ϕ).

Late-time limit for P

The time evolution of the Fokker-Planck equation generally describes a slow relaxation

towards a static solution, limt→∞ P (ϕ, t) = P(ϕ), so it is the static solutions that are of

most interest at late times. As the previous section makes clear, this late-time form need

not remain gaussian due to the accumulation over long times of locally small effects, and

expresses the late-time forecast implied by IR secular effects.

The expression for P(ϕ) can be found explicitly by integrating the Fokker-Planck

equation when N and F are functions of ϕ only. Demanding ∂tP = 0 gives

∂

∂ϕ

{

∂

∂ϕ

[

N (ϕ)P
]

+ F(ϕ)P
}

= 0 , (3.7)

– 10 –



J
H
E
P
0
1
(
2
0
1
6
)
1
5
3

whose general solution is

P(ϕ) =

[

k1ϕ+ k2
N (ϕ)

]

exp

[

−
∫

dϕ
F(ϕ)

N (ϕ)

]

, (3.8)

where k1 and k2 are integration constants. In the special case where N = H3/8π2 is

ϕ-independent and F = V ′/3H this reduces to

P → 8π2

H3
(k1ϕ+ k2) exp

(

−8π2V

3H4

)

, (3.9)

agreeing with the standard Starobinsky result (for which k1 = 0 is usually chosen and k2
is fixed by normalization). Notice that a prerequisite for P(ϕ) to be an IR safe quantity is

that both N and F must also be IR safe.

3.2 Masses, sound speeds, and non-de Sitter expansion

We next explore these arguments in more detail by extending eq. (2.9) away from de

Sitter space, in a simple enough way to allow explicit exact solutions but also compli-

cated enough to illustrate the connection between IR divergences and secular behaviour

while keeping the calculations relatively simple. To avoid single-field no-go arguments we

work within a multiple-field framework, but for simplicity restrict ourselves initially to the

case where any additional scalars are spectators inasmuch as they play no direct role in

the rate of inflationary expansion. In this section we assume a spectator scalar mass for

which m2/H2 is time-independent, and return in the next section to the broader exten-

sion to self-interactions and field-dependent masses. We adjust the following three dials in

what follows:6

1. Power-law evolution.

We consider power-law inflating spacetimes,

a(t) = a0

(

t

t0

)p

(3.10)

for constant p > 1. Unlike near de Sitter spacetimes the Hubble and first slow-roll param-

eters depend on time as

H(t) =
p

t
= H0

(a0
a

)ǫ
where ǫ := − Ḣ

H2
=

1

p
, (3.11)

and so H varies with time while ǫ is constant. We demand p > 1 to ensure the spacetime

expansion accelerates (so that modes exit the Hubble scale as usual as time evolves). The

geometry reduces to the exponential expansion of de Sitter space in the limit p → ∞ with

H0 = p/t0 fixed, though we do not necessarily require p ≫ 1 in much of what follows.

6A fourth dial — the possibility the scalar has a non-standard dispersion relation, such as in ghost

inflation [99] — is explored in appendix C.
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2. Nonzero masses.

We track the stochastic description of vacuum fluctuations for a free spectator scalar field

with small nonzero mass, and unlike for (2.9) we seek explicit expressions for how both

the noise and drift vary with nonzero m. We allow m2 to be time-dependent but (for

simplicity) to do so in such a way that m2/H2 ≪ 1 is time-independent. We return below

to a discussion of some implications of weak interactions, including the possibility of having

a field-dependent mass.7

3. Varying sound speed.

Finally, we track the implications of a small time-dependent speed of sound parameter-

ized by

cs = c0 (a/a0)
s , (3.12)

with constant s and c0 ≪ 1 chosen so that cs remains smaller than unity for the entire time

interval of interest. Cosmological models with varying sound speed like this are studied,

for example, in [97, 98].

Quantum fluctuations

The first step is to compute how vacuum fluctuations cause the mean and variance to vary

during horizon exit. As discussed above this leads to predictions for N (t) and F(t) that

are functions of t rather than ϕ, whose explicit form — for nearly free fields and the above

assumptions concerning cs and a(t) — can be computed as easily as for de Sitter space.

The solutions are found by constructing explicitly the vacuum wave-functional (in

Schrödinger picture), with results summarized here (details of this calculation alattre given

in appendix B, with generalizations to other dispersion relations given in appendix C). This

in turn can be computed from scalar-field mode functions satisfying the Klein-Gordon

equation in the spacetime of interest. For a spatially flat FRW metric,

ds2 = −dt2 + a2(t) d~x · d~x , (3.13)

the modes, uk(t) e
i~k·~x, are labelled by co-moving momentum, ~k, and satisfy

ük + 3Hu̇k +

[

(

csk

a

)2

+m2

]

uk = 0 , (3.14)

with dots denoting derivatives with respect to t. The solutions, uk, determine the kernels,

αk and βk, appearing in the corresponding ground-state wavefunctional for the scalar field,

given (in the Schrödinger picture) by Ψ =
∏

k Ψk with

Ψk[ϕk] = Ck exp
[

−a3 (αk ϕkϕ−k + βk ϕk)
]

. (3.15)

Explicitly, the functional Schrödinger equation relates αk and βk to the knobs we are

free to dial: our constant choices for m2/H2, s and ǫ — with the latter two arising in the

7Masses could be time-dependent without depending on the field φ itself due to couplings with other

fields (such as the inflaton) which we do not consider here.
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choices (3.11) and (3.12). As shown in appendix B, the relationship between these variables

is given in terms of the mode functions by

αk = −i

(

u̇k
uk

)

, (3.16)

and

βk = β̄0 δk0

(

a0
a(t)

)3

exp

[

−i

∫ t

0
dτ α0(τ)

]

= β̄0 δk0

(

a0
a(t)

)3 u0(0)

u0(t)
, (3.17)

where β̄0 = β0(t = 0) is an integration constant that turns out to be fixed by the initial

value of the expectation value of the field, 〈φ〉(t = 0). For nonzero ~k the mode function

that properly extrapolates from the adiabatic vacuum in the limit csk/aH ≫ 1 turns out

to be

uk(t) = Ck y
q(a, k)H(2)

ν [y(a, k)] , (3.18)

with independent variable, y, given in terms of a and k by

y(a, k) :=
1

(1− s− ǫ)

(

cs k

aH

)

=
1

(1− s− ǫ)

(

c0 k

a0H0

)

(a0
a

)1−s−ǫ
, (3.19)

and the power q given by

q =
3− ǫ

2 (1− s− ǫ)
. (3.20)

Here H
(2)
ν (y) is the Hankel function of the second kind, of order

ν2 =
1

(1− s− ǫ)2

[

(3− ǫ)2

4
− m2

H2

]

= q2
[

1− 4m2

(3− ǫ)2H2

]

, (3.21)

Notice that these expressions reduce to the standard ones for a massive field on de Sitter

space (constant H) when both ǫ → 0 and s → 0.

Evolution of the mean

To compute the noise and drift (and to explore the connection between IR singularities

and secular late-time evolution) we first require expressions for the rate of change of the

mean and variance of the quantum field, in position space and coarse-grained over an

extra-Hubble volume,

φS(~r, t) =

∫

d3k

(2π)3
S [y(k)] φk e

i~k·~r , (3.22)

where S is the window function that coarse-grains over sub-Hubble modes. The details of

S are not important in most of what follows, with the main results relying only on the

limiting properties

S (y) → 1 for y ≪ 1 and S (y) → 0 for y ≫ 1 . (3.23)
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Since the quantum state is gaussian all fluctuations in can be computed explicitly as

functions of the known quantities αk and βk (see appendix B for details). The mean of the

field is8

〈φS〉 = 〈φ〉 = β0 + β∗
0

2 (α0 + α∗
0)

, (3.24)

and so its time evolution is given by the equations of motion for α0 and β0 as

∂t 〈φS〉 = ∂t 〈φ〉 = i

(

α0β
∗
0 − β0α

∗
0

α0 + α∗
0

)

, (3.25)

which uses translation invariance and the limit S → 1 as k → 0. This expresses the

standard relation between ∂t〈φ〉 and the canonical momentum, 〈Π〉 = a3∂t 〈φ〉.
Differentiating once more leads to Ehrenfest’s theorem for this system,

∂2
t 〈φS〉+ 3H∂t〈φS〉+m2〈φS〉 = 0 , (3.26)

stating that the mean satisfies the classical equations of motion. This has simple power-law

solutions, 〈φS〉 ∝ (a0/a)
r± with

r± =
3− ǫ

2

[

1±
√

1− 4m2

(3− ǫ)2H2

]

= (q ± ν)(1− s− ǫ) , (3.27)

which for small mass becomes

r+ ≃ 3− ǫ and r− ≃ m2

(3− ǫ)H2
. (3.28)

Of these r− describes the more slowly decaying9 solution (when 0 ≤ m2 ≪ H2) that

typically dominates at late times. Notice that when it does ∂t〈φS〉 is directly related to

〈φS〉 by the slow-roll condition

∂t〈φS〉 = −r−H〈φS〉 =
[

− m2

(3− ǫ)H
+ · · ·

]

〈φS〉 , (3.29)

which reduces to the approximate equality of (3.5) only to lowest order in m2/H2.

Evolution of the variance

For each mode the variance about the mean similarly is

〈φkφ
∗

k〉 =
1

a3
(

αk + α∗

k

) = |uk|2 , (3.30)

so the coarse-grained position-space two-point function becomes

〈

(φS − 〈φS〉)2
〉

=

∫

d3k

(2π)3
|uk S|2 . (3.31)

8We assume translation-invariant backgrounds for which only the k = 0 mode contributes to 〈φS〉 = 〈φ〉.
9This solution must become static as m2 → 0 because it must cross over to slowly grow once m2 < 0,

reflecting the tachyonic instability.
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Its rate of change then evaluates (see appendix B) to

∂t
〈

(φS − 〈φS〉)2
〉

= H(1− s− ǫ)

[

1

2π2
lim
k→0

(

k3|uk|2
)

+ (3− 2q)

∫

d3k

(2π)3
|uk S|2

]

= (1− s− ǫ)
H

2π2
lim
k→0

(

k3|uk|2
)

(3.32)

−(3s+ 2ǫ)H
〈

(φS − 〈φS〉)2
〉

.

What is important about (3.33) is that it holds regardless of the details of the mode

functions, uk, since it relies only on the property that the variables a and k appear in

k2q|ukS|2 exclusively through the combination y(a, k). This implies that the time-evolution

of the variance for a wide variety of states can be found by regarding (3.33) as a differential

equation for the quantity Y (t) := 〈(φS − 〈φS〉)2〉 and integrating.

Appendix B shows the general solution (for constant s, ǫ and m2/H2) is given by

Y (a) =

{

c30Y0
H2

0

− K(ν)

(3− 2ν)(1− s− ǫ)

[

(a0
a

)(3−2ν)(1−s−ǫ)
− 1

]}

H2(a)

c3s(a)
(3.33)

=

[

Y0 +
K(ν)H2

0/c
3
0

(3− 2ν)(1− s− ǫ)

]

(a0
a

)2ǫ+3s
− K(ν)H2

0/c
3
0

(3− 2ν)(1− s− ǫ)

(a0
a

)2(q−ν)(1−s−ǫ)
,

where Y0 = Y (t = t0) denotes the initial variance and

K(ν) :=
|2νΓ(ν)(1− s− ǫ)ν |2

(2π)3
lim
µ→0

(

µc0
a0H0

)3−2ν

, (3.34)

comes from evaluating k3|uk|2 using the specific choice for uk given in eq. (3.18).

The second of eqs. (3.33) shows that Y (a) generically decays with time because the

two powers are non-negative for 0 ≤ s, ǫ < 1 and 0 ≤ m2 ≤ (3− ǫ)2H2/4, with

2(q − ν)(1− s− ǫ) = (3− ǫ)

[

1−
√

1− 4m2

(3− ǫ)2H2

]

≈ 2m2

(3− ǫ)H2
+ · · · , (3.35)

while Y asymptotes to a constant in the special case of a massless field. The first of

eqs. (3.33) is the more useful when taking the ν → 3
2 limit, giving

Y (a) →
[

c30Y0
H2

0

+K3/2 ln

(

a

a0

)]

H2(a)

c3s(a)
(if ν → 3

2) , (3.36)

where

K3/2 := K(ν → 3/2) =
(1− s− ǫ)3

(2π)2
. (3.37)

This agrees with standard results for massless fields in de Sitter space in the limit ǫ → 0

(such as the leading term in eq. (2.10) if cs = n = 1 and Y0 is also chosen to vanish), in

which case ln(a/a0) → H0(t− t0) shows the usual linear growth with t.

The above also illustrates the connection between uncontrolled secular growth and IR

singularities, as follows. On one hand eq. (3.34) shows that K(ν) diverges in the IR (as
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µ → 0) if and only if ν > 3
2 . On the other hand (3.33) shows (for the parameter range

of interest) that Y (a) also grows without bound relative to the natural benchmark H2/c3s
if and only if ν > 3

2 . Because H2/c3s generically falls as a grows this relative growth of

c3sY/H
2 at best ensures Y remains constant in time, such as in the massless limit for which

ν → q and (3.33) reduces to

Y (a) →
[

c30Y0
H2

0

− KIR

2ǫ+ 3s

]

H2(a)

c3s(a)
+

KIRH
2
0/c

3
0

2ǫ+ 3s
(if m2 → 0) , (3.38)

where

KIR := K(m2 → 0) =
|2qΓ(q)(1− s− ǫ)q|2

(2π)3
lim
µ→0

(

µc0
a0H0

)3−2q

(3.39)

is singular as µ → 0 for small s and ǫ since q > 3
2 . Notice that this singularity would

appear as a logarithmic IR divergence

KIR = K3/2

{

1 + (3− 2q)

[

lim
µ→0

ln

(

c0µ

a0H0

)

+ finite

]

+O
[

(3− 2q)2
]

}

, (3.40)

in an expansion about de Sitter space.

Noise & drift

We next return to the Fokker-Planck equation and use these results to read off the noise

and drift functions, N (ϕ) and F(ϕ), and what is remarkable is that these always remain

IR finite even when the variance diverges. To see how this works we demand N and F
in eqs. (3.2) and (3.4) reproduce the above expressions for the variation of the mean and

variance computed from the Schrödinger-picture wave-functional.

Since the wave-functional gives results directly as functions of time only, it is tempting

(but not that useful) to seek F = F(t) and N = N (t) that also depend only on time, in

which case we would find

F(t) = −∂t 〈φS〉 = −i

(

α0β
∗
0 − β0α

∗
0

α0 + α∗
0

)

, (3.41)

and

N (t) =
1

2
∂t

〈

(φS − 〈φS〉)2
〉

= (1− s− ǫ)
H

4π2
lim
k→0

(

k3|uk|2
)

− H

2
(3s+ 2ǫ)

∫

d3k

(2π)3
|uk S|2 . (3.42)

These are not that useful because to know them as functions of t requires already knowing

the late-time behaviour, so they do not add new capabilities to resum secular evolution.

Nor do F(t) and N (t) have better IR behaviour than does the rate of change of the

mean and the variance. In particular, to uncover the IR behaviour we use uk ∝ k−ν to see

that k3|uk|2 → Akw for small k, with power

w = 3− 2ν = (3− 2q) + 2(q − ν)

= − 3s+ 2ǫ

1− s− ǫ
+

3− ǫ

1− s− ǫ

[

1−
√

1− 4m2/H2

(3− ǫ)2

]

≈ − 3s+ 2ǫ

1− s− ǫ
+

2m2/H2

(3− ǫ)(1− s− ǫ)
+O(m4/H4) , (3.43)
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that can be nonpositive in the regime 0 ≤ m2/H2 ≤ 3s+2ǫ. Consequently the contribution

from k → 0 to the right-hand side of (3.42) becomes

NIR =
AH

4π2
lim
k→0

[

(1− s− ǫ)kw − (3s+ 2ǫ)

∫

k
duuw−1

]

= (1− s− ǫ)
AH

4π2
lim
k→0

[

kw +
1

w
(2q − 3)kw

]

+ (finite)

= (1− s− ǫ)

(

ν − q

2ν − 3

)

AH

2π2
lim
k→0

kw + (finite) (3.44)

and so diverges if w ≤ 0 and m2 6= 0.

ϕ-dependence and IR Finiteness

Following the general discussion of the earlier sections, we expect these IR singularities to

be better described in situations where F and N are computed as functions of ϕ rather

than t, since in this case the late-t limit can be found by integrating the FP equation rather

than through direct calculation in an expansion about free fields. We now show that the

noise also becomes IR finite when this is done.

Having N = N (ϕ) and F = F(ϕ) is in general not possible since it requires the rate of

change of the mean and variance to be dictated purely by an instantaneous average over ϕ.

They can be so related in the special case of slow evolution, however, since in the slow-roll

regime eq. (3.29) holds, implying

∂t〈φS〉 ≃ (ν − q)(1− s− ǫ)H〈φS〉 ≃
[

− m2

(3− ǫ)H
+ · · ·

]

〈φS〉 , (3.45)

which generalizes the usual de Sitter slow-roll relation. We emphasize that because φ is

a spectator field (and not the inflaton) this slow-roll condition need not also require the

metric rolls equally slowly — i.e. ǫ can be much larger than m2/H2.

Comparing (3.45) with (3.2) — and using that F(ϕ) is linear in ϕ for gaussian systems

— gives the generalization of the usual Starobinsky result

F(ϕ) = (q − ν)(1− s− ǫ)Hϕ ≃
[

m2

(3− ǫ)H
+ · · ·

]

ϕ , (3.46)

Using this in (3.4) and comparing with (3.33) then gives

N = (1− s− ǫ)
H

4π2
lim
k→0

(

k3|uk|2
)

+H

[

(q − ν)(1− s− ǫ)− 3s+ 2ǫ

2

]

〈

(φS − 〈φS〉)2
〉

= (1− s− ǫ)
H

4π2

{

lim
k→0

(

k3|uk|2
)

+
[

2(q − ν)− (2q − 3)
]

∫

∞

0
dk k2 |uk S|2

}

,

= (1− s− ǫ)
H

4π2

{

lim
k→0

(

k3|uk|2
)

− (2ν − 3)

∫

∞

0
dk k2 |uk S|2

}

, (3.47)

where for gaussian systems we take N to be ϕ-independent and so identify N = 〈N〉.
Notice that the term proportional to (ν − q) comes from the fluctuation of the drift force,

and is precisely what is required to make the result for N IR finite (as also found in [48]).

– 17 –



J
H
E
P
0
1
(
2
0
1
6
)
1
5
3

Notice that, in general, the noise depends on the window function used to build our coarse-

grained variable. See also [100, 101] for recent studies of stochastic inflation in set-ups

with departures from a pure de Sitter geometry, and [102] for a recent paper discussing

stochastic corrections to inflationary observables.

For numerical purposes it is useful to express uk in terms of Hankel functions and make

the cancellation of IR divergences more explicit by adding and subtracting the appropriate

multiple of ∂y
[

y3−2ν |S|2
]

to the integrand to get

N =
H3

8π2c3s
RS(ν) , (3.48)

where

RS(ν) :=
π

2

∫

∞

0
dy

{

(3− 2ν)

[

y2
∣

∣

∣
H(2)

ν (y)
∣

∣

∣

2
− |C(ν)|2y2−2ν

]

|S|2 (3.49)

−|C(ν)|2y3−2ν∂y|S|2
}

,

with C(ν) := i2νΓ(ν)/π the coefficient arising in the asymptotic expansion H(2)(y) ≃
C(ν)y−ν for small y. The virtue of this expression is its manifest convergence as y → 0.

This is ensured by the cancellation of the leading small-y behaviour between the terms

within the square bracket, while the last term is finite because ∂y|S|2 has support only

within a region near y = 1. Convergence at y → ∞ is ensured by the falloff |S|2 → 0.

Eq. (3.48) also emphasizes how N depends on s, ǫ and m2/H2 only through ν and

direct evaluation shows that RS(ν = 3/2) = 1 in agreement with the standard result when

m2 = s = ǫ = 0. Expanding about ν = 3
2 gives the following leading dependence of N on

the parameters s, ǫ and m2/H2.

RS ≃ 1 + (3− 2ν)

∫

∞

0
dy

[

y +
(

ψ(3/2) + ln
y

2

)

∂y

]

|S|2 +O
[

(3− 2ν)2
]

, (3.50)

with ψ(ν) := ∂ν ln Γ(ν) and

3− 2ν =
1

1− s− ǫ

[

−3s− 2ǫ+ (3− ǫ)

(

1−
√

1− 4m2/H2

(3− ǫ)2

)]

≃ 1

1− s− ǫ

[

−3s− 2ǫ+
2m2

(3− ǫ)H2
+O

(

m4/H4
)

]

. (3.51)

For the special case where |S|2 = Θ(1− y) is a step function the integral evaluates to give

RS ≃ 1 +
[

9
2 + 3 ln 2 + γ

]

(3 − 2ν) ≃ 1 + 7.157(3 − 2ν), where γ = −ψ(1) = 0.5772 . . . is

the Euler-Mascheroni constant, showing how positive m2 acts to increase the noise while

positive s and ǫ decrease it.

3.3 Late-time limit

Using expressions (3.46) and (3.48) for F and N the late-time form, (3.8), for the proba-

bility distribution, P, obtained from the Fokker-Planck equation finally gives

P(ϕ) =

[

k2
N (ν)

]

exp

[

− 1

N (ν)

∫

dϕ F(ϕ)

]

=

√

α

2πH2
exp

[

−α(ν)

2

( ϕ

H

)2
]

, (3.52)
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with

α(ν) :=
(q − ν)(1− s− ǫ)H3

N (ν)
=

8π2c3s (q − ν)(1− s− ǫ)

RS(ν)
. (3.53)

where we take k1 = 0 and choose k2 to normalize the result over the interval (−∞,∞).

This computes the IR-finite corrections to the late-time distributions that arise for free

scalar fields as functions of s, ǫ and m2/H2 ≪ 1. These are seen to preserve the gaussian

nature of the fluctuations but modify their variance. The exception to this statement is

the case m = 0 for which ν = q and so P(ϕ) becomes uniform for all s and ǫ.

In particular, these allow an expression to be derived for the late-time expectation of

the extra-Hubble part of the energy density and so to assess whether or not the secular

accumulation of IR effects during inflation gives rise to a large gravitational back-reaction.

This is most easily done by switching briefly to Heisenberg representation, for which the

slow-roll condition holds as an operator statement: φ̇S ≃ (ν − q)(1 − s − ǫ)HφS . In

this case the late-time expectation is 〈φ̇2
S
〉∞ ≃ (ν − q)2(1 − s − ǫ)2H2〈φ2

S
〉∞, where the

above derivation shows that the late-time two-point function resums to the following IR-

finite value,

〈φ2
S〉∞ =

∫

∞

−∞

dϕ ϕ2P(ϕ) =
H2

α(ν)
. (3.54)

Combining these, the late-time expectation of the extra-Hubble part of the energy

density becomes

1

2

〈

φ̇2
S +m2φ2

S

〉

∞

=
H4

16π2c3s

[

(q − ν)(1− s− ǫ) +
m2/H2

(q − ν)(1− s− ǫ)

]

RS(ν)

=
H4

16π2c3s
(3− ǫ)RS(ν) , (3.55)

which uses m2/H2 = (1− s− ǫ)2(q2− ν2). Among other things this shows that the secular

accumulation of IR effects during inflation does not give rise to a large gravitational back-

reaction, at least in this instance.

3.4 Comparison with other techniques

We next compare the above results with several existing calculations: the large-N limit of

N self-interacting scalar fields and the dynamical renormalization group (DRG).

Comparison with λφ4 at large N

We wish to use our results to probe a limit of interacting scalar fields in order to test

their success by comparison with other calculations. One such an application is to N

self-interacting canonical scalar fields, Φ, coupled through a scalar potential

V =
λ

4!
(Φ · Φ)2 , (3.56)

in the limit λ → 0 and N → ∞ with g = λN held fixed. (See also [103] for inflationary

calculations for the large-N model.) As summarized in appendix D at leading order in the
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1/N expansion this is described by N free scalar fields with mass

m2
φ

H2
=

√
g

4π
, (3.57)

and because this is both time-independent and small its late-time limit can be described

by the results found above.

In particular, the late-time probability distribution is IR safe and given by (3.52) with

α(ν) = 4π2c3s(3− ǫ)RS(ν)

[

1−
√

1−
√
g

π(3− ǫ)2

]

≃ 2π
√
g c3s

3− ǫ
RS(ν) , (3.58)

and (ν/q)2 = 1−√
g/[π(3− ǫ)2]. Notice that although this expression relies on the neglect

of 1/N it does not also require dropping subdominant powers of
√
g. Furthermore, it is

clearly nonperturbative in g, as might be expected for resummed contributions.

N = 1 and the Hartree approximation

These same arguments do not straightforwardly also apply in the case of λφ4 with N = 1.

This is because large N is important when arguing that the dynamics is well-described by

free fields with dynamically generated mass. The same logic applied when N = 1 goes

under the name of the Hartree approximation, and we see that if it were valid it would

imply a late-time gaussian distribution along the lines argued above.

But this differs sharply from standard arguments which, as described above, instead

indicate a very nongaussian distribution of the form given in (2.11), and the direct com-

parison of how n-point functions evolve in [77] strongly suggest that the predictions of the

Hartree approximation simply gives the wrong result.

In order to handle this case we must broaden the scope of the formalism derived

here to include the case when parameters like m2 are themselves functions of background

quantities, m2 = m2(ϕ̄), and so can evolve adiabatically over time if ϕ̄ = ϕ̄(t). In this

case the vacuum probability, P(ϕ), that is nominally time-independent can acquire a slow

secular drift: P = P(ϕ̄, ϕ).

When this is true the corresponding noise and drift parameters also inherit this back-

ground dependence, with for instance F = F(ϕ̄, ϕ) and so on. Should horizon exit be

gaussian the dependence of N and F on ϕ̄ is given by the above expressions with q and

ν regarded as functions of the instantaneous values of m2(ϕ̄) etc., with gaussian exit in

particular implying N = N (ϕ̄) is locally independent of ϕ and F = (q − ν)(1 − s − ǫ)ϕ

linear in ϕ.

But ϕ and ϕ̄ are really just background and fluctuating components for a single field,

Φ = ϕ̄+ϕ, and so functions like F are really functions only of a single variable F = F(Φ)

and not two separate quantities. The full function is determined from the above gaussian

description by expanding about Φ = ϕ̄ and so F(ϕ̄+ ϕ) ≃ F ′(ϕ̄)ϕ. Using m2(ϕ̄) = V ′′(ϕ̄)

we identify

F(Φ) =

∫ Φ

dϕ̄ (q − ν)(1− s− ǫ)H ≃
∫ Φ

dϕ̄

{

V ′′(ϕ̄)

(3− ǫ)H
+ · · ·

}

. (3.59)

Notice this agrees with the usual result F = V ′/3H at leading order, as it must.
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There are also corrections to the standard expression involving powers of ǫ and V ′′/H2.

For example in the simplest case with cs, ǫ and H independent of ϕ̄ and V (ϕ̄) = 1
4! λϕ̄

4

the integral can be performed explicitly,

F(Φ) =

(

3− ǫ

2

)

H

∫ Φ

0
dϕ̄

[

1−
√

1− 2λϕ̄2

(3− ǫ)2H2

]

=

(

3− ǫ

4

)

HΦ

{

2−
√

1− 2λΦ2

(3− ǫ)2H2
− (3− ǫ)H√

2λ Φ
arcsin

[ √
2λ Φ

(3− ǫ)H

]}

(3.60)

=
λΦ3

6(3− ǫ)H
− λ2Φ5

20(3− ǫ)3H3
+ · · · ,

where we choose the integration constant so that F(0) = 0. When used in (3.8) — together

with the analogous expression for N — this formula modifies the late-time prediction for

P(ϕ) in a calculable (and IR safe) way. The subleading terms in (3.60) also modify formulae

such as (2.10) at subleading order in λ, allowing them to be tested by precision higher-order

calculations of n-point functions within the IR part of the field theory.10

Comparison with the dynamical RG

A closely related proposal for resumming late-time secular evolution [104] (see

also [105–109]) is the dynamical renormalization group (DRG) [110–114]. It is related

because the essence of the resummation argument is in both cases a reliance on the exis-

tence of a broader domain of validity for the evolution equation of a quantity than on the

perturbative steps that lead to its derivation. Consequently it is useful to compare how

these procedures compare with one another in detail.

One case where such a comparison is possible is the large-N limit of λφ4 theory con-

sidered above. Ref. [104] shows that the resummation of the secular effects is in this case

equivalent to a dynamical shift of the scalar mass, and indeed this comparison was made in

order to test the DRG arguments against inferences drawn using the well controlled large-

N expansion. Given the above discussion of the large-N case it follows that the DRG and

stochastic methods also agree with one another when applied to this case. It is less clear

whether there is agreement in the case N = 1, largely because in this case it is not known

how broadly the DRG resummation can be regarded as being equivalent to a dynamical

mass shift.

It would be instructive to have more comparisons of this type. However it was partly

a dissatisfaction with our understanding of the systematics of the corrections to the DRG

that led us to continue the search for a better framework, ultimately leading us to the

formalism of Open EFTs [48] used here.

10We do not see that the arguments of [77] exclude the existence of the higher-order corrections in powers

of λ we find above, and so it would be useful to sharpen the comparison to see if their existence can be

tested using other tools.
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4 Discussion

Summary of results

In this paper, building on the results of [48], we apply the tools of open effective field

theory to inflationary cosmology, with the aim to address issues related with infrared

singularities and resummation of secular effects in inflation. Open EFTs allow us to find

a master equation for a coarse-grained quantity built in terms of long-wavelength modes,

that perturbatively accounts for information exchange among long and short modes during

inflation.

To leading approximation the master equation for super-Hubble modes reduces to

Starobinsky’s formulation of stochastic inflation, in the form of a Fokker-Planck equation

characterized by noise and drift functions, although we also find corrections to how these

functions depend on system parameters like particle masses or slow-roll parameters. The

master equation also has subleading contributions that go beyond Stochastic Inflation, such

as those that decohere super-Hubble degrees of freedom due to their interactions with short

wavelength modes.

All evidence so far supports the point of view that these master equation techniques

lead to a consistent resummation of secular effects, and in this paper we test this by

applying these tools to a three-parameter deformation of a massless spectator scalar in de

Sitter space. In particular we compute the evolution and fluctuations of a spectator scalar

of mass m with time dependent sound speed cs, within a power-law inflationary set-up

(with constant slow-roll parameter ǫ). This system is simple enough to be exactly solvable,

but at the same time sufficiently rich to exhibit subtle IR singularities and secular effects

when regarded as a perturbation to a massless field in de Sitter space.

We obtain explicit expressions for the noise and drift functions characterizing the

corresponding Fokker-Planck equation, and compute the corrections to its noise and drift

as functions of the model parametersm/H, ǫ and s = d ln csd ln a. We find these corrections

are just what is required to give IR safe expressions for the noise and drift, and so also

to the late-time probability distribution P(ϕ). This is a first step towards showing the

IR safety of a wide variety of late-time observables. Scalar correlation functions are not

similarly IR safe, but these IR singularities are driven by singularities in the fluctuations

of the drift, rather than in singularities of the noise and drift functions themselves.

We also generalize the Fokker-Planck equation to the case where the scalar mass is

only locally gaussian at horizon crossing, with field dependent mass, and by doing so

we obtain the late-time limit of massless spectator fields that self-interact through a λφ4

interaction. The leading results agree with standard stochastic predictions, but seem to

differ systematically at higher orders in λ.

Future directions

Open EFTs are likely to be useful to understanding the late-time limit for a number of

different kinds of gravitational problems. Among those currently under study are the

following.
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• First, one can generalize our results for the corrections to the noise and drift to a

broader class of models for which in the mass is field dependent. Besides accessing

the λφ4 case one might gain insight as to the late-time behaviour of fluctuations in

moduli or the Higgs field in the very early universe.

• Making contact with observables requires moving beyond the spectator approxima-

tion to compute the scalar fluctuation variable ζ, or, in a general gauge, the Sasaki-

Mukhanov variable [115–118], as well as of any isocurvature fluctuations.

• The generality of stochastic corrections and their ability to resum late-time behaviour

can be tested by applying it to scenarios where explicit calculations are available.

These include situations where other light fields are present during inflation, as elec-

tromagnetic spin one fields, or fermions. There has been some study of stochas-

tic versions of scalar QED, see [119–123], Einstein-Maxwell systems [124, 125] and

the dynamics of minimally coupled fermions interacting with a scalar in de Sitter

space [126–129] to which we hope our ability to systematize the stochastic framework

can bring further insights, and against which predictions can be concretely tested.

• It would be useful to go beyond the IR-finiteness of the late-time distribution function,

P(ϕ), to see if it can lead to something like a Bloch-Nordsieck theorem that can

identify systematically IR safe quantities, and hopefully thereby to identify more

systematically the theoretical errors in cosmological predictions. A bonus would be

to be able efficiently to identify any large (but finite) ‘large logs’ that capture the

residual dependence of cosmological observable on large ratios of scale.

• Finally, as mentioned also in [48], one might explore whether the Open EFT formalism

has something useful to say for the information-loss problem in black hole physics.

The issues arising there are similar to those in cosmology in that one follows only a

subset of degrees of freedom, but there is information exchange between those that

are tracked and those that are not. Furthermore, the oddities that are encountered

occur at late times, and one seeks hidden reasons why EFT methods might fail in

the late-time regime. (See [130] for a discussion of secular effects for black holes.)

All of these issues involve the late-time behaviour of open gravitating systems, and so are

likely to profit from new insights obtained by bringing to gravity tools developed elsewhere

for dealing with late-time issues.
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A Fokker-Planck vs Schrödinger

In general it need not be true that the Schrödinger equation,

iΨ̇ =
(

−κ∇2 + V
)

Ψ , (A.1)

is equivalent to a Fokker-Planck equation,

Ṗ = ∇ ·
(

N ∇P − ~F P
)

, (A.2)

with P = |Ψ|2. Indeed inserting Ψ =
√
P eiS into (A.1) gives the pair of equations

Ṡ =
κ

2
∇2 lnP +

κ

4
(∇ lnP )2 − κ(∇S)2 − V , (A.3)

and

Ṗ = −2κ∇ ·
(

P ∇S
)

, (A.4)

rather than (A.2). Both (A.2) and (A.4) tell us that Ṗ = −∇ · ~J for a probability cur-

rent ~J , as required for P to have a time-independent normalization. Eq. (A.2) therefore

reproduces (A.4) whenever N and ~F can be chosen so that (A.3) is consistent with the

identification

− 2κ∇S = N∇ lnP − ~F . (A.5)

A precise answer can be given for this in the case of a harmonic oscillator (i.e. V =
1
2 k ~x

2) in n dimensions (where ~x is an n-dimensional vector), for the class of states that

are gaussian in ~x. (Notice this includes, but is not restricted to, the ground state, for

which S = −E0 t and lnP = −1
2 α0 ~x

2), for which (A.4) trivially tells us Ṗ = 0 and (A.3)

implies E0 = 1
2 κnα0 and κα2

0 = 2k. But lnP = −1
2 α0 ~x

2 and Ṗ = 0 also solve (A.2) with
~F = −∇V = −k~x provided N = k/α0.)

In this gaussian case the Fokker-Planck equation captures the Schrödinger evolution

for WKB states for which S varies much more quickly than does P , since these states

are ‘classical’ to the extent that −i∇Ψ ≃ ∇S(x)Ψ shows that Ψ(x) can effectively be

regarded as both a position and momentum eigenstate. Whenever this is true there exists

a gaussian classical distribution on phase space, W (x, p), that reproduces the same mean

and variance for both position and momentum that is predicted by Ψ(x). (This is only

possible because 〈xipj〉 ≃ 〈pjxi〉 in the WKB limit.) This then guarantees that the gaussian
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reduced distribution, P (x) =
∫

dnpW , reproduces the variance and mean (for all t) for

~x predicted by Ψ, while the WKB relation ~p = ∇S(x) ensures that this also dictates the

evolution of the mean and variance of the momentum consistent with the evolution implied

by Ψ in the WKB limit. Since the coefficients N and F of the Fokker-Planck equation for

P are dictated by the evolution of 〈xi〉 and 〈xixj〉, we are then guaranteed they exist.

For example, consider the simplest case

Ψ = C exp

[

−1

2
(A+ iB)x2

]

, (A.6)

with normalization constant satisfying C2 =
√

A/π. The time-dependence of A and B is

given by the Schrödinger equation, and determines the evolution of the mean and variance

of the position and momenta from the formulae

〈x2〉 = 1

2A
, 〈p2〉 = A2 +B2

2A
, 〈xp〉 = 1

2

(

i− B

A

)

and 〈px〉 = 1

2

(

−i− B

A

)

, (A.7)

so 〈xp− px〉 = i and 〈xp+ px〉 = −B/A. For this state the WKB limit (in which S varies

much faster than does lnP ) is given by |B/A| ≫ 1, and this is a ‘squeezed’ state [131–134]

inasmuch as 〈p2〉 is much larger than 〈x2〉 in this limit.

The classical phase-space distribution that captures this state is

W = C̃
[

−ax2 − bp2 − 2c xp
]

, (A.8)

for which normalization implies C̃ =
√
ab− c2/π. This predicts the variances

〈x2〉 = b

2(ab− c2)
, 〈p2〉 = a

2(ab− c2)
, and 〈xp〉 = 〈px〉 = − c

2(ab− c2)
, (A.9)

and so requiring these correctly reproduce 〈x2〉, 〈p2〉 and 〈xp + px〉 shows that a, b and c

are given by

a =
A2 +B2

A
, b =

1

A
and c =

B

A
. (A.10)

The classical gaussian distribution for x then is P (x) =
∫

dpW (x, p), or

P (x) =

√

ab− c2

2πb
exp

[

−
(

a− c2

b

)

x2
]

=

√

A

π
exp

[

−Ax2
]

, (A.11)

in agreement with |Ψ|2, and so ∇ lnP = P ′/P = −1
2 Ax while S = −1

4 Bx2 implies

∇S = S′ = −1
2 Bx. Clearly the WKB classical regime corresponds to |B/A| ≫ 1.

In this example the Fokker-Planck equation captures the evolution implied by the

Schrödinger equation provided only that it reproduces the right evolution for A, which

requires N = B/A up to terms subdominant in the WKB approximation. It is the noise

that brings the news about the momentum variance, 〈p2〉, to the Fokker-Planck equation

(which nominally deals entirely with the classical statistics of x), because of the WKB

relation p = S′ = −1
2 Bx which ensures 〈p2〉 ≃ B2〈x2〉 = B2/2A.
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B Calculation of fluctuations

This appendix computes explicitly the fluctuations of a free massive spectator scalar field

in power-law inflation, for use in deriving the corresponding Fokker-Planck equation and

late-time evolution. We work in the Schrödinger picture starting from a wavefunctional,

Ψ[ϕ, t]. Our interest is in the time-evolution of the diagonal components of the density

matrix, 〈ϕ|ρ|ϕ〉 = |Ψ[ϕ, t]|2 built from Ψ.

Action and hamiltonian

Our starting point is the lagrangian density for a spectator scalar

L =

∫

d3x a(t)3
[

1

2
φ̇2 − c2s(t)

2 a2(t)
(∇φ)2 − m2(t)

2
φ2

]

, (B.1)

in an FRW spacetime with metric

ds2 = −dt2 + a2(t)d~x2 (B.2)

and Hubble paramer H(t) = ȧ/a. Here m(t) denotes the (possibly time-dependent) mass

and cs(t) is a (possibly time-dependent) sound speed.

The Hamiltonian density in Schrödinger representation can be expressed in Fourier

space as

H = H0 +
∑

k

Hk , (B.3)

with Hk for k 6= 0 given by

Hk = − 1

a3
δ2

δϕk δϕ−k
+ a3

[

c2s k
2

a2
+m2

]

ϕkϕ−k (B.4)

where ϕ∗

k = ϕ−k. The contribution for the real zero-mode, ϕ0, is

H0 = − 1

2 a3
δ2

δϕ0
2
+

1

2
a3m2 ϕ2

0 . (B.5)

Ground state wave functional

We use this Hamiltonian to evolve the state wave-functional, Ψ =
∏

k Ψk, according to the

Schrödinger equation,

i
∂Ψk

∂t
= Hk Ψk , (B.6)

and for free fields we seek solutions subject to a gaussian ansatz,

Ψ[ϕ] =
∏

k

Ψk[ϕ] = e−a3(t)β0(t)ϕ0

∏

k

Nk(t) exp
{

−a3(t)
[

αk(t)ϕk ϕ−k

]}

(B.7)

with Nk(t), αk(t), β0(t) functions of t now to be determined by substituting into (B.6).

Notice the quantity β0 here allows the possibility that the zero-mode has a nonzero mean

in the ground state.
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We obtain in this way the following evolution equations for αk and β0:

0 = α̇k + i α2
k + 3H αk − i

(

c2s k
2

a2
+m2

)

for k ≥ 0 (B.8)

0 = β̇0 + (3H + i α0) β0 (B.9)

where all quantities (including the Hubble parameter) can be time dependent, and the dot

denotes derivative with respect to time. The additional equation for Nk ensures it evolves

in a way that is consistent with normalization, but is not needed in what follows.

The eq for β0 can be integrated to give

β0(t) = β̄0

(

a0
a(t)

)3

exp

[

−i

∫ t

0
dτ α0(τ)

]

(B.10)

where β̄0 = β0(t = 0) is an integration constant fixed by initial conditions. It remains to

find αk by solving (B.8).

The solution for αk can be made very explicit if we assume cs = c0(a/a0)
s, power-law

expansion, a = a0(t/t0)
p (so that H = p/t and ǫ = −Ḣ/H2 = 1/p) and a time-independent

ratio m/H. In this case equation (B.8) is integrated by changing variables to

αk = −i

(

u̇k
uk

)

= i aH

[

∂a uk(a)

uk(a)

]

, (B.11)

since (B.8) is then satisfied if uk solves the relevant Klein-Gordon equation,

ük + 3H u̇k +

(

c2sk
2

a2
+m2

)

uk = 0 . (B.12)

For constant ǫ, s and m2/H2 this is solved by

uk(a) = C̃k yq σk(y), (B.13)

where C̃k is a-independent, provided q and y are chosen as

q =
3− ǫ

2 (1− s− ǫ)
, (B.14)

and

y(a, k) :=
1

(1− s− ǫ)

(

cs k

aH

)

=
1

(1− s− ǫ)

(

c0 k

a0H0

)

(a0
a

)1−s−ǫ
. (B.15)

The point of these changes of variables is that they turn eq. (B.12) into the Bessel equation

for σk:

y2 σ′′

k + y σ′

k +
(

y2 − ν2
)

σk = 0 , (B.16)

where primes here denote derivatives with respect to y. The order ν is given by

ν2 =
1

(1− s− ǫ)2

[

(3− ǫ)2

4
− m2

H2

]

. (B.17)
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The solutions for σk are (naturally) Bessel functions, and demanding agreement with

the adiabatic vacuum before horizon exit tells us

uk ∝ exp

[

∓i

∫

dt

(

cs k

a

)]

∝ e±iy for k/a ≫ H , (B.18)

of which we choose the lower sign since this turns out below to ensure the real part of αk is

positive (as required to ensure Ψk can be normalized). This fixes the mode functions to be

uk(a) = C̃k yq(a, k)H(2)
ν [y(a, k)] =

Ck√
a3H

H(2)
ν [y(a, k)] (B.19)

where Ck ∝ kqC̃k relabels the integration constants and H
(2)
ν the Hankel function of the

second kind. The second equality in (B.19) follows from eq. (B.14), which implies a3Hy2q

is time-independent. Notice this reduces to the solution for a massive spectator field in de

Sitter space in the limit ǫ → 0 and s → 0.

Although Ck drops out of (B.11) and (so does not contribute directly to αk), some later

formulae are simpler if we choose Ck so that the Wronskian,

W(u, v) := a3(u∗v̇ − v∗u̇) , (B.20)

satisfies W(u, u) = i. Among the formulae that simplify in this case is the expression for

the real part of αk, as may be seen from

αk + α∗

k = −i

(

u∗ku̇k − uku̇
∗

k

|uk|2
)

=
1

a3 |uk|2
(B.21)

and αk − α∗

k = −i aH

[

∂a
(

|uk|2
)

|uk|2

]

. (B.22)

BecauseW is independent of time (when evaluated with solutions to (B.12)) it is convenient

to compute the implications for Ck in the remote past, where csk ≫ aH, in which case the

Hankel function limit

H(2)
ν (y) →

√

2

πy
e−iy+ iπ

2
(ν+ 1

2
) for y → ∞ . (B.23)

can be used to infer

|Ck|2 =
π

4(1− s− ǫ)
, (B.24)

for all k and ν.

Consequently the quantity relevant to fluctuations in the main text is

|uk|2 =
π

4(1− s− ǫ)a3H
|H(2)

ν (y)|2 , (B.25)

which with the asymptotic expression

H(2)
ν (y) → iΓ(ν)

π

(y

2

)−ν
for y → 0 , (B.26)
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gives the small-k limit

|uk|2 →
22ν−2|Γ(ν)|2(1− s− ǫ)2ν−1

πa3H

(

aH

csk

)2ν

. (B.27)

Finally, the case ν = 3
2 is particularly simple because

H
(2)
3/2(y) =

√

2

πy3
(y − i) e−iy+iπ , (B.28)

and so

uk = −(1− s− ǫ)
H

√

2(csk)3
(y − i)e−iy for ν = 3

2 (B.29)

up to an irrelevant phase.

A further useful formula for later purposes is

a ∂ay = −(1− s− ǫ) y = −(1− s− ǫ) k ∂ky , (B.30)

and so because kquk depends on k and a only through the combination y(a, k) it follows that

a ∂a

(

k2q|uk|2
)

= −(1− s− ǫ)(k ∂k)
(

k2q|uk|2
)

. (B.31)

Evolution of the mean and variance

Because the system is gaussian the Fokker-Planck equation is dictated by the evolution of

the mean and variance, which we now compute using the above formulae. For each mode

separately this is straightforward to do, starting with the probability density Pk = Ψ∗

k Ψk,

which evaluates to

Pk =
a3 (αk + α∗

k)

π
exp

{

− a3
(

αk + α∗

k

)

[

(αk + α∗

k) ϕk − δk0 βk

] [(

αk + α∗

k

)

ϕ−k − δk0βk

]

}

.

(B.32)

Translation invariance ensures the mean is only nonzero for the zero mode, which takes

the value:

〈φ0〉 =
∫

dϕ0 ϕ0 P0(ϕ0) =
β0 + β∗

0

2 (α0 + α∗
0)

(B.33)

The two point function for the k 6= 0 modes (and the variance for the zero-mode around

its nontrivial mean) similarly is

〈φkφ
∗

k〉 =
∫

dϕkdϕ
∗

k

[

ϕkϕ
∗

k Pk(ϕk, ϕ
∗

k)
]

=
1

a3
(

αk + α∗

k

) = |uk|2 . (B.34)

For the Fokker-Planck equation, however, our interest is in the evolution of the coarse-

grained position-space field, rather than the variance in any one mode. Proceeding as

in [48] we define the coarse-grained field by

φS(r) =

∫

d3k

(2π)3
S [y(k)] φk e

ikr , (B.35)
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where S is a window function that projects out sub-Hubble modes, with the defining

properties

S (y) → 1 for y ≪ 1 and S (y) → 0 for y ≫ 1 . (B.36)

We evaluate statistical properties of the field φS using the joint probability distribution

function P =
∏

k Pk.

Because momentum conservation only allows nonzero mean for k = 0 and because

S → 1 as k → 0 the mean of φS is the same as for the zero-mode,

〈φS〉 = 〈φ〉 = β0 + β∗
0

2 (α0 + α∗
0)

, (B.37)

and so its time evolution is given by the equations of motion for α0 and β0 as

∂t 〈φS〉 = ∂t 〈φ〉 = i

(

α0β
∗
0 − β0α

∗
0

α0 + α∗
0

)

. (B.38)

This is related in the expected way to the mean of the canonical momentum,

〈ΠS〉 = 〈Π〉 =
∫

dϕ0 Ψ
∗

(

−i
∂Ψ

∂ϕ0

)

= ia3
(

α0β
∗
0 − β0α

∗
0

α0 + α∗
0

)

, (B.39)

so a3∂t 〈φ〉 = 〈Π〉.
The coarse-grained position-space two-point function is similarly

〈

(φS − 〈φS〉)2
〉

=

∫

d3k

(2π)3
|uk S|2 , (B.40)

and so its time dependence becomes

∂t
〈

(φS − 〈φS〉)2
〉

=

∫

d3k

(2π)3
∂t

(

|uk S|2
)

= H

∫

d3k

(2π)3
a ∂a

(

|uk S|2
)

= − H

2π2
(1− s− ǫ)

∫

∞

0
dk k3−2q ∂k

(

k2q|uk S|2
)

(B.41)

=
H

2π2
(1− s− ǫ)

[

lim
k→0

(

k3|uk|2
)

+ (3− 2q)

∫

∞

0
dk k2 |uk S|2

]

= (1− s− ǫ)
H

2π2
lim
k→0

(

k3|uk|2
)

− (3s+ 2ǫ)H
〈

(φS − 〈φS〉)2
〉

.

This uses the property that k2q|uk S|2 depends on the variables k and a only through y and

so satisfies a ∂a = −(1− s− ǫ) k ∂k, as well as eqs (B.36) and (B.40). Notice in particular

that (B.41) shows how the variance does not depend on the detailed shape of S, and only

on its limiting forms.

Eq. (B.41) can be regarded as a differential equation from which the time-dependence

of the variance can also be extracted directly without evaluating mode sums explicitly. The

equation to be solved has the form

∂tY + α(t)Y = X(t) , (B.42)
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with Y (t) := 〈(φS − 〈φS〉)2〉 and the identifications

α(t) := (2q − 3)(1− s− ǫ)H(t) = (3s+ 2ǫ)H0

(

a

a0

)−ǫ

(B.43)

and

X(t) := (1− s− ǫ)
H

2π2
lim
k→0

(

k3|uk|2
)

= X0

(

a

a0

)−3+2ν(1−s−ǫ)

, (B.44)

where

X0 :=
|2νΓ(ν)(1− s− ǫ)ν |2

(2π)3

(

H0

c0

)2ν

lim
µ→0

(

µ

a0

)3−2ν

. (B.45)

Integration gives the general solution

Y (t) =

{

Y0 +

∫ t

t0

dτX(τ) exp

[
∫ τ

t0

duα(u)

]}

exp

[

−
∫ t

t0

dv α(v)

]

=

{

Y0 +

∫ a

a0

du

(

X

uH

)

exp

[
∫ u

a0

dû
( α

ûH

)

]}

exp

[

−
∫ a

a0

dũ
( α

ũH

)

]

, (B.46)

where Y0 = Y (t0) is the variance at t = t0. Inserting the known time-dependence of α and

X and performing the integrals then gives the general solution

Y (a) =

{

Y0 −
X0/H0

(3− 2ν)(1− s− ǫ)

[

(a0
a

)(3−2ν)(1−s−ǫ)
− 1

]}

(a0
a

)(2q−3)(1−s−ǫ)
(B.47)

=

[

Y0 +
X0/H0

(3−2ν)(1−s−ǫ)

]

(a0
a

)(2q−3)(1−s−ǫ)
− X0/H0

(3−2ν)(1−s−ǫ)

(a0
a

)2(q−ν)(1−s−ǫ)
,

where the two powers appearing in the last form are

(2q − 3)(1− s− ǫ) = 2ǫ+ 3s , (B.48)

and

2(q − ν)(1− s− ǫ) = (3− ǫ)

[

1−
√

1− 4m2

(3− ǫ)2H2

]

≈ 2m2

(3− ǫ)H2
+ · · · . (B.49)

It is this expression whose properties are explored in the main text.

C Other dispersion relations

The formalism developed in the main text can be applied to models with non-standard

kinetic terms as well. In this appendix we discuss the case of ghost inflation [99], where

the Lagrangian density takes the form:

L =

∫

d3x a(t)3
[

1

2
χ̇2 − 1

2M2 a4(t)

(

∇2χ
)2 − m2(t)

2
χ2

]

. (C.1)

Here M is a mass scale which we take to be constant here, though it could also be

taken to be time dependent with M(t)/H(t) constant as done in the main text and we
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continue to assume for the mass term m2(t) above. Also, just as for the cases treated in

the main text, the dynamics of χ does not backreact on the geometry. The fluctuations

in this theory have a dispersion relation ω2 ∝ k4/M2, which could arise physically from

situations where the scalar has vanishing sound speed, since then the terms with two spatial

derivatives in the equations of motion would vanish.

We perform the standard spatial Fourier mode decomposition of χ(~x, t) and construct

the Hamiltonian Hk for each mode

Hk = − 1

a3
δ2

δχ̂k δχ̂−k
+ a3

[

k4

M2 a4
+m2

]

χ̂kχ̂−k (C.2)

An analysis following what was done in appendix B shows that the ground state wave-

functional takes the form in eq.(B.7), where the Schrödinger equation for each Ψk now

implies

0 = α̇k + i α2
k + 3H αk − i

(

k4

M2 a4
+m2

)

for k ≥ 0 (C.3)

0 = δk0

[

β̇0 + (3H + i αk) β0

]

(C.4)

The relevant transformation for the Ricatti equation satisfies by αk follows eq. ((B.11))

αk = −i aH
∂a uk(a)

uk(a)
(C.5)

with

uk =
Dk√
a3H

σk (y) (C.6)

and where we introduced the variable

y =
1

(2− ǫ)

k2

a2H2

H

M
(C.7)

In terms of these new variables, eq (C.3) can be re-expressed as

y2 σ′′

k + y σ′

k +
(

y2 − ν2
)

σk = 0, (C.8)

with primes denoting derivatives along y and ν given by

ν2 =
1

(2− ǫ)2

[

(3− ǫ)2

4
− m2

H2

]

. (C.9)

The requirement of matching with the correct vacuum at early times uniquely fixes the

solution and the integration constants, yielding

uk =
i
√
π

2

1
√

(2− ǫ) a3H
H(2)

ν

(

1

(2− ǫ)

k2

a2H2

H

M

)

(C.10)

with H
(2)
ν the Hankel function of first kind.

– 32 –



J
H
E
P
0
1
(
2
0
1
6
)
1
5
3

Notice that
∂y

∂a
= −(2− ǫ)

y

a
(C.11)

so that
∂|uk|2
∂a

= −
[

3− ǫ+ y (2− ǫ)
∂y|H(2)

ν (y)|2

|H(2)
ν (y)|2

]

|uk|2
a

(C.12)

and that the real and imaginary parts of αk are given by

αk + α∗

k =
1

a3 |uk|2
(C.13)

αk − α∗

k = −i aH

[

∂a
(

|uk|2
)

|uk|2

]

(C.14)

In the limit of k/(aH) ≪ 1, using the fact that

H(2)
ν (y) → i

Γ(ν)

π

(y

2

)−ν
for y ≪ 1 (C.15)

we can write

|uk|2 =
22ν Γ2(ν)

4π a3H

(

1

(2− ǫ)

k2

a2H2

H

M

)−2ν

, k/(aH) ≪ 1 (C.16)

The noise

The new dispersion relation does not affect α0 so that using the fact that the noise term

can be written generally as

N =
i

4π2

∫

∞

0
dk

k2

a3

(

αk − α∗

k − α0 + α∗
0

αk + α∗

k

)

, (C.17)

we have that

N =
1

4π2

∫

∞

0
k2 dk

{

aH ∂a
(

|uk|2 S
)

+H [3− 2ν(2− ǫ)− ǫ] |uk|2 S
}

(C.18)

Writing the integral in terms of the variable y and using

k2 dk = y
1

2 (aH)3
(

M

H

)
3

2 (2− ǫ)
3

2

2
dy, (C.19)

we obtain

N = −(2− ǫ)
3

2

8π2
H4 a3

(

M

H

)
3

2

∫

∞

0

√
y dy

[

∂ ln |H(2)
ν (y)|2

∂ ln y
+ 2ν

]

|uk|2 (C.20)

= −(2− ǫ)
1

2

32π
H3

(

M

H

)
3

2

∫

∞

0

√
y dy

[

∂ ln |H(2)
ν (y)|2

∂ ln y
+ 2ν

]

|H(2)
ν (y)|2

=
(2− ǫ)

1

2

32π
H3

(

M

H

)
3

2

[

(

y
3

2 |H(2)
ν (y)|2

)

y→0
+

(

3

2
− 2ν

)
∫

∞

0
y

1

2 |H(2)
ν (y)|2 S(y)

]
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Thanks to eq (C.15), the previous integral can be re-expressed as

N =
(2− ǫ)

1

2

32π
H3

(

M

H

)
3

2

[

Γ2(ν)

π2
22ν

(

µ
3

2
−2ν

)

+

(

3

2
− 2ν

)
∫

∞

µ
y

1

2 |H(2)
ν (y)|2 S(y)

]

(C.21)

The quantity inside the square parenthesis is IR safe, and well defined in the limit µ → 0,

as long as ǫ < 2, as we tacitly assumed so far.

A special case

There’s a special case where things become simpler. In the limit ǫ → 0, m → 0, we have

ν → 3/4, and the expression for the noise simplifies becoming

N =
H3

4π2

(

M

H

)
3

2

[

1

2π
Γ2

(

3

4

)]

(C.22)

Notice the correction with respect to standard result, that is weighted by (M/H)
3

2 . The

noise amplitude is enhanced if this quantity is large.

D Large-N scalars

We here briefly review the important points about λφ4 theory in the large-N limit. The

system of interest consists of N real scalar fields represented by the column vector Φ, with

lagrangian density

− L =
1

2
∂µΦ · ∂µΦ+

λ

4!
(Φ · Φ)2 . (D.1)

Following [135] it is useful to define g := λN and introduce an auxiliary field χ, through

−L =
1

2
∂µΦ · ∂µΦ+

g

4!N
(Φ · Φ)2 − 3N

2g

[

χ0 + χ− g

6N
(Φ · Φ)

]2

=
1

2
∂µΦ · ∂µΦ+

1

2
(Φ · Φ)(χ0 + χ)− 3N

g
(χ0χ)−

3N

2g

(

χ2 + χ2
0

)

, (D.2)

where integrating out χ in the first line returns the action to (D.1), while the second

line makes the large-N limit most transparent. In these expressions χ0 represents the

expectation value of χ and is determined by requiring a vanishing χ tadpole, giving

χ0 =
g

6N
〈Φ · Φ〉 = λ

6
〈Φ · Φ〉 . (D.3)

The utility of (D.2) is twofold. First, after using (D.3) this representation shows that

all factors of λ = g/N are associated with χ propagators (which are also local in position

space). Second, it shows that the integral over Φ is gaussian, describing N scalars with

mass m2
φ = χ0 but without self-interactions, coupled linearly to the field χ. In particular,

this implies the standard calculation can be done to evaluate 〈Φ · Φ〉 = 3NH4/(8π2m2
φ)

(up to 1/N corrections), and so implies χ0 must satisfy

χ0 =
gH4

16π2χ0
=

λNH4

16π2χ0
and so χ0 = m2

φ =

√
g H2

4π
. (D.4)
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In the large-N limit where g = λN is fixed, we see the leading approximation drops

χ-exchange and so leaves a single free scalar whose mass is m2
φ/H

2 =
√
g/4π. Notice these

statements do not require g to be particularly small, though our applications to inflation

require
√
g to be at most order 4π.
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