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1 Introduction and discussion

Dimensional reductions of M-theory on compact eight-dimensional manifolds result in

three-dimensional effective theories with various amounts of supersymmetry. These re-

ductions are both of conceptual as well as phenomenological interest. A phenomenological

investigation might be carried out when applying the M-theory to F-theory limit in order to

lift the three-dimensional theories to four space-time dimensions for a certain class of eight-

dimensional manifolds [1]. From a phenomenological point of view, compactifications in

which the effective theory preserves only small amounts of supersymmetry are of particular

interest. For example, compactifications of M-theory and F-theory preserving four super-

charges allow for background fluxes that can induce a four-dimensional chiral spectrum.

A famous class of warped solutions with background fluxes was argued to exist in [2].

Global consistency, however, requires that, in a compact scenario with background fluxes,

higher-derivative terms in the eleven-dimensional action must also be included. It was

subsequently shown that there are indeed solutions that solve the higher-derivative field

equations [3]. More precisely, one finds that the internal background is a conformally

Kähler manifold with vanishing first Chern class, but a metric that is non-Ricci-flat even

when allowing for a conformal rescaling including the warp factor. This deviation is due

to the possible non-harmonicity of the third Chern-form in the leading order Ricci-flat

metric [4]. While a complete check of supersymmetry is still missing, it was shown in [4]
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that a modification of the eleven-dimensional gravitino variations with higher curvature

terms based on [5, 6] vanishes on the warped background solutions. It was furthermore

argued, that the warped background admits a globally defined real two-form J ′ and complex

four-form Ω′. Separating the warp-factor, the Killing spinor equations translate into first

order differential constraints on these forms, with only for an exact one-form W5.
1

In this paper we study the three-dimensional effective action arising when perturbing

the solutions considered in [3, 4] by a finite number of Kähler deformations of the metric and

vector deformations of the M-theory three-form. More precisely, our starting point is the

bosonic part of the eleven-dimensional supergravity action of [10] corrected by the terms

fourth order in the Riemann curvature known since the works [11–17], and the higher-

derivative terms quadratic in the M-theory three-form found in [18]. Let us stress that

there are important terms of the structure (∇̂Ĝ)2R̂3, where Ĝ is the M-theory four-form

field-strength and R̂ is the Riemann curvature tensor, that have not been fully determined.

They were argued to be given by a number of building blocks of index contractions [19]

with 4-point amplitudes only determining part of the numerical prefactors. We thus use an

expression with six unknown coefficients ai. Remarkably, four of these unknown coefficients,

denoted by a3, . . . , a6 in the conventions of (2.10), actually do not affect our computation

and drop out in the dimensional reduction. For the remaining two coefficients we suggest in

section 4 the identification a1 = a2, leaving only one unknown constant. This last constant

a1 might then be fixed by supersymmetry [20], and we find here that a1 = 7 gives the very

elegant result (4.21) for the reduced action that is used in the supersymmetry analysis

of [20]. Clearly, the complete form of the (∇̂Ĝ)2R̂3 terms could also be determined by

considering amplitudes with 5 and more external legs.

Given the eleven-dimensional action with higher-derivative terms we systematically

construct the perturbed background order by order in a scale parameter α ∝ ℓ3M , where

ℓM is the eleven-dimensional Planck length. At zeroth order in α the background is simply

a direct product of a Calabi-Yau fourfold without background fluxes and preserves four

supercharges. At higher order in α the fluxes and higher curvature terms need to be

included. The metric ansatz is modified and accordingly the mode expansion for Kähler

structure perturbations of the metric and vector perturbations of the M-theory three-form

is described in terms of forms non-harmonic in the zeroth order Calabi-Yau metric. We

carefully keep track of all such modifications, but show that most of these modifications

eventually cancel in the final three-dimensional effective action. In fact, inserting the ansatz

into the higher-derivative action, we find that the kinetic terms for the deformations and

vectors in the three-dimensional effective theory can be expressed using a single higher-

curvature building block Zmm̄nn̄ = 1
4!(ǫ8ǫ8R

(0)3)mm̄nn̄, where R(0) is the internal Riemann

tensor in the zeroth order Calabi-Yau metric, see (3.13) for the precise form of Z. Let us

note that Zmm̄nn̄ has the same symmetries as the Riemann tensor. It contracts with Rm̄mn̄n

to the Hodge-dual of the fourth Chern-form, and contracting any of the index pairs with

1At the two-derivative level eleven-dimensional supergravity on SU(4) structure manifolds has recently

been studied in [7].The fact that the metric is no longer Ricci flat when higher derivative couplings and

α′-corrections are taken into account is a classical result for Calabi-Yau manifolds without background

fluxes in string theory [8] and has been recently investigated for Spin(7) and G2 compactifications [9].
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the metric one finds expressions in terms of the third Chern-form. The equivalent quantity

on a Calabi-Yau threefold was found to be important in [21]. It would be interesting to

examine if Zmm̄nn̄ plays a special role in describing the topology of the compact eightfold.

In addition to the complications arising from reducing higher-derivative terms in the

action, a proper treatment of the warp-factor turns out to be crucial. Warped compacti-

fications of M-theory and Type IIB have been considered previously in [22–31], and were

argued to be crucial in a complete understanding of the M-theory to F-theory limit for min-

imally supersymmetric setups [32]. In this work we perform the crucial generalization to

include the higher-derivative terms, since warped compactifications with fluxes are incon-

sistent without these contributions. It turns out, that in this general case the modifications

of the warp-factor to the lower-dimensional effective theory are significantly more involved

then the ones discussed previously in the literature. Nevertheless we will be able to show

that the effective theory permits a non-trivial scaling symmetry induced by rescaling the

warp-factor by a field-dependent function. In a subsequent paper [20] we will argue that

the three-dimensional action carries the properties of a N = 2 supergravity theory and

extend the results of [33–35].

The paper is organized as follows. In section 2 we review the eleven-dimensional

effective action of M-theory including higher-derivative terms. We then introduce the con-

sidered warped solutions that admit an eight-dimensional compact internal manifold and

background fluxes and comment on the supersymmetry conditions. The considered pertur-

bations of the background solutions are introduced in section 3 and consist of vector modes

of the M-theory three-form and Kähler structure deformations. We also discuss the field-

dependence of the warp-factor. The dimensional reduction yielding a three-dimensional

effective action is carried out in section 4, where we present the results for the kinetic

terms and Chern-Simons terms. A summary of our conventions and a number of useful

identities are supplemented in appendix A. More details on the dimensional reduction of

the higher derivative terms can be found in appendix B.

2 Eleven-dimensional action and compactifying solutions

In this section we introduce the eleven-dimensional action including the known higher-

derivative terms that will then be used in the dimensional reduction. The individual terms

are discussed in subsection 2.1, with details and conventions supplemented in appendix A.

The eleven-dimensional theory admits a warped solution with a compact eight-dimensional

space and background fluxes as we recall in subsection 2.2.

2.1 The eleven-dimensional action with higher-derivative terms

Our starting point will be the eleven-dimensional supergravity action that arises as the

low energy limit of M-theory. At the two-derivative level the action is the long-known

N = 1 supergravity action first worked out in [10]. Recall that the dynamical fields of

this supergravity theory arrange in an N = 1 gravity multiplet, with bosonic fields being

the eleven-dimensional metric ĝNM and a three-form ĈMNP with field strength ĜQMNP =
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∂[QĈMNP ]. In the following we will indicate eleven-dimensional quantities with a hat. The

action for these bosonic fields is given by

S(0) =
1

2κ211

∫
[

R̂∗̂1−
1

2
Ĝ ∧ ∗̂Ĝ−

1

6
Ĉ ∧ Ĝ ∧ Ĝ

]

, (2.1)

where R̂ is the Ricci scalar evaluated with conventions introduced in appendix A.

In order to find globally consistent solutions with internal background fluxes for Ĝ

one has to include higher-derivative corrections to the theory as we recall below. Terms

that are up to eighth order in derivatives and are quadratic in Ĝ will be crucial in this

discussion. To systematically display the results we introduce the dimensionful parameter

α2 =
(4πκ211)

2
3

(2π)432213
. (2.2)

These bosonic terms have been worked out in [11–18], such that the action takes the form

S = S(0) + α2S
(2)

R̂4
+ α2S

(2)

Ĝ2R̂3
+ α2S

(2)

(∇̂Ĝ)2R̂2
+O(Ĝ3α2) +O(α3) , (2.3)

with eight-derivative terms given by

S
(2)

R̂4
=

1

2κ211

∫
[(

t̂8t̂8 −
1

24
ǫ̂11ǫ̂11

)

R̂4∗̂1− 32213Ĉ ∧ X̂8

]

, (2.4)

S
(2)

Ĝ2R̂3
=

1

2κ211

∫
[

−

(

t̂8t̂8 +
1

96
ǫ̂11ǫ̂11

)

Ĝ2R̂3∗̂1

]

, (2.5)

S
(2)

(∇̂Ĝ)2R̂2
=

1

2κ211

∫

ŝ18(∇̂Ĝ)2R̂2∗̂1 . (2.6)

The terms at higher order in Ĝ and α will not be needed in what follows as their contribution

is higher order in α when evaluated on the ansatz we will make.

Let us now discuss the various couplings in (2.4)–(2.6) in more detail. In (2.4) we make

the definitions

X̂8 =
1

192

(

TrR̂4 −
1

4
(TrR̂2)2

)

, (2.7)

where R̂ is the eleven-dimensional curvature two-from R̂M
N = 1

2R̂
M
NPQdx

P ∧ dxQ, and

ǫ̂11ǫ̂11R̂
4 = ǫR1R2R3M1...M8ǫR1R2R3N1...N8R̂

N1N2
M1M2R̂

N3N4
M3M4R̂

N5N6
M5M6R̂

N7N8
M7M8 ,

t̂8t̂8R̂
4 = t̂M1...M8

8 t̂8N1...N8R̂
N1N2

M1M2R̂
N3N4

M3M4R̂
N5N6

M5M6R̂
N7N8

M7M8 , (2.8)

where ǫ11 is the eleven-dimensional totally anti-symmetric epsilon tensor and t8 is given

explicitly in (A.3) in appendix A. Using ǫ11 and t8 the explicit form for the terms in (2.5)

is given by

ǫ̂11ǫ̂11Ĝ
2R̂3 = ǫ̂RM1...M10 ǫ̂RN1...N10

ĜN1N2

M1M2
ĜN3N4

M3M4
R̂N5N6

M5M6
R̂N7N8

M7M8
R̂N9N10

M9M10
,

t̂8t̂8Ĝ
2R̂3 = t̂M1...M8

8 t̂8N1...N8
ĜN1

M1R1R2
ĜN2

M2

R1R2R̂N3N4

M3M4
R̂N5N6

M5M6
R̂N7N8

M7M8
. (2.9)
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Finally, we need to introduce the tensor ŝN1...N18
18 appearing in (2.6). Unfortunately, the

precise form of ŝ18 is not known. However, one can fix significant parts of it following [19].

In order to express these parts we use the basis Bi, i = 1, . . . , 24 of [19], that labels all

unrelated index contractions in ŝ18(∇̂Ĝ)2R̂2. The Bi are explicitly given in (A.4). The

result can then be expressed in terms of a 4-point amplitude contribution A and a linear

combination of six contributions Zi which do not affect the 4-point amplitude as

ŝ18(∇̂Ĝ)2R̂2 = ŝN1...N18
18 R̂N1...N4R̂N5...N8∇̂N9ĜN10...N13∇̂N14ĜN15...N18 = A+

∑

n

anZn .

(2.10)

The combinations A and Zn are then given in terms of the basis elements as

A = −24B5 − 48B8 − 24B10 − 6B12 − 12B13 + 12B14 + 8B16 − 4B20 +B22 + 4B23 +B24 ,

Z1 = 48B1 + 48B2 − 48B3 + 36B4 + 96B6 + 48B7 − 48B8 + 96B10

+ 12B12 + 24B13 − 12B14 + 8B15 + 8B16 − 16B17 + 6B19 + 2B22 +B24 ,

Z2 = −48B1 − 48B2 − 24B4 − 24B5 + 48B6 − 48B8 − 24B9 − 72B10 − 24B13 + 24B14 −B22 + 4B23 ,

Z3 = 12B1 + 12B2 − 24B3 + 9B4 + 48B6 + 24B7 − 24B8 + 24B10

+ 6B12 + 6B13 + 4B15 − 4B17 + 3B19 + 2B21 ,

Z4 = 12B1 + 12B2 − 12B3 + 9B4 + 24B6 + 12B7 − 12B8 + 24B10 + 3B12 + 6B13 + 4B15 − 4B17 + 2B20 ,

Z5 = 4B3 − 8B6 − 4B7 + 4B8 −B12 − 2B14 + 4B18 ,

Z6 = B4 + 2B11 . (2.11)

We will show in this work that the terms Z3 to Z6 vanish both on the considered background

solution and their perturbed cousins to the order in α we are considering. This implies that

the coefficients a3-a6 are irrelevant for our analysis. For the remaining a1, a2 are suggested

to be fixed to a1 = a2 = 7 as explained in detail in section 4. In the next subsection we

discuss the solutions in more detail.

2.2 Compactifying warped solutions with background fluxes

In the following we will review the warped solutions following [3, 4]. The starting point

are the field equations derived from the action (2.3). These have a solution with an eleven-

dimensional metric background

dŝ2 = eα
2Φ(2)

(e−2α2W (2)
ηµνdx

µdxν + 2eα
2W (2)

gmn̄dy
mdyn̄) +O(α3), (2.12)

where ηµν is the three-dimensional Minkowski metric and

gmn̄ = g
(0)

mn̄ + α2g
(2)

mn̄ +O(α3) . (2.13)

In the following we will denote the internal compact manifold by Y4. Here Φ
(2) and W (2) are

scalar function on the internal space. Φ(2) represents an eleven-dimensional Weyl rescaling

that will be given in terms of the internal space Riemann tensor below. W (2) is known

as the warp-factor and generally cannot be given explicitly, but rather is constraint by a

differential equation (2.20) known as the warp-factor equation. In order to give the expan-

sion (2.13) we note that at zeroth order in α the background is a direct product and g
(0)

mn̄ is

a Ricci flat metric. In fact, supersymmetry of the background at lowest order in α demands

– 5 –
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that the metric g
(0)

mn̄ must be that of a Calabi-Yau fourfold. We therefore can introduce

complex indices, which here and in the following always refer to the zeroth order com-

plex structure on the internal manifold. On a Calabi-Yau fourfold there exists a nowhere

vanishing covariantly constant Kähler form J (0) and holomorphic (4, 0)-form Ω(0) satisfying

dJ (0) = dΩ(0) = 0 . (2.14)

In what follows we will work in conventions in which the internal space indices are raised

and lowered with the lowest order internal space metric g
(0)

mn̄.

The background also includes a flux for the four-form given by

Ĝmn̄rs̄ = αG
(1)

mn̄rs̄ +O(α3) , Ĝmnrs = αG(1)
mnrs +O(α3) ,

Ĝµνρm = ǫµνρ∂me−3α2W (2)
+O(α3) . (2.15)

In order that the eleven-dimensional field equations are solved to order α2 by this back-

ground the flux G(1) must be self-dual in the lowest-order metric g(0)

mn̄. This condition allows

(2, 2) and (4, 0) + (0, 4) components of the flux with respect to the lowest order complex

structure.

The analysis of the higher derivative equations of motion fixes the value of the eleven-

dimensional Weyl rescaling Φ(2) in terms of the lowest order metric g
(0)

mn̄ as

Φ(2) = −
512

3
Z , Z = ∗(0)(J (0) ∧ c

(0)

3 ) , (2.16)

where c
(0)

3 is the third Chern form built from g
(0)

mn̄. As c
(0)

3 is a closed real six-form on a

Kähler manifold we may write

c
(0)

3 = H (0)c
(0)

3 + i∂(0)∂̄(0)F , (2.17)

where H (0) indicates the projection to the harmonic part associated with the metric g
(0)

mn̄.

Using this decomposition we note that the scalar Z is given by

Z = ∗(0)(J (0) ∧H (0)c
(0)

3 ) +
1

4
∆(0) ∗(0) (J (0) ∧ J (0) ∧ F ) . (2.18)

The higher-derivative Einstein equations then fix the metric correction to be

g
(2)

mn̄ = 768∂(0)
m ∂̄

(0)

n̄ F̃ , F̃ = ∗(0)(J (0) ∧ J (0) ∧ F ) . (2.19)

This implies that the metric gmn̄ introduced in (2.13) is still Kähler and that the internal

part of the eleven-dimensional metric (2.12) is conformally Kähler. The field equations for

the M-theory three-form Ĉ and the external space Einstein equations then constrain the

warp-factor W (2) to satisfy

d†de3α
2W (2)

+ α2 1

2
G(1) ∧G(1) + 32213α2X8 +O(α3) = 0 . (2.20)

With these expressions one can demonstrate that all eleven-dimensional equations of motion

are indeed satisfied [3, 4]. For a compact Y4 the warp-factor equation (2.20) implies the

global consistency condition

1

32214

∫

Y4

G(1) ∧G(1) =
χ(Y4)

24
, (2.21)

– 6 –
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where χ(Y4) = −4!
∫

Y4
X8 is the Euler number of Y4. Using self-duality of the fluxes

G(1) one thus realizes that in higher-derivative terms cannot be consistently ignored if one

allows for a background flux. The somewhat unusual numerical factor in (2.21) stems from

our normalization of G(1) with α and can be removed when moving to quantized fluxes

Gflux = 1
3 26

√
2
G(1).

Let us close this section with a short discussion on supersymmetry. It should be

stressed that the full supersymmetric completion of the action (2.3) is not known and

neither have the supersymmetry variations of the fermions been written down. In [4] a

proposal was made for the gravitino variations including order α2-terms based on [5, 6].

It was shown to be compatible with the Einstein equations. At linear order in α the

supersymmetry variations were unchanged and the condition on the flux is the vanishing

of the (4, 0) + (0, 4)-component of G(1), i.e.

G(1)
mnrs = 0 , (2.22)

and the primitivity condition

G(1) ∧ J (0) = 0 . (2.23)

It was also argued in [4] that the presented solution for the metric is compatible with the

proposed Killing spinor equations at order α2. Since we will not bring the three-dimensional

effective action into standard N = 2 form, the discussion of supersymmetry will not be

crucial in this work.

3 Perturbations of the background

In subsection 2.2 we have reviewed a supersymmetric background with an internal compact

space that is conformally Kähler. We will now examine a set of deformations that preserve

the Kähler condition but change the chosen Kähler structure. Our whole discussion will

be carried out at fixed complex structure, i.e. there are no complex structure deformations

that will be switched on. In the following, the complex structure is chosen such that

the supersymmetry condition (2.22) on the flux is satisfied. At lowest order in α the

Kähler structure deformations are known to combine with vectors arising from the M-

theory three-form Ĉ into three-dimensional N = 2 multiplets, as discussed e.g. in [36, 37].

We therefore need to study vectors arising from Ĉ taking into account higher α-corrections

in subsection 3.1. The real scalars vi that correspond to the deformations of the Kähler

structure will be introduced in subsection 3.2. In this latter subsection we will also study the

variations of the warp-factor equation with respect to the Kähler structure deformations.

3.1 Vector modes from the M-theory three-form

Let us first examine the vector which arises in perturbations of the M-theory three-form

Ĉ. These correspond to a extra terms in the expansion of Ĝ of the form

δĜ = F i ∧ ω
(v)

i , (3.1)

– 7 –
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where F i = dAi and so provides the field strength for a three-dimensional vector Ai, and

ω
(v)

i are two-forms on the internal manifold. The tensor gauge symmetry of Ĝ translates

to the U(1) gauge symmetry of the Ai in the three-dimensional effective theory.

In order to make the meaning of (3.1) precise, we need to specify the two-forms ω(v)

i .

Therefore, as with the background fields studied in subsection 2.2, we consider the expan-

sion of ω(v)

i to order α2 as

ω
(v)

i = ω
(0)

i
(v) + α2ω

(2)

i
(v) . (3.2)

By making use of the Bianchi identity dĜ = 0 in the absence of localized sources we see

that dω(0)

i
(v) = dω

(2)

i
(v) = 0. The standard analysis of the lowest order reduction shows that

only the harmonic part of ω(0)

i
(v) contributes in the effective action and therefore we may

pick ω
(0)

i
(v) to be harmonic. On a Calabi-Yau fourfold this implies that ω

(0)

i
(v) is a (1, 1)-

form and one has i = 1, . . . , dim(H1,1(Y4)), where H1,1(Y4) is the (1, 1)-form cohomology

of Y4 whose dimension is independent of the metric chosen on Y4.

Let us next turn to ω
(2)

i
(v). We first note that ω

(0)

i
(v) can be redefined to absorb the

harmonic part of ω(2)

i
(v). This implies that ω(2)

i
(v) must be exact and as it is a real two-form

on a Kähler manifold the ∂∂̄-lemma implies that it can be obtained by a ∂(0)∂̄(0) of a scalar

ρ
(v)

i . In other words, one can write

ω
(0)

i
(v) = H (0)ω

(0)

i
(v) , ω

(2)

i
(v) = ∂(0)∂̄(0)ρ

(v)

i . (3.3)

The scalars ρ
(v)

i parametrizes our ignorance in incorporating the higher-derivative cor-

rections in the ansatz for the three-dimensional vector perturbations. Strictly speak-

ing the indices i on the ρ
(v)

i and hence ω
(2)

i
(v) and ω

(v)

i are not restricted to the range

1, . . . , dim(H1,1(Y4)) as before. However, as we will see in the explicit derivation of the

effective action, all ρ(v)

i actually drop out of the final expression and therefore cannot yield

additional dynamical fields. Interestingly, there is also a particular choice ρ
(v)

i one could

imagine, where ω
(v)

i is harmonic with respect to the full internal space metric (2.12).

3.2 Kähler structure deformations and the warp-factor

We now turn to the study of Kähler structure deformations of the conformally Kähler

metric in (2.12). In order to do that, we introduce variations

δgmn̄ = iδviω
(s)

imn̄ , (3.4)

where gmn̄ is the Kähler metric given in (2.13). The δvi correspond to scalars in the three-

dimensional effective theory, while the ω(s)

imn̄ is a set of two-forms on Y4. Despite the misuse

of notation, the field-range of the index i is not yet restricted. The key point is to consider

only ω
(s)

imn̄ that preserve the Kähler condition. As before we can expand the forms ω(s)

i in

α as

ω
(s)

i = ω
(0)

i
(s) + α2ω

(2)

i
(s) . (3.5)

Preserving the Kähler condition requires that we impose dω
(0)

i = dω
(2)

i = 0. As before,

we recall that at zeroth order in the parameter α the fluctuations δvi are the well-known

Kähler structure deformations of the Calabi-Yau metric g(0)

mn̄ and the ω(0)

i
(s) can be chosen to
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be harmonic (1, 1)-forms with i = 1, . . . , dim(H1,1(Y4)). We may then make a redefinition

to absorb the harmonic part of ω(2)

i
(s) so that ω

(2)

i
(s) = ∂(0)∂̄(0)ρ

(s)

i . We may then redefine

the δvi such that the lowest order harmonic (1, 1)-forms match those used in the vector

case

ω
(0)

i
(s) = ω

(0)

i
(v) = ω

(0)

i . (3.6)

Importantly the range of the index on the ρ(s)

i is once again a priori not restricted and there

could be many more δvi than harmonic forms. However, we will again see that all the ρ
(s)

i

as well as F̃ appearing in (2.19) do not appear in the three-dimensional effective action.

This implies that one can equally consider deformations of the form

δg
(0)

mn̄ = iδviω
(0)

imn̄ , (3.7)

while making sure that all other quantities in the ansatz that are built from g
(0)

mn̄ shift

accordingly. It will be also convenient to define scalars vi containing the background value

of g(0)

mn̄ by setting

g
(0)

mn̄ + δg
(0)

mn̄ = iviω
(0)

imn̄ (3.8)

There are two main complications that arise when discussing the Kähler structure

deformations in a warped flux compactification. Firstly, they will in general not all be

massless. Secondly, a change of Kähler structure will induce a shift in the warp-factor.

The first of these points is seen at linear order in α. When the shift (3.7) is made we see

that the primitivity condition G(1) ∧J (0) = 0 given in (2.23) is not preserved by the full set

of fluctuations. This means that for constant δvi the field equations do not remain solved

and so the full range of δvi no longer represent massless moduli of the background. Instead

the set of massless δvi now becomes those that satisfy

δviω
(0)

i ∧G(1) = 0 . (3.9)

These terms are responsible for the well known potential terms studied in the Calabi-Yau

fourfold reductions with fluxes in [36, 37]. That this result for the potential is not effected

by the higher-order corrections that result from higher-curvature terms is due to the fact

that the supersymmetry conditions receive no linear modification in α and the potential is

the square of this supersymmetry constraint.

Let us now focus on the warp-factor. Going to second order in α we find that in

addition to (2.15) the fluctuations δvi must also preserve the warp factor equation (2.20).

In order that this equation is preserved by the fluctuations we must now take the warp-

factor to depend both on the internal space position and also the fields δvi such that W (2) =

W (2)(ym, vi). When we perturb the background we will then find that the derivatives of

W (2) with respect to vi, denoted by ∂iW
(2), appear in these equations. We will only deduce

the effective action for the fluctuations δvi up to second order in δvi and therefore it will

suffice to consider W (2) to be described by the truncated Taylor series

W (2)(ym, vi) = W (2)|+ ∂iW
(2)|δvi +

1

2
∂i∂jW

(2)|δviδvj , (3.10)
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where W (2)| indicates the restriction of W (2) to the point in moduli space where δvi = 0.

Demanding that (2.20) is invariant up to second order in δvi we find that at first order in

δvi one has to impose

∇(0)m∇(0)n̄(g(0)

mn̄∂iW
(2)
∣

∣− iω
(0)

imn̄W
(2)|+ iω

(0)

i
r
rgmn̄W

(2)| − i2048ω(0)

i
s̄rZmn̄rs̄) = 0 , (3.11)

while at second order one constrains

∇(0)m∇(0)n̄(g(0)
mn̄∂i∂jW

(2)
∣

∣− 2iω(0)

(i|mn̄
∂|j)W

(2)| − 2ω(0)

(i|ms̄
ωs̄
|j)n̄W

(2)|+ ω
(0)

i
r
rω

(0)

j
s
sg

(0)
mn̄W

(2)| (3.12)

+ ω
(0)

i
r
sω

(0)

j
s
rg

(0)
mn̄W

(2)| − 4096ω(0)

i
s̄rω

(0)

i
t̄
t̄Zmn̄rs̄ − 2048ω(0)

i
s̄tω

(0)

it
rZmn̄rs̄ + 6114Yijmn̄) = 0 .

In these variational constraints we have defined

Zmm̄nn̄ =
1

4!
ǫ
(0)

mm̄m1m̄1m2m̄2m3m̄3
ǫ
(0)

nn̄n1n̄1n2n̄2n3n̄3
R(0)m̄1m1n̄1n1R(0)m̄2m2n̄2n2R(0)m̄3m3n̄3n3 ,

(3.13)

and

Yijmn̄ =
1

4!
ǫ
(0)
mm̄m1m̄1m2m̄2m3m̄3

ǫ
(0)
nn̄n1n̄1n2n̄2n3n̄3

∇(0)n
ω

(0)
i

m̄1m1∇(0)m̄
ω

(0)
j

n̄1n1R
(0)m̄2m2n̄2n2R

(0)m̄3m3n̄3n3 .

(3.14)

The observation that both equations (3.11) and (3.12) can be represented as total deriva-

tives in the internal space reflects the topological nature of the terms appearing in (2.20).

It turns out that the tensor Zmm̄nn̄ given in (3.13) plays a central role in the following

and is related to the key topological quantities on Y4. It satisfies the identities

Zmm̄nn̄ = Znm̄mn̄ = Zmn̄nm̄ , ∇(0)mZmm̄nn̄ = ∇(0)m̄Zmm̄nn̄ = 0 . (3.15)

It is related to the third Chern-form c
(0)

3 via

Zmm̄ = i2Zmm̄n
n =

1

2
(∗(0)c

(0)

3 )mm̄ ,

Z = i2Zm
m = ∗(0)(J (0) ∧ c

(0)

3 ) , ∗(0)(c(0)3 ∧ ω
(0)

i ) = −2Zmn̄ω
(0)

i
n̄m , (3.16)

and yields the fourth Chern-form c
(0)

4 by contraction with the Riemann tensor as

Zmm̄nn̄R
(0)m̄mn̄n = ∗(0)c

(0)

4 . (3.17)

We note that Yijmn̄ is also related to Zmm̄nn̄ upon integration as

∫

Y4

Yijm
m ∗(0) 1 = −

1

6

∫

Y4

(iZmn̄ω
(0)

i
r̄mω

(0)

j
n̄
r̄ + 2Zmn̄rs̄ω

(0)

i
n̄mω

(0)

j
s̄r) ∗(0) 1 , (3.18)

where the right hand side represents the same linear combination that will be relevant

in (B.6). We will see in the next section that the three-dimensional effective action con-

tains the various contractions of Zmm̄nn̄. Interestingly, the analog quantity on Calabi-Yau

threefolds has played a key role in the analysis of [21].
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4 The three-dimensional effective action

In this section we derive the three-dimensional effective action for the scalar and vector

fields introduced in section 3. The kinetic terms for the Kähler structure deformations and

vector fields will be discussed. In a flux background also Chern-Simons terms are induced

and will be included in our analysis.2 We also study a non-trivial field-dependent scaling

symmetry of the kinetic terms, which involves a rescaling of the warp-factor. Some of the

technical details of the performed reduction are supplemented in appendix B.

Having identified the background of eleven-dimensional action in section 2 and a set

of perturbations in section 3 we are now in a position to derive the three-dimensional

effective action using a dimensional reduction. To systematically approach this task we

will consider an expansion up to second order in the scalar fluctuations δvi and vectors Ai.

Furthermore, we will restrict our analysis to terms with only two external space derivatives

and only retain terms up to order α2.

For the convenience of the reader we begin by summarising the full ansatz that we will

use in the reduction. The perturbed eleven-dimensional metric takes the form

dŝ2 = e−
512
3

α2(Z|+∂iZ|δvi+ 1
2
∂i∂jZ|δviδvj)

[

e−2α2(W (2)|+∂iW
(2)|δvi+ 1

2
∂i∂jW

(2)|δviδvj)gµνdx
µdxν

+ 2eα
2(W (2)|+∂iW

(2)|δvi+ 1
2
∂i∂jW

(2)|δviδvj)(g(0)

mn̄ + ω
(0)

i mn̄dv
i (4.1)

+ α2∂m∂n̄(F̃ |+ ρ
(s)

i δvi + ∂iF̃ |δvi +
1

2
∂i∂jF̃ |δviδvj)

)

dymdyn̄
]

+O(α3) +O(δvi3) ,

while the perturbed M-theory four-form field strength is given by

Ĝ = αG(1) + F i ∧ ω
(0)

i + α2F i ∧ ∂∂̄ρ
(v)

i

+ ∗31 ∧ de−3α2(W (2)|+∂iW
(2)|δvi+ 1

2
∂i∂jW

(2)|δviδvj) +O(α3) +O(δvi3) . (4.2)

The rather involved form of this ansatz reflects the fact that the quantities present are

expanded in both α and δvi. Recall that the symbol | means evaluation at δvi = 0, ∂i are

derivatives with respect to vi, and ∂m, ∂n̄ are space-time derivatives in the lowest-order

complex structure of the internal manifold.

The quantities Z|, ∂iZ|, ∂i∂jZ| are directly evaluated by using the definition of Z

given in (3.16). Similarly one proceeds with the derivatives of F̃ = ∗(J ∧ J ∧ F ) given

in (2.19). In contrast, since the warp-factor W (2) is only known as a solution to the warp-

factor equation (2.20) one would have to apply (3.11) and (3.12) to determine ∂iW
(2)| and

∂i∂jW
(2)|. It turns out to be sufficient, however, to keep ∂iW

(2)| and ∂i∂jW
(2)| throughout

the analysis. Remarkably, we will find that all contributions involving ∂i∂jW
(2)| precisely

cancel, while the first derivatives ∂iW
(2)| appear in the correct way to ensure the presence of

a vi-dependent scaling symmetry involving the warp-factor. Before turning to the deriva-

tion, let us also note that one may include compensators in the effective action along the

lines of the discussion presented in [24, 27, 40]. However these do not change the effective

action at the studied order.

2Note that these terms are topological in nature and key in the study of chiral F-theory spectra and

anomalies [38, 39].
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In this subsection we only discuss the kinetic terms that are present in the reduction.

The reduction process is quite lengthy and makes use of the intermediate results listed in

appendix B. One inserts the ansatz (4.1), (4.2) into the eleven-dimensional action (2.3). The

dimensional reduction requires numerous partial integrations and uses multiple Schouten

and Bianchi identities, which was only possible by using a computer algorithm. Our goal

was to represent all three-dimensional terms using the higher-curvature tensor Zmm̄nn̄

introduced in (3.13). Combining all terms of the computation we find the action

Skin = S
(0)

kin + αS
(1)

CS + α2 S
(2)

kin , (4.3)

where at zeroth order one has

S
(0)

kin =
1

2κ11

∫

M3

[

Ω(0)R ∗ 1 + dδvi ∧ ∗dδvj
∫

Y4

(

1

2
ω

(0)

imn̄ω
(0)

j
n̄m − ω

(0)

im
mω

(0)

jn
n

)

∗(0) 1

+
1

2
F i ∧ ∗F j

∫

Y4

ω
(0)

imn̄ω
(0)

j
n̄m ∗(0) 1

]

, (4.4)

while at first order one finds the Chern-Simons terms

S
(1)

CS =
1

2κ11

∫

M3

ΘijA
j ∧ F i , Θij =

1

2
α

∫

Y4

ω
(0)

i ∧ ω
(0)

j ∧G(1) , (4.5)

and at second order

S
(2)
kin =

1

2κ11

∫

M3

[

Ω(2)
R ∗ 1 + dδv

i ∧ ∗dδvj
∫

Y4

(

3i∂iW
(2)|ω

(0)
jm

m + 3W (2)

(

1

2
ω

(0)
imn̄ω

(0)
j

n̄m − ω
(0)
im

m
ω

(0)
jn

n

)

− 768Zω
(0)
im

m
ω

(0)
jn

n + 3072iZmn̄ω
(0)
i

n̄m
ω

(0)
js

s + 3072Zmn̄rs̄ω
(0)
i

n̄m
ω

(0)
j

s̄r

)

∗(0) 1

+ F
i ∧ ∗F j

∫

Y4

((

3

2
W

(2) + 256Z

)

ω
(0)
imn̄ω

(0)
j

n̄m + 192(−7 + a1)iZmn̄ω
(0)
i

r̄m
ω

(0)
j

n̄
r̄

+ 384(1 + a1)Zmn̄rs̄ω
(0)
i

n̄m
ω

(0)
j

s̄r

)

∗(0) 1

]

. (4.6)

Here we have abbreviated

Ω(0) =

∫

Y4

[

1 + iδvi ω
(0)

im
m +

1

2
δviδvj(ω(0)

imn̄ω
(0)

j
n̄m − ω

(0)

im
mω

(0)

jn
n)

]

∗(0) 1 ,

Ω(2) =

∫

Y4

[

3W (2) + 3δvi
(

∂iW
(2)|+ iω

(0)

im
mW (2)

)

+ δvjδvi
(

3

2
∂i∂jW

(2)|

+ 3iω(0)

im
m∂jW

(2)|+
3

2
W (2)

(

ω
(0)

imn̄ω
(0)

j
n̄m − ω

(0)

im
mω

(0)

jn
n
)

)]

∗(0) 1 . (4.7)

A few comments are in order. Firstly, we show in appendix B that among all the terms

in (2.10) only A, Z1 an Z2 contribute, while Z3 to Z6 vanish identically. This implies

that the result should depend on two unknown parameters a1, a2 that appear in (2.10). It

turns out that for the choice a1 = a2 the result simplifies significantly and only depends

on Zmm̄nn̄ as is equally true for the reduction of all other term in the eleven-dimensional

action (2.3). We therefore have chosen a1 = a2 in (4.6). Secondly, we note that, as already

mentioned before, the scalar functions F̃ , ρ(s)
i and ρ(v)

i have totally dropped out of this

expression. This justifies the use of dim(H1,1(Y4)) deformations δvi and vectors Ai.
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The action (4.6) still depends on ∂i∂jW
(2), however, only through the coefficient of the

three-dimensional Einstein-Hilbert term. We now wish to Weyl rescale this action to bring

it to the Einstein frame and show that this dependence actually drops. From (A.5) one

finds that one needs to redefine the external metric by gµν → g′µν = Ω−2gµν for

Ω = Ω(0) + α2Ω(2) . (4.8)

Performing the Weyl rescaling we find that the kinetic terms displayed in (4.4) and (4.6)

become

S
(0)

kin =
1

2κ11

∫

M3

[

R ∗ 1 + dδvi ∧ ∗dδvj
1

V0

∫

Y4

(

1

2
ω

(0)

imn̄ω
(0)

j
n̄m + ω

(0)

im
mω

(0)

jn
n

)

∗(0) 1

+ F i ∧ ∗F j V0

2

∫

Y4

ω
(0)

imn̄ω
(0)

j
n̄m ∗(0) 1

]

, (4.9)

and

S
(2)

kin =
1

2κ11

∫

M3

[

dδvi ∧ ∗dδvj
(

1

V0

∫

Y4

(

− 9i∂iW
(2)|ω(0)

jm
m +

3

2
W (2)|ω(0)

imn̄ω
(0)

j
n̄m (4.10)

− 768Zω
(0)

im
mω

(0)

jn
n + 3072iZmn̄ω

(0)

i
n̄mω

(0)

is
s + 3072Zmn̄rs̄ω

(0)n̄m
i ω

(0)s̄r
j

)

∗(0) 1

−
1

V2
0

∫

Y4

3

2
W (2)| ∗(0) 1

∫

Y4

ω
(0)

imn̄ω
(0)

j
n̄m ∗(0) 1

)

+ F i ∧ ∗F j

(

V0

∫

Y4

((

3

2
W (2)|+ 256Z

)

ω
(0)

imn̄ω
(0)

j
n̄m + 192(−7 + a1)iZmn̄ω

(0)

i
r̄mω

(0)

j
n̄
r̄

+ 384(1 + a1)Zmn̄rs̄ω
(0)n̄m
i ω

(0)s̄r
j

)

∗(0) 1 +

∫

Y4

3

2
W (2)| ∗(0) 1

∫

Y4

ω
(0)

imn̄ω
(0)

j
n̄m ∗(0) 1

)]

,

where here we have introduced the zeroth-order volume

V0 =

∫

Y4

∗(0)1 . (4.11)

The warp-factor dependence can be nicely captured by introducing the warped volume

and warped metric

VW =

∫

Y4

e3α
2W (2)

∗(0) 1 , GW
ij =

1

2VW

∫

Y4

e3α
2W (2)

ω
(0)

i ∧ ∗(0)ω
(0)

j , (4.12)

which at zeroth order in α reduce to V0 and Gij =
1

2V0

∫

Y4
ω

(0)

i ∧∗(0)ω
(0)

j . We also introduce

KW
i = iVW ω

(0)

im
m +

9

2
α2

∫

Y4

∂iW
(2)| ∗(0) 1 , (4.13)

which at lowest order simply reduces to Ki = iV0 ω
(0)

im
m = 1

3!

∫

Y4
ω

(0)

i ∧ J (0) ∧ J (0) ∧ J (0).

With these definitions one rewrites the action (4.3) for all kinetic terms into the form

Skin =
1

2κ11

∫

M3

[

R ∗ 1− (GW
ij + V−2

W KW
i KW

j )dvi ∧ ∗dvj − V2
WGW

ij F
i ∧ ∗F j +ΘijA

i ∧ F i
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− dvi ∧ ∗dvj
α2

V0

∫

Y4

(

768Zω
(0)

im
mω

(0)

jn
n−3072iZmn̄ω

(0)

i
n̄mω

(0)

js
s−3072Zmn̄rs̄ω

(0)n̄m
i ω

(0)s̄r
j

)

∗(0) 1

+ F i ∧ ∗F jα2V0

∫

Y4

(

256Zω
(0)

imn̄ω
(0)

j
n̄m + 192(−7 + a1)iZmn̄ω

(0)

i
r̄mω

(0)

j
n̄
r̄

+ 384(1 + a1)Zmn̄rs̄ω
(0)n̄m
i ω

(0)s̄r
j

)

∗(0) 1

]

, (4.14)

where we have replaced dδvi directly with dvi. Expanding to order α2 one indeed recovers

the above result.

It is interesting to observe that the three-dimensional effective action permits a scaling

symmetry involving the rescaling of the warp-factor. We begin by noting that the eleven-

dimensional background ansatz given in subsection 2.2 has a symmetry under which

W (2) → W (2) + Λ(2) , gmn̄ → e−α2Λ(2)
gmn̄ , gµν → e2α

2Λ(2)
gµν , (4.15)

for Λ(2) = Λ(2)(xµ). This can be extended to a symmetry of the perturbed background (4.1)

and (4.2) by requiring that

vi → e−α2Λ(2)
vi . (4.16)

This then implies that

dvi → e−α2Λ(2)
dvi − α2vi ∂jΛ

(2)dvj , (4.17)

if we further restrict Λ(2) = Λ(2)(vi). When the reduction is performed this the becomes a

symmetry of the effective action before the Weyl rescaling to move to the Einstein frame

is performed. When the rescaling is performed the value of Ω in gµν → g′µν = Ω−2gµν

transforms as Ω → e−α2W (2)
Ω so that the rescaled metric does not transform. The final

form of the effective action coming from the dimensional reduction is then invariant under

the symmetry

W (2) → W (2) + Λ(2) , vi → e−α2Λ(2)
vi . (4.18)

We note that the ∂iW
(2) terms in the δvi kinetic terms are key to ensuring the symmetry of

the action for Λ(2) as a function of vi, as they covariantize the derivatives which appear in the

reduction. Indeed, this symmetry can be made manifest by introducing a covariant deriva-

tive for vi. Furthermore we note that if we make the choice a1 = 7 then using the definitions,

GT
ij = GW

ij + 256
1

V2
0

∫

Y4

Z ∗(0) 1

∫

Y4

ω
(0)

i mn̄ω
(0)

j
n̄m ∗(0) 1

− 256
1

V0

∫

Y4

[

Zω
(0)

i mn̄ω
(0)

j
n̄m + 12Zmn̄rs̄ω

(0)

j
n̄mω

(0)

i
s̄r

]

∗(0) 1 ,

KT
i = Ki+α2

∫

Y4

[

1

3!
(3W (2)−128Z)J (0) ∧ J (0) ∧ J (0) ∧ ω

(0)

i −1536Zmn̄ω
(0)

i
n̄m ∗(0) 1

]

,

VT = VW + α2256

∫

Y4

Z ∗(0) 1 , Dvi = dvi + α2vidvj
∫

Y4

∂jW
(2) ∗(0) 1 , (4.19)
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the action takes the simple form3

Skin =
1

2κ11

∫

M3

[

R∗1−(GT
ij+V−2

T KT
i K

T
j )Dvi∧∗Dvj−V2

TG
T
ijF

i∧∗F j+ΘijA
i∧F i

]

. (4.21)

Where now it is clear that under (4.18)

GT
ij → e2α

2Λ(2)
GT
ij , VT → e−α2Λ(2)

VT , KT
i → KT

i , Dvi → e−α2Λ(2)
Dvi , (4.22)

so that the action (4.21) is invariant.

Finally, let us briefly discuss the potential of the three-dimensional effective theory. It

is well-known that it contains a flux-dependent part given by [36, 37]

Spot =
α2

4κ11

∫

M3

∗1

∫

Y4

(G(1) ∧ ∗G(1) −G(1) ∧G(1)) , (4.23)

in which the internal Hodge star is evaluated in the perturbed zeroth-order metric (3.8)

which sees the full vi. This term is responsible for imposing self-duality of G(1) in the vac-

uum. With our restriction to Kähler deformations this implies that G(1) remains primitive

with respect to the perturbed metric (3.8) for massless fluctuations, i.e. the ones satisfy-

ing (3.9). We can easily see that warping or higher-curvature corrections which multiply

this result will yield corrections that are higher than order α2 and thus cannot be reliably

analyzed using our ansatz. Furthermore, we propose that at order α2 there are no terms

added to (4.23) that are only dependent on the warping and internal space higher-curvature

terms, as the background we analyse is invariant under the perturbations we consider as

long as G(1) remains self-dual. This will be demonstrated in [20].

Let us close by noting that in a next step one has to bring the action into standard

N = 2 form and determine a kinetic potential and the correct N = 2 coordinates. This

will be done in the second part of this paper [20].

A Conventions, definitions, and identities

In this work we denote the eleven-dimensional space indices by capital Latin letters

M,N,R = 0, . . . , 10, the external ones by µ, ν = 0, 1, 2, and the internal complex ones

by m,n, p = 1, . . . , 4 and m̄, n̄, p̄ = 1, . . . , 4. Eleven-dimensional quantities for which the

indices are raised and lower with the total space metric carry a hat, for example the

M-theory three-form is denoted by Ĝ. Furthermore, the convention for the totally anti-

symmetric tensor in Lorentzian space in an orthonormal frame is ǫ012...10 = ǫ012 = +1. The

epsilon tensor in d dimensions then satisfies

ǫR1···RpN1...Nd−pǫR1...RpM1...Md−p
= (−1)s(d− p)!p!δN1

[M1
. . . δNd−p

Md−p] , (A.1)

3Note that in making this match we have used that
∫

M3

dv
i ∧ ∗dvj

1

V0

∫

Y4

Zω
(0)
i ∧ ∗(0)ω

(0)
j =

∫

M3

dv
i ∧ ∗dvj

1

V2
0

∫

Y4

Z
(0) ∗ 1

∫

Y4

ω
(0)
i ∧ ∗(0)ω

(0)
j

∫

M3

dv
i ∧ ∗dvj

1

V0

∫

Y4

Wω
(0)
i ∧ ∗(0)ω

(0)
j =

∫

M3

dv
i ∧ ∗dvj

1

V2
0

∫

Y4

W ∗(0) 1

∫

Y4

ω
(0)
i ∧ ∗(0)ω

(0)
j (4.20)

which can be demonstrated by taking using integration by parts in the external space.
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where s = 0 if the metric has Riemannian signature and s = 1 for a Lorentzian metric.

We adopt the following conventions for the Christoffel symbols and Riemann tensor

ΓR
MN =

1

2
gRS(∂MgNS + ∂NgMS − ∂SgMN ) , RMN = RR

MRN ,

RM
NRS = ∂RΓ

M
SN−∂SΓ

M
RN+ΓM

RTΓ
T
SN−ΓM

STΓ
T
RN , R = RMNgMN , (A.2)

with equivalent definitions on the internal and external spaces.

The terms t̂8t̂8R̂
4 and t̂8t̂8Ĝ

2R̂3 in (2.4) and (2.5) require the definition

t̂N1...N8

8 =
1

16

(

− 2
(

ĝN1N3 ĝN2N4 ĝN5N7 ĝN6N8 + ĝN1N5 ĝN2N6 ĝN3N7 ĝN4N8 + ĝN1N7 ĝN2N8 ĝN3N5 ĝN4N6

)

+ 8
(

ĝN2N3 ĝN4N5 ĝN6N7 ĝN8N1 + ĝN2N5 ĝN6N3 ĝN4N7 ĝN8N1 + ĝN2N5 ĝN6N7 ĝN8N3 ĝN4N1

)

− (N1 ↔ N2)− (N3 ↔ N4)− (N5 ↔ N6)− (N7 ↔ N8)
)

. (A.3)

In order to discuss the term ŝ18 appearing in (2.6) and (2.10) we introduce the basis

B1 = R̂N1N2N3N4
R̂N5N6N7N8

∇̂N5ĜN1N7N8

N9
∇̂N3ĜN2N4N6N9 ,

B13 = R̂N1N2N3N4
R̂N5

N1

N6

N3∇̂N9
ĜN2N6

N7N8
∇̂N9ĜN4N5N7N8 ,

B2 = R̂N1N2N3N4
R̂N5N6N7N8

∇̂N5ĜN1N3N7

N9
∇̂N8ĜN2N4N6N9 ,

B14 = R̂N1N2N3N4
R̂N5

N1

N6

N3∇̂N9
ĜN2N4

N7N8
∇̂N9ĜN5N6N7N8 ,

B3 = R̂N1N2N3N4
R̂N5N6N7N8

∇̂N5ĜN1N3N7

N9
∇̂N6ĜN2N4N8N9 ,

B15 = R̂N1N2N3N4
R̂N5

N1

N6

N3∇̂N2ĜN6

N7N8N9
∇̂N5ĜN4N7N8N9 ,

B4 = R̂N1N2N3N4
R̂N5N6N7N8

∇̂N9
ĜN3N4N7N8∇̂N6ĜN9N1N2N5 ,

B16 = R̂N1N2N3N4
R̂N5

N1

N6

N3∇̂N2ĜN4

N7N8N9
∇̂N5ĜN6N7N8N9 ,

B5 = R̂N1N2N3N4
R̂N5N6N7

N4∇̂N1ĜN2N3

N8N9
∇̂N5ĜN6N7N8N9 ,

B17 = R̂N1N2N3N4
R̂N5

N1

N6

N3∇̂N2ĜN5

N7N8N9
∇̂N4ĜN6N7N8N9 ,

B6 = R̂N1N2N3N4
R̂N5N6N7

N4∇̂N1ĜN2N5

N8N9
∇̂N3ĜN6N7N8N9 ,

B18 = R̂N1N2N3N4
R̂N5

N1

N6

N3∇̂N9
ĜN5N6

N7N8
∇̂N4ĜN2N7N8N9 ,

B7 = R̂N1N2N3N4
R̂N5N6N7

N4∇̂N1ĜN2N5

N8N9
∇̂N7ĜN3N6N8N9 ,

B19 = R̂N1N2N3N4
R̂N5N6

N3N4∇̂N9
ĜN1N5

N7N8
∇̂N9ĜN2N6N7N8 ,

B8 = R̂N1N2N3N4
R̂N5N6N7

N4∇̂N1ĜN3N5

N8N9
∇̂N2ĜN6N7N8N9 ,

B20 = R̂N1N2N3N4
R̂N5N6

N3N4∇̂N1ĜN5

N7N8N9
∇̂N2ĜN6N7N8N9 ,

B9 = R̂N1N2N3N4
R̂N5N6N7

N4∇̂N1ĜN3N5

N8N9
∇̂N6ĜN2N7N8N9 ,

B21 = R̂N1N2N3N4
R̂N5N6

N3N4∇̂N1ĜN5

N7N8N9
∇̂N6ĜN2N7N8N9 ,

B10 = R̂N1N2N3N4
R̂N5N6N7

N4∇̂N9
ĜN3N5N7N8∇̂N9ĜN1N2N6N8 ,

B22 = R̂N1N2N3N4
R̂N5

N1N3N4∇̂N2ĜN6N7N8N9
∇̂N5ĜN6N7N8N9 ,

B11 = R̂N1N2N3N4
R̂N5N6N7

N4∇̂N8
ĜN1N2N6

N9
∇̂N9ĜN3N5N7N8 ,

B23 = R̂N1N2N3N4
R̂N5

N1N3N4∇̂N9
ĜN2

N6N7N8
∇̂N9ĜN5N6N7N8 ,

B12 = R̂N1N2N3N4
R̂N5N6N7

N4∇̂N3ĜN5N6

N8N9
∇̂N7ĜN2N1N8N9 ,

B24 = R̂N1N2N3N4
R̂N1N2N3N4∇̂N5

ĜN6N7N8N9
∇̂N6ĜN5N7N8N9 . (A.4)

The contributions to ŝ18(∇̂Ĝ)2R̂2 are then formed from the linear combinations described

in (2.10).
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We note that performing a Weyl rescaling of the three dimensional external metric

with g′µν = Ω−2gµν one finds that

∫

M3

ΩR′ ∗′3 1 =

∫

M3

(

R ∗3 1−
2

Ω2
∇µΩ∇

µΩ ∗3 1

)

. (A.5)

Finally we demonstrate that the 3d effective action may be simplified by using the

intersection structures

Kijkl =

∫

Y4

ω
(0)

i ∧ ω
(0)

j ∧ ω
(0)

k ∧ ω
(0)

l , Kijk = Kijklv
l , Kij =

1

2
Kijklv

kvl ,

Ki =
1

3!
Kijklv

jvkvl , V0 =
1

4!
Kijklv

ivjvkvl , (A.6)

B Results of the dimensional reduction

B.1 Two derivative terms

The reduction of the lowest order part of the action (2.3) gives the following contribution

to the Kinetic terms of the 3d theory

S(0)|kin =
1

2κ11

∫

M3

R ∗ 1

∫

Y4

[

eα
2(3W (2)−768Z)

(

1+iδviω
(0)

im
m+

1

2
δviδvj

(

ω
(0)

imn̄ω
(0)

j
n̄m−ω

(0)

im
mωjn

n
)

)

+ 3α2δvi∂iW
(2)|+ 3iα2δviδvj ∂(iW

(2)|ωj)m
m +

3

2
α2δviδvj∂i∂jW

(2)|

+ 1536α2δviZmn̄ω
(0)

i
n̄m + i768α2Zδviω

(0)

im
m

+ 384α2Zδviδvjω
(0)

imn̄ω
(0)

j
n̄m − 384α2δviδvjZω

(0)

im
mω

(0)

jn
n

]

∗(0) 1

+
1

2κ11

∫

M3

dδvi ∧ ∗dδvj
∫

Y4

[

eα
2(3W (2)−768Z)

(

1

2
ω

(0)

imn̄ω
(0)

j
n̄m − ω

(0)

im
mωjn

n

)

+ 3iα2∂(iW
(2)|ω(0)

j)m
m + 3072α2iZmn̄ω

(0)

i
n̄mω

(0)

js
s − 1536α2Zω

(0)

im
mω

(0)

jn
n

]

∗(0) 1

+
1

2κ11

1

2

∫

M3

F i ∧ ∗F j

∫

Y4

eα
2(3W (2)−256Z)ω

(0)

imn̄ω
(0)

j
n̄m ∗(0) 1

+ α
1

2κ11

∫

M3

F i ∧Aj

∫

Y4

1

2
G(1) ∧ ω

(0)

i ∧ ω
(0)

j . (B.1)

It is interesting to note that in these terms the value of F̃ , ρ(s)

i and ρ
(v)

i drop out of these

expressions as they contribute only internal space total derivatives to the 3d effective theory.

B.2 Eight derivative terms

Let us record the reduction of certain higher derivative terms which are used as interme-

diate results in deriving the effective action (4.3). These results were computed using the

mathematica package xAct and required the use of several internal space total derivative

and schouten identities.
∫

t̂8t̂8R̂
4∗̂1|kin =

1

2κ11

∫

M3

dδvi ∧ ∗dδvj
∫

Y4

384
(

Zω
(0)

imn̄ω
(0)

j
n̄m+4Zmn̄rs̄ω

(0)

i
n̄mω

(0)

j
s̄r
)

∗(0) 1 ,
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−
1

24

∫

ǫ̂11ǫ̂11R̂
4∗̂1|kin =

1

2κ11

∫

M3

R ∗ 1

∫

Y4

(

768Z − 1536δviZmn̄ω
(0)

i
n̄m

)

∗(0) 1

+
1

2κ11

∫

M3

dδvi ∧ ∗dδvj
∫

Y4

1536Zmn̄rs̄ω
(0)

i
n̄mω

(0)

j
s̄r ∗(0) 1 ,

∫

Y4

32213Ĉ ∧ X̂8|kin = 0 . (B.2)

Similarly we note that the reduction of the Ĝ2R̂3 terms uses the identities

−

∫

t̂8t̂8Ĝ
2R̂3∗̂1|kin =

1

2κ211
384

∫

M3

F i ∧ ∗F j

∫

Y4

[

Zω
(0)

imn̄ω
(0)

j
n̄m

− 4iZmn̄ω
(0)

i
r̄mω

(0)

j
n̄
r̄ − 4Zmn̄rs̄ω

(0)n̄m
i ω(0)s̄r

j

]

∗(0) 1,

−
1

96

∫

ǫ̂11ǫ̂11Ĝ
2R̂3∗̂1|kin =

1

2κ211
1536

∫

M3

F i ∧ ∗F j

∫

Y4

Zmn̄rs̄ω
(0)

i
n̄mω

(0)

j
s̄r ∗(0) 1. (B.3)

Finally reducing the (∇̂Ĝ)2R̂2 terms in (2.3) gives
∫

ŝ18(∇̂Ĝ)2R̂2∗̂1|kin =
1

2κ2
11

∫

M3

1

2
F

i ∧ ∗F j

∫

Y4

[

− 96(1 + a2)ω
(0)
i

m̄n
ω

(0)
j

r̄r
R

(0)s̄
r̄n

s
R

(0) t̄
s̄r

t
R

(0)

sm̄tt̄

− 48(2 + a1 + a2)ω
(0)
i

m̄n
ω

(0)
j

r̄r
R

(0)s̄s
t
u
R

(0)
n m̄r

t
R

(0)
sr̄us̄ + 48(1 + a1)ω

(0)
i

m̄n
ω

(0)
j

r̄r
R

(0)s̄
m̄r

s
R

(0) t̄
r̄n

t
R

(0)

ss̄tt̄

+ 48(1 + a2)ω
(0)
i

m̄n
ω

(0)
j

r̄r
R

(0)s̄
m̄n

s
R

(0) t̄
r̄r

t
R

(0)

ss̄tt̄
− 48(2 + a1 + a2)ω

(0)
i

m̄n
ω

(0)
j

r̄r
R

(0)s̄
m̄nr̄R

(0) t̄s
r
t
R

(0)

ss̄tt̄

+ 24(1 + a1)ω
(0)
i

m̄n
ω

(0)
j

r̄r
R

(0)s̄st̄t
R

(0)
nm̄rr̄R

(0)

ss̄tt̄
+ 48(1 + a2)ω

(0)
i

m̄n
ω

(0)
j

r̄r
R

(0)s̄s
n
t
R

(0)
rs̄s

u
R

(0)
tm̄ur̄

+ 48(a1 − a2)ω
(0)
i

m̄n
ω

(0)
j

r̄r
R

(0)s̄
r̄n

s
R

(0)
r
t
s
u
R

(0)
tm̄us̄ − 48(1 + a1)ω

(0)
i

m̄n
ω

(0)
j n

r
R

(0)r̄
m̄s

t
R

(0)s̄s
r
u
R

(0)
tr̄us̄

+ 48(1 + a1)ω
(0)
i

m̄n
ω

(0)
j n

r
R

(0)r̄
m̄r

s
R

(0)s̄t
s
u
R

(0)
tr̄us̄ + 48(1 + a2)ω

(0)
i

m̄n
ω

(0)
j

r̄r
R

(0)s̄
m̄s

t
R

(0)
n
s
r
u
R

(0)
tr̄us̄

+ 96(1 + a2)ω
(0)
i

m̄n
ω

(0)
j

r̄r
R

(0)s̄
m̄n

s
R

(0)
r
t
s
u
R

(0)
tr̄us̄ − 48(1 + a1)ω

(0)
i

m̄n
ω

(0)
j n

r
R

(0)r̄s
r
t
R

(0)
s
u
t
v
R

(0)
um̄vr̄

+ 48(1 + a2)ω
(0)
i

m̄n
ω

(0)
j

r̄r
R

(0)
n
s
r
t
R

(0)
s
u
t
v
R

(0)
um̄vr̄

]

∗(0) 1 (B.4)

Where we see directly that in the reduction Z3 = Z4 = Z5 = Z6 = 0. The result above

represents the only terms in the reduction result that can not be expressed in terms of

Zmm̄nn̄ for arbitrary choice of the parameters a1 and a2. For this reason we now make the

choice a1 = a2 which then allows the result to be rewritten as
∫

ŝ18(∇̂Ĝ)2R̂2∗̂1|kin =
192(1 + a1)

2κ2
11

∫

M3

F
i ∧ ∗F j

∫

Y4

(iZmn̄ω
(0)
i

r̄m
ω

(0)
j

n̄
r̄ + 2Zmn̄rs̄ω

(0)
i

n̄m
ω

(0)
j

s̄r) ∗(0) 1 .

(B.5)

Furthermore we note that if the basis (A.4) is reduced with and arbitrary set of coeffi-

cients and then we demand that the result can be expressed in terms of Zmm̄nn̄, then only

a multiple of the linear combination
∫

M3

F i ∧ ∗F j

∫

Y4

(iZmn̄ω
(0)

i
r̄mω

(0)

j
n̄
r̄ + 2Zmn̄rs̄ω

(0)

i
n̄mω

(0)

j
s̄r) ∗(0) 1 , (B.6)

is produced.
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