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1 Introduction

The present stage of development of String/M-theory is characterized, at least partially, by

exploiting the possibility to make manifest duality symmetries by introducing additional

bosonic coordinates. Double field theory (DFT) [1–11] designed to have a manifest T-

duality symmetry, characteristic for string theory (see e.g. [12]), is formulated in the space

with doubled number of (D=10) spacetime coordinates. To make manifest the U-duality

symmetry of M-theory [13] one develops “En(n) exceptional field theories” (EFTs) [14–25]

which are also formulated in spacetime with additional bosonic coordinates yΣ. In both

cases the dependence of the fields on additional coordinates is restricted by the so-called

section conditions the strong version of which is imposed on a pair of any two functions of

the theory.

A progress in comprehension of structure and clarification of the origin of these mys-

terious conditions are one of the main goals of this paper.

In the case of double field theory the strong section conditions are imposed on any pair

of two functions of 2D coordinates and are solved by the conditions that all the physical

fields depend only on D of 2D bosonic coordinates. The manifest T-duality is provided by

the freedom in choosing the set of these D of the complete set of 2D coordinates, which

is often referred to as choice of the section (hence the name of section conditions). An

interesting approach relating section conditions of DFT to a very special gauge symmetry

(‘gauge coordinate transformations’) was developed in [26, 27].

In ‘exceptional field theory’ the situation is a bit more complicated, but also more

illustrative. To make manifest En(n) duality symmetry the number of spacetime coordinates

is generically more then doubled and the origin of the corresponding section conditions is

more obscure.
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It this paper we try to understand better the structure and meaning of section condi-

tions by approaching them from the perspective of superparticle model in central charge

superspace. We restrict ourselves by a particular but important and illustrative case of

E7(+7) effective field theory which is formulated in the space with 60 = 4 + 56 bosonic

coordinates (xµ, yΣ) and the first observation beyond our approach is that the additional

56 coordinates yΣ can be associated with central charges ZΣ = (Z̄ij , Z
ij) of the maximal

D = 4 N = 8 supersymmetry algebra

{Qi
α, Q

j
β} = ǫαβZ

ij , {Qi
α, Q̄β̇j} = δijσ

a
αβ̇

Pa , {Q̄α̇i, Q̄β̇j} = ǫα̇β̇Z̄ij . (1.1)

The supergroup manifold Σ
(60|32)
0 corresponding to this superalgebra is called central charge

superspace. The set of their coordinates contains, besides the coordinates of standards

N = 8 d = 4 superspace, also 56 bosonic coordinates yΣ = (yij , ȳij), which can be called

central charge coordinates. The curved version of central charge superspace, Σ(60|32), was

used for alternative superspace formulation of D = 4 N = 8 supergravity in [28] (see

also [29]).

The use of (curved) central charge superspace allowed the authors of [28] to replace

the superform generalization of 28 gauge fields of the supergravity multiplets and their 28

magnetic duals (which both appear in supergravity formulation in the standard N = 8

superspace [30, 31]) by the bosonic supervielbein forms corresponding to new coordinates,

yΣ = (yij , ȳij). To remove the unwanted extra degrees of freedom, all the (super)fields are

assumed in [28, 29] to be independent on yΣ, i.e. the conditions

∂Σ(. . .) = 0 (1.2)

are imposed.1 With this condition the model in central charge superspace is equivalent to

D = 4 N = 8 supergravity [32].

From the above perspective one can state that the E7(+7) EFT of [17, 19, 21] was

formulated in a bosonic body of the central charge superspace. In it one imposes, instead

of (1.2), the following strong section conditions

tE
ΣΠ∂Σ ⊗ ∂Π = 0 , (1.3)

ΞΣΠ∂Σ ⊗ ∂Π = 0. (1.4)

We refer on the main text for the notation and more details (see section 2, eqs. (2.1), (2.2)

and below) and just notice here that the 56× 56 matrix Ξ (symplectic ‘metric’) is antisym-

metric ΞΣΠ = −ΞΠΣ while 133 matrices tE
ΣΠ (related to the generators tEΛ

Π of E7(+7) by

tE
ΣΠ = ΞΣΛtEΛ

Π) are symmetric, tE
ΣΠ = tE

ΠΣ, and the direct product symbol reflects the

fact that these conditions are applied to any pair of the functions of the EFT. In addition,

the weak section conditions

tE
ΣΠ∂Σ∂Π(. . .) = 0. (1.5)

1To be precise, [29] uses the condition DΣ(. . .) = 0 with SL(2,C)× SU(8) covariant derivative D.
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are obeyed by any function of EFT. Notice that this is a counterpart of the strong condi-

tion (1.3) while the weak counterpart of (2.2) is satisfied identically due to antisymmetry

of symplectic ‘metric’, ΞΣΠ∂Σ∂Π ≡ 0.

The general expectation is that the result of imposing the strong section condition is

that all the fields depend on a smaller number ñ of ‘internal’ coordinates ỹr, schematically

∂Σ(. . .) = KΣ
r∂r(. . .) , ∂r =

∂

∂ỹr
, r = 1, . . . , ñ (1.6)

with some 56×ñ matrix KΣ
r. A possible choice of this latter defines a section (i.e. a

particular solution of the section conditions).

In the case of E7(7) EFT [17, 19, 21] the solutions with ñ = n = 7 (we will discuss

this below) and with ñ = 6 are found and shown to correspond to the embedding of D=11

and D=10 type IIB supergravity into the EFT. The general expectation is that ñ ≤ n for

any solution of the strong section conditions: on physical/M-theoretic grounds one should

not expect to have a solution allowing physical fields depend on more than 11 coordinates.

However, to our best knowledge, this fact has not been proved till now.2 Below we will

show that this is indeed the case. In achieving this the suggestions obtained by studying

superparticle in central charge superspace happens to be useful.

When particle mechanics in central charge superspace is considered, the momenta

pΣ = (p̄ij , p
ij) conjugate to the central charge coordinates yΣ serves as prototypes of the

derivatives ∂Σ. As pΣ are commutative canonical variables, both the strong and the weak

section conditions are represented in superparticle model by

tE
ΣΠ pΣ pΠ = 0. (1.7)

Again, as in the case of weak section conditions, the ‘classical’ counterpart of the condi-

tions (2.2) is satisfied identically due to antisymmetry of symplectic metric, ΞΣΠpΣpΠ ≡ 0.

If we perform a straightforward ‘quantization’ of (1.7) by replacing the momentum by

derivative,

pΣ 7→ −i∂Σ , (1.8)

consider (1.7) as a (first class) constraint and impose its quantum version as a condition

on the wave function, we clearly arrive at the weak version (1.5) of the section condition.

However, let us imagine that we first solved the classical mechanic relation (1.7) and

shown that its general solution have the form

pΣ = KΣ
rpr , r = 1, . . . , ñ (1.9)

with some set of independent (or constrained among themselves) pr, r = 1, . . . , ñ. Then,

performing the quantization of (1.9) with a prescription of (1.8) (and assuming that pr’s are

conjugate to some subset yr of central charge coordinates yΣ) we arrive at the solution (1.6)

of the strong section conditions.3 Moreover, on this way, one can help to find the general

2The author thanks Henning Samtleben for a discussion on this and related issues.
3Probably the understanding of this fact was also a motivation beyond the recent study in [40].
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solution of the strong section conditions. Below we will find this for the E7(+7) EFT and

show that this general solution is described by the expression of the type (1.9) modulo the

SU(8) transformations.

The above discussion motivated us to search for supersymmetric mechanics models in

Σ(60|32) which might generate ‘classical section conditions’ (CSCs) (1.7). Moreover, it is

not difficult to conclude that if such a hypothetical model is found in curved Σ(60|32), that

interesting property should be preserved in flat superspace.

In this paper we present a superparticle model in flat central charge superspace Σ
(60|32)
0

which generates a part of (1.7). It can be considered as an improved version of model

proposed by de Azcárraga and Lukierski in 1986 [42] which we also discuss below. The fact

that the model produces only a part of CSCs (1.7), tH
ΣΠ pΣ pΠ = 0 involving the generators

of a maximal compact subgroupH = SU(8) of the E7(+7) group, suggested us that probably

the general solution of this part gives also the general solution of the complete set of the

CSCs (1.7). We show that this is indeed the case so that the independent part of the section

conditions of the E7(+7) exceptional field theory are the conditions corresponding to the

generators of H = SU(8) subgroup of E7(+7) . It will be interesting to understand whether

this situation is also reproduced in the case of other En(n) exceptional field theories.

2 Preliminaries

2.1 Section conditions of E7(+7) exceptional field theory

As we have already said, the exceptional field theory which has a manifest E7(+7) symmetry

(E7(+7) EFT) [17, 19, 21] is defined in spacetime with 60 = 4 + 56 bosonic coordinates, of

which 4 are the usual D=4 spacetime coordinates, xµ, and the remaining 56, yΣ, can be

considered as a vector in the fundamental representation of E7(+7). Already in early 80th

such yΣ had been introduced in the superfield approach to maximal D=4 supergravity [28,

29] as coordinates of central charge superspace, so that from now on we will call them

‘central charge coordinates’.4

In the EFT framework the dependence of the fields on central charge coordinates is

restricted by the strong section conditions. In the case of E7(+7) ETF these read [17, 19, 21]

tG
ΣΠ∂ΣF1 ∂ΠF2 = 0 , (2.1)

ΞΣΠ∂ΣF1 ∂ΠF2 = 0 . (2.2)

Here F1 and F2 are arbitrary ‘physical’ functions of the coordinates yΣ of extended space-

time, ΞΠΛ = −ΞΛΠ is the invariant tensor of Sp(56) (symplectic ‘metric’), Λ,Π,Σ =

1, . . . , 56; tG
ΣΠ = ΞΠΛtG Λ

Σ where tG Λ
Σ are E7(+7) generators in 56 representation,

G = 1, . . . , 133. A compact way of writing eq. (2.1), (2.2) is given above in (1.3) and (1.4).

In EFT every physical function F also obeys a weak section condition

tG
ΣΠ∂Σ∂ΠF = 0 . (2.3)

4These coordinates can also be extracted from the set of D=11 tensorial central charge coordinates [33–

36] which in their turn can be considered as finite subset of the infinite set of tensorial coordinates which

appeared in [37] in the frame of E11 proposal [38, 39].
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This is a counterpart of (2.1) with both derivatives applied to one function F ; clearly the

weak counterpart of (2.2) is satisfied identically.

The fundamental 56 representation of E7(+7) can be decomposed on the sum of 28 and

28 representations of its maximal compact subgroup SU(8), so that the natural splitting

of the set of additional bosonic coordinates is

yΣ = (yij , ȳij) , yij = −yji , (yij)∗ = ȳij , i, j = 1, . . . , 8 . (2.4)

This splitting was implied when we called yΣ central charge coordinates. The corresponding

decomposition of derivatives is

∂Σ :=
∂

∂yΣ
= (∂̄ij , ∂

ij) , ∂̄ijy
kl = δ[i

kδj]
l =

1

2

(

δi
kδj

l − δj
kδi

l
)

. (2.5)

The adjoint 133 representation of E7(+7) can be decomposed as 133=70+63; in par-

ticular the set of generators of G = E7(+7) splits onto the set of 63 H = SU(8)-generators

tH = ti
j and 70 G/H = E7(+7)/SU(8) generators tG/H

tG = (tG/H , tH) = (tijkl, ti
j) ,

(tijkl)
† = t̄ijkl = 1/4!ǫijklpqrstpqrs , (ti

j)† = tj
i , ti

i = 0 . (2.6)

Using this splitting we can write the strong section conditions (1.3) as

∂[ij ⊗ ∂kl] −
1

4!
ǫijkli′j′k′l′ ∂̄

i′j′ ⊗ ∂̄k′l′ = 0 , (2.7)

∂ik ⊗ ∂̄jk + ∂̄jk ⊗ ∂ik −
1

4
δi

j∂kl ⊗ ∂̄kl = 0 . (2.8)

E7(+7) is the subalgebra of Sp(56) and the above representation of the E7(+7) genera-

tor is given for the case of the following representation of the symplectic metric ΞΣΠ =
(

0 I28×28

−I28×28 0

)

. Hence the Sp-part of string section condition, (2.2), reads

∂ij ⊗ ∂̄ij − ∂̄ij ⊗ ∂ij = 0 . (2.9)

The strong section conditions (2.9)–(2.8) allow for dependence of all the fields on 7

additional coordinates; the corresponding solution describes embedding of the standard

11D supergravity [41] in the E7(+7) exceptional field theory [17, 19]. In [17, 19] it was also

described a solution of section with functions depending on 6 additional bosonic coordi-

nates, which corresponds to embedding of 10D type II supergravity in the exceptional field

theory (see also recent [23]). Below we will show that there are no solution of the strong

section conditions with functions depending on more than 7 additional coordinates.

2.2 Central charge superspace

We denote the local coordinates of the central charge superspace Σ(60|32) by

ZM = (Xm, ϑα̌) = (xm, yΣ, ϑα̌) , (2.10)

– 5 –
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and the supervielbein forms of Σ(60|32) by

EA := dZMEA
M(Z) = (Ea, Eα) , Ea = (Ea, Eij , Ēij) , Eα = (Eα

i , Ē
α̇i) , (2.11)

a = 0, 1, 2, 3 , α = 1, 2 , α̇ = 1, 2 , i, j = 1, . . . , 8 .

The SL(2,C)⊗SU(8) covariant derivatives of the supervielbeins define the torsion two forms

TA = DEA = (T a, T ij , T̄ij ;T
α
i , T

α̇i) =
1

2
EC ∧ EBTBC

A , (2.12)

T a := DEa = dEa − Eb ∧ Ωb
a , (2.13)

T ij = DEij = dEij + 2Ek[i ∧ Ωk
j] , (2.14)

T̄ij := DĒij = dĒij + 2Ω[i
k ∧ Ej]k , , (2.15)

Tα
i := DEα

i = dEα
i − Eβ

i ∧ Ωβ
α − Ωi

j ∧ Eα
j , (2.16)

T α̇i := DEα̇i = dEα̇i − Eβ̇i ∧ Ωβ̇
α̇ − Eα̇j ∧ Ωj

i , (2.17)

where Ωj
i = −(Ωi

j)∗ = dZMΩM j
i(Z) is the SU(8) connection superform (Ωj

j = 0),

Ωab = Ωba = dZMΩab
M(Z) is the spin connection, and Ωβ

α = 1
4 Ω

abσab β
α = (Ωβ̇

α̇)∗.

The torsion constraints describing, when supplemented by the conditions (1.2), the

N = 8 D = 4 supergravity as a model in central charge superspace can be found in (the

appendices of) [28] and [29] (in this latter Dij(. . .) = 0 and Dij(. . .) = 0 were used instead

of (1.2)).

For (most of) our purposes here it is sufficient to discuss the case of flat central charge

superspace. In the flat limit the connections are trivial and can be set to zero, Ωab = 0,

Ωi
j = 0, and the fermionic coordinates carry indices of SL(2,C)× SU(8),

ϑα̌ = (θαi , θ̄
α̇i) , α = 1, 2 , α̇ = 1, 2 , i = 1, . . . , 8 . (2.18)

In this case it also makes sense the decomposition (2.4) of 56 additional coordinates on two

conjugate sets carrying indices of the 28 and 28 representation of SU(8) and we can use

the following set of supervielbein forms

Ea = dxa − i

2
dθiσ

aθ̄i +
i

2
θiσ

adθ̄i , Eα
i = dθαi , Ēα̇i = dθ̄α̇i , (2.19)

Eij = dyij − idθ̄α̇[i θ̄
j]
α̇ , Ēij = dȳij − idθα[i θj]α . (2.20)

These are invariant under rigid N = 8 D = 4 supersymmetry generated by supercharges

Qi
α = −i∂i

α − 1

2
(σaθ̄i)α∂a − θαj∂

ij , Q̄α̇i = −i∂̄α̇i −
1

2
(θiσ

a)α̇∂a − θ̄jα̇∂̄ij (2.21)

the superalgebra of which has the form (1.1) with Pa = i∂a, Z
ij = 2i∂ij and Z̄ij = 2i∂̄ij .

– 6 –
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The supervielbeine (2.19) can be also called Cartan forms as they obey the torsion

‘constraints’ with constant coefficients

T a = −iEα
i ∧ Ēβ̇iσa

αβ̇
, , (2.22)

T̄ij = −iEα
i ∧ Eβ

j ǫαβ , T ij = −iEα̇i ∧ Eβ̇jǫα̇β̇ , (2.23)

Tα
i := 0 , T α̇i = 0 , (2.24)

which can be identified with structure equations of a supergroup manifold associated to

the supersymmetry algebra (1.1), i.e. of the flat N = 8 central charge superspace Σ
(60|32)
0 .

3 A superparticle model in N = 8 central charge superspace

An interesting superparticle model in flat N = 8 superspace enlarged by central charge

coordinates, Σ
(60|32)
0 , was proposed by de Azcárraga and Lukierski in section 2 of [42]. In

this section, after reviewing this model we will present its improved version, which does

possess the κ-symmetry without imposing any condition by hand. In the next section 4,

using suggestions provided by this superparticle model we will analyze the interdependence

of the section conditions and present their general solution.

3.1 De Azcárraga-Lukierski model

In [42] José de Azcárraga and Jerzy Lukeirski discussed (among others) the following action

for massive superparticle in N = 8 D = 4 central charge superspace Σ(60|32):

S = m

∫

dτ

√

Êa
τ Êaτ + 2b

∫

dτ

√

Êij
τ
ˆ̄Eij τ . (3.1)

In it m is a constant with dimension of mass, b is a constant obeying

b2 = Nm2/4 = 2m2 (3.2)

(the reason to impose this relation will be clear from the discussion below) and

ÊA = dτÊa
τ = dẐM(τ)EM

A(Ẑ(τ)) (3.3)

is the pull back of the supervielbein form (2.11) ((2.19) in the case of flat superspace

Σ
(60|32)
0 ) to the superparticle worldline W 1 which is described as a line in Σ(60|32) by the

coordinate functions ẐM(τ).

It is convenient to introduce the canonical momenta

pa :=
L

∂Êa

τ

= (pa, p̄ij , p
ij) , (3.4)

pa = m
Êaτ

√

Êa
τ Êaτ

, p̄ij = b
ˆ̄Eij τ

√

Êij
τ
ˆ̄Eij τ

, pij = b
Êij

τ
√

Êij
τ
ˆ̄Eij τ

. (3.5)
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It is not difficult to check that these obey the constraints

pap
a = m2 (3.6)

p̄ijp
ij = b2 = Nm2/4 = 2m2 . (3.7)

Then the fermionic variation of the action (3.1) can be written in the form

δǫS =

∫

dτpaÊ
B
τ ǫ

αTαB
a(Ẑ) , (3.8)

where ǫα = (ǫαi , ǭα̇i) are the parameters of the fermionic variations defined by

ǫα = (ǫαi , ǭα̇i) = iǫÊ
α := δǫẐM(τ)EM

α(Ẑ(τ)) , (3.9)

iǫÊ
a := δǫẐM(τ)EM

a

(Ẑ(τ)) = 0 . (3.10)

In the case of flat central charge superspace Σ
(60|32)
0 , the supervielbein forms are given

in (2.19) and the variation of the action (3.8) is

Σ
(60|32)
0 : δǫS = −2i

∫

dτ
(

pa(σ
a ˆ̄Ei

τ )α + 2pijÊαj τ

)

δθαi + c.c. . (3.11)

Now one can easily check that [42]

δκθ
α
i = paκ̄α̇iσ̃

aα̇α − 2p̄ijκ
αj = (ǭα̇i)∗ , δκθ̄

α̇i = paσ̃
aα̇ακiα − 2pij κ̄α̇j (3.12)

would be a gauge symmetry of the action provided the momenta in central charge directions

were restricted by the condition

p̄ikp
kj = −δi

jm2/4 . (3.13)

This implies p̄ikp
ik = N/2pap

a = 2m2, so that one sees that the relation (3.2) between

parameters of the action (3.1) is also related to the wish to have the κ-symmetry.

De Azcárraga and Lukierski appreciated themselves that imposing the condition (3.13)

by hand at this stage does not look consistent (although in the present perspective one can

find it similar to imposing the section condition in EFT) and, after making this interesting

observation, passed in [42] to the study of different, more conventional models. In the next

section 3.2 we will present an improved superparticle model which does not need imposing

constraint by hand to possess κ-symmetry with (3.12).

3.2 Improved superparticle model in central charge superspace

The above de Azcárraga-Lukierski model inspired us to study the following first order

action

S =

∫

dτ(paÊ
a
τ + p̄ijÊ

ij
τ + pij ˆ̄Eij τ )−

∫

dτΛj
i

(

p̄ikp
kj +

m2

4
δi

j

)

−
∫

dτ
1

2
e(pap

a −m2) .

(3.14)

– 8 –
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Here the momenta pa, p
ij and p̄ij are independent variables, Êa

τ , Ê
ij
τ and ˆ̄Eij τ are the

pull-backs ((3.3)) of the flat supervilebien forms (2.19) and (2.20); finally Λi
j and e are

Lagrange multipliers introduced to impose the constraints (3.13) and (3.6).

The action is invariant under the κ-symmetry (3.12) supplemented by the Lagrange

multiplier transformations:

δθαi = paκ̄α̇iσ̃
aα̇α − 2p̄ijκ

αj , δθ̄α̇i = paσ̃
aα̇ακiα − 2pij κ̄α̇j , (3.15)

δΛi
j = 4i(∂τθ

α
i κjα + ∂τ θ̄

α̇j κ̄α̇i) , δe = − 2i(∂τθ
α
i κiα + ∂τ θ̄

α̇iκ̄α̇i) . (3.16)

Notice that this model is not apparently equivalent to the one described by the second

order action (3.1). Indeed, the equations of motion for the internal momenta produce

the relations

Êij
τ = Λk

[ipj]k , ˆ̄Eij τ = Λ[i
kp̄j]k (3.17)

which differ from (3.5) (while pa equations give the standard Êa
τ = epa). The Lagrange mul-

tiplier variations produce the constraints (3.6) and (3.13) and, using these one can deduce

from (3.17) the following interesting interrelation between pull-backs of the Cartan forms

p̄ikp̄jlÊ
kl =

m2

4
ˆ̄Eij , pikpjl ˆ̄Ekl =

m2

4
Êij , pik ˆ̄Ekj = −Êikp̄kj . (3.18)

However, despite the lack of apparent equivalence, the fermionic variation of (3.14) is

still described by (3.11) and, in the case of generic curved target superspace, by (3.8).

4 Superparticle and section conditions

Notice that eq. (3.13) provides us with a counterpart of SU(8) part of the set of section

conditions (2.8). To be precise, if section conditions appeared from the superparticle model,

in the classical approximation the derivatives would be replaced by particle momenta so

that we would have the constraint (1.7), the SU(8) part of which coincides with (3.13),

p̄ikp
kj +

1

8
δi

j p̄klp
kl = 0 , (4.1)

while the remaining E7(+7)/SU(8) part reads

p̄[ij p̄kl] −
1

4!
ǫijkli′j′k′l′p

i′j′pk
′l′ = 0 . (4.2)

The classical mechanics counterpart of the section condition involving the Sp(56) met-

ric, (2.9), is obeyed identically.

As we have already discussed in the Introduction, the straightforward quantization of

the constraints (4.1) and (4.2) by a simple prescription (p̄ij , p
ij) 7→ (∂̄ij , ∂

ij) results in the

the weak section conditions (1.5) only. However, if we first find the general solution of (4.1)

and (4.2) expressing (p̄ij , p
ij) in terms of smaller set of momenta pr, and then quantize this,

supplementing (p̄ij , p
ij) 7→ (∂̄ij , ∂

ij) by pr 7→ ∂r, we arrive at the general solution of the

strong section conditions (2.1).
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The superparticle model discussed in the previous section generates the SU(8) part of

the classical section conditions only. Then the association of the classical section condi-

tions (4.1) and (4.2) with symmetry generators of H = SU(8) and G/H = E7(+7)/SU(8)

makes tempting to search the explanation of the appearance of (4.1) constraint only on the

basis of the fact that E7(+7) symmetry of N = 8 supergravity [32] is realized dynamically in

such a way that in its flat superspace limit only the symmetry under the SU(8) subgroup

of E7(7) ‘survives’. Namely, the superspace formulation of N = 8 supergravity [30, 31]

involves an E7(+7)-valued matrix ‘bridge’ superfield

VΣ
(Π) = (VΣ

kl, V̄Σ kl) ∈ E7(+7) (4.3)

which is transformed by right multiplication on a matrix in fundamental representation of

E7(+7) and by left multiplication on a matrix in a reducible 56=28+28 representation of

SU(8). In flat superspace limit one usually sets VΣ
(Π) = (δΣkl, δ

Σ kl) which is preserved

by SU(8) subgroup of the above E7(+7) ⊗ SU(8) transformations. This implies that in flat

superspace limit the (rigid nonlinearly realized) E7(+7) symmetry of N = 8 supergravity

reduces to SU(8).5

Then the superparticle model in flat superspace is manifestly invariant under nontrivial

transformations of SU(8) symmetry, and, from this point of view it looks natural that it

generates as constraints only a part of section condition involving the SU(8) generator.

However, accepting this argument (which is not a proof, but rather a speculation), one

cannot conclude that a curved superspace generalization of the superparticle model, which

is expected to see the E7(+7) symmetry, may generate additional nontrivial constraints

corresponding to the coset G/H = E7(+7)/SU(8). Indeed, if this were the case, it would

contradict the physical requirement of non-singularity of the flat superspace limit.

The above discussion suggests that the appearance of only a SU(8) part (4.1) of the

section conditions (1.7) may reflect the fact that their G/H part (4.2) is dependent, i.e. is

satisfied as a consequence of its H = SU(8) part (4.1). In other words, it inspires to check

whether the general solution of all the set of section conditions coincide with the general

solution of the SU(8) part of the section conditions. We are going to show that this is

indeed the case.

Let us begin by discussing the solution of eq. (4.1) (or equivalently, eq. (3.13)). First

notice that it has a solution with 7 real parameters pI = (pI)∗:

p̄ij = pI(γI γ̃8)ij = pij , I = 1, . . . , 7 . (4.4)

In it γ Ǐpq̇ = γ̃ Ǐq̇p = (γIpq̇, γ
8
pq̇) are the SO(8) Clebsch-Gordan coefficients. If we wont to

solve (3.13), the seven real pI should obey

pIpI = m2/4 , (4.5)

5To be more precise, one can state that E7(+7) symmetry is realized trivially in flat superspace limit.

Indeed, in this limit the matrices VΣ
(Π) can take any constant value in E7(+7) group; the E7(+7) symmetry

is realized by multiplication on these matrices. However, as the derivative of constant matrices vanish and

only these, through the E7(+7) Cartan forms, influence the superspace geometry [30], the flat superspace

coordinates, as well as any dynamical system described in terms of these, do not see any effect of the

E7(+7)/SU(8) transformations.
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but this is not essential for the conclusion on interdependence of a part of section conditions.

Actually, the solution (4.4) can be written in terms of SO(7) gamma matrices ΓI
pq

p̄ij = pIΓI
ij = pij , I = 1, . . . , 7 , (4.6)

the representation of which in terms of SO(8) Clebsch-Gordan coefficients, ΓI
pq = (γI γ̃8)pq,

has been used above.

At this stage one can wonder whether (4.4) solves also the G/H part of the classical

section conditions, eq. (4.2). This is not manifest from the first glance as for this to be the

case the following identity for SO(8) Klebsh-Gordan coefficients should hold

(γ(I|γ̃8)[pq(γ
|J)γ̃8)rs] =

1

4!
ǫpqrsp′q′r′s′(γ

(I|γ̃8)[p′q′(γ
|J)γ̃8)r′s′] . (4.7)

As the condition for SO(7) gamma matrices ΓI
pq it reads

Γ
(I|
[pqΓ

|J)
rs] =

1

4!
ǫpqrsp′q′r′s′Γ

(I|
[p′q′Γ

|J)
r′s′] . (4.8)

However, a more careful study of the solution (4.4) shows that it is equivalent to the

classical counterpart of the solution to the whole set of section conditions found by Hohm

and Samtleben in [17, 19]. This was written ‘in SL(7) basis’ and reads

qpq = 2δ
[p
I δ

q]
8 p

I , q̃pq = 0 , (4.9)

In this paper we, following [32], work in the ‘SU(8) basis’. The relation between

components of SL(8,R) and SU(8) decompositions of the fundamental representations of

E7(+7) can be described by (see e.g. [43])

(

pij

p̄ij

)

= S
(

qpq

q̃pq

)

, S =
1

4
√
2
γijpq ⊗

(

1 i

1 −i

)

. (4.10)

Using this we find that the solution of Hohm and Samtleben (4.9) of the whole set of section

conditions of E7(+7) EFT coincides with (4.4) when written in the SU(8) basis. Then, as

Hohm-Samtleben solution solves the whole set of section conditions, and (4.4) is proved to

be equivalent to it, this solves also eq. (4.2) and thus provides a solution of the complete

set of section conditions, (4.1) and (4.2).

Notice that, by pass, we have proved the identities (4.8) for d = 7 gamma matrices

and (4.7) for the SO(8) Clebsch-Gordan coefficients.

Now we are going to show that (4.4) describes general solution of (4.1) up to SU(8)

transformations. To this end, we first notice that two solutions of this equation, pij(1) and

pij(2), are related by an U(8) transformations. Indeed, as (4.1) implies that the matrices

pij(1) and pij(2) are not degenerate, so is Ui
j = 4

m p̄(1)ikp
jk
(2) which obeys UU † = I and hence

belongs to U(8). Below we will concentrate on the SU(8) part of this solution-generating

U(8) symmetry of (4.1), as only SU(8) part of U(8) transformations of the momenta lives

invariant also the constraint (4.2).
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Interestingly, just the freedom in SU(8) transformations is sufficient to describe the

general solution of (4.1) starting from (4.4). To prove this, let us show that an arbitrary

nondegenerate 56-vector pΣ = (p̄ij , p
ij) can be obtained by SU(8) transformation applied

to one of the vectors described by the complexification of (4.4),

pij = wIΓ
I
ij , p̄ij = w̄IΓ

I
ij , (4.11)

with complex wI .

To this end, let us firstly notice that the expressions in (4.11) contain 14 real parameters

(in 7 complex wI) and are invariant under SO(7) subgroup of SU(8). This latter fact

implies that the nontrivial orbit of (4.11) under SU(8) is generated by 42 elelments of the

coset SU(8)/SO(7). Finally, as 42 + 14 = 56, we conclude that arbitrary complex p̄ij can

be generated by SU(8) transformations starting from p̄ij = w̄IΓ
I
ij with some complex wI .

Now, p̄ij = w̄IΓ
I
ij solves the constraint (4.1) only in the case when wI is real, wI = w̄I = pI .

As the constraint (4.1) is SU(8) invariant, we conclude that, modulo SU(8) transformations,

its general solution is given by (4.4).

Furthermore, as (4.4) solves also (4.2) and this latter is SU(8) invariant, we conclude

that the SU(8) orbit of (4.4) provides us with the general solution of the complete set of

classical section conditions (1.7) of the E7(+7) EFT.

This result implies that, modulo SU(8) transformations (which constitute the gauge

symmetry of N = 8 D = 4 supergravity [30]), the ‘quantized’ version of eq. (3.13),

∂̄ij = (γI γ̃8)ij∂I = ∂ij , (4.12)

provides the general solution for the complete set of section conditions (2.7) and (2.8). Of

course, it looks desirable to make the above statement on ‘modulo SU(8) transformations’

more concrete in the quantized version. We hope to turn to this issue in the future.

To conclude we have shown that in the E7(+7) effective field theory it is not necessary to

impose the complete set of section conditions as all the job on restricting the dependence of

fields on additional coordinates is done by the part of the section conditions which involves

the generator of SU(8) subgroup of E7(+7).

It will be interesting to understand whether the sets of the section conditions for other

En(+n) exceptional field theories are also reducible.

5 Conclusion and outlook

In this paper we have made a stage towards better understanding of the structure of the

mysterious section conditions of the exceptional field theories (EFTs) [17–24]. Namely, we

have shown that in E7(+7) EFT it is not necessary to impose the complete set of section

conditions as all the job on restricting the dependence of fields on additional coordinates is

done by the part of the section conditions which corresponds to SU(8) subgroup of E7(+7).

On the way we have also proved that, as might be expected, the general solution of the

strong section conditions implies the dependence of the EFT fields on not more than 7 of

56 additional bosonic coordinate.
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This progress is reached using the suggestions coming from the superparticle model

in central charge superspace. We have discussed how the strong section condition can be

reproduced starting from the classical constraints of a superparticle model. In essence, the

‘first quantize than solve’ way of treating the classical mechanic counterparts of the section

conditions reproduce the weak section conditions only, however there exists an alternative

‘first solve then quantize’ way which allows to reproduce the general solution of the strong

section conditions starting from its classical counterparts.

The superparticle model in central charge superspace we have used in our study is

an improved version of the de Azcárraga-Lukierski model proposed in section 2 of [42].

This is a massive superparticle model in D = 4 N = 8 superspace enlarged by 56 central

charge coordinates. On first glance, the fact that superparticle is massive (in 4-dimensional

perspective, pap
a = m2 6= 0) might look strange as to obtain supergravity one would

rather quantize a massless D = 4 N = 8 superparticle model [44], while the quantization

of massive superparticle with 32 supersymmetries shall inevitably result in appearance of

higher spin fields in the spectrum. However, a more careful thinking suggests to relate this

to the fact that U-duality, which is expected to be manifest in EFT, is the property of M-

theory and higher spin fields should appear here as M-theoretic counterpart of the massive

modes of String theory. Furthermore, one can observe that the conditions for external

and internal momenta, which follows from our superparticle model (and which should be

partially imposed by hand in the original model of [42]) related the square of external

momenta (pap
a = m2 6= 0) and of the internal momenta (p̄ikp

kj = −δi
jm2/4, see (3.13))

to the same parameter m2. Hence we can treat the superparticle as being massless in an

enlarges spacetime. In particular, on the 7-parametric solution (4.4) of the classical section

conditions the model should become equivalent to a massless 11 dimensional superparticle.

One of the natural applications of our approach is in search for superfield formulation of

exceptional field theories, particularly for the formulation of the E7(+7) EFT in curved N =

8 D = 4 central charge superspace Σ(60|32). The basis of such a formulation can be provided

by an appropriate set of the constraints on the generalized torsion (2.12)–(2.17). The

requirement of the invariance of the curved superspace generalization of our superparticle

model, (3.14) with generic supervielbein (2.11), under κ-symmetry, similar to (3.12) can

allow us to find a set of appropriate constraints (see [45–48] for such approach to D=10

and D=11 supergravity in standard superspaces). An especially interesting question is

whether these still hypothetical constraints, if found, would describe the E7(+7) EFT when

supplemented by the section conditions or they would produce these as their selfconsistency

conditions. These issues are under investigation.

Another interesting direction for future study is to formulate superparticle models in

central charge superspaces appropriate for construction of superfield formulations of the

other En(+n) EFTs, with n ≤ 6 and with n = 8. In particular, this might help to understand

whether the sets of the section conditions for other En(+n) EFTs are also reducible.
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