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Abstract: The Twin Higgs model seeks to address the little hierarchy problem by making

the Higgs a pseudo-Goldstone of a global SU(4) symmetry that is spontaneously broken

to SU(3). Gauge and Yukawa couplings, which explicitly break SU(4), enjoy a discrete

Z2 symmetry that accidentally maintains SU(4) at the quadratic level and therefore keeps

the Higgs light. Contrary to most beyond the Standard Model theories, the quadratically

divergent corrections to the Higgs mass are cancelled by a mirror sector, which is uncharged

under the Standard Model groups. However, the Twin Higgs with an exact Z2 symmetry

leads to equal vevs in the Standard Model and mirror sectors, which is phenomenologically

unviable. An explicit Z2 breaking potential must then be introduced and tuned against the

SU(4) breaking terms to produce a hierarchy of vevs between the two sectors. This leads

to a moderate but non-negligible tuning. We propose a model to alleviate this tuning,

without the need for an explicit Z2 breaking sector. The model consists of two SU(4)

fundamental Higgses, one whose vacuum preserves Z2 and one whose vacuum breaks it.

As the interactions between the two Higgses are turned on, the Z2 breaking is transmitted

from the broken to the unbroken sector and a small hierarchy of vevs is naturally produced.

The presence of an effective tadpole and feedback between the two Higgses lead to a

sizable improvement of the tuning. The resulting Higgs boson is naturally very Standard

Model like.
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1 Introduction

One of the goals of beyond the Standard Model (BSM) physics is to stabilize the hierarchy

between the electroweak and Planck scale. To this end, most BSM models introduce part-

ners that cancel the quadratic divergent corrections to the Higgs mass. These partners are

generally assumed to be charged under the Standard Model (SM) groups. Unfortunately,

the lack of discovery of new particles in Run-1 of the LHC has put strong constraints

on these partners and further accentuates the little hierarchy problem [1]. One way to

avoid this problem is neutral naturalness, the idea that partners are not charged under

the SM groups. Perhaps the best example of this is Twin Higgs [2] (see [3–21] for related

work). This model rests on a global SU(4) which is broken spontaneously to SU(3) at a

scale f , leading to a set of Goldstone bosons. The SU(4) is explicitly broken by gauging a

SU(2)A × SU(2)B subgroup (with SU(2)A being identified with the SM SU(2) and SU(2)B
a similar symmetry of a mirror sector) and by adding Yukawa couplings. In principle, this

breaking would give a mass of order f to the Goldstone bosons. Remarkably, imposing a

Z2 symmetry between the two sectors ensures that the theory is still SU(4) invariant at the

quadratic level, leading to a light pseudo-Goldstone Higgs. A soft Z2 breaking is however

needed to obtain a hierarchy of vacuum expectation values (vev) between the Standard

Model Higgs and the mirror sector Higgs [2, 3].1

Despite its success, even the Twin Higgs is not free from tuning. A moderate amount

of tuning between the Z2 and the SU(4) breaking sectors is needed to push the cutoff

beyond experimental constraints. Various attempts at addressing this issue can be found

in the literature. Reference [22] tries to do so in the context of a two Higgs doublet model

1See section 2.1 for more details.
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with misaligned vevs. In [23], the issue is addressed in a supersymmetric (SUSY) UV com-

pletion by introducing Dirac gauginos [24]. Finally, [25] also addresses the supersymmetric

completion, but by forcing tan β = 1 in the mirror sector. Both of these models try to

remove the D-term quartics which are a source of tuning in supersymmetric versions of the

Twin Higgs. One thing all of these models have in common is an explicit Z2 breaking.

In this article, we propose a novel approach to improving the tuning in Twin Higgs,

which is based on spontaneous breaking of the Z2 symmetry. The proposed model includes

two Higgses in the fundamental representation of a SU(4) global symmetry. As in the

original Twin Higgs model, a SU(2)A × SU(2)B subgroup is gauged and a Z2 symmetry

is imposed between the two sectors. We take the vacuum of the first Higgs to preserve

Z2, while the other breaks it spontaneously. A bilinear term containing the two Higgses

is added (similar to the Bµ term of the MSSM) and the Z2 breaking is transmitted from

the broken to the unbroken sector. This naturally produces a hierarchy between the vevs

of the SM sector Higgses and those of the mirror sector. The Bµ term acts as an effective

tadpole and no explicit Z2 breaking is necessary. The presence of this effective tadpole and

feedback between the two Higgses lead to less tuning than the original Twin Higgs. The

resulting Higgs boson is naturally very SM-like.

The article is organized as follows. We begin by summarizing the original Twin Higgs

model to isolate the origin of the tuning and obtain results that will make comparisons

with our model easier. Our model is then presented in details. An analysis of the radiative

corrections follows. A detailed analysis of the tuning of the model compared to the original

Twin Higgs is then performed. Finally, a few concluding remarks including possible UV

completions are presented.

2 The model

2.1 The original Twin Higgs

To put the problem our model attempts to solve in context and to establish our notation,

we summarize the Twin Higgs model. We follow closely [2]. Assume a complex scalar field

H which is a fundamental of a global SU(4). Its potential can be written as

VSU(4)(H) = −µ2H†H + λ(H†H)2. (2.1)

The potential exhibits spontaneous symmetry breaking of SU(4) → SU(3). This leads to

〈H〉 ≡ f = µ/
√

2λ and 7 Goldstone bosons. The SM-like Higgs doublet is associated to 4

of these Goldstone bosons and is at this stage massless.

The SU(4) is then explicitly broken by gauging one of its SU(2)A×SU(2)B subgroups.

The field H is now divided into fundamentals of SU(2)A and SU(2)B as H = (HA, HB).

The A sector is conventionally associated to the Standard Model and the B sector to the

mirror sector. The leading correction to the potential introduced by gauging the SU(2)’s is

∆V (H) =
9g2
AΛ2

64π2
H†AHA +

9g2
BΛ2

64π2
H†BHB, (2.2)
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where gA and gB are the gauge coupling constants of SU(2)A and SU(2)B respectively

and Λ is the cutoff of the theory. If a Z2 symmetry is imposed between the A and B

sector, gA = gB ≡ g and ∆V (H) accidentally respects the original SU(4) symmetry. The

Goldstone bosons therefore do not acquire any mass from 2.2. Alternatively, one can then

consider 2.2 as simply a correction to µ2. SU(4) will however be broken by terms of the

form κ(|HA|4 + |HB|4), where κ is of order g2/16π2 ln (Λ/f). These logarithmic divergences

can be reabsorbed in λ and a SU(4) breaking potential of the form

V���SU(4)(H) = αH†AHAH
†
BHB. (2.3)

A similar story holds for the top Yukawa coupling. A Z2 symmetry is imposed on this

sector by adding a ‘mirror top’ which is not charged under the SM groups, but which

couples to HB in exactly the same way in which the SM top couples to HA.

The total potential at this point is the sum of 2.1 and 2.3. The end result is that,

of the original 7 Golstone bosons, 6 will remain massless and be eaten by massive gauge

bosons and the one left over will be a light pseudo-Goldstone boson that can be associated

to the 125 GeV Higgs. Since α is the only term in the potential that breaks SU(4), it can

naturally be smaller than λ, which is what we assume. This insures that the Higgs remains

light even for relatively large f .

The symmetry breaking structure is controlled by the sign of α [3]. If α < 0, the

minimum preserves Z2 and 〈HA〉 = 〈HB〉 = µ/
√

4λ+ α ≈ 174 GeV. This is the sign of

α assumed in the original Twin Higgs model. The fact that 〈HA〉 = 〈HB〉 leads to the

Standard Model Higgs strongly mixing with the mirror sector Higgs and results in large

deviations of the Higgs measurements [3]. It also means that f is only slightly above the

electroweak scale. The energy scale ∼ 4πf , at which new physics needs to appear to avoid

fine-tuning, is then not much larger than in the Standard Model. These issues are easily

resolved by aligning the vev closer to the B sector, thereby allowing for a larger f while

preserving 〈HA〉 = 174 GeV. This can be done via an explicit soft Z2 breaking potential of

the form

V��Z2
(H) = ∆m2H†AHA. (2.4)

The parameter ∆m2 can naturally be small as it is the only term that explicitly breaks

Z2. The potential can be minimized by using the following parametrization of the relevant

parts of H

H = f


0

sin θ

0

cos θ

 , (2.5)

with θ being π/4 when ∆m2 is 0. The potential is minimized for a value of f of

f2 =
2µ2 −∆m2

4λ+ α
, (2.6)

while minimizing the potential with respect to θ gives the following equation

αf4 sin 4θ + 4∆m2f2 sin θ cos θ = 0. (2.7)

– 3 –



J
H
E
P
0
1
(
2
0
1
6
)
1
3
0

This equation only yields non-zero θ for ∆m2 below a maximal value. Thus, we define

∆m2
max as the largest value of ∆m2 for which there is still electroweak symmetry breaking

in the A sector. It can be found by rewriting 2.7 as

F1(θ) ≡ 1

4

sin 4θ

sin θ cos θ
=

∆m2

(−αf2)
≈ ∆m2

∆m2
max

, (2.8)

where the last relation holds in the limit of small α and ∆m2
max is given by the exact

relation

∆m2
max = −αµ

2

2λ
. (2.9)

The solution to equation (2.7) is

sin2 θ =
v2

f2
=

1

2

(
1− ∆m2

(−αf2)

)
≈ 1

2

(
1− ∆m2

∆m2
max

)
, (2.10)

where v is the SM Higgs vev of 174 GeV. Requesting a large f implies a tuning between

the SU(4) breaking and the Z2 breaking potentials. This is reflected in 2.10 by the last

term on the right needing to be close to 1.

Alternatively, one can take α > 0. The Z2 symmetry is then spontaneously broken and

the system falls in one of the two minima at 〈HA〉 = µ/
√

2λ and 〈HB〉 = 0 or 〈HA〉 = 0

and 〈HB〉 = µ/
√

2λ. However, the vev must be taken to fall in the SM sector and this

leads to a massless mirror sector. This proves to be unviable for cosmological reasons [3].

The potential must then be modified in a way similar to 2.4 to prevent the minimum from

being in one sector only. Unfortunately, a quick inspection shows that no term that only

breaks Z2 softly and respects gauge invariance can do so. The term of equation (2.4) does

not solve this problem, as equation (2.7) is satisfied by a θ of 0 for all values of ∆m2. The

case of α > 0 therefore poses serious issues.

2.2 Spontaneous Z2 breaking

In the last section, part of the problem in the α > 0 case was that H was the only

scalar with gauge charges. This forced all terms in the potential to be an even power

of H and forbade tadpole terms, which could have potentially prevented the vev from

falling in one sector only. The inclusion of a second Higgs field can solve this problem by

including a term linear in both fields which acts as an effective tadpole for H (see [26]

for a similar idea in a context unrelated to Z2 breaking or the Twin Higgs). In addition,

the Z2 breaking soft term for α < 0 also needed to be quadratic in H. It is possible that

a similar term with a lower power of H could potentially produce the same hierarchy of

vevs while requiring less tuning. Again, a term linear in H and another Higgs can do

this. Taking these considerations into account, our model includes two fundamentals of

SU(4), H1 = (H1A, H1B) and H2 = (H2A, H2B), that are gauged as in Twin Higgs and

which interact with each other to create a hierarchy of vevs. We take the minimum of

H1 to preserve Z2 and that of H2 to break it. It is the interaction between H1 and H2

that transmits the Z2 breaking to H1 and there is no need for an explicit Z2 breaking. We

explain the finer details below.
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Figure 1. Example of the different vevs as a function of Bµ/B
max
µ . The parameters are µ1 =

750 GeV, µ2 = 850 GeV, α1 = −0.15, α2 = 0.2 and λ1 = λ2 = 1.

2.2.1 Potential and vevs

As a starting point, we write down the potential for H1 by itself

VH1(H1) = −µ2
1H
†
1H1 + λ1(H†1H1)2 + α1H1A

†H1AH1B
†H1B (2.11)

and assume α1 < 0, which means that the vacuum preserves Z2. At this point, the pseudo-

Goldstone boson from H1 corresponds to the angular mode and is an equal admixture of

the components of H1A and H1B. Similarly, we write a potential for H2 by itself

VH2(H2) = −µ2
2H
†
2H2 + λ2(H†2H2)2 + α2H2A

†H2AH2B
†H2B (2.12)

and this time with α2 > 0, meaning that the vacuum breaks Z2 in this case. We take the

vev to fall in the B sector by convention, as the vev falling in the other sector would just

mean a relabelling of B as the SM and A as the mirror sector. The pseudo-Goldstone boson

again corresponds to the angular mode. This time however, the position of the minimum

means that the pseudo-Goldstone boson is purely a component of H2A.

The interaction between these two fields is then codified by the following Lagrangian

VH1H2(H1, H2) = −BµH†1H2 + h.c.. (2.13)

We note that it is technically natural to have Bµ small as it breaks a Peccei-Quinn sym-

metry. For Bµ small and greater than zero, 2.13 serves essentially two purposes. First,

the part H†1BH2B serves as an effective tadpole for H1B. It therefore pushes the vev of H1

toward the B sector, as desired. Second, the part H†1AH2A serves as an effective tadpole

for H2A. It accordingly provides a small positive A component to the vev of H2. As Bµ
increases, non-linear effects and feedback between the different terms become important.

An example of the different vevs is shown in figure 1.

– 5 –
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2.2.2 Small αi’s approximation

To gain a better understanding of the interactions between H1 and H2, we decompose

them in a similar way to 2.5 and take the limit of small αi’s. As will be made clear in

equation (2.19), Bµ will be a factor of α1/λ1 smaller than the µ2
i ’s in the physically viable

and natural region of parameter space. We therefore assume it to be small. In general, all

approximations will be valid up to O(αi/λi). The decomposition of the Higgses is

H1 = f1


0

sin θ1

0

cos θ1

 H2 = f2


0

sin θ2

0

cos θ2

 , (2.14)

where f1 ≈ µ1/
√

2λ1 and f2 ≈ µ2/
√

2λ2. The minimization of the potential with respect

to the angles leads to the set of equations

α1f
4
1 sin 4θ1 + 4Bµf1f2 sin(θ1 − θ2) = 0

α2f
4
2 sin 4θ2 − 4Bµf1f2 sin(θ1 − θ2) = 0.

(2.15)

When Bµ = 0, the minimum is located at θ1 = π/4 and θ2 = 0. In the general case, adding

both equations leads to

sin 4θ2 = Ω sin 4θ1, (2.16)

where Ω is a constant in the small α approximation and is defined by

Ω ≡ −α1

α2

(
f1

f2

)4

. (2.17)

First, consider Ω < 1. Increasing Bµ will make θ1 pass from π/4 to 0. The angle θ2 starts

by increasing but decreases once θ1 drops below π/8. Eventually, both angles settle at 0.

When Ω > 1, this behavior is reversed. Increasing Bµ will make θ2 pass from 0 to π/4. The

angle θ1 decreases until θ2 reaches π/8, but increases afterward. Both angles ultimately

settle to π/4. This behavior is not bad in itself as it can still lead to a small hierarchy, but

obtaining a large one proves to be impossible. Taking these considerations into account,

we focus on the domain where Ω < 1.

Analogous to the Twin Higgs case, we define Bmax
µ as the largest value of Bµ for which

there is still electroweak symmetry breaking in the A sector. The first equation of 2.15 can

then be rewritten as

F2(θ1,Ω) ≡ (1− Ω)

4

sin 4θ1

sin(θ1 − θ2)
=

Bµ(
− α1f31
f2(1−Ω)

) ≈ Bµ
Bmax
µ

, (2.18)

where θ2 is related to θ1 by equation (2.16). In the small αi’s approximation, Bmax
µ is then

Bmax
µ ≈ − α1f

3
1

f2(1− Ω)
. (2.19)
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Figure 2. F1(θ) and F2(θ,Ω) for different values of Ω.

While it is hard to solve 2.18 for θ1, it is easy to see that small values of θ1 require Bµ to

be close to Bmax
µ . This is similar to the Twin Higgs case where ∆m2 needed to be close to

∆m2
max to obtain a small ratio of vevs.

We can compare the two theories by looking at F1(θ) versus F2(θ,Ω) which are plotted

in figure 2 for different values of Ω between 0 and 1. When 0 < θ < π/4, F2(θ,Ω) is

always smaller than F1(θ). This means that, for the same angle, our model doesn’t require

Bµ as close to Bmax
µ as the Twin Higgs requires ∆m2 close to ∆m2

max. This translates

to less tuning. In contrast to the Twin Higgs, one must keep in mind that for our model

〈H1A〉 < v = 174 GeV, as it is a two Higgs doublet model. As avoiding large tuning

requires new physics near ∼ 4πf1, this suggests that for equivalent tuning and cutoff one

must choose θ1 smaller than the equivalent angle in Twin Higgs. Fortunately, our model

naturally leads to 〈H1A〉 considerably larger than 〈H2A〉. Thus, the difference is small and

the argument about tuning remains valid.

Further insight can be obtained by taking the small θ1 limit of 2.18

θ2
1 ≈

3

8

(Bmax
µ −Bµ)

(Bmax
µ + g(Ω)Bµ)

Bµ→Bmax
µ∼ 3

8(1 + g(Ω))

(
1− Bµ

Bmax
µ

)
, (2.20)

where

g(Ω) ≡ 1

16
(15Ω2 + 18Ω− 1). (2.21)

As mentioned above, a more appropriate quantity to make the comparison with the Twin

Higgs is

v2

f2
1

∼ 3

8(1 + g(Ω))

(
1 +

(
−α2

α1

)−1/2

Ω3/2

)(
1− Bµ

Bmax
µ

)
≡ C (−α2/α1,Ω)

(
1− Bµ

Bmax
µ

)
.

(2.22)

This is to be compared to 2.10 which has a similar structure but with C (−α2/α1,Ω)

replaced by 1/2. Figure 3 shows C (−α2/α1,Ω) as a function of Ω for fixed values of

– 7 –
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Figure 3. C (−α2/α1,Ω) for various values for −α2/α1. Also shown is the corresponding value for

Twin Higgs.

−α2/α1. We see that, unless −α2/α1 is very small, C (−α2/α1,Ω) is smaller than 1/2 for

Ω in the whole range of 0 to 1. This shows that our model can easily obtain the same

cutoff as the Twin Higgs for less tuning.

The improvement in the tuning can ultimately be attributed to two sources. First,

we can look at the limit of small Ω, which means that θ2 is also small. This limit means

that H2 only serves as an effective tadpole and does not mix with H1. The fact that the

symmetry breaking is induced by an effective tadpole translates to 2.18 missing the factor

of cos θ present in 2.8. This by itself is enough to insure that F2(θ,Ω) be smaller than

F1(θ). Second, there is considerable feedback between H1 and H2 when Ω is close to 1.

This translates to θ2 and 1 − Ω appearing in 2.18. The presence of these terms further

decreases F2(θ,Ω), as is clearly shown in figure 2. Obviously, taking Ω close to 1 is a

tuning in itself, though certainly not large enough to spoil our results, and we take this

into account in section 3.

2.2.3 Additional properties

A few additional properties of the model are worth mentioning. The first one is that the

behavior of figure 1 can differ outside of the region of parameter space considered up to

now. The case of Ω > 1 mentioned above is an example. Even when Ω < 1, the vevs can

act differently if the αi’s or Bµ are large. In particular, it is possible to choose parameters

such that the vevs of the A sector start like those of figure 1 but fail to reach 0. It is also

possible for the vevs of the A sector to be 0 for an interval of Bµ but then become non-zero

again for very large Bµ. We therefore define more precisely Bmax
µ as the smallest positive

value of Bµ for which the vevs of the A sector are zero. Fortunately, a sufficient condition

for Bmax
µ to exist, which is that the vevs of the A sector settle to 0 for large Bµ, is easily

satisfied and given by
α1

λ1
+
α2

λ2
+

α1α2

2λ1λ2
> 0. (2.23)

– 8 –
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When this relation is close to being satisfied but not quite, it is possible that the system

falls in the scenario where the vevs in the A sector are 0 for an interval but become positive

again for large Bµ. This relation comes from looking at the limit of large Bµ, where the

µ2
i ’s can be ignored. In this case, setting α2 to 0 will result in the potential being minimized

for both θi’s being π/4. Increasing α2 while keeping the other parameters fixed will cause

both angles to eventually move toward 0. The angles will settle to 0 (which is always an

extremum) when this point becomes a minimum, which happen when 2.23 is satisfied. The

vevs of the A sector will then be 0 for large enough Bµ and it is therefore sufficient for

Bmax
µ to exist.

Also of importance is that when Bµ = 0 the pseudo-Goldstone boson from H1 is an

equal combination of the A and B sector, while the one from H2 is purely in the A sector.

One would then expect that turning on Bµ would cause the resulting light pseudo-Golstone

boson to be more A-like than in the equivalent case for Twin Higgs. This turns out to be

the case. To see this, we decompose the lightest pseudo-Golstone as

h = ah1A + bh2A + ch1B + dh2B, (2.24)

where h1A is defined via H0
1A = (v1A + (h1A + iA1A)/

√
2) and identically for the other hi’s.

The parameter ΘB ≡ c2 + d2 represents a measure of how much the Higgs is B-like. A

similar quantity can easily be defined for the Twin Higgs. The comparison for both models

can be seen in figure 4. Note that the pseudo-Goldstone is most A-like for large mixing

between H1 and H2. The price to pay for this is that constraints akin to those in the usual

two Higgs doublets model become important. Fortunately, these constraints can easily be

avoided, as the model naturally leads to a hierarchy between the vevs in the A sector and

fairly little mixing with mirror sector Higgses. Generally speaking, this means that our

model will be better at avoiding constraints on Higgs couplings, though a full study of this

is beyond the scope of this article.

The particle spectrum in the A sector is the usual two Higgs doublet model one.

Generically speaking, creating a small hierarchy will push the masses of the heavier Higgses

up for a fixed value of the lightest Higgs. The constraints from heavy scalar searches can

therefore be easily avoided.

Another point worth mentioning is that the potential we wrote down does not contain

all possible Z2 preserving terms. We verified that these extra terms do not affect the

qualitative behavior of the system, as long as they are not much bigger than the terms

already included. Even small explicit Z2 breaking terms do not affect the qualitative

behavior of the system. Unless stated otherwise, such terms will be ignored from now on

to avoid obscuring the analysis.

2.3 Radiative corrections

In this section, we present the one-loop leading radiative corrections for both the Twin

Higgs and our model. Due to the similarities between both models, the radiative corrections

are nearly identical for the two. The main differences result from the Twin Higgs only

having a single SU(4) fundamental while our model contains two. These results are also

– 9 –
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Figure 4. Example of ΘB for the Twin Higgs and spontaneous Z2 breaking model with different

values of µ2. The parameters for the Twin Higgs model are µ = 750 GeV, α = −0.15 and λ = 1.

The parameters for the spontaneous Z2 breaking model are µ1 = 750 GeV, α1 = −0.15, α2 = 0.2

and λ1 = λ2 = 1.

similar to the radiative corrections given in [22], another Twin Higgs model with two

SU(4) fundamentals. The differences between their radiative corrections and ours follow

from different forms of the quartic interactions.

To compute the radiative corrections, it is necessary to specify how the top couples to

the different Higgses. In the Twin Higgs, this is encoded in the Lagrangian

Ltop = −yt(qAH̃At
c
A + qBH̃Bt

c
B) + h.c., (2.25)

where the B sector quarks qB and tcB do not carry Standard Model color and the tilde

notation stands for H̃ = iσ2H
∗. The other Yukawa couplings can be safely ignored. The

leading radiative corrections to the parameters of the Twin Higgs are then

δµ2 =
1

16π2

(
6y2
t −

9

4
g2 − 3

4
g′

2 − 10λ− 2α

)
Λ2, (2.26)

δλ =
1

16π2

(
6y4
t −

9

8
g4 − 3

4
g2g′

2 − 3

8
g′

4 − 32λ2 − 8λα− 2α2

)
ln

Λ

f
, (2.27)

δα =
1

16π2

(
−12y4

t +
9

4
g4 +

3

2
g2g′

2
+

3

4
g′

4 − 24λα

)
ln

Λ

f
, (2.28)

δ∆m2 =
1

16π2
(−4λ+ 4α) ∆m2 ln

Λ

f
, (2.29)

where yt is the top Yukawa coupling, g and g′ are the SM gauge couplings and Λ denotes

the cutoff scale of the theory.

For our model, we must also specify how the top sector couples to the various Higgses.

We choose the top to couple to H1 only and to follow the structure of equation (2.25). The

radiative corrections also depend on how the down-type quarks and the charged lepton
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couple to the Higgses, but the size of their Yukawa couplings makes these contributions

irrelevant.

Another difference between our model and the Twin Higgs is that, in our case, radiative

corrections also generate an additional operator of the form

− κ(H†1AH1AH
†
2AH2A +H†1BH1BH

†
2BH2B). (2.30)

As mentioned above, the presence of a such a term does not modify qualitatively the

behavior of the potential, as long as its coefficient is sufficiently small. We verified that

this is the case for the operator of equation (2.30) with a coefficient of the size of its

radiative correction. Even a considerably larger coefficient does not affect the behavior

much. Because of this, we limit ourselves to writing down its radiative correction and

ignore it afterward. The leading radiative corrections then take the form

δµ2
1 =

1

16π2

(
6y2
t −

9

4
g2 − 3

4
g′

2 − 10λ1 − 2α1

)
Λ2, (2.31)

δλ1 =
1

16π2

(
6y4
t −

9

8
g4 − 3

4
g2g′

2 − 3

8
g′

4 − 32λ2
1 − 8λ1α1 − 2α2

1

)
ln

Λ

f1
, (2.32)

δα1 =
1

16π2

(
−12y4

t +
9

4
g4 +

3

2
g2g′

2
+

3

4
g′

4 − 24λ1α1

)
ln

Λ

f1
, (2.33)

δµ2
2 =

1

16π2

(
−9

4
g2 − 3

4
g′

2 − 10λ2 − 2α2

)
Λ2, (2.34)

δλ2 =
1

16π2

(
−9

8
g4 − 3

4
g2g′

2 − 3

8
g′

4 − 32λ2
2 − 8λ2α2 − 2α2

2

)
ln

Λ

f2
, (2.35)

δα2 =
1

16π2

(
9

4
g4 +

3

2
g2g′

2
+

3

4
g′

4 − 24λ2α2

)
ln

Λ

f2
, (2.36)

δBµ = 0, (2.37)

δκ =
1

16π2

(
−9

4
g4 − 3

2
g2g′

2 − 3

4
g′

4
)

ln
Λ

f1
. (2.38)

For all radiative corrections presented above, we have neglected finite contributions.

3 Numerical analysis of the fine-tuning

In this section, we seek to compare more precisely the fine-tuning of our model to the

original Twin Higgs. For both models, the fine-tuning comes from requesting a small v/f .

In the case of the Twin Higgs, one has to tune the Z2 breaking sector against the SU(4)

breaking sector. The tuning is evaluated in a similar way to [27] by defining

∆TH =

∣∣∣∣∂ ln(v2/f2)

∂ ln ∆m2

∣∣∣∣ . (3.1)

The tuning is then ∆−1
TH. There are however a number of constraints that need to be

satisfied. The vev v and the mass of the lightest Higgs must be adjusted to their correct

values, which we take to be 174.10 GeV [28] and 125.09 GeV [29] respectively. In addition,
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f/v must be large enough to avoid experimental constraints. Setting this ratio to a given

value imposes an additional constraint. Alternatively, one can set the fine-tuning to a given

number and be interested in f/v, which can be used to estimate the cutoff.

There are four parameters in the Twin Higgs potential: µ2, λ, α and ∆m2. Matching

v and the mass of the Higgs with their respective values sets two parameters. Fixing f/v

or the tuning determines another one. We are therefore left with a single free parameter.

For convenience sake, we take that parameter to be λ. We give two benchmarks. First,

setting λ = 1 and f/v = 3 leads to a tuning of 27.7%. Second, setting λ = 1 and requesting

a tuning of 20% leads to a f/v of 3.42.

A similar measure of fine-tuning can be defined in our model, but a few differences

need to be taken into account. First, Bµ plays a similar role to ∆m2. As explained in

section 2.2, one can obtain a very large ratio of vevs for a relatively small Bµ/B
max
µ , given

a very large mixing of H1 and H2. This however requires a fine-tuning of the parameters

of the second Higgs (µ2
2, λ2 and α2) against those of the first. This tuning corresponds

to Ω being close to 1 and needs to be taken into account. Second, there are simply more

parameters in our case than in the original Twin Higgs. A measure that addresses all of

these issues in a relatively fair manner is

∆Spontaneous = Max

{∣∣∣∣∂ ln(v2/f2
1 )

∂ lnBµ

∣∣∣∣ , ∣∣∣∣∂ ln(v2/f2
1 )

∂ lnµ2
2

∣∣∣∣ , ∣∣∣∣∂ ln(v2/f2
1 )

∂ lnλ2

∣∣∣∣ , ∣∣∣∣∂ ln(v2/f2
1 )

∂ lnα2

∣∣∣∣} . (3.2)

The tuning is then ∆−1
Spontaneous.

2 The number of parameters in the model is 7 (µ2
1, µ2

2, λ1,

λ2, α1, α2 and Bµ). Three of them can be used to obtain the correct value of v and the

Higgs mass, as well as specifying f1/v or requesting a given tuning. A convenient choice

is to use µ2
1, α1 and Bµ for this. The free parameters are then λ1 and the parameters

related to H2 only. For convenience, we show all of the following plots for λ1 = λ2 = 1.

There are then two parameters left: µ2
2 and α2. As it makes the relation with the results

of section 2.2 clearer, we present all contour plots in terms of µ2
2/µ

2
1 and −α2/α1.

The left panel of figure 5 shows the tuning given a ratio f1/v of 3. By inspecting 2.17,

one sees that the contour lines correspond roughly to lines of constant Ω. The tuning also

approaches a constant as Ω goes to 0. This corresponds to the behavior expected from

the discussion of section 2.2. The gray area corresponds to the region of parameter space

where the constraints do not accept any solution. It originates from the impossibility of

creating a large enough hierarchy of vevs for Ω very close to 1. The model is least fine-

tuned when Ω is large enough for feedback to play an important role, while at the same

time far away enough from 1 not to be considered fine-tuned. The ratio of the tuning and

the corresponding Twin Higgs benchmark of 27.7% is shown in the right panel of figure 5.

There is an optimal improvement of 58.1% and an improvement of 29.2% in the limit of Ω

going to 0. Conversely, figure 6 shows f1/v for a fixed tuning of 20%. The ratio of f1/v on

the corresponding Twin Higgs benchmark of 3.42 can be seen in the right panel of figure 6.

2As in [27], we do not consider variations with respect to µ2
1, α1 and λ1 and consider them to be fixed.

Variations with respect to these parameters lead to slightly larger tuning, which is a consequence of Bmax
µ

having cubic dependence on f1. Our measure of tuning instead measures how close Bµ must be taken to

Bmax
µ and how much the parameters of H2 are adjusted with respect to those of H1.
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Figure 5. Tuning of the spontaneous Z2 breaking Twin Higgs for a fixed f1/v of 3. The left

panel shows the tuning in percentage and the right one the ratio of the tuning on the Twin Higgs

benchmark of 27.7%. The gray area corresponds to the region where the constraints do not accept

any solution.
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Figure 6. f1/v for the spontaneous Z2 breaking Twin Higgs for a fixed tuning of 20%. The left

panel shows f1/v and the right one the ratio of f1/v on the Twin Higgs benchmark of 3.42. The

gray area corresponds to the region where the constraints do not accept any solution.

There is an optimal improvement of 22.5% and an improvement of 12.3% in the limit of Ω

going to 0.

Also of interest is the scale at which new physics is expected to become relevant, i.e. the

cutoff. New physics is expected where the radiative corrections to the different parameters
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become large compared to their actual values. The bare parameters must then be tuned

against their radiative corrections. The relevant parameters in both Twin Higgs and our

model are those that receive quadratic corrections, i.e. the different µ2’s. An estimate of the

cutoff for a fixed tuning can be obtained by taking the value of Λ for which the ratio of one

of the µ2’s and its radiative correction drops below said tuning. These corrections are only

expected to give an order of magnitude and are roughly given by |δµ2| ∼ 10λ2Λ2/(16π2).

Using the relations of section 2, the results of f/v can be used to estimate the cutoff.

Requesting a tuning of 20% gives a cutoff of 7.5 TeV for the Twin Higgs. In our model, the

cutoff follows a similar pattern to figure 6 with an optimal value of 9.2 TeV and a value of

8.4 TeV in the limit of Ω going to 0.

4 Concluding remarks

In Twin Higgs models, the Higgs is a pseudo-Goldstone of a spontaneously broken approx-

imate SU(4) global symmetry. It is kept light thanks to a Z2 symmetry that relates the

Standard Model sector to a mirror sector. In order for the model to provide a hierarchy

between the electroweak scale and the scale of new physics, an explicit Z2 breaking term is

introduced and tuned against the small SU(4) breaking terms. In this article, we propose

a Twin Higgs model where the Z2 symmetry is spontaneously broken. It consists of two

Higgses that are fundamentals of a global SU(4). When they are decoupled, the vacuum

of one of them preserves a Z2, while the other breaks it spontaneously. A Bµ-like term

that is bilinear in the two Higgses is then introduced. It acts as an effective tadpole and

communicates the Z2 breaking from one sector to the other, resulting in a hierarchy of

vevs. This effective tadpole and the feedback between the two Higgses lead to a milder

tuning than in the original Twin Higgs.

The phenomenology of the model is quite similar to that of the Twin Higgs. It contains

a mirror sector that is not charged under the Standard Model. The two sectors communi-

cate weakly through the Higgs but, as mentioned above, the mixing of the Standard Model

Higgs with the B-sector is smaller in our model than in the Twin Higgs. On the other

hand, this model is a two Higgs doublet model which could lead to additional signatures.

The next logical question concerns a possible UV completion. The obvious guess would

be a supersymmetric version of the model. However, SUSY generally leads to a more

complicated quartic structure than 2.11 and 2.12. This prevents the model from being

translated directly to SUSY. In addition, getting the correct sign of the αi’s generally

proves to be problematic. The combination of the D-terms and the largest loop corrections

provides a negative contribution to the αi of both the up and down Higgses [27]. The terms

leading to spontaneous Z2 breaking must therefore originate from the superpotential. One

possibility would be to introduce a superpotential term of the form

λHdAUHdB, (4.1)

where U is a fundamental of both SU(2)A and SU(2)B and has the appropriate weak

hypercharges. Assuming a very large soft mass for U and integrating it out would lead to

a positive contribution to αd and can lead to the correct Z2 breaking structure.
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One other possibility would be to have both Hu and Hd preserve Z2, but include

a NMSSM-like scalar sector that spontaneously breaks Z2. For example, consider the

superpotential

W = λ′S′(S2
A + S2

B) + λ′′S′′SASB (4.2)

and assume that both S′ and S′′ have large soft masses and that S = (SA, SB) has a

negative soft mass squared. The first term preserves a global O(2) symmetry that the

second term breaks. Both terms preserve the Z2 symmetry. However, this symmetry will

be broken spontaneously. If SA couples to the A-type Higges and SB to the B-type Higgses,

the symmetry breaking is transmitted to the Higgs sector as well. Of course, the viability

of these models would require studies of their own.
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[16] I. Garćıa Garćıa, R. Lasenby and J. March-Russell, Twin Higgs asymmetric dark matter,

Phys. Rev. Lett. 115 (2015) 121801 [arXiv:1505.07410] [INSPIRE].

[17] M. Farina, Asymmetric twin dark matter, JCAP 11 (2015) 017 [arXiv:1506.03520]

[INSPIRE].

[18] B. Batell and M. McCullough, Neutrino masses from neutral top partners, Phys. Rev. D 92

(2015) 073018 [arXiv:1504.04016] [INSPIRE].

[19] N. Craig, A. Katz, M. Strassler and R. Sundrum, Naturalness in the dark at the LHC, JHEP

07 (2015) 105 [arXiv:1501.05310] [INSPIRE].

[20] D. Curtin and C.B. Verhaaren, Discovering uncolored naturalness in exotic Higgs decays,

JHEP 12 (2015) 072 [arXiv:1506.06141] [INSPIRE].

[21] D. Curtin and P. Saraswat, Towards a no-lose theorem for naturalness, arXiv:1509.04284

[INSPIRE].

[22] Z. Chacko, Y. Nomura, M. Papucci and G. Perez, Natural little hierarchy from a partially

Goldstone twin Higgs, JHEP 01 (2006) 126 [hep-ph/0510273] [INSPIRE].

[23] S. Chang, L.J. Hall and N. Weiner, A supersymmetric twin Higgs, Phys. Rev. D 75 (2007)

035009 [hep-ph/0604076] [INSPIRE].

[24] P.J. Fox, A.E. Nelson and N. Weiner, Dirac gaugino masses and supersoft supersymmetry

breaking, JHEP 08 (2002) 035 [hep-ph/0206096] [INSPIRE].

[25] A. Falkowski, S. Pokorski and M. Schmaltz, Twin SUSY, Phys. Rev. D 74 (2006) 035003

[hep-ph/0604066] [INSPIRE].

[26] J. Galloway, M.A. Luty, Y. Tsai and Y. Zhao, Induced electroweak symmetry breaking and

supersymmetric naturalness, Phys. Rev. D 89 (2014) 075003 [arXiv:1306.6354] [INSPIRE].

[27] N. Craig and K. Howe, Doubling down on naturalness with a supersymmetric twin Higgs,

JHEP 03 (2014) 140 [arXiv:1312.1341] [INSPIRE].

[28] Particle Data Group collaboration, K.A. Olive et al., Review of particle physics, Chin.

Phys. C 38 (2014) 090001 [INSPIRE].

[29] ATLAS, CMS collaboration, Combined measurement of the Higgs boson mass in pp

collisions at
√
s = 7 and 8 TeV with the ATLAS and CMS experiments, Phys. Rev. Lett. 114

(2015) 191803 [arXiv:1503.07589] [INSPIRE].

– 16 –

http://dx.doi.org/10.1007/JHEP03(2015)106
http://arxiv.org/abs/1411.7393
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.7393
http://dx.doi.org/10.1103/PhysRevD.91.055007
http://arxiv.org/abs/1411.3310
http://inspirehep.net/search?p=find+EPRINT+arXiv:1411.3310
http://dx.doi.org/10.1007/JHEP08(2015)161
http://arxiv.org/abs/1501.07803
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.07803
http://dx.doi.org/10.1103/PhysRevD.91.095012
http://arxiv.org/abs/1501.07890
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.07890
http://dx.doi.org/10.1103/PhysRevD.92.055034
http://dx.doi.org/10.1103/PhysRevD.92.055034
http://arxiv.org/abs/1505.07109
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.07109
http://dx.doi.org/10.1088/1475-7516/2015/10/054
http://arxiv.org/abs/1505.07113
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.07113
http://dx.doi.org/10.1103/PhysRevLett.115.121801
http://arxiv.org/abs/1505.07410
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.07410
http://dx.doi.org/10.1088/1475-7516/2015/11/017
http://arxiv.org/abs/1506.03520
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.03520
http://dx.doi.org/10.1103/PhysRevD.92.073018
http://dx.doi.org/10.1103/PhysRevD.92.073018
http://arxiv.org/abs/1504.04016
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.04016
http://dx.doi.org/10.1007/JHEP07(2015)105
http://dx.doi.org/10.1007/JHEP07(2015)105
http://arxiv.org/abs/1501.05310
http://inspirehep.net/search?p=find+EPRINT+arXiv:1501.05310
http://dx.doi.org/10.1007/JHEP12(2015)072
http://arxiv.org/abs/1506.06141
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06141
http://arxiv.org/abs/1509.04284
http://inspirehep.net/search?p=find+EPRINT+arXiv:1509.04284
http://dx.doi.org/10.1088/1126-6708/2006/01/126
http://arxiv.org/abs/hep-ph/0510273
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0510273
http://dx.doi.org/10.1103/PhysRevD.75.035009
http://dx.doi.org/10.1103/PhysRevD.75.035009
http://arxiv.org/abs/hep-ph/0604076
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0604076
http://dx.doi.org/10.1088/1126-6708/2002/08/035
http://arxiv.org/abs/hep-ph/0206096
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0206096
http://dx.doi.org/10.1103/PhysRevD.74.035003
http://arxiv.org/abs/hep-ph/0604066
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0604066
http://dx.doi.org/10.1103/PhysRevD.89.075003
http://arxiv.org/abs/1306.6354
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.6354
http://dx.doi.org/10.1007/JHEP03(2014)140
http://arxiv.org/abs/1312.1341
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.1341
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://dx.doi.org/10.1088/1674-1137/38/9/090001
http://inspirehep.net/search?p=find+J+"Chin.Phys.,C38,090001"
http://dx.doi.org/10.1103/PhysRevLett.114.191803
http://dx.doi.org/10.1103/PhysRevLett.114.191803
http://arxiv.org/abs/1503.07589
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.07589

	Introduction
	The model
	The original Twin Higgs
	Spontaneous Z(2) breaking
	Potential and vevs
	Small alpha(i)s approximation
	Additional properties

	Radiative corrections

	Numerical analysis of the fine-tuning
	Concluding remarks

