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1 Introduction

In its most general setting, Einstein-Maxwell-scalar gravity (EMSG) is characterized by

three coupling functions: the self-interaction scalar potential V (φ), the gauge coupling

function Z(φ), and the coupling function S(φ) responsible for the mass of the Maxwell

field. In recent times, a lot of effort has been devoted to the derivation and investigation

of brane solutions in the context of EMSG in d + 2 dimensions with various forms of the

coupling functions [1–12].

The main reason behind this interest is the holographic application of this kind of

solutions. Using the rules of the AdS/CFT correspondence [13–15], one can investigate

the QFT dual to the brane and in particular derive its transport properties. This strategy

has allowed to uncover a very rich phenomenology ranging from applications to condensed

matter systems (holographic superconductors [16–19], phase transitions [4, 20], quantum

– 1 –



J
H
E
P
0
1
(
2
0
1
6
)
1
2
5

criticality [11, 21, 22], hyperscaling violation in critical systems [9, 10, 23–38], hydrody-

namic regime of strongly coupled QFTs [39, 40], entanglement entropy [41–44]) to cosmol-

ogy [45–49]. However, the essential qualitative features of the dual QFT are not pertinent

to the presence of non-trivial coupling functions Z and S but are basically determined

by the presence of a non-constant scalar field. In the dual QFT the non-trivial profile of

the scalar field plays the crucial role of an order parameter triggering symmetry breaking

and/or phase transitions. For this reason, in this paper we will restrict our considerations

to minimally coupled Einstein-Maxwell-scalar gravity (MCEMSG), which is characterized

by a single coupling function, the potential V (φ), whereas the other two are trivial, i.e.

Z = 1 and S = 0.

The branes of MCEMSG have been investigated in several papers and both analyti-

cal and numerical solutions have been derived [1–12]. There are three different types of

solutions. Black branes (BB) are solutions with a singularity shielded by an event hori-

zon. In the dual QFT these solutions correspond to a field theory at finite temperature T

and are very important in the description of phase transitions [4, 9, 16–20]. Scale-covariant

branes (SCB) are a sort of elementary solutions transforming covariantly under scale trans-

formations. They represent a generalization of the usual Minkowski or AdS vacua to

spacetimes with non-standard asymptotics [6, 23, 50]. They are sourced by a scalar field

with log r behavior, have no horizon and in the dual QFT typically correspond to a T = 0

ground state exhibiting hyperscaling violation [9, 10, 23–31, 34, 35]. The AdS brane, which

is characterized by full conformal invariance and is sourced by a constant scalar, appears as

limiting case of this class of solutions. Scale-covariant solutions in general have a curvature

singularity at r = 0 and need therefore an infrared (IR) regularization [27]. Interpolating

branes are solutions which interpolate between two elementary branes at r ∼ 0 (the IR

of the dual QFT) and r = ∞ (the ultraviolet (UV) of the dual QFT). They are T = 0

solutions describing the flow of the dual QFT from a IR to an UV regime, in which the

solution behaves as an elementary, scale-covariant, solution.

The presence of a given type of brane solution in the spectrum of MCEMSG theories

depends on the specific form of the potential V (φ). Elementary, scale-covariant branes

require an exponential potential (a constant V is required for the AdS brane), whereas

black or interpolating branes typically require a more complicate potential with different

behaviour in the r = 0 and r = ∞ region. Notice that the known no-hair theorems [51–53]

only apply to asymptotically flat or AdS solutions. Thus, solutions with non-standard

asymptotics do not necessarily satisfy no-hair theorems. Although several solutions of

MCEMSG theories are known, presently it is not clear if the scale-covariant geometries

found until now exhaust all the possible solutions of this kind of theory. Clearly, this lack

of knowledge prevents a complete classification of the possible interpolating geometries.

The purpose of this paper is twofold. First, we derive the exact solutions of MCEMSG

in the case of a vanishing potential, which are the brane counterpart of the Janis-Newmann-

Winicour-Wyman (JNWW) solutions [54–57]. We show that these solutions belong to

the class of scale-covariant solutions generating hyperscaling violation in the dual QFT.

Second, we demonstrate that these solutions complete the list of the possible scale-covariant

solutions of the theory having isometries not involving Galilean boosts. This will allow us
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to give an exhaustive classification of the interpolating brane solutions of MCEMSG with

no Schrödinger isometries [58–63].

The structure of this paper is the following. In section 2 we briefly review MCEMSG

and the parametrization of the field equations introduced in ref. [6]. In section 3 we clas-

sify the branes according to their hyperscaling violation parameter and dynamic scaling

exponent. We then derive and discuss the brane solutions of the theory with a vanishing

potential in section 4. In section 5 we show that this solution completes the list of ele-

mentary, scale-covariant branes of the theory and we give a complete classification of both

elementary and interpolating solutions. In section 6 and section 7 we construct two explicit

examples of interpolating solutions. Finally, we conclude in section 8. In appendix A we

present a result, which is somehow beyond the scope of this paper, but can be obtained

using our parametrization of the field equations, namely the charged, spherically symmet-

ric solutions of MCEMSG. These solutions are the charged generalization of the JNWW

solutions.

2 Einstein-Maxwell-scalar gravity

We consider MCEMSG in d+ 2 spacetime dimensions (with d > 2):

A =

∫

dd+2x
√−g

(

R− 2(∂φ)2 − F 2 − V (φ)
)

, (2.1)

where R is the scalar curvature of the spacetime. The ensuing field equations are

∇µF
µν = 0, (2.2a)

∇2φ =
1

4

dV (φ)

dφ
, (2.2b)

Rµν −
1

2
gµνR = 2

(

FµρF
ρ
ν − 1

4
gµνF

ρσFρσ

)

+ 2

(

∂µφ∂νφ− 1

2
gµν∂

ρφ∂ρφ

)

− 1

2
gµνV (φ). (2.2c)

We are interested in static, radially symmetric solutions of the field equations, for this

we parametrize the spacetime metric in a Schwarzschild gauge:

ds2 = −U(r) dt2 + U−1(r) dr2 +R2(r) dΩ2
(ε,d), (2.3)

where ε = 0, 1,−1 denotes, respectively, the d-dimensional planar, spherical, or hyper-

bolic transverse space with metric dΩ2
(ε,d). Moreover, we will consider only purely electric

solutions.1 Let Q be the electric charge. Then, the electric field satisfying (2.2) reads

Ftr =
Q

Rd
. (2.4)

1For d = 2 magnetic solutions can be easily generated from the electric ones using the electro-magnetic

duality. In this case we have Fij = Q

R2 ǫij , where i, j label the transverse two-dimensional space.
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Using eqs. (2.3) and (2.4), the field equations take the form

R′′

R
= −2

d
(φ′)2, (2.5a)

(URdφ′)′ =
1

4
Rd dV

dφ
, (2.5b)

(URd)′′ = εd(d− 1)Rd−2 + 2
d− 2

d

Q2

Rd
− d+ 2

d
RdV, (2.5c)

(URd−1R′)′ = ε(d− 1)Rd−2 − 2

d

Q2

Rd
− 1

d
RdV. (2.5d)

In general, the solutions of these field equations depend on the class of potentials

V (φ) considered. Usually, one must impose precise boundary conditions on the r = ∞
asymptotic behavior of the solution, which translate into boundary conditions for the

potential. For example, if we require an asymptotically flat spacetime and assume without

loss of generality that φ(r → ∞) = 0, it follows that V (0) = 0, while for asymptotically

AdS spacetimes we have V (0) = −Λ2. Typically one also requires the existence of the

Schwarzschild black hole (black brane) solution sourced by a constant scalar field φ = 0,

implying V ′(0) = 0, while the existence of black hole solutions sourced by a non-trivial

scalar field in general is strongly constrained by well-known no-hair theorems.

Nevertheless, finding exact solutions of the field equations (2.5) is a very difficult task

even when the explicit form of the potential V is given. An efficient solving method has

been proposed in ref. [6]. Such method is particularly useful in the holographic context and

it has been successfully used in several cases to generate exact, asymptotically flat or AdS,

solutions of Einstein-(Maxwell)-scalar gravity, where the potential is not an input but an

output of the theory [6, 56, 57].

Following ref. [6], introducing the variables R = e
∫

Y and u = URd, the field equa-

tions (2.5) become

Y ′ + Y 2 = −2

d
(φ′)2, (2.6a)

(uφ′)′ =
1

4
ed

∫

Y dV

dφ
, (2.6b)

u′′ − (d+ 2)(uY )′ = −2ε(d− 1)e(d−2)
∫

Y + 4Q2e−d
∫

Y , (2.6c)

u′′ = εd(d− 1)e(d−2)
∫

Y + 2
d− 2

d
Q2e−d

∫

Y − d+ 2

d
ed

∫

Y V. (2.6d)

Eqs. (2.6c) and (2.6d) are second-order linear differential equations in u, whereas (2.6a) is

a first-order nonlinear equation for Y , known as the Riccati equation. In general, starting

from a given profile φ(r) for the scalar field, one can look for solutions of the Riccati

equation. Once the solution for Y has been found, one can integrate eq. (2.6c), which is

linear in u, to obtain

u = Rd+2

[
∫

(

4Q2

∫

1

Rd
− 2ε(d− 1)

∫

Rd−2 − C1

)

1

Rd+2
+ C2

]

, (2.7)
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where C1,2 are integration constants. The last step is the determination of the potential

using eq. (2.6d):

V =
d2(d− 1)

d+ 2

ε

R2
+ 2

d− 2

d+ 2

Q2

R2d
− d

d+ 2

u′′

Rd
. (2.8)

3 Scaling symmetries and hyperscaling violation

The d + 2 dimensional metric for a brane (ε = 0), whose dual QFTs are characterized by

hyperscaling violation is usually written as [23]

ds2 = r−2(d−θ)/d
(

−r−2(z−1) dt2 + dr2 + dxi dx
i
)

, (3.1)

where dxi dx
i = dΩ2

(0,d), θ is the hyperscaling violation parameter and z is the dynamic

scaling exponent characterizing the anisotropic scaling of the time and space coordinates,

which breaks Lorentz invariance in the dual QFT. The scaling symmetries of the met-

ric (3.1) are

t → λzt, r → λr, xi → λxi, ds → λθ/dds. (3.2)

It follows that a nonzero value of θ makes the metric (3.1) not scale-invariant, but only

scale-covariant, in the sense that the metric transforms with a definite weight under a scale

transformation. Notice that in this paper we consider simple scaling symmetries (3.2),

which do not involve Galilean boosts. Holography for non-relativistic QFTs have been

also investigated in the case in which the geometry allows for scaling isometries involving

boosts (Schrödinger isometries). In this case the theory has not a preferred rest frame

as the simple scaling geometries (3.1) and we have an holographic description which has

been termed Schrödinger holography [58–63]. A complete and exhaustive classification of

all non-relativistic holographic models, in particular of the important case z = 2, would

require a separate classification involving also Schrödinger symmetries. Such a complete

classification is, however, beyond the scope of this paper.

The scaling transformation determines the following scaling behavior for the free energy

of the dual QFT, given in terms of θ and z:

F ∼ T
d+z−θ

z . (3.3)

It is useful to distinguish between the two effects of hyperscaling violation (θ 6= 0) and

anisotropic scaling (z 6= 1) introducing four different subclasses:

(1) θ = 0, z = 1 describes AdS branes. The metric (3.1) gives the AdS spacetime in d+2

dimensions, the scaling (3.2) is isotropic and the dual QFT is a CFT.

(2) θ = 0, z 6= 1 describes Lifshitz branes. Because θ = 0, the metric is not only covariant

but also invariant under the scale transformation (3.2). On the other hand, because

z 6= 1 the scaling is not isotropic in the t and xi coordinates and the dual d + 1-

dimensional QFT is not invariant under the d+ 1-dimensional Lorentz group.
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(3) θ 6= 0, z = 1 describes Domain Walls. The scaling (3.2) is isotropic but being θ 6= 0

full scale invariance is broken and only scale covariance survives. The metric is

conformal to AdS spacetime. The dual QFT is Lorentz invariant and one can still

formulate a DW/QFT correspondence [64, 65]. Notice that Minkowski spacetime in

d+2 dimensions is a particular case of this class of solutions, it is obtained for θ = d.

(4) θ 6= 0, z 6= 1 describes Conformal-Lifshitz branes. Now the scaling (3.2) is anisotropic

and hyperscaling is violated. In this case the metric (3.1) is conformal to the Lifshitz

spacetime [6].

Hyperscaling violation can be realized both for θ > 0 and θ < 0. The two cases are

qualitative different. As one can infer from the scaling of the free energy (3.3), the effect of

a positive hyperscaling violation parameter θ is a “lowering” of the effective dimensionality

of the dual system from d to d−θ, whereas for θ < 0 this dimensionality increases to d+ |θ|.
For usual condensed matter critical systems θ is always positive. However, in the context

of holographically generated hyperscaling violation, negative values of θ have been found

in a number of cases, see e.g. ref. [9, 10] and references therein.

4 Brane solutions sourced by a scalar field with V = 0

For an identically vanishing potential, V (φ) = 0, it is possible to find exact solutions of the

field equations (2.2). The electrically neutral, spherically symmetric JNWW solutions [54,

55] have been rederived in ref. [56] using the method described in section 2.

In this paper we will focus our attention on solutions in d + 2 spacetime dimensions

for which ε = 0 (branes), i.e. the transverse d-dimensional sections have planar topology.

In this case the field equations eq. (2.6) reduce to

Y ′ + Y 2 = −2

d
(φ′)2, (4.1a)

(uφ′)′ = 0, (4.1b)

u′′ − (d+ 2)(uY )′ = 4Q2e−d
∫

Y , (4.1c)

u′′ = 2
d− 2

d
Q2e−d

∫

Y . (4.1d)

Let us discuss separately the uncharged (Q = 0) and charged case.

4.1 Uncharged brane solutions

We consider first the electrically neutral case Q = 0. One can easily realize that flat branes

with R = r and U = 1 (corresponding to u = rd, Y = 1/r), are not solution of the field

equations (4.1). However, the system (4.1) can be integrated exactly: we solve the trivial

equation (4.1d), giving u as a linear function of r; then we solve eq. (4.1c) for Y ; and finally

we determine φ using eq. (4.1b). The Riccati equation then gives just a constraint for the

integration constants. The most general form of the solution is:

U =

(

r

r0

)1−dw

, R2 =

(

r

r0

)2w

, φ = −γ log

(

r

r0

)

+ φ0, w − w2 =
2

d
γ2, (4.2)
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where r0, γ, w and φ0 are integration constants. The constraint implies the condition

0 6 w 6 1. The solution (4.2) is invariant under the transformation w → 1−w, which maps

solutions with w ∈ [0, 1/2] into solutions with w ∈ [1/2, 1]. Neglecting the constant φ0, a

trivial translation mode of the scalar, these solutions give a two-parameter (r0, w) family

of brane solutions. In particular, r0 represents a length scale, while w is a dimensionless

parameter. The solution (4.2) has interesting scaling symmetries, which we discuss in detail

in subsection 4.1.2. Moreover, it can be considered as the brane counterpart of the JNWW

spherical solutions.

For w 6= 0, 1 the solutions have a naked singularity at r = 0, in fact the scalar curva-

ture is

R =
2γ2

r20

(

r

r0

)

−1−dw

. (4.3)

Well-known no-hair theorems [51–53] forbid asymptotically flat BB solutions when V = 0.

In principle these theorems do not apply to solutions with non-standard asymptotics such

as (4.2). Nevertheless, one can easily check that eq. (4.1) do not allow for solutions with

event horizons. Thus, the brane (4.2) is a T = 0 solution, which does not allow for finite

temperature excitations.

In the two limiting cases w = 0, 1 the scalar is constant. For w = 0 the brane solution

becomes

ds2 = − r

r0
dt2 +

r0
r
dr2 + dxi dx

i, (4.4)

which is just (d+2)-dimensional Minkowski space in a particular coordinate system; in fact,

the (r, t) sections of the metric can be brought in the Rindler form by a simple redefinition

of the radial coordinate r. Whereas, for w = 1 the brane solution is

ds2 = −
(

r

r0

)1−d

dt2 +

(

r

r0

)d−1

dr2 +

(

r

r0

)2

dxi dx
i, (4.5)

a Ricci-flat manifold, which can be considered as the brane counterpart of the Schwarzschild

black hole.

4.1.1 Energy of the brane

Let us now calculate the total energy M of the solution, using the Euclidean action for-

malism of ref. [66]. The variation of the boundary terms of the action consists of both a

gravitational and a scalar contribution:

δM = 8π

[

−d

2
Rd−1R′δU + U ′Rd/2δ

(

Rd/2
)

− dURd/2δ
(

R
d−2
2 R′

)

]

∞

− 16π
[

RdUφ′δφ
]

∞

.

(4.6)

Evaluating this equation for the solution (4.2) one finds

M =
4π

r0
dw[(2− d)w − 2]. (4.7)
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Taking into account the constraints on w and d (namely 0 6 w 6 1 and d > 2), the

energy vanishes only when w = 0, i.e. for Minkowski space, while for 0 < w 6 1 the sign

of the energy is ruled by the sign of r0 (negative for r0 > 0 and positive for r0 < 0).

Taking r > 0, solution (4.2) exists only for r0 > 0, thus the brane has always negative

mass. This behaviour is quite different from the JNWW solutions, where the sign of the

energy depends both on the value of the dimensionless parameter of the solutions and on

r0 [56, 57].

4.1.2 Scaling symmetries and hyperscaling violation

The brane metric (4.2) has remarkable scaling symmetries and can be put in the form (3.1)

by the transformation of coordinates

r

r0
→

(

r

r̃0

)
2

1+w(d−2)

, r̃0 =
2r0

1 + w(d− 2)
. (4.8)

The hyperscaling violation parameter and the dynamical exponent are given by

z =
2dw

1 + w(d− 2)
, θ =

d(1 + dw)

1 + w(d− 2)
. (4.9)

We observe that z and θ are not independent but satisfy the relation

θ = z + d. (4.10)

From eq. (4.9) we see that the brane solution (4.2) never belongs to the subclasses (1)

or (2) of section 3, i.e. it can neither describe an AdS spacetime nor a Lifshitz spacetime. It

can be either a DW for w = 1/(d+2) or a CL brane for w 6= 1/(d+2). The relation (4.10)

implies that the free energy of the dual QFT is constant. This is what we expect because,

owing to the absence of solutions with event horizons, our brane solution does not allow

BB excitations at finite temperature.

The null energy conditions for the bulk stress-energy tensor require [23]

(d− θ) (d(z − 1)− θ) > 0, (z − 1)(d+ z − θ) > 0. (4.11)

Taking into account that the constraint 0 6 w 6 1 implies the condition 0 6 z 6 2d/(d−1),

it is straightforward to check that the first inequality is always satisfied. The second one

is saturated in our case, as expected because the source is a massless field.

4.2 Electrically charged brane solutions in four dimensions

Let us now consider the case of non-vanishing electric charge. Taking for simplicity d = 2,

eq. (4.1) become

Y ′ + Y 2 = −(φ′)
2
, (uφ′)′ = 0, u′′ − 4(uY )′ = 4Q2e−2

∫

Y , u′′ = 0. (4.12)

– 8 –
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Again, we first determine u and φ, then we solve the Riccati equation, and finally we use

the third equation to express the charge Q in terms of the integration constants:

U =

(

r

r0

)1−2w
[

1− c1

(

r

r0

)1−2w
]

−2

, (4.13a)

R2 =

(

r

r0

)2w
[

1− c1

(

r

r0

)1−2w
]2

, (4.13b)

φ = −γ log

(

r

r0

)

+ φ0, (4.13c)

where w − w2 = γ2 and c1 = r20Q
2/(1 − 2w)2. These constraints imply 0 6 w 6 1, with

w 6= 1/2.

Solutions (4.13) represent a three-parameter (r0, w, Q) family of brane solutions, with

a naked singularity at r = r0c
(1/2w−1)
1 for all w in the range 0 6 w 6 1. In fact the scalar

curvature is

R =
2γ2

r20

(

r

r0

)

−1−2w
[

1− c1

(

r

r0

)1−2w
]

−2

. (4.14)

For w = 0, 1 the solutions reduce to curved branes with vanishing scalar curvature

R = 0, sourced by a constant scalar field. In particular one has:

U =
r

r0

(

1− c1r

r0

)

−2

, R = 1− c1r

r0
for w = 0, (4.15)

U =
r0
r

(

1− c1r0
r

)

−2
, R =

r

r0
− c1 for w = 1. (4.16)

Both solutions represent a sort of Reissner-Nordström (RN) branes. In fact, the metric part

of the solutions can be written using a translation and a rescaling of the radial coordinate

r in the form U = α
r + Q2

r2
, R = r, where α is a constant.

The asymptotic behavior of solution (4.13) in general is ruled by the value of w. When

0 < w < 1/2, we have for r → ∞ (corresponding to φ → −∞) at leading order:

U = c−2
1

(

r

r0

)

−1+2w

, R2 = c21

(

r

r0

)2−2w

, φ = −γ log
r

r0
, (4.17)

while when 1/2 < w < 1 one finds:

U =

(

r

r0

)1−2w

, R2 =

(

r

r0

)2w

, φ = −γ log
r

r0
. (4.18)

Notice that in this last case the asymptotic behavior coincides with the uncharged

solution (4.2) with d = 2, discussed in the previous subsection. It is also easy to check

that the two asymptotic forms (4.17) and (4.18) are mapped one into the other by the

transformation w → 1− w, that leaves invariant the constraint w − w2 = γ2.
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4.2.1 Energy of the brane

Also in this case, we can compute the total energy of the solution using the Euclidean

action formalism [67]. The variation of the boundary terms of the action are:

δM = δMG + δMφ − 16πQδΦ|∞, (4.19)

where δMG and δMφ are the gravitational and scalar contributions, corresponding to

eq. (4.6) with d = 2, while the last term is the contribution due to the charge and Φ

is the electric potential.

Evaluating the energy for our solution (4.13), we find that the electromagnetic con-

tribution always vanishes at r = ∞, while the full result is ruled by the value of w again.

When 0 6 w 6 1/2 we obtain

M =
16π

r0
[−w + (2w − 1) log(Q/Q0)], (4.20)

where Q0 is an integration constant. In this case the sign of the energy depends on the

mutual values of w and Q. When 1/2 6 w 6 1 (where the asymptotic behavior of the

charged brane (4.13) coincides with the uncharged brane (4.2) for d = 2), one simply finds

M = −16π

r0
. (4.21)

As expected, it coincides with the energy (4.7) of the uncharged solution with d = 2.

4.2.2 Scaling symmetries and hyperscaling violation

Let us now study the scaling symmetries of the solution (4.13) in the UV regime, i.e. for

r → ∞. We consider first the asymptotic form (4.17), describing the UV regime of the

solution when 0 6 w 6 1/2. Let r̃0 = 2r0c1, then (4.17) can be put in the form (3.1) by

the transformation of coordinates

r

r0
→

(

r

r̃0

)2

. (4.22)

After this transformation, it is simple to extract the hyperscaling violation parameter

and the dynamical exponent:

z = 4− 4w, θ = 6− 4w. (4.23)

From eq. (4.23) one can see that θ = 0 for w = 3/2, which is outside the range of w.

Hence, our brane solution (4.13) cannot describe neither an AdS nor a Lifshitz brane, i.e.

it never belongs to the subclasses (1) or (2) of section 3. The brane is either a DW for

w = 3/4 or a CL brane for w 6= 3/4. Notice also that the relation θ = z + 2 (already

observed in the uncharged case in its d-dimensional form), is verified again, as well as the

constant free energy of the dual QFT.

The null energy conditions for the bulk stress-energy tensor

(2− θ)[2(z − 1)− θ] > 0, (z − 1)(2 + z − θ) > 0 (4.24)

are satisfied. In particular, the second one is saturated.

Exploiting the symmetry of the asymptotic solutions (4.17) and (4.18) under w → 1−w

described in section 4.2, we can easily derive the critical exponents θ and z related to the

scaling (4.18), which, as expected, are those of (4.9) with d = 2.
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5 Classifications of brane solutions sourced by scalar fields

In this section we present a detailed physical classification of brane solutions sourced by a

scalar field with a self-interaction potential V , i.e. a classification of the brane solutions of

the MCEMSG theory (2.1). Obviously, the form of the brane solution will strongly depend

on the form of the potential V and a complete classification is without reach. On the other

hand, having in mind holographic applications, we are not interested in generic solutions

but on branes that respect some scaling symmetries, at least asymptotically (r → ∞) and

in the r = 0 region. We can therefore built up a brane classification based on the scaling

symmetries discussed in section 3.

We will preliminary show that the scale-covariant solution (4.2) together with the

solutions already known in the literature give all the possible brane solutions of MCEMSG

of the form (3.1). Using a reparametrisation of the radial coordinate r we can easily write

the metric (3.1) in the form (2.3) with U = B(r/r0)
α, R = D(r/r0)

β , from which it follows

Y = β/r. Inserting this expression of Y in the field equations (2.6) with Q = 0 one finds

only three classes of solutions:

(I) β = 1, φ = const, u ∝ rd+2, V = −Λ2, which corresponds to the AdSd+2 brane;

(II) φ ∝ log(r/r0), u ∝ r, V = 0, which corresponds to the solution (4.2);

(III) φ ∝ log(r/r0), u ∝ rη, V ∝ eµφ, η 6= {1, d + 2}, which corresponds to DW solutions

sourced by an exponential potential [6].

In our classification, we will distinguish between elementary solutions, i.e. solutions re-

specting some scaling symmetry, and interpolating solutions, i.e. solutions that approach

to elementary branes only in the r = 0 IR region and in the r = ∞ UV region. We will

discuss separately these two types of solutions.

5.1 Elementary solutions

Elementary solutions are defined as those solutions of the theory (2.1) which belong to one

of the subclasses of section 3. In principle, we should therefore have in correspondence

with the four scale symmetries of section 3 four kinds of elementary branes. However, as

a consequence of the previous demonstration, the Lifshitz solution (2) cannot be obtained

if the source is a minimally coupled scalar field. We are therefore left with three classes

of solutions:

(A) AdS branes are Q = 0 solutions of the model (2.1) when the potential V (φ) is a

negative cosmological constant or has a local extremum V ′(φ0) = 0, with V (φ0) =

−Λ2. In this case we have a trivial (constant) scalar field φ = φ0.

(B) Domain Walls are Q = 0 solutions of the model (2.1) when the potential V (φ) is a

pure exponential: V (φ) ∝ eµφ. DWs are sourced by a scalar behaving logarithmically:

φ ∝ log r/r0 [6].
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(C) Conformal-Lifshitz branes are solutions of the model (2.1) in the case V = 0 for

Q = 0. For Q 6= 0 they appear as solution of the theory for a purely exponential

potential [6].

For z and θ in eq. (3.1) finite, there are no other elementary brane solutions which can

be sourced by a minimally coupled scalar field. However, in the θ = 0, z → ∞ limit, it is

known that the Lifshitz brane becomes the AdS2 × Rd spacetime, see e.g. ref. [27]. If one

wants to include this limiting case one should consider also a fourth kind of elementary

brane solutions, namely the AdS2 × Rd branes. These spacetimes are Q 6= 0 charged

solutions of the model (2.1) when the potential V (φ) is a negative cosmological constant or

has a local extremum V ′(φ0) = 0, with V (φ0) = −Λ2. Similarly to case (A) these branes

are sourced by a constant scalar field.

5.2 Interpolating solutions

Combining the three types of elementary brane solutions discussed above one can construct

different kinds of interpolating solutions, i.e. solutions behaving only in the UV and IR

regimes as an elementary brane. The interpolating solutions are very useful for holographic

applications, in particular for AdS/CFT and the gravity/condensed matter correspondence

of EMSG [1–12].

The recent literature dealing with this topic contains a multitude of such interpolating

brane solutions derived in the context of the gravity theory (2.1) and its possible gener-

alizations (covariant coupling between the U(1) gauge field Aµ and the scalar, coupling

between the Maxwell tensor Fµν and the scalar, Einstein-Yang-Mills-scalar gravity, etc.).

Despite this variety of solutions and models, the simplest case described by the action (2.1)

is extremely important for the crucial role played by the scalar field. In the dual QFT the

scalar field gives an order parameter triggering symmetry breaking and/or phase transi-

tions. Moreover, φ has a nice interpretation in terms of holographic renormalization group

equations describing the flow between UV/IR fixed points, see e.g. ref. [68].

The classification of the possible interpolating solutions of the theory (2.1) is simple

because it is parametrized by a single function, the potential V (φ). It follows that the

interpolating solutions are essentially determined by the behaviour of the potential in the

IR and UV region. This feature is not present in other, more complicated, models in which

the presence of two or more coupling functions prevents a simple classification. In the

following we will list all the known interpolating solutions and, in the case they are not

been already discussed in the literature, we will discuss their possible existence.

AdS-AdS interpolating solutions In general, solutions of this kind are present when

the potential has a local maximum and a local minimum connected with continuity.

The gravitational soliton bridges two AdS spacetimes whereas the dual field theory

flows from a fixed point in the UV to an other fixed point in the IR. The two CFTs

are connected by the c-theorem, which gives well-defined predictions for the running

of the central charge when running from the UV to the IR. Interpolating solutions

of this kind are typically numerical solutions and have been already discussed in the

literature, see e.g. ref. [69].
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AdS-DW Interpolating solutions Typically, these solutions are present when Q = 0

and the potential has an extremum at φ0 with V (φ0) < 0 in the UV (IR), whereas it

behaves exponentially in the IR (UV). The gravitational soliton interpolates between

an AdS spacetime at r = ∞ (r = 0) and a DW near r = 0 (r = ∞). The dual QFT

flows from a fixed point in the UV (IR) to an hyperscaling violating phase in the

IR (UV). Exact solutions of this kind are known, both in the case of hyperscaling

violation in the IR [6] and hyperscaling violation in the UV [8, 9]. Several numerical

solutions are also known, see e.g. ref. [12].

AdS-CL Interpolating solutions Brane solutions of the theory (2.1) bridging an AdS

spacetime in the UV (IR) with a CL solution in the IR (UV) have not been discussed

in the literature. Conversely, they are quite common in non-minimally coupled theo-

ries and in the case of holographic superconductors. In the context of the minimally

coupled theory they are expected to show up in two cases: first, V (φ) has an ex-

tremum in the UV (IR) whereas in the IR (UV) region the kinetic energy of the

scalar dominates over its potential energy so that we can use V ∼ 0; second, we

have Q 6= 0 charged solutions, V (φ) has an extremum in the UV (IR) whereas in the

IR (UV) region V behaves exponentially. Obviously the existence of these solutions

must be checked numerically.

DW-DW Interpolating solutions Solutions interpolating between two DW branes are

not known in literature. However, we can easily find a form of the potential which is

a good candidate for generating this kind of solution. One can start from a simple

combination of exponentials: V (φ) = Aeαφ + Be−βφ, that obviously behaves as a

single exponential in the two regimes φ → ∞ and φ → −∞. We know that a simple

exponential form of the potential leads, in the case of uncharged branes, to a DW

solution [6]. Thus, the corresponding brane solutions of the model, if existing would

give a soliton interpolating between two DWs at φ = ±∞.

DW-CL Interpolating solutions Having in mind the features of the elementary solu-

tions discussed in section 5.1, one can expect this kind of solution to show up in the

case of a potential which diverges exponentially in a region whereas approaches to

zero in an other region. Solutions of this type, although already known in the litera-

ture [6], have not been recognized as DW-CL interpolating solutions. We will show

in section 6 that for an appropriate choice of the parameters the solutions of ref. [6]

describe a DW-CL interpolating solution.

CL-CL Interpolating solutions In order to generate these kind of branes one should

consider a potential which vanishes in two distinct regions. Alternatively one can

consider charged solutions and a potential behaving exponentially. Also a mixed

charged configuration, with a potential vanishing in one region and behaving expo-

nentially in an other region, is possible. Also solutions of this type are known in

literature [6], but have not been recognized as CL-CL interpolating solutions. We

will show in section 7 that for an appropriate choice of the parameters the solutions

of ref. [6] describe a CL-CL interpolating solution.
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In the above classification of interpolating brane solutions we have not considered

the limiting case in which one of the elementary solution is AdS2 × Rd. Brane solutions

interpolating between an elementary solution (A), (B) or (C) in the UV and AdS2 ×Rd in

the IR possibly exist whenever one considers charged branes and a potential V behaving

in the IR as a negative cosmological constant. The simplest, well-known, example of this

kind is obtained considering V = −Λ2 identically. The charged brane solutions are simply

given by the AdS-RN BB. In the extremal limit, when the BPS bound is saturated, we get

a solitonic solution which interpolates between AdSd+2 in the r → ∞ region and AdS2×Rd

in the near-horizon region. The AdS2 × Rd geometry and related interpolating solutions

are of interest also because they may act as IR regulators of the generic scale-covariant

geometry (3.1) [27].

All the above interpolating solutions are considered as branes without event horizons,

i.e. as zero temperature solutions. An important question, particularly in view of holo-

graphic applications, is if they can be considered as the extremal limit of BB solutions

with non-trivial hair, i.e. solutions at finite temperature endowed with a non-trivial scalar

field. There is no general answer to this question. Owing to no-hair theorems [51–53] the

existence of hairy solutions is related to global features of the potential V (φ). Nevertheless,

in most examples discussed in the literature the interpolating solutions appear as extremal

limit of BB solutions.

6 Domain-Wall/Conformal-Lifshitz interpolating solutions

In this section we discuss exact solutions, which interpolate between a DW and a CL brane.

In the previous section we have seen that this kind of solution requires uncharged branes

and a potential which diverges exponentially in a region, whereas approaches to zero in an

other region. We are therefore lead to consider Q = 0 solutions and the following simple

potential (0 6 w 6 1)

V (φ) = Adw (1− w(d+ 2)) e−
√

8(1−w)
dw

φ, (6.1)

which diverges exponentially for φ → −∞, while V → 0 for φ → ∞. The general solution

for the theory (2.1) with this potential is given by [6]

U = AR2 − c

(

r

r0

)1−dw

, R2 =

(

r

r0

)2w

, φ =

√

d

2
(w − w2) log

(

r

r0

)

, (6.2)

where 0 6 w 6 1 and c is an integration constant. Notice that when A = 0 and c < 0 the

solution (6.2) becomes exactly the solution (4.2). This is consistent with the fact that for

A = 0, the potential is identically zero and the solution is sourced by the kinetic term of

the scalar.

When c > 0 and for 1/(d+2) < w 6 1, the solution (6.2) describes a BB with an event

horizon [6]. On the other hand, when c < 0 the solution has no horizon and depending on

the value of w it has different asymptotic behaviour. For 0 6 w < 1/(d + 2) at r → ∞
the second term in the metric function U dominates over the first. Asymptotically at
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r → ∞ (corresponding to φ → ∞) V approaches to zero and the solution becomes the CL

brane solution discussed in the previous section. Conversely, near r = 0 (corresponding to

φ = −∞) V diverges, the first term dominates over the second and the solution becomes

a DW. Thus the global solution (6.2) interpolates between a CL brane in the UV and a

DW in the IR. Physically, this means that the UV behaviour is dominated by the kinetic

energy of the scalar field, whereas the IR behaviour is dominated by the potential energy

of the scalar. Obviously, for c < 0 and 1/(d + 2) < w 6 1 the picture is reversed and we

have a global solution interpolating between a CL in the IR and a DW in the UV. The

solution (6.2) in the c = 0 extremal case has been extensively investigated in ref. [70]. In

the extremal case the solution becomes the DW one obtains in the r = 0 region.

For c > 0, solution (6.2) describes a BB and we can associate to it thermodynamical

parameters. Using eq. (4.6) we can compute the total mass of the BB. In particular

for the range of parameters for which the solution describes a BB (namely c > 0 and

1/(d + 2) < w 6 1), we find: M = 4πAdwc/r0. The temperature T and the entropy S

of the BB solution can be calculated using the well-known formulæ T = U ′(rh)/4π and

S = 16π2Rd(rh):

T =
A[(d+ 2)w − 1]

4πr0
c

2w−1
(d+2)w−1 , S = 16π2c

dw
(d+2)w−1 . (6.3)

Using these equations it is easy to verify that the first principle dM = T dS is satisfied.

Notice that in the extremal limit c = 0 the BB becomes, as expected in view of its IR

behaviour, a DW.

7 Conformal-Lifshitz/Conformal-Lifshitz interpolating solutions

In section 5.2 we have seen that CL-CL interpolating solutions require charged branes

(Q 6= 0) and a potential having the same qualitative behaviour of (6.1). Considering for

simplicity the four-dimensional case, d = 2, we take a non-vanishing electric charge and

the potential

V (φ) =
2Q2(1− w)

1− 3w
e−4

√
w

1−w
φ. (7.1)

The general brane solutions are given by [6]:

U =
2Q2r20

(1− 2w)(1− 3w)

(

r

r0

)2−4w
[

1− C

(

r

r0

)

−1+2w
]

, (7.2)

R2 =

(

r

r0

)2w

, φ =
√

w − w2 log

(

r

r0

)

, 0 6 w 6 1.

Also in this case, for C > 0 and 0 6 w < 1/2 (with w 6= 1/3) the solution (7.2) describes

a BB with an event horizon. For C < 0 the brane has no horizon and we have a brane

interpolating between two CL elementary solutions in the IR and UV regions. When C < 0

and w > 1/2, for r → ∞ (φ → ∞) the potential approaches to zero and the solution gives

an elementary CL solution, which coincides with the r → ∞ (and w > 1/2) regime of the
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electrically charged brane (4.17). Also near r = 0 the solution reduces to an elementary CL

brane, but with a different dynamical exponent. For C < 0 and 0 6 w < 1/2 (w 6= 1/3) we

have the same limiting elementary CL branes but with the IR and UV regions exchanged.

When the solution (7.2) describes BBs (C > 0) we can compute the associated ther-

modynamical parameters:

M =
8πBw

r0
C, T =

B(1− 2w)

4πr0
C

1−4w
1−2w , S = 16π2C

2w
1−2w , (7.3)

and check that the first principle dM = T dS is satisfied. It is interesting to notice that

the C = 0 extremal limit of these BB solutions is described by a CL brane.

CL-CL interpolating solutions appear also in the context of non-minimally coupled

Einstein-Maxwell-scalar gravity. One interesting example of CL-CL interpolating solution

is derived and discussed in section 8 of ref. [70].

8 Conclusions

In this paper we have derived brane solutions of MCEMSG in d+2 dimensions in the case

of a vanishing potential. We have shown that these brane solutions belong to the broad

class of scale-covariant metrics, which generate hyperscaling violation in the holographically

dual QFT. Moreover, these solutions can be considered as the brane counterpart of the

well-known JNWW, spherically symmetric, solutions of Einstein-scalar gravity with V = 0.

We have also explicitly shown that our brane solution, together with the AdS brane and

the DW solution sourced by an exponential potential, give all the possible scale-covariant,

hyperscaling violating, geometries of MCEMSG with no Schrödinger isometries. Using

this result we have been able to give a classification of the brane solutions of the theory in

terms of symmetric (elementary) and interpolating solutions, which can be very useful for

holographic applications. In particular, the interpolating solutions can find a broad field of

holographic applications because the dual QFT describes the flow from different regimes

(fixed points, hyperscaling violation, Lifshitz) in the UV and IR, characterized by different

scaling symmetries.

In this context is important to stress the fact that some of our solutions have curvature

singularities at r = 0 (in the IR of the dual QFT). The issue of the acceptability of naked

singularities in the context of holographic models and in particular in Einstein-Maxwell-

scalar models has been discussed in several papers [70–73]. A basic requirement for a

solution with a naked singularity to be acceptable is that the scalar potential is bounded

from above when evaluated in the solution [71]. This basic requirement is trivially satisfied

for the brane solutions sourced by a scalar field with V = 0, which we have discussed in

section 4. On the other hand, further requirements involving properties of the spectrum of

small fluctuations near the solution must be imposed if the solution has to be considered

physically acceptable [70, 72, 73].

Alternatively, one can resolve the singularities looking for an IR completion of the

theory. From the bulk point of view this completion can be realized using an IR regular

geometry such as AdSd+2 [10] or AdS2 ×Rd [27].
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A Spherically symmetric solutions in four dimensions

This paper has been focused on brane solutions, i.e. on solutions with ε = 0 in the field

equations (2.5). However, our method for solving the field equations described in section 4

can be also used to derive solutions having d-dimensional sections with spherical topology,

i.e. solutions with ε = 1, sourced by a scalar field with vanishing potential. For spherically

symmetric solutions in d = 2, eq. (4.1) become

Y ′ + Y 2 = −(φ′)
2
, (uφ′)′ = 0, u′′ − 4(uY )′ = −2 + 4Q2e−2

∫

Y , u′′ = 2. (A.1)

The uncharged Q = 0 solution of the previous equation gives the well-known JNWW

solution [54, 55]. The derivation of this solution using field equations in the form (A.1)

has been already discussed in ref. [56]. For the Q 6= 0, charged case we solve eqs. (A.1) by

determining first u and φ then by solving the Riccati equation. Finally, we use the third

equation to express the Q in terms of the integration constants. We have

U =
(

1 +
r0
r

)2w−1
[

1− Q2

r20(1− 2w)2

(

1 +
r0
r

)2w−1
]−2

, (A.2a)

R2 = r2
(

1 +
r0
r

)2(1−w)
[

1− Q2

r20(1− 2w)2

(

1 +
r0
r

)2w−1
]2

, (A.2b)

φ = −γ log
(

1 +
r0
r

)

+ φ0. (A.2c)

with w − w2 = γ2. For w 6= 0, 1, these solutions can be considered as the charged gen-

eralization of the JNWW solutions and describe a spacetime with a naked singularity at

r = r0
[( Q

r0(1−2w)

)
2

1−2w − 1
]

−1
. In fact the scalar curvature of the spacetime is given by:

R =
2γ2r20
r4

(

1 +
r0
r

)2w−3
[

1− Q2

r20(1− 2w)2

(

1 +
r0
r

)2w−1
]−2

. (A.3)

For w = 0, 1 the solution gives the usual RN black hole solution with a constant scalar

field φ. In fact in these cases the previous solution can be put in the usual RN form by

rescaling and translating the radial coordinate r.
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