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Abstract: The Nekrasov-Shatashvili limit of the N = 2 SU(2) pure gauge (Ω-deformed)
super Yang-Mills theory encodes the information about the spectrum of the Mathieu op-
erator. On the other hand, the Mathieu equation emerges entirely within the frame of
two-dimensional conformal field theory (2d CFT) as the classical limit of the null vector
decoupling equation for some degenerate irregular block. Therefore, it seems to be pos-
sible to investigate the spectrum of the Mathieu operator employing the techniques of 2d

CFT. To exploit this strategy, a full correspondence between the Mathieu equation and
its realization within 2d CFT has to be established. In our previous paper [1], we have
found that the expression of the Mathieu eigenvalue given in terms of the classical irregular
block exactly coincides with the well known weak coupling expansion of this eigenvalue
in the case in which the auxiliary parameter is the noninteger Floquet exponent. In the
present work we verify that the formula for the corresponding eigenfunction obtained from
the irregular block reproduces the so-called Mathieu exponent from which the noninteger
order elliptic cosine and sine functions may be constructed. The derivation of the Mathieu
equation within the formalism of 2d CFT is based on conjectures concerning the asymptotic
behaviour of irregular blocks in the classical limit. A proof of these hypotheses is sketched.
Finally, we speculate on how it could be possible to use the methods of 2d CFT in order to
get from the irregular block the eigenvalues of the Mathieu operator in other regions of the
coupling constant.
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1 Introduction

In a last few years much attention was paid to the study of the connections among two-
dimensional conformal field theory (2d CFT), N = 2 supersymmetric gauge theories and
integrable systems, cf. e.g. [2–22].1 This kind of research was inspired by the discovery of
certain dualities, in particular, the AGT [24] and Bethe/gauge [25–27] correspondences.2

The AGT correspondence states that the Liouville field theory (LFT) correlators on
the Riemann surface Cg,n with genus g and n punctures can be identified with the partition
functions of a class Tg,n of four-dimensional N = 2 supersymmetric SU(2) quiver gauge
theories: 〈

n∏
i=1

V∆i

〉LFT

Cg,n

= Z
(σ)
Tg,n

. (1.1)

1See also the volume [23] edited by J. Teschner and refs. therein.
2See also [28–30].
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Let us recall that for a given pant decomposition σ of the Riemann surface Cg,n, both
sides of the equation above have an integral representation. Indeed, LFT correlators can
be factorized according to the pattern given by the pant decomposition of Cg,n and written
as an integral over a continuous spectrum of the Liouville theory in which, for each pant
decomposition σ, the integrand is built out of the holomorphic and the anti-holomorphic
Virasoro conformal blocks F (σ)

c,∆p
[∆i](Z) and F̄ (σ)

c,∆p
[∆i](Z̄) multiplied by the DOZZ 3-point

functions [31, 32]. The Virasoro conformal block F (σ)
c,∆p

[∆i](Z) on Cg,n depends on the
following quantities: the cross ratios of the vertex operators locations denoted symboli-
cally by Z, the external conformal weights {∆i}i=1,...,n, the intermediate conformal weights
{∆p}p=1,...,3g−3+n and the central charge c.

On the other hand, the partition function Z(σ)
Tg,n

can be written as the integral over the
holomorphic times the anti-holomorphic Nekrasov partition functions [33, 34]:

Z
(σ)
Tg,n

=

∫
[da]Z(σ)

Nekrasov Z̄
(σ)
Nekrasov,

where [da] is some appropriate measure. The Nekrasov partition function can be writ-
ten as a product of three factors ZNekrasov = ZclassZ1−loopZinst. The first two factors
ZclassZ1−loop =: Zpert describe the contribution coming from perturbative calculations.
Supersymmetry implies that there are contributions to Zpert only at the tree- (Zclass) and
1-loop (Z1−loop) levels. Zinst is the instanton contribution. The Nekrasov partition function
ZNekrasov(q̃, ã, m̃, ε1, ε2) depends on the set of parameters: q̃, ã, m̃, ε1, ε2. The components
of q̃={exp 2πτ1, . . . , exp 2πτ3g−3+n} are the gluing parameters associated with the pant de-
composition of Cg,n, where the τp=

θp
2π + 4πi

g2p
are the complexified gauge couplings. The mul-

tiplet m̃= {m1, . . . ,mn} contains the mass parameters. Moreover, ã= {a1, . . . , a3g−3+n},
where the a’s are the vacuum expectation values of the scalar fields in the vector multiplets.
Finally, ε1, ε2 represent the complex Ω-background parameters.

Comparing the integral representations of both sides of eq. (1.1) it is possible, thanks
to AGT hypothesis, to identify separately in the holomorphic and anti-holomorphic sectors
the Virasoro conformal blocks Fc,∆p [∆i](Z) on Cg,n and the instanton sectors Zinst of the
Nekrasov partition functions for the super Yang-Mills theories Tg,n.

Soon after its discovery, the AGT conjecture has been extended to the 2d conformal
Toda/4d SU(N) gauge theories correspondence [35, 36], and to the so-called ‘nonconformal’
cases [37–39] (see also [22, 40–42]), which will be of main interest in the present work.

The AGT correspondence works at the level of the quantum Liouville field theory. It
is intriguing to ask, however, what happens if we proceed to the semiclassical limit of the
Liouville correlation functions. This is the limit in which the central charge c, the external
∆i and intermediate ∆p conformal weights tend to infinity in such a way that their ratios
are fixed ∆p/c = ∆i/c = const., cf. [32]. For the standard parametrization of the central
charge c = 1 + 6Q2, where Q = b + 1

b and for heavy weights (∆p,∆i) = 1
b2

(δp, δi) with
δp, δi = O(b0), the classical limit corresponds to b→ 0. It is commonly believed that in the
classical limit the conformal blocks behave exponentially with respect to Z:

F b→0∼ e
1
b2
f .

The function f is known as the classical conformal block.
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Figure 1. The triple correspondence in the case of the Virasoro classical conformal blocks links
the latter to SU(2) instanton twisted superpotentials which describe the spectra of some quantum-
mechanical systems. The Bethe/gauge correspondence on the r.h.s. connects the SU(N) N = 2

SYM theories with the N-particle quantum integrable systems. An extension of the above triple
relation to the case N > 2 needs to consider on the l.h.s. the classical limit of the WN symmetry
conformal blocks according to the known extension [35] of the AGT conjecture.

The AGT correspondence dictionary says that b =
√
ε2/ε1. Therefore, the semiclassical

limit b→ 0 of the conformal blocks corresponds to the so-called Nekrasov-Shatashvili limit
ε2 → 0 (ε1 being kept finite) of the Nekrasov partition functions. In [25] it was observed
that in the limit ε2 → 0 the Nekrasov partition functions have the following asymptotic
behavior:

ZNekrasov( · , ε1, ε2)
ε2→0∼ exp

{
1

ε2
W ( · , ε1)

}
, (1.2)

whereW ( · , ε1) = Wpert( · , ε1)+Winst( · , ε1) is the effective twisted superpotential of the cor-
responding two-dimensional gauge theories restricted to the two-dimensional Ω-background.

The twisted superpotentials play a pivotal role in the already mentioned Bethe/gauge
correspondence [25–27] which maps supersymmetric vacua of the N = 2 theories to Bethe
states of quantum integrable systems (QIS’s). A result of that duality is that the twisted
superpotentials are identified with the Yang-Yang (YY) functions [43] which describe the
spectra of some QIS’s. Therefore, combining both the classical/Nekrasov-Shatashvili limit
of the AGT duality and the Bethe/gauge correspondence one thus gets a triple correspon-
dence which connects the classical blocks with the twisted superpotentials and then with
the Yang-Yang functions (cf. figure 1).
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For example, the twisted superpotentials for the N = 2 SU(N) Nf = 0 (pure gauge)
and the N = 2∗ SU(N) SYM theories determine respectively the spectra of the N-particle
periodic Toda (pToda) and the elliptic Calogero-Moser (eCM) models [25]. In the case of the
SU(2) gauge group these QIS’s are simply quantum-mechanical systems whose dynamics
is described by some Schrödinger equations. Concretely, for the 2-particle pToda and
eCM models these Schrödinger equations correspond to the celebrated Mathieu and Lamé
equations with energy eigenvalues expressed in terms of the twisted superpotentials. This
correspondence can be used to investigate nonperturbative effects in the Mathieu and Lamé
quantum-mechanical systems, cf. [44].3 On the other hand, the Mathieu and Lamé equations
emerge entirely within the framework of 2d CFT as the classical limit of the null vector
decoupling (NVD) equations for the 3-point degenerate irregular block and for the 2-point
block (projected 2-point function) on the torus with one degenerate light operator [1, 15, 46].
It turns out that the classical irregular block firr and the classical 1-point block on the
torus ftorus determine the spectra of the Mathieu and Lamé operators in the same way as
their gauge theory counterparts, i.e.: W SU(2),Nf=0

inst and W SU(2),N=2∗

inst .4 Therefore, it seems
that there is a way to study the spectrum of the Mathieu and Lamé operators using two-
dimensional conformal field theory methods.5 However, in order to exploit this possibility it
is necessary to establish a full correspondence between the Mathieu and Lamé equations and
their realizations within 2d CFT. The missing element is to understand how the solutions
of the equations obtained in the classical limit from the NVD equations are connected to
the eigenfunctions of the Mathieu and Lamé operators. It is also important to know what
kind of solutions are possible to be obtained. An answer to these questions in the case of
the Mathieu equation is our main goal in the present paper.

Our motivations for studying the Mathieu equation:

ψ′′ +
(
λ− 2h2 cos 2x

)
ψ = 0

using the methods of 2d CFT are twofold. The first motivation is technical. In fact, the
Mathieu equation is undoubtedly difficult to solve. Studying the literature on this topic
one can find the following opinions:

“Unfortunately, the analytic determination of Mathieu functions presents great
difficulties (Whittaker [47], Frenkel and Portugal [48]), and they are difficult to

3See also [45].
4It is known that the Mathieu equation is a specific limit of the Lamé equation. It should be stressed

that in 2d CFT these equations are obtained independently as classical limits of two different null vector
decoupling (NVD) equations. As has been already mentioned, the Mathieu equation is a result of taking the
classical limit of the NVD equation obeyed by the three-point degenerate irregular block and the Mathieu
eigenvalue is expressed in terms of the classical irregular block (cf. sections 3 and 4). The Lamé equation
emerges as the classical limit of the NVD equation fulfilled by the two-point degenerate block on the torus
and the Lamé eigenvalue is determined by the classical torus block [46]. However, taking into account the
relationship between the Mathieu and Lamé equations, the same should be true for their conformal field
theory realizations. Moreover, a similar type of relationship should be for “quantum counterparts” of the
Mathieu and Lamé equations, i.e. for the NVD equations. In the present work we leave these questions as
an open problems to which we will return soon.

5For interesting questions which can be studied in this way, see the conclusions of the present work.
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employ, mainly because of the impossibility of analytically representing them in
a simple and handy way (Sips [49], Frenkel and Portugal [48]).”6

Therefore, an elaboration of any “handy” methods to compute the solutions of the Mathieu
equation, i.e. the Mathieu functions, are of great importance. In the present work we derive
closed formulas for the Mathieu eigenvalue and eigenfunction in the case in which the aux-
iliary parameter is the non-integer Floquet exponent. These formulas contain the classical
limit of irregular conformal blocks. The latter are certain special functions of 2d CFT that
assume the form of a formal power series coefficients of which are calculable either alge-
braically or recursively, cf. [40]. Hence, it is quite easy to implement the calculation of the
Mathieu eigenvalue and eigenfunction on computer using our expressions, cf. appendix A.

The second group of motivations for our approach is of conceptual character. Firstly,
usual methods of solving the Mathieu equation are mostly variants of the perturbation
theory. However, interesting effects which emerge in the Mathieu spectrum, as for example
the level splitting, are non-perturbative in their nature. Indeed, let us recall that for the large
coupling constant h2 the Mathieu spectrum can be approximated by the energy levels of the
harmonic oscillator. When the coupling constant tends to zero h2 → 0 the oscillatory levels
split into energy bands. The dependence of the width of the energy band as a function
of the coupling constant contains an exponential factor. This is non-perturbative effect
which can be obtained by connecting solutions in the strongly and weakly-coupled regions
via properly defined boundary conditions, cf. [50]. As has been already mentioned, this
phenomenon has been thoroughly studied in [44] using methods of supersymmetric gauge
theories. Because of the correspondence between 2d CFT and the N = 2 SYM theories
(cf. figure 1) it should to be possible to investigate the non-perturbative effects in the
Mathieu system using conformal field theory tools. In particular, it seems to be possible
to find an analytic continuation of the Mathieu eigenvalue from the weakly-coupled to the
other regions of the spectrum using duality relations for the four-point regular conformal
blocks.7 Secondly, the very fact that the Mathieu equation appears within the 2d CFT
which is due to the Gaiotto’s discovery of irregular states is appealing. The reason is
that, it enables to test the conjectures that are usually assumed without a proof, like the
existence of the classical limit of conformal blocks or factorization in the classical limit
of conformal blocks that contain both the “heavy” and the “light” operators. Our earlier
paper [1] as well as the present work pertains to exactly this point in the simplest accessible
cases, namely, the irregular conformal blocks. Although it was not possible to perform
the entire proof of the existence of the classical irregular conformal block (we were able to
prove solely the existence of the first coefficient of the classical irregular block in the leading
order in the inverse of the “Planck constant” b2 ∼ ~), the discovery that the spectrum of
the Mathieu operator is expressed in terms of the classical irregular block, indirectly proves
its existence. The same argument applies to the three-point irregular block with a certain
degenerate operator which plays the role of the light field. In the present paper we observe

6Cf. http://mathworld.wolfram.com/MathieuFunction.html.
7Concrete questions which can be studied in this way are discussed in the conclusions of the present work.
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and prove up to the leading order approximation the factorization conjecture to work, which
enables us to reproduce explicitly the Mathieu functions.

The organization of the paper is as follows. In section 2 the necessary tools of 2d CFT
are introduced. In section 3 the simplest irregular blocks are defined and some of their
properties are described. In particular, an exponentiation of the pure gauge irregular block
within the classical limit is proved at the leading order. After that, the NVD equations
for certain degenerate irregular blocks are derived. Section 4 is devoted to the derivation
of the Mathieu equation within the formalism of 2d CFT. The calculation presented there
provides formulas for the Mathieu eigenvalue and the related eigenfunction in terms of the
classical limit of irregular blocks. It is shown that these formulas reproduce the well known
noninteger order weak coupling expansion of the Mathieu eigenvalue and the corresponding
Mathieu function. In subsection 4.2 a factorization property of the degenerate irregular
block with the light operator and its representation in the classical limit as a product of
light and heavy parts is proved at the leading order. This factorization property is crucial
for deriving the Mathieu equation. Section 5 contains our conclusions. In particular, the
problems that are still open and the possible extensions of the present work are discussed.

2 Conformal blocks in the operator formalism

2.1 Chiral vertex operators

Starting from the Belavin-Polyakov-Zamolodchikov axioms [51], Moore and Seiberg [52, 53]
have constructed formalism of the so-called rational conformal field theories (RCFT’s),8

where

— the operator algebra of local fields contains purely holomorphic subalgebra A called
chiral or vertex algebra;

— the Hilbert space of states of the theory is a direct sum of irreducible representations
of the algebra A⊕A:

H =

N⊕
i=1

Ui ⊗ Ui . (2.1)

In RCFT’s the sum in (2.1) is over a discrete finite set. However, one can generalize and
successfully apply the Moore-Seiberg formalism to the case of two-dimensional conformal
field theories with continuous spectrum, cf. e.g. [56, 57]. In such a case the direct sum in
eq. (2.1) becomes a direct integral.

In any 2d CFT there exist at least two chiral fields, i.e., the identity operator and
its descendant — the holomorphic component of the energy-momentum tensor T (z) =∑

n∈Z z
−n−2Ln. Therefore, each chiral algebra A contains as a subalgebra the Virasoro

algebra Vir =
⊕

n∈ZCLn
⊕

C c,

[Ln, Lm] = (n−m)Ln+m +
c

12
(n3 − n)δn+m,0 . (2.2)

8A very similar formalism can be found in [54, 55].
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In the Moore-Seiberg formalism the ‘physical’ fields of [51] are built out of more fun-
damental objects — the so-called chiral vertex operators (CVO’s). These are intertwining
operators acting between representations of the vertex algebra. In the present paper we
confine ourselves to the simplest case when A =Vir and define CVO’s as operators acting
between Verma modules.

Let V nc,∆ be the free vector space generated by all vectors of the form

| νn∆,I 〉 = L−I | ν∆ 〉 = L−k1 . . . L−kj−1
L−kj | ν∆ 〉 (2.3)

where I = (k1, . . . , kj−1, kj) is an ordered (k1 ≥ . . . ≥ kj ≥ 1) sequence of positive integers
of the length |I| ≡ k1 + . . .+ kj = n, and | ν∆ 〉 is the highest weight vector:

L0| ν∆ 〉 = ∆| ν∆ 〉, Ln| ν∆ 〉 = 0 ∀ n > 0 . (2.4)

The Z-graded representation of the Virasoro algebra determined on the space:

Vc,∆ =
∞⊕
n=0

V nc,∆

by the relations (2.2) and (2.4) is called the Verma module of the central charge c and
the highest weight ∆. The dimension of the subspace V nc,∆ of all homogeneous elements of
degree n is given by the number p(n) of partitions of n (with the convention p(0) = 1). It
is an eigenspace of L0 with the eigenvalue ∆ + n.

On Vnc,∆ there exists the symmetric bilinear form 〈 · | · 〉 uniquely defined by the relations

〈 ν∆ | ν∆ 〉 = 1 and (Ln)† = L−n.

The Gram matrix Gc,∆ of the form 〈 · | · 〉 is block-diagonal in the basis {| ν∆,I 〉} with blocks[
Gnc,∆

]
IJ

= 〈 νn∆,I | νn∆,J 〉 = 〈 ν∆ |(L−I)†L−J | ν∆ 〉.

In particular, one finds

— n = 1: {L−1| ν∆ 〉},

Gn=1
c,∆ = 〈L−1ν∆ |L−1ν∆〉 = 〈ν∆ |L1L−1ν∆〉 = 2∆,

— n = 2: {L−2| ν∆ 〉, L−1L−1| ν∆ 〉},

Gn=2
c,∆ =

(
〈L−2ν∆ |L−2ν∆〉 〈L2

−1ν∆ |L−2ν∆〉
〈L−2ν∆ |L2

−1ν∆〉 〈L2
−1ν∆ |L2

−1ν∆〉

)
=

(
c
2 + 4∆ 6∆

6∆ 4∆(2∆ + 1)

)
,

— n = 3: {L−3| ν∆ 〉, L−2L−1| ν∆ 〉, L−1L−1L−1| ν∆ 〉},

Gn=3
c,∆ =

2c+ 6∆ 10∆ 24∆

10∆ ∆(c+ 8∆ + 8) 12∆(3∆ + 1)

24∆ 12∆(3∆ + 1) 24∆(∆ + 1)(2∆ + 1)

 .
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The Verma module Vc,∆ is irreducible if and only if the form 〈 · | · 〉 is non-degenerate.
The criterion for irreducibility is vanishing of the determinant detGnc,∆ of the Gram matrix,
known as the Kac determinant, given by the formula [58–63]:

det Gn
c,∆ = Cn

∏
r,s∈N,
s≤r

1≤rs≤n

Φrs(c,∆)p(n−rs). (2.5)

In the equation above Cn is a constant and

Φrs(c,∆) =
(

∆ + r2−1
24 (c− 13) + rs−1

2

)(
∆ + s2−1

24 (c− 13) + rs−1
2

)
+ (r2−s2)2

16 .

The Kac determinant vanishes for

∆rs(c) =
(13− c)(r2 + s2) +

√
(c− 25)(c− 1)(r2 − s2)− 24rs− 2 + 2c

48
,

r, s ∈ Z, r ≥ 1, s ≥ 1, 1 ≤ rs ≤ n

or

crs(∆) = 13− 6

(
Trs(∆) +

1

Trs(∆)

)
,

Trs(∆) =
rs− 1 + 2 ∆ +

√
(r − s)2 + 4 (r s− 1) ∆ + 4 ∆2

r2 − 1
,

r, s ∈ Z, r ≥ 2, s ≥ 1, 1 ≤ rs ≤ n.

For these values of ∆ and c the representations Vc,∆rs(c) or Vcrs(∆),∆ are reducible.
The set {∆rs(c)} of the degenerate conformal weights can be parametrized as follows

∆rs(c) = ∆0 +
β2
rs

4
, βrs = rβ+ + sβ−, (2.6)

where

β±(c) =

√
1− c±

√
25− c

2
√

6
, ∆0 = −1

4
(β+ + β−)2 =

c− 1

24
.

Sometimes, it is also convenient to use the alternative parametrization:9

∆rs(c) =
Q2

4
− 1

4

(
rb+

s

b

)2
(2.7)

for which the central charge is given by c = 1 + 6Q2 with Q = b+ b−1.
The non-zero element |χrs 〉 ∈ Vc,∆rs(c) of degree n = rs is called a null vector if

L0 |χrs 〉 = (∆rs + rs) |χrs 〉, and Lk |χrs 〉 = 0, ∀ k > 0. Hence, |χrs 〉 is the highest weight
state which generates its own Verma module Vc,∆rs(c)+rs, which is a submodule of Vc,∆rs(c).
One can prove that each submodule of the Verma module Vc,∆rs(c) is generated by a null

9Here β+
(

1 + 6
(
b+ 1

b

)2)
= ib and β−

(
1 + 6

(
b+ 1

b

)2)
= i

b
.
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vector. Then, the module Vc,∆rs(c) is irreducible if and only if it does not contain null
vectors with positive degree.

For non-degenerate values of ∆, i.e. for ∆ 6= ∆rs(c), there exists in Vnc,∆ the ‘dual’
basis {| νt,n∆,I 〉} whose elements are defined by the relation 〈 νt,n∆,I | νn∆,J 〉 = δIJ for all
| νn∆,J 〉 ∈ {| νn∆,J 〉}. The dual basis vectors | νt,n∆,I 〉 have the following representation in
the standard basis

| νt,n∆,I 〉 =
∑

J,|J |=n

[
Gnc,∆

]IJ
| νn∆,J 〉,

where
[
Gnc,∆

]IJ
is the inverse of the Gram matrix

[
Gnc,∆

]
IJ
.

Let V∆ be the Verma module with the highest weight state | ν∆ 〉. The chiral vertex
operator is the linear map

V ∆3
∞

∆2
z

∆1
0 : V∆2 ⊗ V∆1 → V∆3

such that for all | ξ2 〉 ∈ V∆2 the operator

V (ξ2|z) ≡ V ∆3
∞

∆2
z

∆1
0 (| ξ2 〉 ⊗ · ) : V∆1 → V∆3

satisfies the following conditions

[Ln, V (ν2|z)] = zn
(
z
∂

∂z
+ (n+ 1)∆2

)
V(ν2|z) , n ∈ Z (2.8)

V(L−1ξ2|z) =
∂

∂z
V(ξ2|z) , (2.9)

V(Lnξ2|z) =

n+1∑
k=0

(
n+1
k

)
(−z)k [Ln−k, V(ξ2|z)] , n > −1, (2.10)

V(L−nξ2|z) =

∞∑
k=0

(
n−2+k
n−2

)
zk L−n−k V(ξ2|z)

+ (−1)n
∞∑
k=0

(
n−2+k
n−2

)
z−n+1−k V(ξ2|z) Lk−1, n > 1 (2.11)

and
〈 ν∆3 |V (ν∆2 |z) | ν∆1 〉 = z∆3−∆2−∆1 .

The commutation relation (2.8) defines the primary vertex operator corresponding to the
highest weight state | ν2 〉 ∈ V∆2 . Eqs. (2.9)–(2.11) characterize the decendant CVO’s.

2.2 The 3-point block

For a given triple ∆1,∆2,∆3 of conformal weights we define the trilinear map

ρ∆3
∞

∆2
z

∆1
0 : V∆3 ⊗ V∆2 ⊗ V∆1 → C

induced by the matrix element of a single chiral vertex operator

ρ∆3
∞

∆2
z

∆1
0 (ξ3, ξ2, ξ1) = 〈 ξ3 |V(ξ2|z) | ξ1 〉 , ∀ | ξi 〉 ∈ V∆i , i = 1, 2, 3.

The form ρ∆3
∞

∆2
z

∆1
0 is uniquely determined by the conditions (2.8)–(2.11). In particular,
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1. for L0-eingenstates10 L0| ξi 〉 = ∆i(ξi)| ξi 〉 , i = 1, 2, 3 one gets

ρ∆3
∞

∆2
z

∆1
0 (ξ3, ξ2, ξ1) = z∆3(ξ3)−∆2(ξ2)−∆1(ξ1)ρ∆3

∞
∆2
1

∆1
0 (ξ3, ξ2, ξ1) ; (2.12)

2. for basis vectors νi,I ≡ | ν∆i,I 〉 ∈ V∆i , i = 1, 2, 3 one finds

ρ∆3
∞

∆2
1

∆1
0 (ν3,I , ν2, ν1) = γ∆3

[
∆2
∆1

]
I
,

ρ∆3
∞

∆2
1

∆1
0 (ν3, ν2, ν1,I) = γ∆1

[
∆2
∆3

]
I
, (2.13)

ρ∆3
∞

∆2
1

∆1
0 (ν3, ν2,I , ν1) = (−1)|I|γ∆2

[
∆1
∆3

]
I
,

where for a given partition I = (k1, . . . , k`(I)), ki ≥ kj ≥ 1, i < j,

γ∆

[
∆2
∆1

]
I
≡

`(I)∏
i=1

∆ + ki∆2 −∆1 +

`(I)∑
i<j

kj

 . (2.14)

In terms of the trilinear form ρ (3-point block) one can spell out an important result known
as the null vector decoupling theorem (Feigin-Fuchs [64]):11

Let i, j, k ∈ {1, 2, 3} be chosen such that j 6= i, k 6= i, j 6= k. Let us assume that

(i) ∆i = ∆rs(c) ≡ 1
24(c− 1) + 1

4β
2
rs, r, s ∈ Z>0 (cf. parametrization (2.6)) and

(ii) the vector | ξi 〉 lies in the singular submodule generated by the null vector |χrs 〉, i.e.:
| ξi 〉 ∈ Vc,∆rs(c)+rs ⊂ Vc,∆rs(c).

Then, ρ∆3
z3

∆2
z2

∆1
z1 (ξ3, ξ2, ξ1) = 0 if and only if

∆j = ∆βj ≡
1

24
(c− 1) +

1

4
β2
j and ∆k = ∆βk ≡

1

24
(c− 1) +

1

4
β2
k

satisfy the fusion rules βj − βk = βpq, where p ∈ {1− r, 3− r, . . . , r− 1} and q ∈ {1− s, 3−
s, . . . , s− 1}.

3 Quantum and classical zero flavor irregular blocks

3.1 Definition and basic properties

To begin with, let us consider the following (coherent) vector in the Verma module Vc,∆
discovered by D. Gaiotto in [37] and constructed by A. Marshakov, A. Mironov and A. Mo-
rozov in [38]:12

|∆,Λ2 〉 =
∑
I

Λ2|I|
[
G
|I|
c,∆

](1|I|)I
L−I | ν∆ 〉 =

∞∑
n=0

Λ2n
∑

I,|I|=n

[
Gnc,∆

](1n)I
| νn∆,I 〉 . (3.1)

10Note that for the basis vectors {| νi,I 〉} one has ∆i(νi,I) = ∆i + |I|.
11Here we closely follow [56].
12With some abuse of nomenclature, we will call ‘zero flavor’ both the Gaiotto state and the irregular

block. The reason for that is that the irregular block corresponds to the Nekrasov instanton function of
the N = 2 (Ω-deformed) pure gauge (zero flavor Nf = 0) super Yang-Mills theory, in accordance with the
‘non-conformal’ extension of the AGT conjecture, see below.
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The sum in eq. (3.1) runs over all partitions or equivalently over their pictorial represen-
tations — Young diagrams. The symbol (1|I|) in eq. (3.1) denotes a single-row Young
diagram, where the total number of boxes |I| = n equals the number of columns `(I), i.e.
`(I) = |I| = n.

In [38] it was shown that the vector (3.1) obeys the Gaiotto defining conditions:

L0|∆,Λ2〉 =

(
∆ +

Λ

2

∂

∂Λ

)
|∆,Λ2〉, L1|∆,Λ2〉 = Λ2|∆,Λ2〉, Ln|∆,Λ2〉 = 0 ∀ n ≥ 2.

(3.2)
The zero flavor Nf = 0 qunatum irregular block is defined as the inner product of the

Gaiotto state [37, 38]:

Fc,∆(Λ) = 〈∆,Λ2 |∆,Λ2 〉 =
∞∑
n=0

Λ4n
[
Gnc,∆

](1n)(1n)
(3.3)

= 1 + Λ4 1

2∆
+ Λ8 c+ 8∆

4∆(2c∆ + c+ 2∆(8∆− 5))
(3.4)

+Λ12 (11c− 26)∆ + c(c+ 8) + 24∆2

24∆ ((c− 7)∆ + c+ 3∆2 + 2) (2(c− 5)∆ + c+ 16∆2)
+ . . . . (3.5)

In fact, there are much more Gaiotto’s states and therefore irregular blocks.13 In the present
paper we confine ourselves to study irregular blocks which are built out of (3.1). Possible
extensions of the present work taking into account the existence of the other Gaiotto states
will be discussed soon in a forthcoming publication.14

Let Cg,n denotes a Riemann surface with genus g and n punctures. Let x be the modular
parameter of the 4-punctured Riemann sphere C0,4. Then, the s-channel conformal block
on C0,4 is defined as the following formal x-expansion:

Fc,∆
[

∆2 ∆3
∆1 ∆4

]
(x) = x∆−∆3−∆4

(
1 +

∞∑
n=1

xnF n
c,∆

[
∆2 ∆3
∆1 ∆4

])
, (3.6)

where

F n
c,∆

[
∆2 ∆3
∆1 ∆4

]
=

∑
|I|=|J |=n

ρ∆1
∞

∆2
1

∆
0 (ν∆1 , ν∆2 , ν∆,I)

[
Gnc,∆

]IJ
ρ∆
∞

∆3
1

∆4
0 (ν∆,J , ν∆3 , ν∆4)

=
∑

|I|=|J |=n

γ∆

[
∆2
∆1

]
I

[
Gnc,∆

]IJ
γ∆

[
∆3
∆4

]
J
. (3.7)

Let q = e2πiτ be the elliptic variable on the torus with modular parameter τ , then the
conformal block on C1,1 is given by the following formal q-series:

F ∆̃
c,∆(q) = q∆− c

24

(
1 +

∞∑
n=1

F ∆̃,n
c,∆ qn

)
,

13See for instance [65] and refs. therein.
14Cf. conclusions.
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where
F ∆̃,n
c,∆ =

∑
|I|=|J |=n

ρ∆
∞

∆̃
1

∆
0 (ν∆,I , ν∆̃, ν∆,J)

[
Gnc,∆

]IJ
.

The irregular block (3.3) can be recovered from the conformal blocks on the torus and on
the sphere in a properly defined decoupling limit of the external conformal weights [38, 39].
Indeed, employing the AGT inspired parametrization of the external weights ∆̃, ∆i and the
central charge c, i.e.:

∆̃ =
M (ε−M)

ε1ε2
, ∆i =

αi(ε− αi)
ε1ε2

, c = 1 + 6
ε2

ε1ε2
, ε = ε1 + ε2 ,

α1 =
1

2
(ε+ µ1 − µ2) , α2 =

1

2
(µ1 + µ2) , α3 =

1

2
(µ3 + µ4) , α4 =

1

2
(ε+ µ3 − µ4) ,

and introducing the dimensionless expansion parameter Λ = Λ̂/(−ε1ε2)
1
2 it is possible to

prove the following limits [38, 39]:

q
c
24
−∆F ∆̃

c,∆(q)
M→∞−−−−−→
qM4=Λ̂4

Fc,∆(Λ),

x∆3+∆4−∆Fc,∆
[

∆2 ∆3
∆1 ∆4

]
(x)

µ1,µ2,µ3,µ4→∞−−−−−−−−−−→
xµ1µ2µ3µ4=Λ̂4

Fc,∆(Λ). (3.8)

Due to the ‘non-conformal’ AGT relation, the Nf =0 irregular block can be expressed
through the SU(2) pure gauge Nekrasov instanton partition function [22, 37, 40, 42]:

Fc,∆(Λ) = ZSU(2),Nf=0
inst (Λ̂, a, ε1, ε2). (3.9)

The identity (3.9), which in particular is understood as term by term equality between the
coefficients of the expansions of both sides, holds for

Λ =
Λ̂√
−ε1ε2

, ∆ =
ε2 − 4a2

4ε1ε2
, c = 1 + 6

ε2

ε1ε2
≡ 1 + 6Q2 (3.10)

where

Q = b+
1

b
≡
√
ε2
ε1

+

√
ε1
ε2

⇔ b =

√
ε2
ε1
. (3.11)

In [25] it was observed that in the limit ε2 → 0 the Nekrasov partition functions
ZNekrasov = ZpertZinst behave exponentially. In particular, for the instantonic sector we have

Zinst( · , ε1, ε2)
ε2→0∼ exp

{
1

ε2
Winst( · , ε1)

}
. (3.12)

Therefore, taking into account the AGT relation (3.9), the fact that b = ( ε2ε1 )
1
2 and the

Nekrasov-Shatashvili limit (3.12) of the instanton function, one can expect that the irregular
block has the following exponential behavior in the limit b→ 0:

F1+6Q2,∆(Λ)
b→0∼ exp

{
1

b2
f0δ

(
Λ̂/ε1

)}
, (3.13)
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where ∆ = 1
b2
δ, δ = O(b0). The semiclassical asymptotic behavior (3.13) is a very nontrivial

statement concerning the quantum Nf = 0 irregular block.15 First, the existence of the
classical zero flavor irregular block f0δ

(
Λ̂/ε1

)
can be checked by direct calculation. Indeed,

from the power expansion of the quantum irregular block (3.3) and eq. (3.13) one finds

f0δ

(
Λ̂/ε1

)
= lim

b→0
b2 logF1+6Q2, 1

b2
δ

(
Λ̂/(ε1b)

)
=

∞∑
n=1

(
Λ̂/ε1

)4n
f0,nδ , (3.14)

where the coefficients f0,nδ up to n = 6 take the form:

f0,1δ =
1

2δ
, f0,2δ =

5δ − 3

16δ3(4δ + 3)
, f0,3δ =

9δ2 − 19δ + 6

48δ5 (4δ2 + 11δ + 6)
,

f0,4δ =
5876 δ5 − 16489 δ4 − 22272 δ3 + 17955 δ2 + 9045 δ − 4050

512 δ7(δ + 2)(4δ + 3)3(4δ + 15)
,

f0,5δ =
17884 δ6 − 96187 δ5 − 156432 δ4 + 388737 δ3 − 7317 δ2 − 138348 δ + 34020

1280 δ9(δ + 2)(δ + 6)(4δ + 3)3(4δ + 15)
,

f0,6δ =
[
7756224 δ11 − 19228160 δ10 − 456215812 δ9

− 971240994 δ8 + 1505016987 δ7 + 5076827496 δ6

+ 930371157 δ5 − 4398704919 δ4 − 1494083556 δ3

+ 1212636096 δ2 + 293932800 δ − 128595600
]

×
[
6144 δ11(δ + 2)3(δ + 6)(4δ + 3)5(4δ + 15)(4δ + 35)

]−1
. (3.15)

As a further consistency check of our approach, let us observe that combining (3.9)–
(3.11) and (3.13) it is possible to identify the classical irregular block with the SU(2) Nf = 0

effective twisted superpotential:

f0δ

(
Λ̂/ε1

)
=

1

ε1
W

SU(2), Nf=0
inst

(
Λ̂, a, ε1

)
, (3.16)

where δ = 1
4 −

a2

ε21
. We stress that the classical conformal weight δ in eq. (3.16) above is

expressed in terms of the gauge theory parameters a, ε1. Indeed, it is easy to see that

δ = lim
b→0

b2∆ = lim
ε2→0

ε2
ε1

∆ =
1

4
− a2

ε21
.

By comparison of the expansion (3.14)–(3.15) with that of the twisted superpotential ob-
tained independently from the instanton partition function, the identity (3.16) may be
confirmed up to desired order.

3.2 Towards a proof of the classical limit

The equations (3.15) constitute a direct premise for the existence of the classical irregular
conformal block. The rigorous proof of this statement, however, has not yet been performed,

15Cf. considerations in subsection 3.2 and conclusions of the present paper.
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although there are many convincing arguments in favor of its validity.16 In what follows we
discuss the leading order of the coefficients of the quantum irregular block and extend the
discussion beyond the leading order to provide yet more arguments for the existence of the
classical irregular block.

Classical irregular block at the leading order. In order to find the leading contri-
bution to the classical irregular block we examine the coefficients of the expansion of the
quantum irregular block. Since these are functions of the matrix elements of the Virasoro
algebra, we analyze their dependence on c and ∆ to find out how they scale with respect
to b within the classical limit.

The quantum irregular block can be rewritten explicitly as

Fc,∆(Λ) =
∑
n≥0

(
Λ̂

ε1b

)4n (
G

(n)
c,∆

)(1n) (1n)
=
∑
n≥0

(
Λ̂

ε1b

)4n
Mp(n),p(n)(∆, c)

detG
(n)
c,∆

, (3.17)

where Mp(n),p(n)(∆, c) is the greatest principal minor of the Kac determinant at the level n
(|∆〉 ≡ |ν∆〉)17

detG
(n)
c,∆ = det (〈∆|LIuL−Iv |∆〉) , Iu, Iv ` n, u, v ∈ {1, . . . , p(n)}. (3.18)

As it was mentioned earlier the matrix elements 〈∆|LIuL−Iv |∆〉 are polynomials in ∆, and
c. Although in the classical limit both parameters are important we restrict our attention
to ∆ dependence. The reason is that, due to Virasoro algebra (2.2), ∆ appears as a factor
in a matrix element 〈∆|LIuL−Iv |∆〉 either additively accompanied by c or alone, which
takes place when Iu and Iv have part one in common with nonzero multiplicity. In order
to find the greatest power of ∆ in general matrix element at level n we take advantage of
the argument used by Kac and Raina in ref. [63]. Let us first consider the diagonal matrix
element. Making use of the following notation: `u := `(Iu),

Iu=(k1(Iu), . . . , k`u(Iu), 0, . . . )=(1m1(Iu) 2m2(Iu) . . .), |Iu|=
∑
s≥1

ks(Iu)=
∑
i≥1

imi(Iu)=n,

as well as Virasoro algebra (2.2) we obtain for the arbitrary diagonal matrix element

〈∆|LIuL−Iu |∆〉 = 〈∆|Lmil (Iu)

il
. . . L

mi2 (Iu)

i2
L
mi1 (Iu)

i1
L
mi1 (Iu)

−i1 L
mi2 (Iu)

−i2 . . . L
mil (Iu)

−il |∆〉

deg∼
l∏

s=1

〈∆|Lmis (Iu)
is

L
mis (Iu)
−is |∆〉 =

l∏
i=1

〈∆|Lmi(Iu)
i L

mi(Iu)
−i |∆〉,

(3.19)

which, in accord with the formula

[Li, . . . , [Li︸ ︷︷ ︸
m

, Lm−i] . . .] =
(

2L0 +
c

12
(i2 − 1); i

)
m
,

(a; k)n :=
n−1∏
i=0

(a+ ki), (a; 1)n = (a)n := Γ(a+ n)
/

Γ(a),

(3.20)

16See the discussion in the conclusions on this point.
17We use conventions as in eq. (2.3). I ` n means that I is a partition of n.
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amounts to

〈∆|LIuL−Iu |∆〉
deg∼
∏
i≥1

imi(Iu)mi(Iu)!
(

2∆ +
c

12
(i2 − 1); i

)
mi(Iu)

. (3.21)

The symbol ‘deg∼ ’ indicates that a polynomial on the left hand side and the one on the right
hand side are equal up to the term with the greatest power in variable ∆ which, by definition,
determines its degree. Let us now consider arbitrary off-diagonal term 〈∆|LIuL−Iv |∆〉.
Let us assume that both partitions have, say, N parts {is}Ns=1 in common with nonzero
multiplicities mis(Iu) and mis(Iv). Then, repeating the above reasoning, one finds that the
general off-diagonal element takes the form

〈∆|LIuL−Iv |∆〉 = 〈∆|Lmip (Iu)

ip
· · ·LmiN (Iu)

iN
· · ·Lmi1 (Iu)

i1
L
mi1 (Iv)

−i1 · · ·LmiN (Iv)

−iN . . . L
miq (Iv)

−iq |∆〉.

Using the generalized formula in eq. (3.20) for m ≤ n

[Li, . . . , [Li︸ ︷︷ ︸
m

, Ln−i] . . .] = Ln−m−i im
n!

(n−m)!

n−1∏
s=n−m

(
2L0 +

c

12
(i2 − 1) + is

)

= Ln−m−i im
n!

(n−m)!

(
2L0 + c

12(i2 − 1); i
)
n(

2L0 + c
12(i2 − 1); i

)
n−m

,

(3.22)

we get

〈∆|LIuL−Iv |∆〉

deg∼
∏
i≥1

imin{mi(Iu),mi(Iv)} mi(Iv)!

ϑ
(
mi(Iv)−mi(Iu)

)
!

(
2∆ + c

12(i2 − 1); i
)
mi(Iv)(

2∆ + c
12(i2 − 1); i

)
ϑ(mi(Iv)−mi(Iu))

,

(3.23)

where ϑ(x) = xθ(x) and θ(x) is Heaviside’s theta function. These general results in
eqs. (3.21) and (3.23) allows us to draw the following conclusions for the matrix elements
as a polynomials in ∆ and c. For any Iu, Iv ` n

1. deg∆〈∆|LIuL−Iv |∆〉 ≤ min{`u, `v},

2. deg∆〈∆|LIuL−Iu |∆〉 = `u,

3. for u 6= v and `u = `v, deg∆〈∆|LIuL−Iv |∆〉 < `u.

Since the degree of a matrix element as a polynomial in ∆ depends on the length of partition
those of greatest degree yield the leading contribution to bothMp(n),p(n) and detG

(n)
∆,c within

the classical limit. In the following discussion the explicit form of particular matrix elements
prove useful

〈∆|Ln1Ln−1|∆〉 = n!(2∆)n,

〈∆|LIuLn−1|∆〉 = n!
∏
i≥1

(
(i+1)∆+

∑
s>i

sms(Iu); i
)
mi(Iu)

. (3.24)
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The above results enable to conclude that (Ln−1 = L−(1n) = L−Ip(n))

deg∆〈∆|LIuL−Iu |∆〉 = deg∆〈∆|LIuL−Ip(n) |∆〉. (3.25)

Moreover, let us note that the minor produced by crossing out the ith diagonal element
when treated as a polynomial in ∆ and c has the same coefficient in the highest degree
term as the product of diagonal elements of the Gram matrix, namely

Mu,u(∆, c)
deg∼

p(n)∏
j=1
〈∆, c|LIjL−Ij |∆, c〉

〈∆, c|LIuL−Iu |∆, c〉
, (3.26)

With these results at hand we can proceed to estimate the contribution to the classical
conformal block at the leading order within the limit b→ 0. In order to do this we expand
the Kac determinant along the p(n)th row

detG
(n)
c,∆

Mp(n),p(n)(∆, c)
= 〈∆|Ln1Ln−1|∆〉+

p(n)−1∑
u=1

(−1)p(n)+u Mu,p(n)(∆, c)

Mp(n),p(n)(∆, c)
〈∆|LIuLn−1|∆〉. (3.27)

Let us observe that in view of our analysis concerning matrix elements as polynomials in
∆ the leading contribution of the latter to Mu,p(n) can be found as follows. By means of
the elementary operations on columns we obtain

Mu,p(n) = det(c1, . . . , cu−1, cu+1, . . . , cp(n)−1, cp(n))

=(−1)p(n)−u det(c1, . . . , cu−1, cp(n), cu+1, . . . , cp(n)−1)

=(−1)p(n)−uM̃u,p(n),

(3.28)

where cu ≡ {〈∆|LIjL−Iu |∆〉}
p(n)−1
j=1 denotes ith column of G(n) with the last entry removed.

Using eq. (3.26) we find that

M̃u,p(n)
deg∼
〈∆|LIuLn−1|∆〉
〈∆|LIuL−Iu |∆〉

Mp(n),p(n), (3.29)

which, when placed in eq. (3.28), yields the leading contribution to Mu,p(n). Combining
eqs. (3.28), (3.29) and (3.27) we obtain

detG
(n)
c,∆

Mp(n),p(n)(∆, c)

deg∼ 〈∆|Ln1Ln−1|∆〉+

p(n)−1∑
u=1

〈∆|LIuLn−1|∆〉
〈∆|LIuL−Iu |∆〉

〈∆|LIuLn−1|∆〉. (3.30)

Within the classical limit ∆ → ∞, c → ∞, c/∆ = const. for b → 0 the conformal weight
and the central charge scale as ∆ ∼ δ/b2 and c ∼ 6/b2. From eqs. (3.24) and (3.19) we infer
that

〈∆|Ln1Ln−1|∆〉
b→0∼ b−2nn!(2δ)n, 〈∆|LIuLn−1|∆〉

b→0∼ b−2`un!
∏
i≥1

(
(i+ 1)δ

)mi(Iu)
,

〈∆|LIuL−Iu |∆〉
b→0∼ b−2`u2−`u

∏
i≥1

mi(Iu)!imi(Iu)
(
4δ + i2 − 1

)mi(Iu)
,
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and
〈∆|LIuLn−1|∆〉
〈∆|LIuL−Iu |∆〉

b→0∼ n!∏
i≥1

mi(Iu)!

∏
i≥1

(
2(i+ 1)δ

i (4δ + i2 − 1)

)mi(Iu)

. (3.31)

Hence, the formula in eq. (3.30) within the classical limit amounts to

detG
(n)
c,∆

Mp(n),p(n)(∆, c)

b→0∼ n!(2δ)nb−2n+n!

p(n)−1∑
u=1

(2δ)`ub−2`u n!∏
i≥1

mi(Iu)!

∏
i≥1

(
2(i+1)2δ

i (4δ+i2−1)

)mi(Iu)

.

Since n = `max then it is seen that the first term dominates over the rest for b → 0.
Therefore, the coefficient of the irregular block in eq. (3.17) within this limit reads(

G
(n)
c,∆

)(1n) (1n)
=
Mp(n),p(n)(∆, c)

detG
(n)
c,∆

b→0∼ b2n

n!(2δ)n
, (3.32)

This, in accord with eq. (3.14), yields the first coefficient f0,1δ of the classical irregular block
expansion given in eq. (3.15), namely

Fc,∆(Λ) =
∑
n≥0

(
Λ̂

ε1b

)4n (
G

(n)
c,∆

)(1n) (1n) b→0∼
∑
n≥0

(
Λ̂

ε1b

)4n
b2n

n!(2δ)n
= exp

 1

b2

(
Λ̂

ε1

)4
1

2δ

 .

Classical irregular block beyond the leading order. The above computations show
that in the estimations of the quantum irregular block coefficients based on the leading order
contribution all but the first term in the classical irregular block expansion are neglected.
Therefore a more accurate analysis is required. In general the sought expression takes
the form

f0δ

(
Λ̂/ε1

)
= lim

b→0
b2 log

1 +
∑
n≥1

(
Λ̂

ε1b

)4n

F (n)(∆, c)

 . (3.33)

where for the sake of brevity we have introduced notation F (n) ≡
(
G(n)

)(1n) (1n). The
logarithm in eq. (3.33) has the following expansion

log

1 +
∑
n≥1

(
Λ̂

ε1b

)4n

F (n)(∆, c)


=
∑
n≥1

(
Λ̂

ε1

)4n ∑
{mi}≥0∑
imi=n

(−1)
∑
mi+1

(∑
mi − 1

)
!
∏
i≥1

[
b−4iF (i)(δ/b2, 6/b2)

]mi
mi!

. (3.34)

In order to find the limit of the above coefficient of Λ̂/ε1 the knowledge of F (i) is necessary.
Unfortunately the exact form of Mp(n),p(n) as a polynomial in ∆ and c is not known and it
is necessary to compute it term by term which is the major obstacle in finding the limit. In
order for the limit in eq. (3.33) to exist each coefficient should be proportional to b2. Thus
the complete rigorous proof of the mentioned limit is still an open problem which in order
to be solved must be attacked in fact by another methods.18

18Cf. conclusions.
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3.3 The null vector decoupling equations

In this subsection we shall derive the partial differential equations obeyed by the Nf =

0 degenerate irregular blocks, cf. [15]. We define the latters as matrix elements of the
degenerate chiral vertex operators V±(z)=V (|ν∆±〉|z) between the states (3.1):

Ψ0
±(Λ, z) = 〈∆′,Λ2 |V±(z)| ∆̃,Λ2 〉

= ρ∆′
∞

∆±
z

∆̃
0

(
|∆′,Λ2〉 , |ν∆±〉 , |∆̃,Λ2〉

)
. (3.35)

In the above equation:

∆+≡∆21 = −3

4
b2 − 1

2
, ∆−≡∆12 = − 3

4b2
− 1

2
.

Moreover, in order to apply the null vector decoupling theorem we will assume that the
weights ∆1 ≡ ∆̃ and ∆3 ≡ ∆′ of the in and out states are related by the fusion rule:19

∆1 ≡ ∆̃ = ∆

(
σ − b

4

)
, ∆3 ≡ ∆′ = ∆

(
σ +

b

4

)
, where ∆(σ) ≡ Q2

4
− σ2. (3.36)

Let us consider the descendant chiral vertex operator

χ+(z) =

(
L̂−2(z)− 3

2(2∆+ + 1)
L̂ 2
−1(z)

)
V+(z) ≡ V

((
L−2 +

1

b2
L2
−1

)
| ν∆+ 〉 | z

)
(3.37)

which corresponds to the null vector

|χ+ 〉 = χ+(0)| 0 〉 =

(
L−2 +

1

b2
L2
−1

)
| ν∆+ 〉

appearing at the second level of the Verma module V∆+ . Then, by the NVD theorem, we
have that

〈∆′,Λ2 |χ+(z) | ∆̃,Λ2 〉 = ρ∆′
∞

∆+
z

∆̃
0

(
|∆′,Λ2〉 , |χ+ 〉 , |∆̃,Λ2〉

)
= 0. (3.38)

In order to convert eq. (3.38) to the PDE obeyed by the degenerate irregular block Ψ0
+(Λ, z),

one needs to employ the following Ward identity:

〈∆′,Λ2 |T (w)V+(z) | ∆̃,Λ2 〉 =

[
z

w(w − z)

∂

∂z
+

∆+

(w − z)2
+

(
Λ2

w
+

Λ2

w3

)
+

1

2w2

(
Λ

2

∂

∂Λ
+ ∆̃ + ∆′ −∆+ − z

∂

∂z

)]
Ψ0

+(Λ, z) .

(3.39)

Using the formula [51]:

L̂−k(z) =
1

2πi

∮
Cz

dw(w − z)1−k T (w)

19In the parameterization ∆βi = 1
24

(c − 1) + 1
4
βi (see also (2.6)) used in the NVD theorem the fusion

rule (3.36) reads as follows: ∆β3 = ∆β1−β+ . In another commonly used parametrization, in which ∆(αi) =

αi(Q− αi), we have ∆(α3) = ∆(α1 + b
2
).
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it is now possible to compute the matrix element 〈∆′,Λ2 | L̂−2(z)V+(z) | ∆̃,Λ2 〉 with the
help of eq. (3.39). Applying Cauchy’s integral formula one finds that

〈∆′,Λ2 | L̂−2(z)V+(z) | ∆̃,Λ2 〉 =

[
−1

z

∂

∂z
+

(
Λ2

z
+

Λ2

z3

)
+

1

2z2

(
Λ

2

∂

∂Λ
+ ∆̃ + ∆′ −∆+ − z

∂

∂z

)]
Ψ0

+(Λ, z) .

(3.40)

Finally, taking into account that the matrix element of the descendant operator L̂2
−1(z)V+(z)

yields ∂2
zΨ0

+(Λ, z), we get from (3.37), (3.38) and (3.40) the desired partial differential equa-
tion, determining Ψ0

+(Λ, z):[
1

b2
z2 ∂

2

∂z2
− 3z

2

∂

∂z
+ Λ2

(
z +

1

z

)
+

Λ

4

∂

∂Λ
+

∆̃ + ∆′ −∆+

2

]
Ψ0

+(Λ, z) = 0 . (3.41)

Replacing ∆+ with ∆− and repeating all the steps described above one can get an analogous
equation for Ψ0

−(Λ, z). In the next section we will consider the limit b → 0 of eq. (3.41).
A part of this analysis has been already done in our previous work [1]. The new result
here is the derivation from the degenerate zero flavor irregular block of the formula for the
eigenfunction of the Mathieu operator.

4 The classical irregular block and the spectrum of the Mathieu operator

4.1 The classical limit of the null vector decoupling equation

Let us turn for a while to the zero flavor degenerate irregular block introduced in eq. (3.35).
From (3.1) and (2.12) we have that

Ψ0
+(Λ, z) = 〈∆′,Λ2 |V+(z)| ∆̃,Λ2 〉 = z∆′−∆+−∆̃

∑
r,s≥0

Λ2(r+s)zr−s

×
∑
|I|=r

∑
|J |=s

[
Grc,∆′

](1r)I
ρ∆′
∞

∆+

1
∆̃
0

(
ν∆′,I , ν∆+ , ν∆̃,J

) [
Gs
c,∆̃

]J(1s)
(4.1a)

≡ zκ Φ0
+(Λ, z), (4.1b)

where κ ≡ ∆′−∆+− ∆̃. Let us observe that Φ0
+(Λ, z) can be split into two parts, i.e. when

r = s and r 6= s: Φ0
+(Λ, z) = Φ0

r=s(Λ) + Φ0
r 6=s(Λ, z), where

(i) for r = s,

Φ0
r=s(Λ) =

∑
r≥0

Λ4r
∑

|I|=|J |=r

[
Grc,∆′

](1r) I
ρ∆′
∞

∆+

1
∆̃
0

(
ν∆′,I , ν∆+ , ν∆̃,J

) [
Gr
c,∆̃

]J (1r)
,

(4.2a)
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(ii) for r 6= s,

Φ0
r 6=s(Λ, z) =

∑
r 6=s
r,s≥0

Λ2(r+s)zr−s
∑
|I|=r
|J |=s

[
Grc,∆′

](1r) I
ρ∆′
∞

∆+

1
∆̃
0

(
ν∆′,I , ν∆+ , ν∆̃,J

) [
Gs
c,∆̃

]J (1s)
.

(4.2b)

Then, one can write

Ψ0
+(Λ, z) = zκ exp

{
log
(
Φ0
r=s(Λ) + Φ0

r 6=s(Λ, z)
)}

= zκ exp

{
log Φ0

r=s(Λ) + log

(
1 +

Φ0
r 6=s(Λ, z)

Φ0
r=s(Λ)

)}
= zκ eY

0(Λ) eX
0(Λ,z), (4.3)

where the following notation has been introduced

Y0(Λ) = log Φ0
r=s(Λ), X 0(Λ, z) = log

(
1 +

Φ0
r 6=s(Λ, z)

Φ0
r=s(Λ)

)
. (4.4)

Note that the ‘diagonal’ part Φ0
r=s of the degenerate irregular block and thus Y0 do not

depend on z.
The substitution of (4.1b) into eq. (3.41) yields[

1

b2
z2 ∂

2

∂z2
+

(
2κ

b2
− 3

2

)
z
∂

∂z
+

Λ

4

∂

∂Λ
+
κ(κ− 1)

b2
− 3κ

2
(4.5)

+ Λ2

(
z +

1

z

)
+

∆̃ + ∆′ −∆+

2

]
Φ0

+(Λ, z) = 0.

Our aim now is to find the limit b→ 0 of eq. (4.5). To this purpose it is convenient to
replace the parameter σ in ∆̃ and ∆′ (cf. (3.36)) with ξ = bσ and Λ with the new parameter
Λ̂ = Λε1b. After this rescaling, we have

∆′, ∆̃
b→0∼ 1

b2
δ, where δ = lim

b→0
b2∆′ = lim

b→0
b2∆̃ =

1

4
− ξ2, (4.6a)

∆̃ + ∆′ −∆+
b→0∼ 1

b2
2

(
1

4
− ξ2

)
=

1

b2
2δ, (4.6b)

κ
b→0−→ 1

2
− ξ, κ (κ− 1)

b→0−→ −
(

1

4
− ξ2

)
= −δ. (4.6c)

Note that ∆+
b→0∼ O(b0).

The next step needed to complete our task is to determine the behavior of the nor-
malized degenerate irregular block Φ0

+ = z−κΨ0
+ when b → 0. For Λ = Λ̂/(ε1b) and

∆′, ∆̃
b→0∼ 1

b2
δ, it is reasonable to expect that

Φ0
+(Λ, z) = z−κ 〈∆′,Λ2 |V+(z) | ∆̃,Λ2 〉 b→0∼ ϕ0

(
Λ̂/ε1, z

)
exp

{
1

b2
f0δ

(
Λ̂/ε1

)}
. (4.7)
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Moreover, comparing the r.h.s. of eq. (4.7) with eqs. (4.3)–(4.4) one arrives at the following
results:

ϕ0
(

Λ̂/ε1, z
)

= lim
b→0

exp
{
X 0(Λ, z)

}
= lim

b→0

(
1 +

Φ0
r 6=s(Λ̂/(ε1b), z)

Φ0
r=s(Λ̂/(ε1b))

)
, (4.8)

f0δ

(
Λ̂/ε1

)
= lim

b→0
b2Y0(Λ) = lim

b→0
b2 log Φ0

r=s

(
Λ̂/(ε1b)

)
. (4.9)

The meaning of eq. (4.7) is that the light (∆+
b→0∼ O(b0)) degenerate chiral vertex operator

does not contribute to the classical limit. In other words, its presence in the matrix element
does not affect the ‘classical dynamics’ (i.e. the ‘classical action’). Let us note that eq. (4.7)
is a ‘chiral version’ of Zamolodchikovs’ conjecture [32] (see also [69]) concerning the semi-
classical behavior of the Liouville correlators with heavy and light vertices on the sphere.
Let us stress that there are only a few explicitly known tests verifying Zamolodchikovs’
hypothesis. For instance, the derivation of the large intermediate conformal weight limit
∆ → ∞ of the 4-point block on the sphere as well as its expansion in powers of the so-
called elliptic variable is based on that assumption in the case of the semiclassical behavior
of the 5-point function with the light degenerate vertex operator [66, 70]. The calculation
performed in this section is a new test of the semiclassical behavior of the form (4.7) (see
also [71]). Regardless of the attempts to prove (cf. subsection 4.2), eq. (4.7) can be well
confirmed, first, by direct calculations, secondly, by its consequences. Indeed, one can check
order by order that the limits (4.8) and (4.9) exist. Moreover, the latter limit reproduces
the classical zero flavor irregular block.

Therefore, from (4.5) and (4.7) for b→ 0 one gets[
z2 ∂

2

∂z2
+ 2(

1

2
− ξ)z ∂

∂z
+

Λ̂2

ε21

(
z +

1

z

)
+

Λ̂

4

∂

∂Λ̂
f0δ

(
Λ̂/ε1

)]
ϕ0
(

Λ̂/ε1, z
)

= 0 . (4.10)

The nontrivial point here is the observation that limb→0 b
2Λ̂∂Λ̂ϕ

0 = 0. This result has been
checked up to high orders of the expansion of (4.8).

At this point, we define the new function ψ0(Λ̂/ε1, z) related to the old one by

ϕ0
(

Λ̂/ε1, z
)

= zξ ψ0
(

Λ̂/ε1, z
)
. (4.11)

The analogue of eq. (4.10) in the case of ψ0(Λ̂/ε1, z) is[
z2 ∂

2

∂z2
+ z

∂

∂z
+

Λ̂2

ε21

(
z +

1

z

)
+

Λ̂

4

∂

∂Λ̂
f0δ

(
Λ̂/ε1

)
− ξ2

]
ψ0
(

Λ̂/ε1, z
)

= 0 . (4.12)

Since for z = ew the derivatives transform as
(
z2∂2

z + z∂z
)
ψ0(z) = ∂2

wψ
0(ew), it turns out

that eq. (4.12) becomes[
d2

dw2
+ 2

Λ̂2

ε21
cosh(w) +

Λ̂

4

∂

∂Λ̂
f0δ

(
Λ̂/ε1

)
− ξ2

]
ψ0
(

Λ̂/ε1, e
w
)

= 0. (4.13)
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Finally, the substitution w = −2ix, x ∈ R in (4.13) yields[
− d2

dx2
+ 8

Λ̂2

ε21
cos 2x+ Λ̂

∂

∂Λ̂
f0δ

(
Λ̂/ε1

)
− 4ξ2

]
ψ0
(

Λ̂/ε1, e
−2ix

)
= 0. (4.14)

In conclusion, what we have obtained is the following claim:

1. For the coupling constant h = 2Λ̂/ε1 and the Floquet exponent ν = 2ξ the eigenvalue
λ of the Mathieu operator:[

− d2

dx2
+ 2h2 cos 2x

]
ψ0 = λψ0 (4.15)

is given by the following formula

λ = 4ξ2 − Λ̂
∂

∂Λ̂
f0δ

(
Λ̂/ε1

)
, (4.16)

where δ = 1
4 − ξ

2.

2. The corresponding eigenfunction is of the form (cf. (4.8) and (4.11))

ψ0 ≡ ψ0
(

Λ̂/ε1, e
−2ix

)
= e2ixξ lim

b→0

(
1 +

Φ0
r 6=s(Λ̂/(ε1b), e

−2ix)

Φ0
r=s(Λ̂/(ε1b))

)
. (4.17)

Indeed, using formulae (3.15) for the coefficients of the classical irregular block f0δ (Λ̂/ε1)

with δ = 1
4 − ξ2, after postulating the relation ξ = ν/2 and taking into account that

h2 = 4Λ̂2/ε21, one finds that

λ = 4ξ2 − Λ̂ ∂Λ̂

[ ∞∑
n=1

(
Λ̂/ε1

)4n
f0,nδ

]

= 4

(
ν2

4

)
− 4h4

16
f0,1

1
4
− ν2

4

− 8h8

256
f0,2

1
4
− ν2

4

− 12h12

4096
f0,3

1
4
− ν2

4

− . . .

= ν2 +
h4

2 (ν2 − 1)
+

(
5ν2 + 7

)
h8

32 (ν2 − 4) (ν2 − 1)3 +

(
9ν4 + 58ν2 + 29

)
h12

64 (ν2 − 9) (ν2 − 4) (ν2 − 1)5 + . . . .

(4.18)

Hence, the formula (4.16) reproduces the well known weak coupling (small h2) expansion
of λ for the noninteger Floquet exponent ν /∈ Z, cf. [50].

4.2 The classical asymptotic of the degenerate irregular block with the light
insertion

In order to understand the factorization phenomenon into ‘heavy’ and ‘light’ factors of the
degenerate irregular block within the classical limit it suffices to examine the behavior of
the two factors in eq. (4.3) as b → 0. According to eq. (4.1b) the main ingredients of the
degenerate irregular block expansion are the inverse of the Gram matrix and the three form
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rho. Their dependence on ∆ is crucial for study of the classical limit. As we will see in
what follows it is enough to confine oneself to the leading order in b. In section 3.2 we
found the leading behavior of the p(n)×p(n) component of the inverse Gram matrix in the
classical limit. However, from that analysis one can infer also the leading behavior for all
the elements of p(n)th column of the inverse Gram matrix. Indeed, from eq. (3.29) we find
that (

G
(n)
c,∆

)(1n) Iu deg∼ (−1)p(n)−u 〈∆|LIuL
n
−1|∆〉

〈∆|LIuL−Iu |∆〉

(
G

(n)
c,∆

)(1n) (1n)
,

and by virtue of eqs. (3.31) and (3.32) we obtain the leading behavior within the classical
limit of the arbitrary matrix element of p(n)th column of the inverse Gram matrix

(
G

(n)
c,∆

)(1n) Iu b→0∼ b2n

(2δ)n
(−1)p(n)−u∏
i≥1

mi(Iu)!

∏
i≥1

(
2(i+ 1)δ

i (4δ + i2 − 1)

)mi(Iu)

. (4.19)

As for the rho form its analysis is much more involved. By definition, for any two
partitions I ` r, J ` s it takes the form

ρ∆′∆+ ∆̃
∞ 1 0

(
ν∆′,I , ν∆+ , ν∆̃,J

)
= 〈∆′|LIV+(z)L−J |∆̃〉

∣∣
z=1

. (4.20)

Making use of the Virasoro algebra (2.2) this can be developed into the form

〈∆′|LIV+(z)L−J |∆̃〉 =〈∆′|V∆+(z)adI(L−J) |∆̃〉+ 〈∆′|adÏ(1)(V+(z)) adİ(1)(L−J) |∆̃〉

+ 〈∆′|adÏ(2)(V+(z)) adİ(2)(L−J) |∆̃〉+ . . .+ 〈∆′|adI(V+(z))L−J |∆̃〉,
(4.21)

where for the sake of brevity we have used the following notation

adI(L−J) := [Lk`(I)(I), . . . , [Lk1(I), L−J ] . . .],

and
∀

m∈{1,...,`(I)}
I = İ(m)∪Ï(m), İ(m) :=

(
k1(I), . . . , k`(I)−m(I)

)
.

Let us examine a matrix element that contributes to the sum in eq. (4.21). It takes the form

〈∆′|adÏ(m)(V+(z)) adİ(m)(L−J) |∆̃〉
= 〈∆′|[Lk`(I)(I), . . . , [Lk`(I)−m+1(I), V+(z)] . . .][Lk`(I)−m(I), . . . , [Lk1(I), L−J ] . . .]|∆̃〉.

(4.22)

It is nonzero provided t ≡ |İ(m)| =
∑
ki(İ

(m)) ≤ |J | = s. For definiteness let us assume
that t < s. From the commutator formula between the Virasoro generator and vertex
operator (2.8) we obtain

adÏ(m)(V+(z)) =

`(I)∏
i=`(I)−m+1

zki(I)
(
z∂z +

(
ki(I) + 1

)
∆+

)
V+(z).
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Hence, the matrix element (4.22) assumes the form

〈∆′|adÏ(m)(V+(z)) adİ(m)(L−J) |∆̃〉

=

`(I)∏
i=`(I)−m+1

zki(I)
(
z∂z +

(
ki(I) + 1

)
∆+

)
〈∆′|V+(z)adİ(m)(L−J) |∆̃〉. (4.23)

The nested commutator encoded in adİ(m)(L−J) on the right hand side of the above formula
provides possible factors containing ∆̃ and c. These factors typically appear if one or more
parts of İ(m) coincides with those in the partition J . Let us rewrite the matrix element on
the right hand side of eq. (4.23) in terms of multiplicities

〈∆′|V+(z)adİ(m)(L−J) |∆̃〉 = 〈∆′|V+(z)[Lk`(I)−m(I), . . . , [Lk1(I), L−J ] . . .]|∆̃〉

= 〈∆′|V+(z) [Lil , . . . , [Lil︸ ︷︷ ︸
mil (I)

, . . . , [Li1 , . . . , [Li1︸ ︷︷ ︸
mi1 (I)

, L
mj1 (J)

−j1 · · ·Lmjn (J)
−jn ] . . .]|∆̃〉, (4.24a)

where

i1 := k1(I), i2 := kmi1 (I)+1(I), . . . , il := k
1+

l−1∑
u=1

miu (I)
(I) = k`(I)−m(I), (4.24b)

and similarly for parts ju. Let us assume for definiteness that ju = iu for u ∈ {1, . . . , N},
N ≤ l. Then, according to the formula in eq. (3.22) an overall factor that appears in front
of the resulting matrix element, up to leading term in ∆̃, reads

〈∆′|V+(z)adİ(m)(L−J) |∆̃〉 deg∼ Polyİ(m),J̇(∆̃, c)〈∆′|V+(z)L−J̈ |∆̃〉, (4.25a)

where İ(m), J̇ ` t and J̈ ` s− t.

Polyİ(m),J̇(∆̃, c) :=

N∏
u=1

i
min{miu (I),miu (J)}
u

miu(J)!

ϑ
(
miu(J)−miu(I)

)
!

×

(
2∆̃ + c

12(i2u − 1); iu

)
miu (J)(

2∆̃ + c
12(i2u − 1); iu

)
ϑ(miu (J)−miu (I))

, (4.25b)

where ϑ(x) = xθ(x) and θ(x) is Heaviside’s theta function. Polyİ(m),J̇(∆̃, c) is a polynomial

in ∆̃ and c and ‘deg∼ ’ has the same meaning as in section 3.2. Its degree in ∆̃, in general,
varies between

0 ≤ deg∆̃ PolyIi,Ij (∆̃, c) ≤ t, Ii, Ij ` t, i, j = {1, . . . , p(t)}.

Since
(

2∆̃ + c
12(i2 − 1); i

)
n

deg∼ 2n∆̃n as a polynomial in ∆̃ then from eq. (4.25b) we get

deg∆̃ Polyİ(m),J̇(∆̃, c) =

N∑
u=1

(
miu(J)− ϑ

(
miu(J)−miu(I)

))
≤

l∑
u=1

miu(I) = `(İ(m)).

(4.26)
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Therefore, the degree of the polynomial is maximal if `(İ(m)) =
∑
miu(I) = t = |İ(m)| =∑

iumiu(I) which due to the fact that iu > iv for u < v following from eq. (4.24b)
entails that

N∑
u=1

(iu − 1)miu(I) = 0 ⇒ i1 := k1 = 1 ∧m1(I) = t,

and miu(I) = 0 for u > 1, i.e., İ(m) = (1t). Moreover, İ(m) by definition consists of first m
parts of I. Hence, if I is to be a partition it must assume the form (1r).

The matrix element (4.23) can now be rewritten as

〈∆′|adÏ(m)(V+(z)) adİ(m)(L−J) |∆̃〉

deg∼ Polyİ(m),J̇(∆̃, c)

`(I)∏
i=`(I)−m+1

zki(I)
(
z∂z +

(
ki(I) + 1

)
∆+

)
〈∆′|V+(z)L−J̈ |∆̃〉. (4.27)

Note that the matrix element in the last line of the above equation is nothing but the
gamma vector given in eq. (2.13) with I → J̈ . Performing necessary computations we find
the typical form of the contribution to the sum (4.21), namely

〈∆′|adÏ(m)(V+(z)) adİ(m)(L−J) |∆̃〉
∣∣
z=1

deg∼ Polyİ(m),J̇(∆̃, c)(−1)`(J̈)

`(J̈)∏
i=1

∆′ − ki(J̈)∆+ − ∆̃−
`(J̈)∑
s>i

ks(J̈)


×

`(I)∏
j=`(I)−m+1

∆′ + kj(I)∆+ − ∆̃ +

`(I)∑
s>j

ks(I)− s+ t

 . (4.28)

The above formula enables one to estimate the contribution of the corresponding term
in the sum (4.21) within the classical limit. Since for b → 0 conformal weights scale as
∆′, ∆̃ ∼ δ/b2 and ∆+ ∼ −1/2 we conclude that the two products in the second and third
line of eq. (4.28) reduce to the ξ dependent numerical factors and the only factor that
determines the classical behavior of the matrix element is the polynomial Polyİ(m),J̇(∆̃, c).
The degree of the latter depends on the number of factors. Therefore, the term with the
greatest number of factors will dominate entire sum within the classical limit. The term in
question is the first one in eq. (4.21). This analysis allows us to conclude that

〈∆′|LIV+(1)L−J |∆̃〉 = 〈∆′|V+(z)adI(L−J) |∆̃〉
∣∣
z=1

+ . . .

= (−1)`(J̈)Polyİ(m),J̇(∆̃, c)

`(J̈)∏
i=1

∆′−ki(J̈)∆+−∆̃−
`(J̈)∑
s>i

ks(J̈)

+. . .

and in the classical limit and within the leading order approximation the rho form reads

ρ∆′∆+ ∆̃
∞ 1 0

(
ν∆′,I , ν∆+ , ν∆̃,J

)
b→0∼ Polyİ(m),J̇(δ/b2, 6/b2)C

(−)

J̈
(ξ),
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where we introduced the label for the ξ dependent numerical factor

C
(−)

J̈
(ξ) :=

`(J̈)∏
i=1

( `(J̈)∑
s>i

ks(J̈)− 1

2
ki(J̈) + ξ

)
. (4.29)

The argument concerning the maximal degree of the polynomial entails that the dominant
contribution to the sum over all partitions with fixed |I| = r, |J | = s comes from the term
with the maximal possible multiplicity, i.e., if r < s then I = (1r) and J = J̈ ∪ (1r). In this
case

ρ∆′∆+ ∆̃
∞ 1 0

(
ν∆′,(1r), ν∆+ , ν∆̃,J

)
= r!(2∆̃)r(−1)`(J̈)

`(J̈)∏
i=1

∆′ − ki(J̈)∆+ − ∆̃−
`(J̈)∑
s>i

ks(J̈)

+ . . .

b→0∼ r!(2δ)rb−2rC
(−)

J̈
(ξ) =

[
Grc,δ

]
(1r) (1r)

C
(−)

J̈
(ξ).

(4.30)

We are at the point where we have all necessary ingredients to prove the factorization
phenomenon for the three point irregular conformal block stated in eq. (4.7). Let us consider
the case where r = s. Then from eqs. (3.32) and (4.30) we get that |J̈ | = 0 as well as
C

(−)

J̈
(ξ) = 1 which, when applied to eq. (4.2a), yields

Φ0
r=s(Λ) =

∑
r≥0

Λ4r
∑

|I|=|J |=r

[
Grc,∆′

](1r) I
ρ∆′
∞

∆+

1
∆̃
0

(
ν∆′,I , ν∆+ , ν∆̃,J

) [
Gr
c,∆̃

]J (1r)

b→0∼
∑
r≥0

(
Λ̂

ε1

)4r

b−4r
[
Grc,δ

](1r) (1r)[
Grc,δ

]
(1r) (1r)

[
Grc,δ

](1r) (1r)

= exp

 1

b2

(
Λ̂

ε1

)4
1

2δ

 . (4.31)

Let us now consider the case when r 6= s. According to eq. (4.2b) we have

Φ0
r 6=s(Λ, z) =

∑
r 6=s
r,s≥0

Λ2(r+s)zr−sF (r,s)
c

(
∆′,∆+, ∆̃

)

=
∑
s>r≥0

Λ2(r+s)
(
F (s,r)
c

(
∆′,∆+, ∆̃

)
zs−r + F (r,s)

c

(
∆′,∆+, ∆̃

)
z−(s−r)

)
,

(4.32)

where

F (r,s)
c

(
∆′,∆+, ∆̃

)
:=
∑
|I|=r
|J |=s

[
Grc,∆′

](1r) I
ρ∆′
∞

∆+

1
∆̃
0

(
ν∆′,I , ν∆+ , ν∆̃,J

) [
Gs
c,∆̃

]J (1s)
. (4.33)

Thus the function Φ0
r 6=s(Λ, z) splits into two parts with positive and negative power of

variable z
Φ0
r 6=s(Λ, z) = φr 6=s1 (Λ, z) + φr 6=s2 (Λ, z), (4.34a)
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where
φr 6=s1 (Λ, z) =

∑
s>r≥0

Λ2(r+s)F (s,r)
c

(
∆′,∆+, ∆̃

)
zs−r,

φr 6=s2 (Λ, z) =
∑
s>r≥0

Λ2(r+s)F (r,s)
c

(
∆′,∆+, ∆̃

)
z−(s−r).

(4.34b)

Let us consider the second one and compute the classical limit of F (r,s). From eqs. (4.19)
and (4.30) and recalling the notation J = J̈ ∪ (1r) we obtain

F (r,s)
c

(
∆′,∆+, ∆̃

)
b→0∼

∑
|J̈ |=n

[
Grc,δ

](1r) (1r)[
Grc,δ

]
(1r) (1r)

C
(−)

J̈
(ξ)
[
Grc,δ

](1s) ,J̈∪(1r)

= b2(r+s) 1

b2r(2δ)rr!

1

(2δ)s−r

∑
|J̈ |=s−r

C
(−)

J̈
(ξ)
∏
i≥2

1

mi(J̈)!

(
2(i+ 1)δ

i (4δ + i2 − 1)

)mi(J̈)

.

Let us denote

ζ(−)
n (ξ) :=

1

(2δ)n

∑
|J̈ |=n

C
(−)

J̈
(ξ)
∏
i≥2

1

mi(J̈)!

(
2(i+ 1)δ

i (4δ + i2 − 1)

)mi(J̈)

. (4.35)

Inserting the result for the classical limit of F (r,s) to φr 6=s2 amounts to

φr 6=s2 (Λ, z)
b→0∼

∑
s>r≥0

(
Λ̂

ε1

)2(r+s)

z−(s−r) 1

b2r(2δ)rr!
ζ

(−)
s−r(ξ)

=
∑
s≥1

s−1∑
r=0

(
Λ̂

ε1

)4r
1

b2r(2δ)rr!

(
Λ̂

ε1

)2(s−r)

z−(s−r)ζ
(−)
s−r(ξ)

=
∑
r≥0

∑
s≥r+1

(
Λ̂

ε1

)4r
1

b2r(2δ)rr!

(
Λ̂

ε1

)2(s−r)

z−(s−r)ζ
(−)
s−r(ξ)

s−r=n
=

∑
r≥0

1

r!

 1

b2

(
Λ̂

ε1

)4
1

2δ

r ∑
n≥1

(
Λ̂

ε1

)2n

ζ(−)
n (ξ)z−n.

The last line of the above formula is noting but the exponent of the first coefficient of the
irregular classical block as in eq. (4.31) and the second one is the leading order approxi-
mation to the Mathieu function. The same argument applies to φr 6=s1 , such that we can
conclude with the following formula

Φ0
r 6=s(Λ, z)

b→0∼ exp

 1

b2

(
Λ̂

ε1

)4
1

2δ

∑
n≥1

(
Λ̂

ε1

)2n (
ζ(−)
n (ξ)z−n + ζ(+)

n (ξ)zn
)
. (4.36)

Having found the classical limit of Φ0
r=s(Λ) in eq. (4.31) and Φ0

r 6=s(Λ, z) in eq. (4.36)
we can combine them to find the limit that defines the factor in eq. (4.8) deriving from the

– 27 –



J
H
E
P
0
1
(
2
0
1
6
)
1
1
5

light field. As a result we find

ϕ0
(

Λ̂/ε1, z
)

= lim
b→0

(
1 +

Φ0
r 6=s(Λ̂/(ε1b), z)

Φ0
r=s(Λ̂/(ε1b))

)
=
∑
n≥0

(
Λ̂

ε1

)2n (
ζ(−)
n (ξ)z−n + ζ(+)

n (ξ)zn
)
.

(4.37)
The above formula does not depend on b and is a finite expression which shows in the
leading order approximation that the factorization of the light operator insertion in the
three point irregular conformal block indeed takes place.

4.3 Mathieu functions

Our next point is to demonstrate that the formula (4.17) fits the noninteger order Mathieu
function which corresponds to the eigenvalue given by (4.16), (4.18). As a starting point let
us recall that Φ0

r=s and Φ0
r 6=s in eq. (4.17) are two parts of the normalized Nf =0 degenerate

irreagular block Φ0
+(Λ, z) = Φ0

r=s(Λ) + Φ0
r 6=s(Λ, z) (cf. eqs. (4.1a)–(4.5)). Explicitely,

Φ0
r=s(Λ) =

∑
r≥0

Λ4r F (r,r)
c

(
∆′,∆+, ∆̃

)
, (4.38)

Φ0
r 6=s(Λ, z) =

∑
s≥1

s−1∑
r=0

Λ2(r+s)
(
F (s,r)
c

(
∆′,∆+, ∆̃

)
zs−r + F (r,s)

c

(
∆′,∆+, ∆̃

)
z−(s−r)

)
,

where (cf. eqs. (4.2a) and (4.2b))

F (r,s)
c

(
∆′,∆+, ∆̃

)
≡
∑
|I|=r
|J |=s

[
Grc,∆′

](1r) I
ρ∆′
∞

∆+

1
∆̃
0

(
ν∆′,I , ν∆+ , ν∆̃,J

) [
Gs
c,∆̃

]J (1s)
. (4.39)

As has been already noted, Φ0
r 6=s(Λ, z) has two linearly independent components to which

it can be split, namely

Φ0
r 6=s(Λ, z) = φr 6=s1 (Λ, z) + φr 6=s2 (Λ, z), (4.40)

where

φr 6=s1 (Λ, z) =
∑
s≥1

s−1∑
r=0

Λ2(r+s)F (s,r)
c

(
∆′,∆+, ∆̃

)
zs−r , (4.41)

φr 6=s2 (Λ, z) =
∑
s≥1

s−1∑
r=0

Λ2(r+s)F (r,s)
c

(
∆′,∆+, ∆̃

)
z−(s−r) . (4.42)

Let us consider the ratio Φ0
r 6=s/Φ

0
r=s in eq. (4.17). From (4.38), (4.40), (4.41), (4.42) we get

Φ0
r 6=s(Λ, z)

Φ0
r=s(Λ)

=
φr 6=s1 (Λ, z)

Φ0
r=s(Λ)

+
φr 6=s2 (Λ, z)

Φ0
r=s(Λ)

, (4.43)

– 28 –



J
H
E
P
0
1
(
2
0
1
6
)
1
1
5

where

1

Φ0
r=s(Λ)

φr 6=s1 (Λ, z) =
1

1 +
∑
s≥1

Λ4s F (s,s)

∑
s≥1

s−1∑
r=0

Λ2(r+s)F (s,r) zs−r ,

1

Φ0
r=s(Λ)

φr 6=s2 (Λ, z) =
1

1 +
∑
s≥1

Λ4s F (s,s)

∑
s≥1

s−1∑
r=0

Λ2(r+s)F (r,s) z−(s−r).

Let us observe that in both equations written above one can expand the factor (1 +∑
s≥1 Λ4sF (s,s))−1 according to the formula for the sum of the geometric series. Then,

collecting the resulting expressions up to 12 order in Λ one can obtain

— for the first term in eq. (4.43):

φr 6=s1 (Λ, z)

Φ0
r=s(Λ)

= Λ2 z F (1,0) + Λ4 z2 F (2,0)

+Λ6
[
z3 F (3,0) + z

(
F (2,1) − F (1,0)F (1,1)

)]
+Λ8

[
z4 F (4,0) + z2

(
F (3,1) − F (1,1)F (2,0)

)]
+Λ10

[
z5 F (5,0) + z3

(
F (4,1) − F (1,1)F (3,0)

)
+ z

(
F (1,0)(F (1,1))2 − F (1,1)F (2,1) − F (1,0)F (2,2) + F (3,2)

)]
+Λ12

[
z6 F (6,0) + z4

(
F (5,1) − F (1,1)F (4,0)

)
+ z2

(
(F (1,1))2F (2,0) − F (2,0)F (2,2)−F (1,1)F (3,1)+F (4,2)

)]
+. . . ,

— for the second term in eq. (4.43):

φr 6=s2 (Λ, z)

Φ0
r=s(Λ)

= Λ2 z−1 F (0,1) + Λ4 z−2 F (0,2)

+Λ6
[
z−3 F (0,3) + z−1

(
F (1,2) − F (0,1)F (1,1)

)]
+Λ8

[
z−4 F (0,4) + z−2

(
F (1,3) − F (1,1)F (0,2)

)]
+Λ10

[
z−5 F (0,5) + z−3

(
F (1,4) − F (1,1)F (0,3)

)
+ z−1

(
F (0,1)(F (1,1))2 − F (1,1)F (1,2) − F (0,1)F (2,2) + F (2,3)

)]
+Λ12

[
z−6 F (0,6) + z−4

(
F (1,5) − F (1,1)F (0,4)

)
+ z−2

(
(F (1,1))2F (0,2)−F (0,2)F (2,2)−F (1,1)F (1,3)+F (2,4)

)]
+. . . .

Thus, eventually we get

Φ0
r 6=s(Λ, z)

Φ0
r=s(Λ)

= Λ2K2 + Λ4K4 + Λ6K6 + Λ8K8 + Λ10K10 + Λ12K12 + . . . , (4.44)
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where

K2 = z−1 F (0,1) + z F (1,0),

K4 = z2 F (2,0) + z−2 F (0,2),

K6 = z3 F (3,0) + z−3 F (0,3) + z
(
F (2,1) − F (1,0)F (1,1)

)
+ z−1

(
F (1,2) − F (0,1)F (1,1)

)
,

K8 = z4 F (4,0) + z−4 F (0,4) + z2
(
F (3,1) − F (1,1)F (2,0)

)
+ z−2

(
F (1,3) − F (1,1)F (0,2)

)
,

K10 = z5 F (5,0) + z−5 F (0,5) + z3
(
F (4,1) − F (1,1)F (3,0)

)
+ z−3

(
F (1,4) − F (1,1)F (0,3)

)
+ z

(
F (1,0)(F (1,1))2 − F (1,1)F (2,1) − F (1,0)F (2,2) + F (3,2)

)
+ z−1

(
F (0,1)(F (1,1))2 − F (1,1)F (1,2) − F (0,1)F (2,2) + F (2,3)

)
,

and

K12 = z6 F (6,0) + z−6 F (0,6) + z4
(
F (5,1) − F (1,1)F (4,0)

)
+ z−4

(
F (1,5) − F (1,1)F (0,4)

)
+ z2

(
(F (1,1))2F (2,0) − F (2,0)F (2,2) − F (1,1)F (3,1) + F (4,2)

)
+ z−2

(
(F (1,1))2F (0,2) − F (0,2)F (2,2) − F (1,1)F (1,3) + F (2,4)

)
.

Now, having computed the coefficients20 F (r,s)
c

(
∆′,∆+, ∆̃

)
for21

∆̃ = ∆

(
ξ/b− b

4

)
, ∆′ = ∆

(
ξ/b+

b

4

)
, ∆+ = −3

4
b2 − 1

2
, c = 1 + 6

(
b+

1

b

)2

,

setting z = e−2ix and taking into account that Λ = Λ̂/(ε1b) one can find the limit22

lim
b→0

(
1 +

Φ0
r 6=s(Λ̂/(ε1b), e

−2ix)

Φ0
r=s(Λ̂/(ε1b))

)

order by order, namely

— order Λ2:

Λ2K2
b→0−→

(
Λ̂

ε1

)2(
e−2ix

2ξ − 1
− e2ix

2ξ + 1

)
≡

(
Λ̂

ε1

)2

P2(ξ, x) ,

— order Λ4:

Λ4K4
b→0−→

(
Λ̂

ε1

)4(
e4ix

4(ξ + 1)(2ξ + 1)
+

e−4ix

4(ξ − 1)(2ξ − 1)

)
≡

(
Λ̂

ε1

)4

P4(ξ, x) ,

20Cf. eq. (4.39) and appendix A.
21Here, ∆(σ) ≡ Q2/4− σ2, cf. eqs. (3.36) and (4.6a).
22Cf. eq. (4.17).
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— order Λ6:

Λ6K6
b→0−→

(
Λ̂

ε1

)6( (
4ξ2 − 8ξ + 7

)
e−2ix

4(ξ − 1)(2ξ − 1)3(2ξ + 1)
−

(
4ξ2 + 8ξ + 7

)
e2ix

4(ξ + 1)(2ξ − 1)(2ξ + 1)3

+
e−6ix

12(ξ−1)(2ξ−3)(2ξ−1)
− e6ix

12(ξ+1)(2ξ+1)(2ξ+3)

)
≡

(
Λ̂

ε1

)6

P6(ξ, x) ,

— order Λ8:

Λ8K8
b→0−→

(
Λ̂

ε1

)8( (
2ξ2 − 5ξ + 5

)
e−4ix

3(ξ−1)(2ξ−3)(2ξ−1)3(2ξ + 1)
+

(
2ξ2 + 5ξ + 5

)
e4ix

3(ξ+1)(2ξ−1)(2ξ+1)3(2ξ + 3)

+
e−8ix

96(ξ − 2)(ξ − 1)(2ξ − 3)(2ξ − 1)
+

e8ix

96(ξ + 1)(ξ + 2)(2ξ + 1)(2ξ + 3)

)
≡

(
Λ̂

ε1

)8

P8(ξ, x) ,

— order Λ10:

Λ10K10
b→0−→

(
Λ̂

ε1

)10( (
4ξ2 − 12ξ + 13

)
e−6ix

32(ξ − 2)(ξ − 1)(2ξ − 3)(2ξ − 1)3(2ξ + 1)

−
(
4ξ2 + 12ξ + 13

)
e6ix

32(ξ + 1)(ξ + 2)(2ξ − 1)(2ξ + 1)3(2ξ + 3)

+

(
−32ξ6 − 80ξ5 − 64ξ4 − 32ξ3 − 94ξ2 + 13ξ − 116

)
e2ix

6(ξ − 1)(ξ + 1)(2ξ − 1)3(2ξ + 1)5(2ξ + 3)

+

(
32ξ6 − 80ξ5 + 64ξ4 − 32ξ3 + 94ξ2 + 13ξ + 116

)
e−2ix

6(ξ − 1)(ξ + 1)(2ξ − 3)(2ξ − 1)5(2ξ + 1)3

+
e−10ix

480(ξ − 2)(ξ − 1)(2ξ − 5)(2ξ − 3)(2ξ − 1)

− e10ix

480(ξ + 1)(ξ + 2)(2ξ + 1)(2ξ + 3)(2ξ + 5)

)
≡

(
Λ̂

ε1

)10

P10(ξ, x) , (4.45)
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— order Λ12:

Λ12K12
b→0−→

(
Λ̂

ε1

)12( (
2ξ2 − 7ξ + 8

)
e−8ix

60(ξ − 2)(ξ − 1)(2ξ − 5)(2ξ − 3)(2ξ − 1)3(2ξ + 1)

+

(
2ξ2 + 7ξ + 8

)
e8ix

60(ξ + 1)(ξ + 2)(2ξ − 1)(2ξ + 1)3(2ξ + 3)(2ξ + 5)

+

(
704ξ8−3904ξ7+8528ξ6−9440ξ5+7780ξ4−5876ξ3+4739ξ2−7672ξ+4817

)
e−4ix

384(ξ − 2)(ξ − 1)3(ξ + 1)(2ξ − 3)(2ξ − 1)5(2ξ + 1)3

+

(
704ξ8+3904ξ7+8528ξ6+9440ξ5+7780ξ4+5876ξ3+4739ξ2+7672ξ+4817

)
e4ix

384(ξ − 1)(ξ + 1)3(ξ + 2)(2ξ − 1)3(2ξ + 1)5(2ξ + 3)

+
e12ix

5760(ξ − 3)(ξ − 2)(ξ − 1)(2ξ − 5)(2ξ − 3)(2ξ − 1)

+
e−12ix

5760(ξ + 1)(ξ + 2)(ξ + 3)(2ξ + 1)(2ξ + 3)(2ξ + 5)

)
≡

(
Λ̂

ε1

)12

P12(ξ, x).

(4.46)

The above analysis yields the expansion:

lim
b→0

(
1 +

Φ0
r 6=s(Λ̂/(ε1b), e

−2ix)

Φ0
r=s(Λ̂/(ε1b))

)
= 1 +

(
Λ̂

ε1

)2

P2(ξ, x) +

(
Λ̂

ε1

)4

P4(ξ, x)

+

(
Λ̂

ε1

)6

P6(ξ, x) + . . .+

(
Λ̂

ε1

)12

P12(ξ, x) + . . .

which for ξ = ν/2, h = 2Λ̂/ε1 and after multiplication by eiνx (cf. eq. (4.17)) gives the
sought eigenfunction:

ψ0
ν (x) = eiνx +

h2

4
R2(ν, x) +

h4

32
R4(ν, x) +

h6

128
R6(ν, x) +

h8

768
R8(ν, x) + . . . . (4.47)

For instance, the coefficients Rn(ν, x), n = 2, 4, 6, 8 explicitly read as follows23

R2 =
ei(ν−2)x

ν − 1
− ei(ν+2)x

ν + 1
,

R4 =
ei(ν+4)x

(ν + 1)(ν + 2)
+

ei(ν−4)x

(ν − 2)(ν − 1)
,

R6 =

(
ν2 − 4ν + 7

)
ei(ν−2)x

(ν − 2)(ν − 1)3(ν + 1)
−
(
ν2 + 4ν + 7

)
ei(ν+2)x

(ν − 1)(ν + 1)3(ν + 2)

+
ei(ν−6)x

3(ν − 3)(ν − 2)(ν − 1)
− ei(ν+6)x

3(ν + 1)(ν + 2)(ν + 3)
,

R8 =

(
ν2 − 5ν + 10

)
ei(ν−4)x

(ν − 3)(ν − 2)(ν − 1)3(ν + 1)
+

(
ν2 + 5ν + 10

)
ei(ν+4)x

(ν − 1)(ν + 1)3(ν + 2)(ν + 3)

+
ei(ν−8)x

8(ν − 4)(ν − 3)(ν − 2)(ν − 1)
+

ei(ν+8)x

8(ν + 1)(ν + 2)(ν + 3)(ν + 4)
.

23Coefficients Rn, n = 10, 12 are given by (4.45), (4.46) for ξ = ν/2, h = 2Λ̂/ε1.
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Finally, let us observe that the combination 1
2(ψ0

ν (x) +ψ0
ν (−x)) yields the noninteger order

(ν /∈ Z) Mathieu cosine function :24

1

2

(
ψ0
ν (x) + ψ0

ν (−x)
)

= cos(νx)− h2

4

[
cos((ν + 2)x)

ν + 1
− cos((ν − 2)x)

ν − 1

]
+
h4

32

[
cos((ν − 4)x)

(ν − 2)(ν − 1)
+

cos((ν + 4)x)

(ν + 1)(ν + 2)

]
+
h6

128

[(
ν2 − 4ν + 7

)
cos((ν − 2)x)

(ν − 2)(ν − 1)3(ν + 1)
−
(
ν2 + 4ν + 7

)
cos((ν + 2)x)

(ν − 1)(ν + 1)3(ν + 2)

+
cos((ν − 6)x)

3(ν − 3)(ν − 2)(ν − 1)
− cos((ν + 6)x)

3(ν + 1)(ν + 2)(ν + 3)

]
+ . . .

≡ ceν(x, h2).

Therefore, the eigenfunction ψ0
ν (x) given by our formulae (4.17), (4.47) is nothing but

the Floquet solution meν(x, h2), ν /∈ Z known as the Mathieu exponent (cf. example 17.1

in [50]).25 The second solution is of the form ψ0
ν (−x) ≡ meν(−x, h2) and it is the Floquet

solution for −ν and the same eigenvalue (4.18). It is known that meν(x, h2) and meν(−x, h2)

obey (http://dlmf.nist.gov/28.12.iii):

ceν(x, h2) =
1

2

(
meν(x, h2) + meν(−x, h2)

)
,

seν(x, h2) =
1

2
i
(
meν(x, h2)−meν(−x, h2)

)
. (4.49)

Functions ceν and seν constitute another fundamental system of solutions.
So far only the solutions of the noninteger order (ν /∈Z) have been discussed. Hence,

the question arises at this point of how to get from the classical limit of the irregular
block the Mathieu eigenvalues and eigenfunctions corresponding to the integer values of the
Floquet exponent. Recall, such solutions are periodic.26 In particular, one can construct
the solutions of periods π or 2π (q = h2):

— the cosine-elliptic cem(x; q), m = 0, 1, 2, . . ., that corresponds at q = 0 with cosmx,
for instance:

ce1(x; q) = cosx− 1

8
q cos 3x+

1

64
q2

(
1

3
cos 5x− cos 3x

)
− 1

512
q3

(
1

3
cos 3x− 4

9
cos 5x+

1

18
cos 7x

)
+ . . . ;

24Cf. subsection 2.16 in a book by McLachlan [72], see also example 17.1 in [50].
25The coefficient R4 in our formula for ψ0

ν (x) differs from that presented in http://dlmf.nist.gov/28.15,
where

meν(x, h2) = eiνx − h2

4

(
1

ν + 1
ei(ν+2)x − 1

ν − 1
ei(ν−2)x

)
+
h4

32

(
1

(ν + 1)(ν + 2)
ei(ν+4)x +

1

(ν − 1)(ν − 2)
ei(ν−4)x − 2(ν2 + 1)

(ν2 − 1)2
eiνx

)
+ . . . . (4.48)

However, the expression (4.48) does not satisfy (4.49).
26Cf. appendix B.
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— the sine-elliptic sem(x; q), m = 1, 2, . . ., that corresponds at q = 0 with sinmx, for
example:

se1(x; q) = sinx− 1

8
q sin 3x+

1

64
q2

(
sin 3x+

1

3
sin 5x

)
− 1

512
q3

(
1

3
sin 3x− 4

9
sin 5x+

1

18
sin 7x

)
+ . . . .

The functions cem and sem have period π if m is even and period 2π if m is odd. The corre-
sponding eigenvalues λ denoted by am(q) for cem and bm(q) for sem are called characteristic
numbers, e.g.:

a1(q) = 1 + q − 1

8
q2 − 1

64
q3 − 1

1536
q4 +

11

36864
q5 + . . . ,

b1(q) = 1− q − 1

8
q2 +

1

64
q3 − 1

1536
q4 − 11

36864
q5 + . . . .

For any q > 0 characteristic numbers form the band/gap structure: a0 < b1 < a1 < b2 <

a2 . . .. For large m the leading terms of the am and bm are (http://dlmf.nist.gov/28.6.E14):

am(q)

bm(q)

}
=m2+

q2

2 (m2−1)
+

(
5m2+7

)
q4

32 (m2−4) (m2−1)3 +

(
9m4+58m2+29

)
q6

64 (m2−9) (m2−4) (m2−1)5 + . . . .

Notice that for m= ν the above expression matches (B.5) and therefore can be recovered
from the classical irregular block with δ= 1

4(1 −m2) (cf. (4.16), (4.18)) or from the gauge
theory counterpart of (4.16), i.e.:

1

ε1
Λ̂∂Λ̂W

SU(2),Nf=0
(

Λ̂, a, ε1

)
,

where a = 1
2mε1, cf. [1, 44]. To conclude, regardless of the coincidence described above,

work is in progress in order to find a mechanism which allows to derive from the conformal
blocks the eigenvalues in the case of the finite integer values of m and the corresponding
integer order solutions.

5 Concluding remarks and open problems

In the present paper we have shown that the Nf = 0 classical irregular block solves the
eigenvalue problem for the Mathieu operator. The statement that the Mathieu eigenvalue
for small h2 =4Λ̂2/ε21 (weakly-coupled region) and noninteger characteristic exponent ν /∈ Z
is determined by the classical zero flavor irregular block has been already stated in our
previous work [1]. The new result of the present work is the derivation of an expression
of the corresponding eigenfunction. Moreover, it has been shown that the formula (4.17)
reproduces the known solution of the Mathieu equation with the eigenvalue (4.18). There-
fore, we have established a link between the Mathieu equation and its realization within
two-dimensional CFT. This result paves the way for a new interesting line of research.
Concretely, one can try to study other regions of the spectrum of the Mathieu operator by
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means of 2d CFT tools. Indeed, two interesting questions arise at this point: (i) How is it
possible to derive from the irregular block the solutions with integer values of the Floquet
parameter? (ii) How within 2d CFT one can get the solutions in the other regions of the
spectrum? The answer to the first question needs more studies. It seems that also the
second question is reasonable. Let us remember that the quantum irregular block can be
obtained from the four-point block on the sphere in the so-called decoupling limit of the
external conformal weights (cf. eq. (3.8)). However, to our knowledge, such limit has been
discussed only for the s-channel four-point block [38]. Therefore, it arises at this point
the question of what happens if we take the decoupling limit from the four-point blocks in
the other channels, i.e. t or u. The latter case appears to be especially interesting since
in the u-channel four-point block the invariant ratio is 1

x . Hence, the question is whether
we can obtain the irregular block with the expansion parameter 1

Λ = ( Λ̂
ε1b

)−1. Secondly, if
this is possible, do we get in the classical limit the classical irregular block determining the
strongly-coupled region of the Mathieu spectrum? In addition, let us note that the s and
u-channel four-point blocks are related by the braiding relation which, in general, has the
form of an integral transform with a complicated kernel — the so-called braiding matrix
(cf. e.g. [74]). However, when one of the four external conformal weights becomes degener-
ate, then the integral transform reduces to the known formula for the analytic continuation
of the hypergeometric function from the vicinity of a point x to that of the point 1

x . It
seems to be technically possible to take combinations of the decoupling and classical limits
on both sides of the braiding relation (at least) in the degenerate case and to obtain as a
result a ‘duality relation’ for the classical irregular blocks. As one can expect, in this way
it becomes feasible to establish a formula that continues the Mathieu eigenvalue from the
weakly-coupled region to that of strong coupling. Work is in progress in order to verify this
hypothesis.

The derivation of the Mathieu equation within the formalism of two-dimensional con-
formal field theory is based on conjectures concerning the asymptotic behavior of irregular
blocks in the classical limit, cf. eqs. (3.13) and (4.7). We recall that the coefficient of the
irregular block expansion is a ratio of polynomials in ∆ and c. Our idea of proving the
existence of the classical irregular block was to estimate the degree of the irregular block
coefficient as a polynomial in the parameter b. To accomplish this task we used methods
which had previously been used to prove the Kac determinant formula, cf. [63]. However,
these techniques have proven to be too weak to give a complete answer. As a result, we
have obtained the classical irregular block at the leading order only. It is therefore neces-
sary to use other methods to try to prove eq. (3.13). It seems that there are two available
approaches to solve this problem. The first way is to use a representation of the Gaiotto
states in terms of Jack polynomials. As S. Yanagida has shown in ref. [73], it is possible to
represent the Gaiotto state for the pure gauge theory using the Jack polynomials. The coef-
ficients relating the Jack polynomials to the Gaiotto state are found explicitly in [73]. The
inner product, by means of which one computes the norm of the pure gauge Gaiotto state,
induces by the bosonization map and the parameter dependent isomorphism, the inner
product in the space spanned by the Jack polynomials. However, these Jack polynomials
are not orthogonal within this inner product and one has to expand them in a new basis of
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Jack polynomials depending on a different parameter and orthogonal with respect to the
induced inner product. The coefficients relating the two bases of the Jack polynomials are
not known explicitly. The lack of the explicit form of the coefficients hampers the effort to
find the classical limit of the pure gauge conformal block.

The second and in our opinion more promising way to get eq. (3.13) in particular and
more in general analogous results for the regular blocks, is the application of the Fock space
free field realization of the conformal blocks. In the case of discrete spectrum this approach
is even mathematically rigorous [75–78]. As a result one gets the Dotsenko-Fateev(-like)
integral representations of the conformal blocks and hence one can try to use the methods
of matrix models (beta-ensembles) in the computation of the classical limit of these blocks,
cf. [80]. However, it should be stressed that the link between the integral and power series
representations of conformal blocks is not completely understood cf. e.g. [81]. In our opinion,
also the operator realization of conformal blocks requires further work. For instance, the
Fock space representation of the chiral vertex operator with the three independent general
conformal weights, whose compositions in the matrix element lead to integral formulas,
needs to be developed, cf. [56, 57].

The main claim of this work — formulas (4.16) and (4.17) — possess fascinating gen-
eralizations. The simplest extension is to consider irregular blocks with Nf =1, 2 flavors.27

As a preview of the results which will be reported in our next papers let us only mention
that also in the cases Nf = 1, 2 the classical limit of the irregular blocks exists and yields
a consistent definition of the classical blocks. In these cases we have also found explicit
formulas for the eigenvalues and the eigenfunctions of operators emergent in the classical
limit of the null vector decoupling equations. For Nf = 2 one gets a Schrödinger operator
containing a generalization of the Mathieu potential. These further developments will con-
firm the validities of 2d CFT technics in the investigation of different regions of the spectra
of the investigated operators.

A Coefficients F (r,s)

The first few coefficient F (r,s)
c (∆1,∆2,∆3), e.g.:

F (1,0) =
∆1 + ∆2 −∆3

2∆1
,

F (0,1) =
−∆1 + ∆2 + ∆3

2∆3
,

F (2,0) =
1
2 (∆1 + ∆2 −∆3) (∆1 + ∆2 −∆3 + 1) (c+ 8∆1)− 6∆1 (∆1 + 2∆2 −∆3)

2∆1 (2∆1 (c+ 8∆1 − 5) + c)
,

F (0,2) =
1
2 (∆1 −∆2 −∆3 − 1) (∆1 −∆2 −∆3) (c+ 8∆3)− 6∆3 (−∆1 + 2∆2 + ∆3)

2∆3 (2∆3 (c+ 8∆3 − 5) + c)
,

and next up to the order Λ8 (cf. (4.44)) can be easily and quickly computed using computer.
The time of computation dramatically increases for the coefficients appearing in higher
orders of the expansion (4.44) and results become very complicated. However, it seems to

27By the time this research was in progress the paper [79] appeared which mentioned this problem.
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be possible to find recurrence relations for F (r,s)
c (∆1,∆2,∆3) which really would improve

speed of calculations and as a result it would gave an efficient method of calculation of the
Mathieu function.

B Mathieu equation

The standard form of the Mathieu equation with parameters (a, q) (DLMF eq. (28.2)) or
equivalently [50] (λ, h2) reads as follows

ψ′′ + (a− 2q cos 2z)ψ = 0 ↔ ψ′′ +
(
λ− 2h2 cos 2z

)
ψ = 0. (B.1)

A solution ψ with given initial constant values of ψ and ψ′ at some point z0 is an entire
function of the three variables: z, a, q (⇔ z, λ, h2).

The Floquet theorem states that the Mathieu eq. (B.1) has a nontrivial solution ψ(z)

such that
ψ(z + π) = σ ψ(z) (B.2)

with σ being a root of the eq.:∣∣∣∣∣ψ1(π)− σ ψ2(π)

ψ′1(π) ψ′2(π)− σ

∣∣∣∣∣ = 0 ,

where ψ1(z) and ψ2(z) are even and odd, respectively, normalized (ψ1ψ
′
2 − ψ′1ψ2)

∣∣∣
z=0

= 1

linearly independent solutions. Equivalently, the coefficients c1 and c2 in the solution ψ =

c1ψ1 + c2ψ2, which obeys the condition (B.2), are given as an eigenvector of eq.:(
ψ1(π) ψ2(π)

ψ′1(π) ψ′2(π)

)(
c1

c2

)
= σ

(
c1

c2

)
.

A solution of the Mathieu eq. in the form given by the Floquet theorem is called a
Floquet solution. In order to gain more understanding of the Floquet solution let us define
the quantities ν and y such that

σ = eiπν , y(z) = e−iνz ψ(z),

where ψ(z) fulfills (B.2). The definition has the effect that

y(z + π) = e−iν(z+π) ψ(z + π) = e−iνzψ(z) = y(z)

which shows that y(z) is a periodic function of z with period π. Moreover,

ψ(z) = eiνz y(z) (B.3)

showing that a Floquet solution ψ(z) consists of a periodic function of z multiplied by a
complex exponential in z. The quantity ν which controls the exponential behavior is known
as the characteristic or Floquet exponent of ψ.
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The Floquet exponent ν is determined by the eq.:

cosπν = ψ1(π; a, q). (B.4)

Eq. (B.4) allows to express the eigenvalue a (or λ) in terms of q (or h2) and Floquet
parameter ν. However, usefulness of eq. (B.4) is restricted by an ability to calculate the
normalized Mathieu function ψ1. The eigenfunction ψ1 can be found as an expansion in
terms of other functions, in particular, in terms of trigonometric functions. Indeed, the
meaning of eq. (B.4) is that the Floquet exponent is determined by the value at z = π

of the solution which is even around z = 0. To the lowest order, i.e. for q = h2 = 0, the
even solution around z = 0 is ψ(0)

1 (z) = cos
√
λz. Therefore, from (B.4) for q = h2 = 0 one

gets ν =
√
λ, and more in general ν2 = λ + O

(
h2
)
. One can derive various terms of this

expansion perturbatively. Indeed, for small q = h2 the eigenvalue λ as a function of ν and
h2 explicitly reads as follows (DLMF eq. 28.15 and cf. example 17.1 in [50])

λν(h2) = ν2 +
h4

2 (ν2 − 1)
+

(
5ν2 + 7

)
h8

32 (ν2 − 4) (ν2 − 1)3 +

(
9ν4 + 58ν2 + 29

)
h12

64 (ν2 − 9) (ν2 − 4) (ν2 − 1)5 + . . . .

(B.5)
The expansion (B.5) holds for noninteger values of ν /∈ Z. The corresponding eigenfunction
for small q = h2 and ν /∈ Z is of the form

meν(z, h2) = eiνz − h2

4

(
1

ν + 1
ei(ν+2)z − 1

ν − 1
ei(ν−2)z

)
+ . . . .

The Mathieu equation admits periodic solutions. Indeed, the Floquet solution will be
periodic for special values of σ. A necessary condition for periodicity is that |σ| = 1. Since
the Floquet solution (B.3) contains the factor y that is periodic with period π, ψ will be
periodic with period

a) π if ν = 0, 2, . . . ⇔ σ = 1,
b) 2π if ν = 1, 3, . . . ⇔ σ = −1,
c) sπ if ν = 2r/s, where r, s > 2 are integers with no common divisors.

For physical reasons the solutions of most importance are those with periods π or 2π, and
these are the cem and sem introduced in the main text.
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