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Montréal, Quebec, H3A 2T8 Canada
cSchool of Physical Sciences, University of Science and Technology of China,

Hefei, Anhui, 230026 China
dSchool of the Gifted Young, University of Science and Technology of China,

Hefei, Anhui, 230026 China
eFaculty of Materials and Energy, Southwest University,

Chongqing, 400715 China

E-mail: yifucai@ustc.edu.cn, zhhz@mail.ustc.edu.cn,

junyu@mail.ustc.edu.cn, cghope@mail.ustc.edu.cn, minwang@swu.edu.cn

Abstract: Black holes are found to exist in gravitational theories with the presence of

quadratic curvature terms and behave differently from the Schwarzschild solution. We

present an exhaustive analysis for determining the quasinormal modes of a test scalar

field propagating in a new class of black hole backgrounds in the case of pure Einstein-

Weyl gravity. Our result shows that the field decay of quasinormal modes in such a non-

Schwarzschild black hole behaves similarly to the Schwarzschild one, but the decay slope

becomes much smoother due to the appearance of the Weyl tensor square in the background

theory. We also analyze the frequencies of the quasinormal modes in order to characterize

the properties of new back holes, and thus, if these modes can be the source of gravitational

waves, the underlying theories may be testable in future gravitational wave experiments.
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1 Introduction

Since Einstein’s proposal in 1915, General Relativity (GR) has been established as the

standard theory of gravitation for one hundred years. As a pillar of modern science, the

predictions of GR have been confirmed in all observations to date. However, one of the most

challenging task that theoretical physicists are facing today is how GR can be reconciled

with the laws of quantum physics to produce a consistent ultraviolet (UV) complete theory

of quantum gravity.

To address this issue as well as to be of phenomenological interest, extensions of Ein-

stein gravity with the presence of higher order derivative terms arise in fundamental the-

ories, such as string theory, loop quantum gravity, asymptotically safe gravity and others.

In particular, it was found in [1] that adding quadratic curvature terms could improve the

renormalizability of the underlying gravitational theory although this theory would suffer

from an instability of ghost degrees of freedom [2]. As shown in [3], however, if the path

integral quantization is evaluated in Euclidean space and then Wick rotated to Lorentzian

space, this path integral can yield a theory of quantum gravity without a negative norm

state. This approach has been applied into inflationary cosmology and provided an inter-

esting interpretation for primordial perturbations [4].

– 1 –



J
H
E
P
0
1
(
2
0
1
6
)
1
0
8

Black hole physics is believed to provide an important window to the quantum nature

of gravity. Recently, there has been increasing interests in studying black hole solutions

in gravity theories by taking into account higher order curvature terms, such as from

the perspective of string theory [5–8], in the Gauss-Bonnet extended gravity [9–13], the

Einstein-Weyl gravity [14–17], the f(R) gravity [18–21], and other cases of general quadratic

gravity [22–26], as well as the analyses of gravitational energy of quadratic gravity [27–30].

Moreover, it is important to examine the stability issue of a quadratic gravity theory by

analyzing linear perturbations, such as in [31].

In addition, black hole solutions were obtained in a gravitational theory involving

higher order terms within the scenario of asymptotical safety [32] and its stability issue

was addressed in [33] by analyzing the so-called quasinormal modes. This study provides

a representative example to show how the (in)stability issue of a black hole solution could

be investigated via the method of analyzing quasinormal modes, of which the generation

is due to the quasinormal ringing of the background spacetime under perturbations and

hence is associated with the characteristics of black hole. The identification of the quasi-

normal modes is considered to possibly falsify various black hole solutions derived in a large

class of gravity theories through the imminent gravitational wave surveys. Note that the

investigation of black hole perturbations has drawn a lot of interest for decades since it is

associated with black hole stability, gravitational wave detection as well as some fundamen-

tal symmetries such as the gauge/gravity duality. Analyses of these modes in theories of

higher derivative gravity were performed in [34–37]. We refer to refs. [38, 39] and references

therein for recent comprehensive reviews.

In the present paper we aim at examining the quasinormal modes seeded by a test

scalar field propagating in black hole solutions of a pure Einstein-Weyl gravity as derived

in ref. [16]. In section 2 we briefly review the background gravitational theory and the asso-

ciated black hole solutions. Then in section 3 we perform a detailed analysis of quasinormal

modes seeded by a massless test scalar field that is propagating freely within various black

hole solutions beyond Schwarzschild and investigate their behaviors. Section 4 is devoted

to a brief discussion of the field equations for gravitational waves, in which one obtains

two poles on the dispersion relation and hence this implies an instability of quantum fluc-

tuations. We eventually summarize our results with a discussion in section 5. Throughout

the whole paper we use geometrized units with G = c = 1 and the (−,+,+,+) convention

for the metric.

2 Quadratic gravity and black holes beyond Schwarzschild

We start with a brief introduction to a general theory of quadratic gravity. Consider a

four-dimensional Einstein gravity involving quadratic curvature terms of which the action

is written as (following ref. [16])

SGrav. =

∫
d4x

√
−g

16π

(
R− αCµνρσCµνρσ + βR2

)
, (2.1)
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where

Cµνρσ ≡ Rµνρσ − gµ[ρRσ]ν + gν[ρRσ]µ +
R

3
gµ[ρgσ]ν , (2.2)

is defined as the Weyl tensor in four dimension with R being the Ricci scalar. In the above

action we have introduced two model parameters α and β, which are of area dimension:

[L2], and, describe the deviations from the regular Einstein gravity.

2.1 Spherically symmetric and static solutions

In order to find a black hole solution beyond Schwarzschild, we consider a static and

spherically symmetric ansatz as follows,

ds2 = −N(r)dt2 +
dr2

F (r)
+ r2dΩ2

2 , (2.3)

in which two dimensionless metric factors N and F have been introduced as functions of

the radial coordinate. As was shown in [14] as well as argued in [16], the Ricci scalar

vanishes for any static black hole solutions of the action (2.1). As a result, the general

theory of quadratic gravity can reduce to the pure Einstein-Weyl gravity at the classical

level by setting β = 0.

We refer to the appendix of the present paper for the details of studying a black

hole solution beyond Einstein analytically. In the main context, we simply summarize

the steps of constructing such a solution as follows. Firstly, one can vary the action with

respect to the metric factors and then derive the field equations for N and F . Secondly,

in order to exhibit the difference between this solution and the Schwarzschild one, one can

parameterize the leading term of the F factor (denoted by F1 introduced in (A.7) in the

appendix) as follows,

F1 =
1 + δ

rH
, (2.4)

where rH represents for the position of the black hole horizon and δ is the amount of devi-

ation from the Schwarzschild solution since in GR we have δ = 0. Such a parametrization

can provide a boundary condition for numerically solving the vacuum structure of the un-

derlying gravity theory, which is the last step to implement in the whole construction. In

the following subsection we numerically repeat the result of ref. [16] to demonstrate an

existence of a black hole beyond Schwarzschild.

2.2 Numerical estimates

Note that, as has been observed in [16], for each given α, the viable value of rH is bounded.

Specifically, if rH is too small there is no opportunity to form a non-Schwarzschild black

hole; however, if rH is too large the black hole mass would become negative and hence

leads to a quantum instability at high energy scales. For example, by setting α = 0.5,

one numerically derives a bound: 0.876 < rH < 1.143. For any selected value of rH in

the above bounded interval, there exists only one value of δ that allows for a healthy non-

Schwarzschild black hole. This phenomenon is related to the fine-tuning of Γ+ = 0 in

– 3 –
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Figure 1. The numerical solution of a non-Schwarzschild black hole. We choose α = 0.5, rH = 1.0,

and finely tune δ ≈ 0.3633. The red, solid curve gives the numerical realization of F (r), while the

blue, dashed curve is the numerical result of N(r). Note that, as in the treatment of ref. [16], we

impose the normalization factor to be 0.6 for N and unity for F at infinity, in order to avoid an

asymptotic overlap.
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Figure 2. The comparison between the exact solution and the approximate one in (A.11) under

the weak field limit. The model parameters are the same as in figure 1. The upper panel shows

the evolutions of F exactly in numerical computation and approximately in the weak field limit,

respectively; and the lower panel describes the dynamics of N in these two cases.

the weak field limit (see the second part of the appendix). In figure 1 we show an exact

example of the numerical construction introduced in the present subsection.

Afterwards, using the numerical fitting one can also relate the exact numerical solution

to the weak field limit approximate solution in (A.10) as developed in the appendix. This

shows that physically the weak field linearized theory can roughly describe the Einstein-

Weyl black hole solution in the large radius regime. A specific fitting is provided in figure 2.

One can read from the figure that the evolution of F and N in the weak field limit is in

– 4 –
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agreement with the exact numerical results at large radii but deviate badly when evolving

to the regime near the horizon.

3 Quasinormal modes

In this section we study quasinormal perturbations of Einstein-Weyl black holes. Quasi-

normal modes have been shown to be very useful to uncover intrinsic properties of the

geometry (for instance, see [40]). Consider a massless test scalar field ψ propagating in

a black hole background governed by the Einstein-Weyl theory. Its evolution obeys the

massless Klein-Gordon equation

�ψ = 0 . (3.1)

Plugging in the black hole metric into the above Klein-Gordon equation, one gets,(
2F

r
+
∂rF

2
+
F∂rN

2N

)
∂rψ + F∂2rψ −

∂2t ψ

N
+

∂2φψ

r2sin2θ
+

∂θψ

r2 tan θ
+
∂2θψ

r2
= 0 . (3.2)

In order to solve the above Klein-Gordon equation analytically, it is convenient to use the

following standard separation of variables

ψ(t, r, θ, φ) =
∑
lm

1

r
Ψl(r)Ylm(θ, φ)e−iωt , (3.3)

by making use of the spherical harmonic functions. Accordingly, the Klein-Gordon equation

can be greatly simplified as:(
r2ω2

N
− r∂rF

2
− rF∂rN

2N
− l(l + 1)

)
Ψl +

(
r2∂rF

2
+
r2F∂rN

2N

)
∂rΨl + r2F∂2rΨl = 0 ,

(3.4)

for each fixed value of l.

By introducing the generalized tortoise coordinate

dr∗ = dr/
√
F (r)N(r) , (3.5)

we can obtain the Schrödinger-type equation for each value of l as follows,(
∂2r∗ + ω2 − Vl(r)

)
Ψl(r

∗) = 0 , (3.6)

where the effective potential is given by

Vl(r) = Vl(r(r
∗)) =

F∂rN +N∂rF

2r
+
l(l + 1)N

r2
. (3.7)

This form can be treated systematically in the analysis of quasinormal modes, which will

be given in the following subsections. We will apply the methods of the characteristic

integration and the WKB analysis for quantitative estimation of numerical quasinormal

modes, respectively, in the following up subsections.
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Figure 3. Field decay of the mode function log |Φ(t)| for a non-Schwarzschild black hole. We

choose α = 0.7, rH = 1.1, and l = 1 in numerical computations.

3.1 Characteristic integration

A simple but efficient way of solving 1+1 dimensional d’Alembert equations is established

in the pioneering work [41]. In this formalism, the standard (r∗, t) coordinates are replaced

by the light-cone variables,

u = t− r∗ , v = t+ r∗ , (3.8)

in terms of which all wave equations can have the same form.

Considering the fact that we do not have full analytic solutions for the time-evolving

wave equation, one efficient approach is to discretize the mode function as

Φl(N) = Φl(W ) + Φl(E)− Φl(S)− h2

8
V (S)

(
Φl(W ) + Φl(E)

)
+O(h4) , (3.9)

where S = (u, v), W = (u + h, v), E = (u, v + h), N = (u + h, v + h), Φ = Ψe−iωt, and h

is the discrete step size. Note that, in order to solve the mode function for a fixed l, one

needs to impose the initial condition at the null boundary u = u0 and v = v0. As will

be confirmed by the following numerical simulations, however, the characteristics of the

associated field decay are basically insensitive to the initial conditions imposed.

From now on we would like to drop the subscript l from the mode function Φ but specify

its value in detailed calculations. Through the difference equation mentioned above, one

can get a series of time domain data Φ(t0), Φ(t0 +h), Φ(t0 + 2h), etc., for all possible fixed

r∗, and the quasinormal vibrations can be read-off through the transformation from the

time domain to the frequency domain.

The numerical computation of the evolution for a mode function |Φ| is shown in figure 3

on a logarithmic scale. In this plot one can see a representative field decay evolution in

the time domain. We choose α = 0.7, which ensures that the conformal term contribution

is smaller than the minimal coupling in the action, and rH = 1.1, where exists a numerical

non-Schwarzschild solution far from the negative mass region. One can see that the scalar

field evolution is firstly dominated by the quasinormal vibration, and then decays with a

– 6 –
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Figure 4. Field decay of log |Φ(t)| for different background parameters. In the left panel, we choose

α = 0.5, rH = 1.0, with different multipole numbers l = 0, 1, 2, respectively. In the right panel,

we fix l = 2 and choose different values for α, which are: α = 0.3 (rH = 0.75), α = 0.5 (rH = 1.0),

α = 0.7 (rH = 1.1). Some power law tails exist in the larger time region, but they are not shown

due to the figure size.

power-law tail. This is a standard scenario in the time domain profile of black holes in

analogue with the case of the Schwarzschild solution (e.g. see the review [39]).

One can also investigate the field decays with different background parameters as

shown in figure 4. The left panel of figure 4 shows the field decays by varying the value

of the multipole number from 0 to 2. In this panel, one can read that for larger values

of the multipole number l, the longer the power-law tail and the larger the slope can be

in a given time region. This behavior is also similar to the Schwarzschild case. However,

from the right panel of the figure, one can explicitly read that the slope of the field decay

strongly depends on the newly introduced model parameter α. In the limit α → 0, it is

expected that one can recover the field decay of a Schwarzschild black hole. Moreover, a

larger value of α leads to a smoother slope for the field decay for a fixed value of l as shown

in the lower panel of figure 4.

We recall that there exists a bound for the model parameter α that allows for a non-

Schwarzschild black hole solution as has been addressed in section 2.2. In the theory of

Einstein-Weyl gravity, this bound is stronger for a smaller value of α. Moreover, this bound

interval would move along the negative direction of the real axis with α decreasing, so we

cannot adjust rH as a fixed parameter. However, we find that the influence of changing rH
(in the regular bound interval) on the properties of the field decay is not so dramatic as the

variation of α. Also, with a smaller value of α the field decay evolution has a larger slope

with a longer tail, which is similar to the tendency when decreasing l. The reason could be

understood as follows. The value of α estimates the deviation from the standard Einstein

gravity and thus from a standard Schwarzschild black hole, which is the highest symmetric

solution (satisfying F = N and δ = 0). On the other hand, the multipole number l is

also associated with the symmetry of a dynamical system, which is similar to the standard

Hydrogen atom problem in quantum mechanics textbooks. Thus, the effects on the field

decay by decreasing α and by decreasing l are similar from this perspective.

– 7 –
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3.2 WKB analysis

In order to understand the quasinormal perturbations (semi-)analytically, it is useful to

perform the WKB analysis of the mode function. Imposing s = iω on the Schrödinger-like

equation (3.6), one gets

d2Ψl

dr∗2
− (s2 + V (r∗))Ψl = 0 . (3.10)

This is the Laplace transform of the original time-depended wave equation for Ψl. Under

the boundary condition

lim
r∗→±∞

Ψle
sr∗ = 1 , (3.11)

which is very common in usual cases, one can get a discrete set of possible values for s(ω).

The WKB semi-analytic approach [42, 43] is a very successful and efficient method to

calculate quasinormal frequencies. In the present study we expand the computation up to

the third order, and correspondingly, the square of those frequencies can be written as

ω2
n = (V0 + P )− iξ(−2V

(2)
0 )1/2(1 +Q) , (3.12)

where

P =
1

8

V
(4)
0

V
(2)
0

(
1

4
+ ξ2

)
− 1

288

(
V

(3)
0

V
(2)
0

)2

(7 + 60ξ2) , (3.13)

and

−2V
(2)
0 Q =

5

6912

V
(3)4
0

V
(2)4
0

(77 + 188ξ2)− 1

384

V
(3)2
0 V

(4)
0

V
(2)3
0

(51 + 100ξ2) +
1

2304

V
(4)2
0

V
(2)2
0

(67 + 68ξ2)

+
1

288

V
(3)
0 V

(5)
0

V
(2)2
0

(19 + 28ξ2)− 1

288

V
(6)
0

V
(2)
0

(5 + 4ξ2) , (3.14)

with ξ = n + 1/2. In addition, the superscript (i) denotes the i-th order differentiation

with respect to r∗ of the potential V (r(r∗)). The subscript 0 means that the potential and

its derivatives are calculated at the point r∗0, where V (r(r∗)) is an extremum. The solution

of ω can be determined when

n = 0, 1, 2 . . . if Re(ωn) > 0 ,

n = −1,−2,−3 . . . if Re(ωn) < 0 . (3.15)

Thus we can use the formula (3.12)–(3.14) to find the quasinormal modes of the non-

Schwarzschild black holes.

The accuracy of the WKB method is sensitive to specific black hole solutions [44].

However, as has been observed in [36, 45], for low overtones (l > n) the accuracy becomes

better. In order to compare explicitly the method of the characteristic integration and the

WKB analysis, we perform detailed analyses of two methods by varying the value of α

– 8 –
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from 0.1 to 1.0 and the multipole number from l = 0 to 2, respectively. Our results are

presented in table 1.

From this table, we find that the results of the WKB analysis and the characteristic

integration results are fairly consistent but not with high accuracy. Regarding this issue,

we argue that there exists a limit on the accuracy of both two methods. For the method

of the characteristic integration, the error by solving the differential equations could lead

the wave function to deviate from the original form of the differential equations and the

corresponding boundary conditions could be affected as well. To overcome this numeri-

cal deviation, one needs to improve the method of computer algorithm, which is a very

detailed technical issue. Moreover, the accuracy of the results obtained from the WKB

approach mainly rely on to which order one truncates the computation. Consider that the

WKB calculations at higher order would become extremely lengthy and do not change the

results qualitatively, we would like to simply take the third order truncation in our detailed

analysis.

Some generic features can be concluded here. First, in the regular bounded interval

of rH, all quasinormal mode frequencies have a negative imaginary part, which shows that

scalar perturbations in the non-Schwarzschild black hole backgrounds is stable in the time

evolution.1 Second, it is observed that with increasing α, l and decreasing rH, the absolute

value of the imaginary part of the frequency decreases. This observation is consistent with

our previous argument on the tendency of the slope because the imaginary part of the

frequency stands for the slope of the logarithmic time domain decay. Third, the real part

of the frequency stands for the trigonometric vibration of the scalar field. This real part

dramatically increases along with a larger value of the multipole number l.

4 Field equations for gravitational waves

In this section we briefly discuss tensor perturbations around a non-Schwarzschild black

hole solution. Here we use Greek letters µ, ν, . . . to denote the coordinates on the four-

dimensional spacetime, Latin letters i, j, k . . . to denote the coordinates on the two-dimen-

sional space submanifold S2 (namely, (θ, φ) coordinates), and r, t to denote the radial and

time coordinate respectively. And also, we use a comma to denote an ordinary derivative,

while a semicolon denotes a covariant derivative.

Let us consider linear perturbations about the background metric,

gµν → gµν + hµν , (4.1)

where the transverse and traceless tensor satisfies

∇µhµν = 0 , gµνhµν = 0 . (4.2)

The first order perturbation theory will provide simple results for the perturbation of

the Riemann tensor, Ricci tensor and Einstein tensor for spherically symmetric and static

1We only study the parameter region of physical interest, namely, we have required α ≤ 1 to ensure

that the higher order derivative terms are perturbative to the Einstein-Hilbert sector, as well as a positively

definite black hole mass.

– 9 –
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α rH l WKB:Re(ω) WKB:Im(ω) Int.:Re(ω) Int.:Im(ω)

0.1 0.40 0 0.96413 −0.98076 1.322 −0.784

0.1 0.40 1 1.57122 −0.71117 1.329 −0.785

0.1 0.40 2 2.50942 −0.57118 1.901 −0.532

0.2 0.60 0 1.25506 −1.36612 0.943 −1.003

0.2 0.60 1 1.14856 −0.58045 1.072 −0.567

0.2 0.60 2 1.81116 −0.41710 1.505 −0.372

0.3 0.75 0 0.70972 −0.76229 0.848 −0.911

0.3 0.75 1 0.94765 −0.49453 0.941 −0.521

0.3 0.75 2 1.49154 −0.37587 1.336 −0.343

0.3 0.80 0 0.83671 −0.91731 0.865 −0.938

0.3 0.80 1 0.97668 −0.55954 0.950 −0.543

0.3 0.80 2 1.51885 −0.42566 1.309 −0.406

0.4 0.85 0 0.77774 −0.84128 0.640 −0.543

0.4 0.85 1 0.77737 −0.30450 0.870 −0.343

0.4 0.85 2 1.27841 −0.26186 1.209 −0.199

0.5 1.00 0 0.54346 −0.58875 0.628 −0.568

0.5 1.00 1 0.70183 −0.29062 0.810 −0.369

0.5 1.00 2 1.16591 −0.31743 1.123 −0.227

0.5 1.10 0 0.70962 −0.78766 0.705 −0.835

0.5 1.10 1 0.81474 −0.55477 0.782 −0.559

0.5 1.10 2 1.19632 −0.37069 1.112 −0.399

0.6 1.05 0 0.50857 −0.54633 0.562 −0.564

0.6 1.05 1 0.65280 −0.30540 0.768 −0.348

0.6 1.05 2 1.05104 −0.25422 1.097 −0.221

0.7 1.10 0 0.37600 −0.39482 0.504 −0.495

0.7 1.10 1 0.59613 −0.26813 0.739 −0.295

0.7 1.10 2 0.96098 −0.22188 0.710 −0.185

0.7 1.20 0 0.47102 −0.51351 0.558 −0.501

0.7 1.20 1 0.63437 −0.36070 0.732 −0.333

0.7 1.20 2 0.97969 −0.21523 0.985 −0.237

0.8 1.30 0 0.41946 −0.45870 0.539 −0.462

0.8 1.30 1 0.54557 −0.19984 0.703 −0.310

0.8 1.30 2 0.92753 −0.25469 0.971 −0.187

1.0 1.50 0 0.29276 −0.32336 0.508 −0.501

1.0 1.50 1 0.54461 −0.32918 0.653 −0.344

1.0 1.50 2 0.83938 −0.24689 0.915 −0.225

Table 1. Values for the quasinormal frequencies for the mode function propagating in the non-

Schwarzschild geometry based on the WKB method and the algorithm of characteristic integration,

respectively. The value of model parameter α varies from 0.1 to 1.0 smoothly. The integer value of

the multipole number varies from l = 0 to 2, respectively.
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backgrounds [46]. We simply summarize them as follows. By writing the components of

the Ricci and Riemann tensors as

Rji = Gδji , Rklij =M(δki δ
l
j − δkj δli) ,

Rtjti = T δji , Rrjri = Dδji , (4.3)

where

G = −N(−2 + 2F + rF,r) + rFN,r

2r2N
,

M =
1− F
r2

, T = −FN,r

2rN
, D = −F,r

2r
, (4.4)

we can derive the perturbations of these geometric tensors

δRνµ =
1

2
(−�hji + 2Mhji ) ,

δRtνtµ =
1

2
(−T hji −∇l∇

lhji +∇l∇jhli) , (4.5)

δRrνrµ =
1

2
(∇i∇lhjl +∇l∇jhli −∇l∇lh

j
i −∇i∇

jhll −Dh
j
i ) .

Here the l.h.s. has indexes (µ, ν), while the r.h.s. may only have (i, j). This convention

means that the related tensors are nontrivial only when (µ, ν) are on the submanifold S2.

As a result, one gets δR = 0.

After a very lengthy computation, one can derive the field equation for tensor fluctu-

ations at leading order, which is given by

−1

4
�2hji +

1

8

(
Rtt +Rrr − 6G +

1

3
R+ 4M+

1

α

)
�hji

+
1

4

{[
6G − 1

3
R− 1

α
− (Rtt +Rrr)

]
M+ 2�M

}
hji

+

(
1

2
P tµ;µ +M;t

)
∂th

j
i +

[
1

2
P rµ;µ +M;r − F

r
(G −Rrr)

]
∂rh

j
i = 0 , (4.6)

where we have introduced the Schouten tensor

Pµν =
1

2

(
Rµν −

1

6
Rgµν

)
. (4.7)

It is interesting to notice that, there exist the �2 operator which appears in the first

term of the above field equation and cannot be canceled by any constraint equations.

This implies that at high energy the tensor fluctuations would obtain an extra degree of

freedom. Such a new degree of freedom often corresponds to a ghost mode that would spoil

the stability of the vacuum state quantum mechanically, such as in the Lee-Wick theory of

particle physics.

In this regard, the Einstein-Weyl theory of gravitation may still suffer from the quan-

tum instability issue even though this theory is classically stable since the classical scalar
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perturbations can well behave as analyzed in the previous section. This instability was

recently also addressed in ref. [47], where the authors applied the Stückelberg approach to

show that the interplay between the ghost graviton and the healthy graviton allows the

theory to evade the usual strong coupling issue widely existing in massive gravity theories

and become renormalizable, at the expense of stability.

5 Conclusion

Recently, the theory of quadratic gravity has drawn the interest of theoretical physicists

in the literature from various aspects [48–51]. In particular, it was found in [16] that

the Einstein-Weyl gravity can allow for a black hole solution beyond Schwarzschild. In the

present work we have revisited this type of new black hole solutions at both the background

and perturbative levels. At the background level, we analyzed the solutions of the metric

factors in the weak field limit and compared them with the exact numerical results. At the

perturbative level, we have studied in detail the propagation of quasinormal perturbations

seeded by a test scalar field within such a black hole background.

Specifically, we have analyzed the frequencies and time domain evolutions of quasinor-

mal modes seeded by this massless scalar field in the exterior of such a non-Schwarzschild

black hole as derived in the Einstein-Weyl theory of gravity. Our results show that the

time domain evolution of the quasinormal modes is similar to that obtained in the regular

Schwarzschild case where the mode functions decay in a power-law form. However, due

to the existence of the higher derivative term, the slope of the field decay is generally

smoother than that in the Schwarzschild one. In addition, we present a brief analysis of

tensor perturbations, which are regarded as gravitational waves. We show explicitly that

the linearized field equation for gravitational waves involves higher derivative operators

that would bring the theory to be unstable quantum mechanically at high energy scales.

However, it would be interesting to study in more depth this issue under non-perturbative

approaches in order to reveal the relation between a ghost graviton mode and quantum

renormalizability of gravity theories.

A Black holes in quadratic gravity

In the first part of this appendix, we provide a detailed instruction to the background

theory of quadratic gravity. In the second part, we show how a black hole solution beyond

Schwarzschild can be obtained in this theory.

A.1 The theory of quadratic gravity

Varying the action (2.1) with respect to the metric yields the background field equation as

follows,

Rµν −
R

2
gµν − 4αBµν + 2βCµν = 0 , (A.1)

where we have introduced

Cµν ≡ R
(
Rµν −

R

4
gµν

)
+ gµν�R−∇µ∇νR (A.2)
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which is from the conformal gravity part, and also, the Bach tensor

Bµν ≡
(
∇ρ∇σ +

1

2
Rρσ

)
Cµρνσ (A.3)

due to the Weyl-Eddington term.

In order to study the vacuum structure of a static spacetime satisfying spherical sym-

metry, we assume the absence of matter fields in the above system. As was shown in [14]

as well as argued in [16], the Ricci scalar vanishes for any static black hole solutions of

the action (2.1). That is, R = 0 in the above classical theory. It turns out that, at the

classical level, one can greatly simplify the quadratic gravity action (2.1) by taking β = 0,

and therefore, the generic action reduces to a theory of pure Einstein-Weyl gravity.

As was pointed out in [16], however, the requirement of R = 0 does not simply lead

to the trivial solution of the Schwarzschild black hole. This is because, by setting R = 0

and integrating the trace of the field equation (A.1) over the spatial region could yield a

nontrivial and non-vanishing Ricci tensor of the four-dimensional spacetime, although the

surface term remains zero. This is also the key reason that there might exist static and

spherically symmetric black holes over and above the Schwarzschild one as shown in [16].

A.2 Black holes beyond Schwarzschild

Plugging the spherically symmetric and static ansatz (2.3) into the background field equa-

tion (A.1) leads to the following two second order differential equations:

F,rr =
1

(rN,r − 2N)

[
−

3F 2
,r

2F
N − F,rN,r −

(3F + rF,r)

2N
N2
,r

+
rF

2N2
N3
,r +

2N

r
(1− F )

(
2

r
+
F,r
F

)
− 1

α

(
N

F
−N − rN,r

)]
, (A.4)

N,rr =

[
2(1− F )

r2F
− 2F,r

rF

]
N −

(
2

r
+
F,r
2F

)
N,r +

1

2h
N2
,r , (A.5)

where the subscript ,r represents a derivative with respect to r. To fully determine the

solutions of these two differential equations, one also needs to impose the horizon condi-

tion that

F (r = rH) = N(r = rH) = 0 , (A.6)

with rH being defined as the position of the black hole horizon.

A.2.1 Near horizon limit

Since the above two metric factors vanish at the horizon, in order to grasp the physics

of the black hole solution near the horizon, it is convenient to make Taylor expansions as

follows,

F (r) =

∞∑
i=1

Fi(r − rH)i , N(r) =

∞∑
i=1

Ni(r − rH)i . (A.7)
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Note that, among all the coefficients of the Taylor expansions, there exists at least one

parameter that is a normalization factor and accordingly can be absorbed by a time re-

scaling. In the following we take N1 to be the normalization factor without loss of generality.

One can plug these expansions into the field equation (A.4) and solve for Fi and Ni order

by order. In addition, in the parametrization (2.4) we have introduced δ to characterize

the difference between this solution and the Schwarzschild one.

A.2.2 The linearized treatment in weak field limit

From the other side, it is well known that the metric factors should approach unity when

far away from the black hole in order to be consistent with the boundary condition of

Minkowski spacetime. Therefore, one can analyze these metric factors in the weak field

limit at large scales. This method has been widely applied in the literature and turned out

to be very useful in analyzing black hole systems in modified gravity theories, for instance,

in massive gravity models [52, 53]. In this limit, we can expand the metric factors around

a Minkowski background as

F (r) = 1 + f(r) , N(r) = 1 + n(r) , (A.8)

in the limit where r is much larger than the horizon.

Keeping leading order terms in n and f , the field equations can then be greatly sim-

plified, of which the forms are given by,

r2f(r)− 4αf(r) + r3n,r + 2r2αf,rr = 0 ,

2f(r) + 2rf,r + 2rn,r + r2n,rr = 0 . (A.9)

Consequently, the metric factors in the weak field limit can be approximately solved as

n(r) =
Γ0

r
+ Γ−

e−mr

r
+ Γ+

e+mr

r
, (A.10)

f(r) =
Γ0

r
+ Γ−

(1 +mr)e−mr

2r
+ Γ+

(1−mr)e+mr

2r
,

with m2 ≡ 1/2α being introduced. Moreover, the coefficients Γ0, Γ± are integral constants

that can be determined by numerically evolving the metric factors from the horizon to

large length scales.

From the approximate solution in the weak field limit, one can immediately notice that

the appearance of the emr/r term would severely spoil the classical stability of the black

hole system governed by the Einstein-Weyl theory. One possible way of circumventing

this issue is to finely tune the value of δ introduced in the parametrization (2.4) to ensure

Γ+ = 0. Under this condition one gets

n(r) =
Γ0

r
+ Γ−

e−mr

r
,

f(r) =
Γ0

r
+ Γ−

(1 +mr)e−mr

2r
. (A.11)
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This limit also shows that we cannot choose a negative α for a regular black hole solution,

in which case m will be imaginary and cause a vibration at large radii for f(r). Since for a

specific numerical solution as will be constructed in the next section one can numerically

fits the values of Γ0 and Γ− by matching the linearized solution with the exact one.
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Gravity, arXiv:1505.07657 [INSPIRE].

[26] G. Cognola, M. Rinaldi and L. Vanzo, Scale-invariant rotating black holes in quadratic

gravity, Entropy 17 (2015) 5145 [arXiv:1506.07096] [INSPIRE].

[27] D.G. Boulware, G.T. Horowitz and A. Strominger, Zero Energy Theorem for Scale Invariant

Gravity, Phys. Rev. Lett. 50 (1983) 1726 [INSPIRE].

[28] D.G. Boulware, S. Deser and K.S. Stelle, Energy and Supercharge in Higher Derivative

Gravity, Phys. Lett. B 168 (1986) 336 [INSPIRE].

– 16 –

http://dx.doi.org/10.1143/PTP.120.581
http://dx.doi.org/10.1143/PTP.120.581
http://arxiv.org/abs/0806.2481
http://inspirehep.net/search?p=find+EPRINT+arXiv:0806.2481
http://dx.doi.org/10.1143/PTP.121.253
http://dx.doi.org/10.1143/PTP.121.253
http://arxiv.org/abs/0811.3068
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.3068
http://dx.doi.org/10.1103/PhysRevD.79.084031
http://dx.doi.org/10.1103/PhysRevD.79.084031
http://arxiv.org/abs/0902.1569
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.1569
http://dx.doi.org/10.1103/PhysRevD.82.104026
http://arxiv.org/abs/1010.3986
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.3986
http://dx.doi.org/10.1103/PhysRevD.80.044034
http://arxiv.org/abs/0907.1411
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.1411
http://dx.doi.org/10.1103/PhysRevLett.114.171601
http://arxiv.org/abs/1502.01028
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.01028
http://dx.doi.org/10.1103/PhysRevD.92.124019
http://arxiv.org/abs/1508.00010
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.00010
http://dx.doi.org/10.1140/epjc/s10052-011-1591-8
http://dx.doi.org/10.1140/epjc/s10052-011-1591-8
http://arxiv.org/abs/1012.5230
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.5230
http://dx.doi.org/10.1103/PhysRevD.84.084006
http://arxiv.org/abs/1107.5727
http://inspirehep.net/search?p=find+EPRINT+arXiv:1107.5727
http://dx.doi.org/10.1103/PhysRevD.91.104004
http://arxiv.org/abs/1503.05151
http://inspirehep.net/search?p=find+EPRINT+arXiv:1503.05151
http://dx.doi.org/10.1103/PhysRevD.92.043516
http://arxiv.org/abs/1506.00988
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.00988
http://dx.doi.org/10.1007/JHEP05(2015)143
http://dx.doi.org/10.1007/JHEP05(2015)143
http://arxiv.org/abs/1502.04192
http://inspirehep.net/search?p=find+EPRINT+arXiv:1502.04192
http://dx.doi.org/10.1103/PhysRevLett.70.3684
http://dx.doi.org/10.1103/PhysRevLett.70.3684
http://arxiv.org/abs/hep-th/9305016
http://inspirehep.net/search?p=find+EPRINT+hep-th/9305016
http://dx.doi.org/10.1016/S0550-3213(02)00075-5
http://arxiv.org/abs/hep-th/0112045
http://inspirehep.net/search?p=find+EPRINT+hep-th/0112045
http://arxiv.org/abs/1505.07657
http://inspirehep.net/search?p=find+EPRINT+arXiv:1505.07657
http://dx.doi.org/10.3390/e17085145
http://arxiv.org/abs/1506.07096
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.07096
http://dx.doi.org/10.1103/PhysRevLett.50.1726
http://inspirehep.net/search?p=find+J+"Phys.Rev.Lett.,50,1726"
http://dx.doi.org/10.1016/0370-2693(86)91640-0
http://inspirehep.net/search?p=find+J+"Phys.Lett.,B168,336"


J
H
E
P
0
1
(
2
0
1
6
)
1
0
8

[29] S. Deser and B. Tekin, Gravitational energy in quadratic curvature gravities, Phys. Rev. Lett.

89 (2002) 101101 [hep-th/0205318] [INSPIRE].

[30] S. Deser and B. Tekin, New energy definition for higher curvature gravities, Phys. Rev. D 75

(2007) 084032 [gr-qc/0701140] [INSPIRE].

[31] Y.S. Myung, Stability of Schwarzschild black holes in fourth-order gravity revisited, Phys.

Rev. D 88 (2013) 024039 [arXiv:1306.3725] [INSPIRE].

[32] Y.-F. Cai and D.A. Easson, Black holes in an asymptotically safe gravity theory with higher

derivatives, JCAP 09 (2010) 002 [arXiv:1007.1317] [INSPIRE].

[33] D.-J. Liu, B. Yang, Y.-J. Zhai and X.-Z. Li, Quasinormal modes for asymptotic safe black

holes, Class. Quant. Grav. 29 (2012) 145009 [arXiv:1205.4792] [INSPIRE].

[34] B.R. Iyer, S. Iyer and C.V. Vishveshwara, Scalar Waves in the Boulware-deser Black Hole

Background, Class. Quant. Grav. 6 (1989) 1627 [INSPIRE].

[35] R. Konoplya, Quasinormal modes of the charged black hole in Gauss-Bonnet gravity, Phys.

Rev. D 71 (2005) 024038 [hep-th/0410057] [INSPIRE].

[36] E. Abdalla, R.A. Konoplya and C. Molina, Scalar field evolution in Gauss-Bonnet black

holes, Phys. Rev. D 72 (2005) 084006 [hep-th/0507100] [INSPIRE].

[37] R.A. Konoplya and A. Zhidenko, (In)stability of D-dimensional black holes in Gauss-Bonnet

theory, Phys. Rev. D 77 (2008) 104004 [arXiv:0802.0267] [INSPIRE].

[38] E. Berti, V. Cardoso and A.O. Starinets, Quasinormal modes of black holes and black branes,

Class. Quant. Grav. 26 (2009) 163001 [arXiv:0905.2975] [INSPIRE].

[39] R.A. Konoplya and A. Zhidenko, Quasinormal modes of black holes: From astrophysics to

string theory, Rev. Mod. Phys. 83 (2011) 793 [arXiv:1102.4014] [INSPIRE].

[40] K.D. Kokkotas and B.G. Schmidt, Quasinormal modes of stars and black holes, Living Rev.

Rel. 2 (1999) 2 [gr-qc/9909058] [INSPIRE].

[41] C. Gundlach, R.H. Price and J. Pullin, Late time behavior of stellar collapse and explosions:

1. Linearized perturbations, Phys. Rev. D 49 (1994) 883 [gr-qc/9307009] [INSPIRE].

[42] B.F. Schutz and C.M. Will, Black Hole Normal Modes: A Semianalytic Approach, Astrophys.

J. 291 (1985) L33 [INSPIRE].

[43] S. Iyer and C.M. Will, Black Hole Normal Modes: A WKB Approach. 1. Foundations and

Application of a Higher Order WKB Analysis of Potential Barrier Scattering, Phys. Rev. D

35 (1987) 3621 [INSPIRE].

[44] R.A. Konoplya, Gravitational quasinormal radiation of higher dimensional black holes, Phys.

Rev. D 68 (2003) 124017 [hep-th/0309030] [INSPIRE].

[45] V. Cardoso, J.P.S. Lemos and S. Yoshida, Quasinormal modes and stability of the rotating

acoustic black hole: Numerical analysis, Phys. Rev. D 70 (2004) 124032 [gr-qc/0410107]

[INSPIRE].

[46] G. Dotti and R.J. Gleiser, Linear stability of Einstein-Gauss-Bonnet static spacetimes. Part

I. Tensor perturbations, Phys. Rev. D 72 (2005) 044018 [gr-qc/0503117] [INSPIRE].

[47] K. Hinterbichler and M. Saravani, A Stueckelberg Approach to Quadratic Curvature Gravity

and its Decoupling Limits, arXiv:1508.02401 [INSPIRE].

– 17 –

http://dx.doi.org/10.1103/PhysRevLett.89.101101
http://dx.doi.org/10.1103/PhysRevLett.89.101101
http://arxiv.org/abs/hep-th/0205318
http://inspirehep.net/search?p=find+EPRINT+hep-th/0205318
http://dx.doi.org/10.1103/PhysRevD.75.084032
http://dx.doi.org/10.1103/PhysRevD.75.084032
http://arxiv.org/abs/gr-qc/0701140
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0701140
http://dx.doi.org/10.1103/PhysRevD.88.024039
http://dx.doi.org/10.1103/PhysRevD.88.024039
http://arxiv.org/abs/1306.3725
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.3725
http://dx.doi.org/10.1088/1475-7516/2010/09/002
http://arxiv.org/abs/1007.1317
http://inspirehep.net/search?p=find+EPRINT+arXiv:1007.1317
http://dx.doi.org/10.1088/0264-9381/29/14/145009
http://arxiv.org/abs/1205.4792
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.4792
http://dx.doi.org/10.1088/0264-9381/6/11/016
http://inspirehep.net/search?p=find+J+"Class.Quant.Grav.,6,1627"
http://dx.doi.org/10.1103/PhysRevD.71.024038
http://dx.doi.org/10.1103/PhysRevD.71.024038
http://arxiv.org/abs/hep-th/0410057
http://inspirehep.net/search?p=find+EPRINT+hep-th/0410057
http://dx.doi.org/10.1103/PhysRevD.72.084006
http://arxiv.org/abs/hep-th/0507100
http://inspirehep.net/search?p=find+EPRINT+hep-th/0507100
http://dx.doi.org/10.1103/PhysRevD.77.104004
http://arxiv.org/abs/0802.0267
http://inspirehep.net/search?p=find+EPRINT+arXiv:0802.0267
http://dx.doi.org/10.1088/0264-9381/26/16/163001
http://arxiv.org/abs/0905.2975
http://inspirehep.net/search?p=find+EPRINT+arXiv:0905.2975
http://dx.doi.org/10.1103/RevModPhys.83.793
http://arxiv.org/abs/1102.4014
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.4014
http://dx.doi.org/10.12942/lrr-1999-2
http://dx.doi.org/10.12942/lrr-1999-2
http://arxiv.org/abs/gr-qc/9909058
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9909058
http://dx.doi.org/10.1103/PhysRevD.49.883
http://arxiv.org/abs/gr-qc/9307009
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9307009
http://dx.doi.org/10.1086/184453
http://dx.doi.org/10.1086/184453
http://inspirehep.net/search?p=find+J+"Astrophys.J.,291,L33"
http://dx.doi.org/10.1103/PhysRevD.35.3621
http://dx.doi.org/10.1103/PhysRevD.35.3621
http://inspirehep.net/search?p=find+J+"Phys.Rev.,D35,3621"
http://dx.doi.org/10.1103/PhysRevD.68.124017
http://dx.doi.org/10.1103/PhysRevD.68.124017
http://arxiv.org/abs/hep-th/0309030
http://inspirehep.net/search?p=find+EPRINT+hep-th/0309030
http://dx.doi.org/10.1103/PhysRevD.70.124032
http://arxiv.org/abs/gr-qc/0410107
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0410107
http://dx.doi.org/10.1103/PhysRevD.72.044018
http://arxiv.org/abs/gr-qc/0503117
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0503117
http://arxiv.org/abs/1508.02401
http://inspirehep.net/search?p=find+EPRINT+arXiv:1508.02401


J
H
E
P
0
1
(
2
0
1
6
)
1
0
8

[48] A. Conroy, T. Koivisto, A. Mazumdar and A. Teimouri, Generalized quadratic curvature,

non-local infrared modifications of gravity and Newtonian potentials, Class. Quant. Grav. 32

(2015) 015024 [arXiv:1406.4998] [INSPIRE].

[49] S. Capozziello and A. Stabile, Gravitational waves in fourth order gravity, Astrophys. Space

Sci. 358 (2015) 27 [INSPIRE].

[50] M. Maggiore, Dark energy and dimensional transmutation in R2 gravity, arXiv:1506.06217

[INSPIRE].

[51] S. Mauro, R. Balbinot, A. Fabbri and I.L. Shapiro, Fourth derivative gravity in the auxiliary

fields representation and application to the black hole stability, Eur. Phys. J. Plus 130 (2015)

135 [arXiv:1504.06756] [INSPIRE].

[52] K. Koyama, G. Niz and G. Tasinato, Strong interactions and exact solutions in non-linear

massive gravity, Phys. Rev. D 84 (2011) 064033 [arXiv:1104.2143] [INSPIRE].

[53] Y.-F. Cai, D.A. Easson, C. Gao and E.N. Saridakis, Charged black holes in nonlinear massive

gravity, Phys. Rev. D 87 (2013) 064001 [arXiv:1211.0563] [INSPIRE].

– 18 –

http://dx.doi.org/10.1088/0264-9381/32/1/015024
http://dx.doi.org/10.1088/0264-9381/32/1/015024
http://arxiv.org/abs/1406.4998
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4998
http://dx.doi.org/10.1007/s10509-015-2425-1
http://dx.doi.org/10.1007/s10509-015-2425-1
http://inspirehep.net/search?p=find+J+"Astrophys.SpaceSci.,358,27"
http://arxiv.org/abs/1506.06217
http://inspirehep.net/search?p=find+EPRINT+arXiv:1506.06217
http://dx.doi.org/10.1140/epjp/i2015-15135-0
http://dx.doi.org/10.1140/epjp/i2015-15135-0
http://arxiv.org/abs/1504.06756
http://inspirehep.net/search?p=find+EPRINT+arXiv:1504.06756
http://dx.doi.org/10.1103/PhysRevD.84.064033
http://arxiv.org/abs/1104.2143
http://inspirehep.net/search?p=find+EPRINT+arXiv:1104.2143
http://dx.doi.org/10.1103/PhysRevD.87.064001
http://arxiv.org/abs/1211.0563
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.0563

	Introduction
	Quadratic gravity and black holes beyond Schwarzschild
	Spherically symmetric and static solutions
	Numerical estimates

	Quasinormal modes
	Characteristic integration
	WKB analysis

	Field equations for gravitational waves
	Conclusion
	Black holes in quadratic gravity
	The theory of quadratic gravity
	Black holes beyond Schwarzschild
	Near horizon limit
	The linearized treatment in weak field limit



