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1 Introduction and outline

Although it admits no propagating degrees of freedom (“bulk gravitons”), three dimensional

Einstein gravity is known to admit black holes [1, 2], particles [3, 4], wormholes [5–7] and

boundary dynamics [8–10]. Moreover, it can arise as a consistent subsector of higher

dimensional matter-gravity theories, see e.g. [11, 12]. Therefore, three-dimensional gravity

in the last three decades has been viewed as a simplified and fruitful setup to analyze and

address issues related to the physics of black holes and quantum gravity.
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In three dimensions the Riemann tensor is completely specified in terms of the Ricci

tensor, except at possible defects, and hence all Einstein solutions with generic cosmo-

logical constant are locally maximally symmetric. The fact that AdS3 Einstein gravity

can still have a nontrivial dynamical content was first discussed in the seminal work of

Brown and Henneaux [8, 13]. There, it was pointed out that one may associate nontriv-

ial conserved charges, defined at the AdS3 boundary, to diffeomorphisms which preserve

prescribed (Brown-Henneaux) boundary conditions. These diffeomorphisms and the corre-

sponding surface charges obey two copies of the Virasoro algebra and the related bracket

structure may be viewed as a Dirac bracket defining (or arising from) a symplectic struc-

ture for these “boundary degrees of freedom” or “boundary gravitons”. It was realized

that the Virasoro algebra should be interpreted in terms of a holographic dictionary with

a conformal field theory [14]. These ideas found a more precise and explicit formulation

within the celebrated AdS3/CFT2 dualities in string theory [15]. Many other important

results in this context have been obtained [12, 16–28].

Recently in [29] it was shown that the asymptotic symmetries of dS3 with Dirichlet

boundary conditions defined as an analytic continuation of the Brown-Henneaux symme-

tries to the case of positive cosmological constant [30] can be defined everywhere into the

bulk spacetime. A similar result is expected to follow for AdS3 geometries by analytical

continuation, however, few details were given in [29] (see also [31, 32] for related observa-

tions). In this work, we revisit the Brown-Henneaux analysis from the first principles and

show that the surface charges and the associated algebra and dynamics can be defined not

only on the circle at spatial infinity, but also on any circle inside of the bulk obtained by a

smooth deformation which does not cross any geometric defect or topological obstruction.

This result is consistent with the expectation that if a dual 2d CFT exists, it is not only

“defined at the boundary”, but it is defined in a larger sense from the AdS bulk.

Our derivation starts with the set of Bañados geometries [20] which constitute all

locally AdS3 geometries with Brown-Henneaux boundary conditions. We show that the in-

variant presymplectic form [33] (but not the Lee-Wald presymplectic form [34]) vanishes in

the entire bulk spacetime. The charges defined from the presymplectic form are hence con-

served everywhere, i.e. they define sympletic symmetries, and they obey an algebra through

a Dirac bracket, which is isomorphic to two copies of the Virasoro algebra. In turn, this

Dirac bracket defines a lower dimensional non-trivial symplectic form, the Kirillov-Kostant

symplectic form for coadjoint orbits of the Virasoro group [35]. In that sense the boundary

gravitons may be viewed as holographic gravitons : they define a lower dimensional dynam-

ics inside of the bulk. Similar features were also observed in the near-horizon region of

extremal black holes [36, 37].

Furthermore, we will study in more detail the extremal sector of the phase space.

Boundary conditions are known in the decoupled near-horizon region of the extremal BTZ

black hole which admit a chiral copy of the Virasoro algebra [23]. Here, we extend the

notion of decoupling limit to more general extremal metrics in the Bañados family and

show that one can obtain this (chiral) Virasoro algebra as a limit of the bulk symplectic

symmetries, which are defined from the asymptotic AdS3 region all the way to the near-

horizon region. We discuss two distinct ways to take the near-horizon limit: at finite
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coordinate radius (in Fefferman-Graham coordinates) and at wiggling coordinate radius (in

Gaussian null coordinates), depending upon the holographic graviton profile at the horizon.

We will show that these two coordinate systems lead to the same conserved charges and are

therefore equivalent up to a gauge choice. Quite interestingly, the vector fields defining the

Virasoro symmetries take a qualitatively different form in both coordinate systems which

are also distinct from all previous ansatzes for near-horizon symmetries [23, 29, 36–39].

In [26] it was noted that Bañados geometries in general have (at least) two global

U(1) Killing vectors (defined over the whole range of the Bañados coordinate system).

We will study the conserved charges J± associated with these two Killing vectors. We

will show that these charges commute with the surface charges associated with symplectic

symmetries (the Virasoro generators). We then discuss how the elements of the phase

space may be labeled using the J± charges. This naturally brings us to the question of how

the holographic gravitons may be labeled through representations of Virasoro group, the

Virasoro coadjoint orbits, e.g. see [35, 40]. The existence of Killing horizons in the set of

Bañados geometries was studied in [26]. We discuss briefly that if the Killing horizon exists,

its area defines an entropy which together with J±, satisfies the first law of thermodynamics.

The organization of this paper is as follows. In section 2, we establish that the family

of locally AdS3 geometries with Brown-Henneaux boundary conditions forms a phase space

with two copies of the Virasoro algebra as symplectic symmetries. In section 3, we show

that each metric in the phase space admits two U(1) Killing vectors which commute with

the vector fields generating the symplectic symmetries, once we use the appropriately

“adjusted (Lie) bracket” [41, 42]. We show that the charge associated with these two

Killing vectors are integrable over the phase space and commute with the generators of the

Virasoro symplectic symmetries. In section 4, we discuss how the phase space falls into

Virasoro coadjoint orbits and how the Killing charges may be attributed to each orbit. We

also discuss the first law of thermodynamics on the black hole orbits. In section 5, we focus

on a chiral half of the phase space which is obtained through decoupling limit over the

extremal geometries. We show that this sector constitutes a phase space with symplectic

symmetries of its own. We discuss the limit in both Fefferman-Graham and Gaussian null

coordinate systems. In section 6, we summarize our results and present our outlook. In

appendix A, we review and discuss the covariant phase space method, especially focusing

on the case where the vector fields generating the symmetries are field dependent. We

present in detail the definition of the surface charges and their integrability condition.

2 Symplectic symmetries in the bulk spacetime

The AdS3 Einstein gravity is described by the action and equations of motion,

S =
1

16πG

∫
d3x
√
−g
(
R+

2

`2

)
, Rµν = − 2

`2
gµν . (2.1)
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As discussed in the introduction, all solutions are locally AdS3 with radius `. To represent

the set of these solutions, we adopt the Fefferman-Graham coordinate system1 [17, 43, 44],

grr =
`2

r2
, gra = 0, a = 1, 2, (2.2)

where the metric reads

ds2 = `2
dr2

r2
+ γab(r, x

c) dxa dxb. (2.3)

Being asymptotically locally AdS3, close to the boundary r → ∞ one has the expansion

γab = r2g
(0)
ab (xc) +O(r0) [17]. A variational principle is then defined for a subset of these

solutions which are constrained by a boundary condition. Dirichlet boundary conditions

amount to fixing the boundary metric g
(0)
ab . The Brown-Henneaux boundary conditions [8]

are Dirichlet boundary conditions with a fixed flat boundary metric,

g
(0)
ab dx

adxb = −dx+dx−, (2.4)

together with the periodic identifications (x+, x−) ∼ (x+ + 2π, x−− 2π) which identify the

boundary metric with a flat cylinder (the identification reads φ ∼ φ + 2π upon defining

x± = t/` ± φ). Other relevant Dirichlet boundary conditions include the flat boundary

metric with no identification (the resulting solutions are usually called “Asymptotically

Poincaré AdS3”), and the flat boundary metric with null orbifold identification (x+, x−) ∼
(x+ + 2π, x−) which is relevant to describing near-horizon geometries [23, 26, 45].2

The set of all solutions to AdS3 Einstein gravity with flat boundary metric was given

by Bañados [20] in the Fefferman-Graham coordinate system. The metric takes the form

ds2 = `2
dr2

r2
−
(
rdx+ − `2L−(x−)dx−

r

)(
rdx− − `2L+(x+)dx+

r

)
(2.5)

where L± are two single-valued arbitrary functions of their argument. The determinant

of the metric is
√
−g = `

2r3 (r4 − `4L+L−) and the coordinate patch covers the radial

range r4 > `4L+L−. These coordinates are particularly useful in stating the universal

sector of all AdS3/CFT2 correspondences since the expectation values of holomorphic and

anti-holomorphic components of the energy-momentum tensor of the CFT can be directly

related to L± [8, 16].

The constant L± cases correspond to better known geometries [1, 2, 4]: L+ = L− =

−1/4 corresponds to AdS3 in global coordinates, −1/4 < L± < 0 correspond to conical

defects (particles on AdS3), L− = L+ = 0 correspond to massless BTZ and generic positive

values of L± correspond to generic BTZ geometry of mass and angular momentum respec-

tively equal to (L+ + L−)/(4G) and `(L+ − L−)/(4G). The selfdual orbifold of AdS3 [45]

belongs to the phase space with null orbifold identification and L− = 0, L+ 6= 0.

1We will purposely avoid to use the terminology of Fefferman-Graham gauge which would otherwise

presume that leaving the coordinate system by any infinitesimal diffeomorphism would be physically equiv-

alent in the sense that the associated canonical generators to this diffeomorphism would admit zero Dirac

brackets with all other physical generators. Since this coordinate choice precedes the definitions of boundary

conditions, and therefore the definition of canonical charges, the gauge terminology is not appropriate.
2Other boundary conditions which lead to different symmetries were discussed in [46–48].

– 4 –



J
H
E
P
0
1
(
2
0
1
6
)
0
8
0

2.1 Phase space in Fefferman-Graham coordinates

We would now like to establish that the set of Bañados metrics (2.5) together with a choice

of periodic identifications of x± forms a well-defined on-shell phase space. To this end,

we need to take two steps: specify the elements in the tangent space of the on-shell phase

space and then define the presymplectic structure over this phase space. Given that the set

of all solutions are of the form (2.5), the on-shell tangent space is clearly given by metric

variations of the form

δg = g(L+ δL)− g(L) , (2.6)

where δL± are arbitrary single-valued functions. The vector space of all on-shell pertur-

bations δg can be written as the direct sum of two types of perturbations: those which

are generated by diffeomorphisms and those which are not, and that we will refer to as

parametric perturbations.

As for the presymplectic form, there are two known definitions for Einstein gravity:

the one ωLW by Lee-Wald [34] (see also Crnkovic and Witten [49]) and invariant presym-

plectic form ωinv as defined in [33].3 The invariant presymplectic form is determined from

Einstein’s equations only, while the Lee-Wald presymplectic form is determined from the

Einstein-Hilbert action, see [50] for details. Upon explicit evaluation, we obtain that the

invariant presympletic form exactly vanishes on-shell on the phase space determined by

the set of metrics (2.5), that is,

ωinv[δg, δg; g] ≈ 0. (2.7)

On the contrary, the Lee-Wald presymplectic form is equal to a boundary term

ωLW[δg, δg; g] ≈ −dE[δg, δg; g], ?E[δg, δg; g] =
1

32πG
δgµαg

αβδgνβdx
µ ∧ dxν (2.8)

Indeed, the two presymplectic forms are precisely related by this boundary term [33],

as reviewed in appendix. The fact that the invariant presymplectic form vanishes on-

shell illustrates the fact that there are no propagating bulk degrees of freedom in three

dimensional vacuum Einstein gravity. Nevertheless, this result does not imply the absence

of dynamics. In fact, there is a non-trivial lower dimensional dynamics, i.e. there exists

surface charges with non-trivial Dirac brackets, which can also be inverted into a non-trivial

spacetime codimension two (i.e. here, dimension one) presymplectic structure [35].4 We

3More precisely, ω is a (2; 2) form i.e. a two-form on the manifold and a two-form in field space. For short

we call ω a presymplectic form, and given any spacelike surface Σ, Ω =
∫

Σ
ω the associated presymplectic

structure, which is the (possibly degenerate) (0; 2) form. A non-degenerate (0; 2) form defines a symplectic

structure. We also refer to ω as a bulk presymplectic form.
4This fact is also related to the existence of a non-trivial bulk presymplectic form off-shell through the

fundamental “generalized Noether theorem for gauge theories” applied for gravity [51, 52]. Indeed, to any

bulk presymplectic form and any vector field ξ one associates a particular spacetime codimension two-form

and one-form in field space, i.e. a (1; 1) form kξ which is conserved when ξ is an isometry. This form in turns

allows to define a Dirac bracket and a presymplectic structure of spacetime codimension two as well. Usually

in field theories, a symplectic structure is defined from the bulk presymplectic structure as a restriction

on the part of field space where it is non-degenerate. For gauge theories however and in the absence of

bulk local dynamics, the symplectic structure turns out to be defined from a lower dimensional dynamics

somehow hidden in the off-shell part (and not the on-shell part) of the bulk presymplectic structure.

– 5 –
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avoid here the terminology of boundary dynamics since, as we will discuss below, the point

is precisely that the lower dimensional dynamics exists everywhere in the bulk. We hence

prefer to use the terminology of holographic gravitons instead of boundary gravitons. The

existence of a lower dimensional dynamics reveals a deep fact about the holographic nature

of gravity.

2.2 Symplectic symmetries and charges

As mentioned earlier, the most general form of on-shell perturbations preserving Fefferman-

Graham coordinates is of the form (2.6). Among them there are perturbations generated

by an infinitesimal diffeomorphism along a vector field χ. The components of such vector

field are of the form [41, 46]

χr = r σ(xa), χa = εa(xb)− `2∂b σ
∫ ∞
r

dr′

r′
γab(r′, xa) (2.9)

where σ(xa) and εa(xb) are constrained by the requirement δg
(0)
ab ≡ L~ε g

(0)
ab + 2σg

(0)
ab = 0.

That is, ~ε ≡ (ε+(x+), ε−(x−)) is restricted to be a conformal Killing vector of the flat

boundary metric and σ is defined as the Weyl factor in terms of ~ε.

One can in fact explicitly perform the above integral for a given Bañados metric and

solve for σ(x) to arrive at

χ = −r
2

(ε′+ + ε′−)∂r +

(
ε+ +

`2r2ε′′− + `4L−ε
′′
+

2(r4 − `4L+L−)

)
∂+ +

(
ε− +

`2r2ε′′+ + `4L+ε
′′
−

2(r4 − `4L+L−)

)
∂−,

(2.10)

where ε± are two arbitrary single-valued periodic functions of x± and possibly of the fields

L+(x+), L−(x−), and the prime denotes derivative w.r.t. the argument. As we see,

1. χ is a field-dependent vector field. That is, even if the two arbitrary functions ε± are

field independent, it has explicit dependence upon L±: χ = χ(ε±;L±).

2. The vector field χ is defined in the entire coordinate patch spanned by the Bañados

metric, not only asymptotically.

3. Close to the boundary, at large r, χ reduces to the Brown-Henneaux asymptotic

symmetries [8]. Also, importantly, at large r the field-dependence of χ drops out if

one also takes ε± field-independent.

The above points bring interesting conceptual and technical subtleties, as compared with

the better known Brown-Henneaux case, that we will fully address.

The above vector field can be used to define a class of on-shell perturbations, δχgµν ≡
Lχgµν . It can be shown that

δχgµν = gµν (L+ + δχL+, L− + δχL−)− gµν(L+, L−), (2.11)

where

δχL+ = ε+∂+L+ + 2L+∂+ε+ −
1

2
∂3

+ε+,

δχL− = ε−∂−L− + 2L−∂−ε− −
1

2
∂3
−ε−.

(2.12)

– 6 –



J
H
E
P
0
1
(
2
0
1
6
)
0
8
0

As it is well-known and in the context of AdS3/CFT2 correspondence [11, 15] the vari-

ation of L± under diffeomorphisms generated by χ is the same as the variation of a 2d

CFT energy-momentum tensor under generic infinitesimal conformal transformations. No-

tably, the last term related to the central extension of the Virasoro algebra is a quantum

anomalous effect in a 2d CFT while in the dual AdS3 gravity it appears classically.

The vector field χ determines symplectic symmetries as defined in [36] (they were

defined as asymptotic symmetries everywhere in [29]). The reason is that the invariant

presymplectic form contracted with the Lie derivative of the metric with respect to the

vector vanishes on-shell,

ωinv[g; δg,Lχg] ≈ 0, (2.13)

which is obviously a direct consequence of (2.7), while Lχg does not vanish. Then according

to (A.25), the charges associated to symplectic symmetries can be defined over any closed

codimension two surface S (circles in 3d) anywhere in the bulk. Moreover, as we will

show next, the surface charge associated to χ is non-vanishing and integrable. That is, the

concept of “symplectic symmetry” extends the notion of “asymptotic symmetry” inside

the bulk.

A direct computation gives the formula for the infinitesimal charge one-forms as defined

by Barnich-Brandt [53], see appendix, as

kBBχ [δg; g] = k̂χ[δg; g] + dBχ[δg; g], (2.14)

where

k̂χ[δg; g] =
`

8πG

(
ε+(x+, L+(x+))δL+(x+)dx+ − ε−(x−, L−(x−))δL−(x−)dx−

)
, (2.15)

is the expected result and

Bχ =
`(ε′+ + ε′−)(L+δL− − L−δL+)

32πG(r4 − L+L−)
,

is an uninteresting boundary term which vanishes close to the boundary and which drops

after integration on a circle.

Now, since the Lee-Wald presymplectic form does not vanish, the Iyer-Wald [54] surface

charge one-form is not conserved in the bulk. From the general theory, it differs from the

Barnich-Brandt charge by the supplementary term E[δg,Lχg; g], see (2.8). In Fefferman-

Graham coordinates we have Lχgrµ = 0 therefore E+ = E− = 0 and only Er is non-

vanishing. In fact we find Er = O(r−6) which depends upon L±(x±). Since E is clearly not

a total derivative, the Iyer-Wald charge is explicitly radially dependent which is expected

since χ does not define a symplectic symmetry for the Lee-Wald presymplectic form.

We shall therefore only consider the invariant presymplectic form and Barnich-Brandt

charges here. The standard charges are obtained by considering ε± to be field-independent.

In that case the charges are directly integrable, see also the general analysis of appendix A.

We define the left and right-moving stress-tensors as T = c
6L+(x+) and T̄ = c

6L−(x−)

– 7 –
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where c = 3`
2G is the Brown-Henneaux central charge. The finite surface charge one-form

then reads

Qχ[g] ≡
∫ g

ḡ
kχ[δg; g] =

1

2π

(
ε+(x+)T (x+)dx+ − ε−(x−)T̄ (x−)dx−

)
. (2.16)

Here we chose to normalize the charges to zero for the zero mass BTZ black hole ḡ for

which L± = 0.5 In AdS3/CFT2, the functions T, T̄ are interpreted as components of the

dual stress-energy tensor. In the case of periodic identifications leading to the boundary

cylinder (asymptotically global AdS3), we are led to the standard Virasoro charges

Qχ[g] =

∫
S
Qχ[g] =

`

8πG

∫ 2π

0
dφ
(
ε+(x+)L+(x+) + ε−(x−)L−(x−)

)
, (2.17)

where φ ∼ φ+2π labels the periodic circle S. The charges are manifestly defined everywhere

in the bulk in the range of the Bañados coordinates.

Let us finally extend the Bañados geometries beyond the coordinate patch covered

by Fefferman-Graham coordinates and comment on the existence of singularities. In the

globally asymptotically AdS case, the charges (2.17) are defined by integration on a circle.

Since the charges are conserved in the bulk, one can arbitrarily smoothly deform the

integration circle and the charge will keep its value, as long as we do not reach a physical

singularity or a topological obstruction. Now, if one could deform the circle in the bulk

to a single point, the charge would vanish which would be a contradiction. Therefore, the

geometries with non-trivial charges, or “hair”, are singular in the bulk or contain non-trivial

topology which would prevent the circle at infinity to shrink to zero. In the case of global

AdS3 equipped with Virasoro hair, the singularities would be located at defects, where

the geometry would not be well-defined. Such defects are just generalizations of other

well known defects. For example, in the case of conical defects we have an orbifold-type

singularity (deficit angle) and for the BTZ black hole, the singularities arise from closed

time-like curves (CTC) which are located behind the locus r = 0 in BTZ coordinates [2].

Removal of the CTC’s creates a topological obstruction which is hidden behind the inner

horizon of the BTZ geometry.

2.3 Charge algebra and adjusted bracket

The algebra of conserved charges is defined from the Dirac bracket

{Qχ1 , Qχ2} = −δχ1Qχ2 , (2.18)

where the charges have been defined in appendix.

Let us denote the charge associated with the vector χ+
n = χ(ε+ = einx

+
, ε− = 0) by

Ln and the charge associated with the vector χ−n = χ(ε+ = 0, ε− = einx
−

) by L̄n. From

5As we will discuss in section 4, the zero mass BTZ can only be used as a reference to define charges

over a patch of phase space connected to it. For other disconnected patches, one should choose other

reference points.

– 8 –
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the definition of charges (2.17) and the transformation rules (2.12), we directly obtain the

charge algebra

{Lm, Ln} = (m− n)Lm+n +
c

12
m3δm+n,0,

{L̄m, Ln} = 0, (2.19)

{L̄m, L̄n} = (m− n)L̄m+n +
c

12
m3δm+n,0,

where

c =
3`

2G
, (2.20)

is the Brown-Henneaux central charge. These are the famous two copies of the Virasoro

algebra. In the central term there is no contribution proportional to m as a consequence

of the choice of normalization of the charges to zero for the massless BTZ black hole.

In fact, the algebra represents, up to a central extension, the algebra of symplectic

symmetries. There is however one subtlety. The symplectic symmetry generators χ are

field dependent and hence in computing their bracket we need to “adjust” the Lie bracket by

subtracting off the terms coming from the variations of fields within the χ vectors [41, 42].

Explicitly,[
χ(ε1;L), χ(ε2;L)

]
∗ =

[
χ(ε1;L), χ(ε2;L)

]
L.B
−
(
δLε1χ(ε2;L)− δLε2χ(ε1;L)

)
, (2.21)

where the variations δLε are defined as

δLε1χ(ε2;L) = δε1L
∂

∂L
χ(ε2;L). (2.22)

This is precisely the bracket which lead to the representation of the algebra by conserved

charges in the case of field-dependent vector fields. We call [, ]∗ the adjusted bracket.

Here the field dependence is stressed by the notation χ(ε;L). We also avoided notational

clutter by merging the left and right sectors into a compressed notation, ε = (ε+, ε−) and

L = (L+, L−).

Using the adjusted bracket, one can show that symplectic symmetry generators form

a closed algebra [
χ(ε1;L), χ(ε2;L)

]
∗ = χ(ε1ε

′
2 − ε′1ε2;L). (2.23)

Upon expanding in modes χ±n , one obtains two copies of the Witt algebra[
χ+
m, χ

+
n

]
∗ = (m− n)χ+

m+n,[
χ+
m, χ

−
n

]
∗ = 0, (2.24)[

χ−m, χ
−
n

]
∗ = (m− n)χ−m+n,

which is then represented by the conserved charges as the centrally extended algebra (2.19).

2.4 Finite form of symplectic symmetry transformations

We discussed in the previous subsections that the phase space of Bañados geometries admits

a set of non-trivial tangent perturbations generated by the vector fields χ. Then, there
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exists finite coordinate transformations (obtained by “exponentiating the χ’s”) which map

a Bañados metric to another one. That is, there are coordinate transformations

x± → X± = X±
(
x±, r

)
, r → R = R

(
x±, r

)
, (2.25)

with X±, R such that the metric g̃µν = gαβ
∂xα

∂Xµ
∂xβ

∂Xν is a Bañados geometry with appropri-

ately transformed L±. Such transformations change the physical charges. They are not

gauge transformations but are instead solution or charge generating transformations.

Here, we use the approach of Rooman-Spindel [21]. We start by noting that the tech-

nical difficulty in “exponentiating” the χ’s arise from the fact that χ’s are field dependent

and hence their form changes as we change the functions L±, therefore the method dis-

cussed in section 3.3 of [37] cannot be employed here. However, this feature disappears in

the large r regime. Therefore, if we can find the form of (2.25) at large r we can read how

the L± functions of the two transformed metrics should be related. Then, the subleading

terms in r are fixed such that the form of the Bañados metric is preserved. This is guar-

anteed to work as a consequence of Fefferman-Graham’s theorem [43]. From the input of

the (flat) boundary metric and first subleading piece (the boundary stress-tensor), one can

in principle recontruct the entire metric.

It can be shown that the finite coordinate transformation preserving (2.2) is

x+ → X+ = h+(x+) +
`2

2r2

h′′−
h′−

h′+
h+

+O
(
r−4
)
,

r → R =
r√
h′+h

′
−

+O
(
r−1
)
, (2.26)

x− → X− = h−(x−) +
`2

2r2

h′′+
h′+

h′−
h−

+O
(
r−4
)
,

where h±(x± + 2π) = h±(x±) ± 2π, h± are monotonic (h′± > 0) so that the coordinate

change is a bijection. At leading order (in r), the functions h± parametrize a generic

conformal transformation of the boundary metric.

Acting upon the metric by the above transformation one can read how the functions

L± transform:

L+(x+) → L̃+ = h′+
2L+ −

1

2
S[h+;x+], (2.27)

L−(x−) → L̃− = h′−
2L− −

1

2
S[h−;x−], (2.28)

where S[h;x] is the Schwarz derivative

S[h(x);x] =
h′′′

h′
− 3h′′2

2h′2
. (2.29)

It is readily seen that in the infinitesimal form, where h±(x) = x±+ε±(x), the above reduce

to (2.12). It is also illuminating to explicitly implement the positivity of h′± through

h′± = eΨ± , (2.30)
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where Ψ± are two real single-valued functions. In terms of Ψ fields the Schwarz derivative

takes a simple form and the expressions for L̃± become

L̃+[Ψ+, L+] = e2Ψ+L+(x+) +
1

4
Ψ′2+ −

1

2
Ψ′′+, L̃−[Ψ−, L−] = e2Ψ−L−(x−) +

1

4
Ψ′2− −

1

2
Ψ′′−.

(2.31)

This reminds the form of a Liouville stress-tensor and dovetails with the fact that AdS3

gravity with Brown-Henneaux boundary conditions may be viewed as a Liouville theory [45]

(see also [28] for a recent discussion).

We finally note that not all functions h± generate new solutions. The solutions to L̃+ =

L+, L̃− = L− are coordinate transformations which leave the fields invariant: they are

finite transformations whose infinitesimal versions are generated by the isometries. There

are therefore some linear combinations of symplectic symmetries which do not generate any

new charges. These “missing” symplectic charges are exactly compensated by the charges

associated with the Killing vectors that we will discuss in section 3.

2.5 Phase space in Gaussian null coordinates

In working out the symplectic symmetry generators, their charges and their algebra we used

Fefferman-Graham coordinates which are very well adapted in the holographic description.

One may wonder if similar results may be obtained using different coordinate systems. This

question is of interest because the symplectic symmetries (2.10) were obtained as the set

of infinitesimal diffeomorphisms which preserved the Fefferman-Graham condition (2.2)

and one may wonder whether the whole phase space and symplectic symmetry setup is

dependent upon that particular choice.

Another coordinate frame of interest may be defined a Gaussian null coordinate system,

grr = 0, gru = −1, grφ = 0, (2.32)

in which ∂r is an everywhere null vector field. We note along the way that the `→∞ limit

can be made well-defined in this coordinate system after a careful choice of the scaling of

other quantities [24]. This leads to the BMS3 group and phase space.

The set of all locally AdS3 geometries subject to Dirichlet boundary conditions with

flat cylindrical boundary metric in such coordinate system takes the form

ds2 =

(
−r

2

`2
+ 2`M(u+, u−)

)
du2 − 2dudr + 2`J(u+, u−)dudφ+ r2dφ2, (2.33)

where u± = u/` ± φ. Requiring (2.33) to be solutions to AdS3 Einstein’s equations (2.1)

implies

`M(u+, u−) = L+(u+) + L−(u−), J(u+, u−) = L+(u+)− L−(u−). (2.34)

As in the Fefferman-Graham coordinates, one may then view the set of metrics g

in (2.33) and generic metric perturbations within the same class δg (i.e. metrics with

L± → L± + δL±) as members of an on-shell phase space and its tangent space. Since
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the coordinate change between the two Fefferman-Graham and Gaussian null coordinate

systems is field dependent, the presymplectic form cannot be directly compared between

the two. After direct evaluation, we note here that both the Lee-Wald and the invariant

presymplectic forms vanish on-shell

ωLW[δg, δg; g] ≈ 0, ωinv[δg, δg; g] ≈ 0, (2.35)

since the boundary term which relates them vanishes off-shell, E[δg, δg; g] = 0. This

implies in particular that the conserved charges defined from either presymplectic form

(either Iyer-Wald or Barnich-Brandt charges) will automatically agree.

2.6 Symplectic symmetries and charges in Gaussian null coordinates

The phase space of metrics in Gaussian null coordinate system (2.33) is preserved under

the action of the vector field ξ

ξ =
1

2

{
`(Y+ + Y−)∂u +

(
(Y+ − Y−)− `

r
(Y ′+ − Y ′−)

)
∂φ

+

(
−r(Y ′+ + Y ′−) + `(Y ′′+ + Y ′′−)− `2

r
(L+ − L−)(Y ′+ − Y ′−)

)
∂r

}
, (2.36)

where Y+ = Y+(u+), Y− = Y−(u−). More precisely, we have

δξg = Lξgµν(L+, L−) = gµν(L+ + δξL+, L− + δξL−)− gµν(L+, L−), (2.37)

where

δξL± = Y±∂±L± + 2L±Y
′
± −

1

2
Y ′′′± , (2.38)

stating that (Fourier modes of) L± are related to generators of a Virasoro algebra.

It is easy to show that the surface charge one-forms are integrable kξ[δg; g] = δ(Qξ[g])

in the phase space. The surface charge one-forms are determined up to boundary terms.

It is then convenient to subtract the following subleading boundary term at infinity,

Bξ =
`2

32πG

(
1

r
(L+ − L−)(Y+ + Y−)

)
(2.39)

so that the total charge Q′ξ is given by the radius independent expression

Q′ξ ≡ Qξ − dBξ =
`

8πG

(
L+Y+du

+ − L−Y−du−
)
. (2.40)

The two sets of Virasoro charges can then be obtained by integration on the circle spanned

by φ. They obey the centrally extended Virasoro algebra under the Dirac bracket as

usual, as a consequence of (2.38). Since the result is exact, the Virasoro charges and their

algebra is defined everywhere in the bulk. The symplectic symmetry generators ξ are field

dependent (i.e. they explicitly depend on L±), and hence their algebra is closed once we

use the adjusted bracket defined in subsection 2.3. Also note that in the reasoning above

we did not use the fact that φ is periodic until the very last step where the Virasoro charges
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are defined as an integral over the circle. If instead the coordinate φ is not periodic, as it

is relevant to describe AdS3 with a planar boundary, the Virasoro charge can be replaced

by charge densities, defined as the one-forms (2.40).

We conclude this section with the fact that both phase spaces constructed above in

Fefferman-Graham coordinates and Gaussian null coordinates are spanned by two holomor-

phic functions and their symmetry algebra and central extension are the same. This implies

that there is a one-to-one map between the two phase spaces, and therefore the correspond-

ing holographic dynamics (induced by the Dirac bracket) is not dependent upon choosing

either of these coordinate systems. We shall return to this point in the discussion section.

3 The two Killing symmetries and their charges

So far we discussed the symplectic symmetries of the phase space. These are associated

with non-vanishing metric perturbations which are degenerate directions of the on-shell

presymplectic form. A second important class of symmetries are the Killing vectors which

are associated with vanishing metric perturbations. In this section we analyze these vec-

tor fields, their charges and their commutation relations with the symplectic symmetries.

We will restrict our analysis to the case of asymptotically globally AdS3 where φ is 2π-

periodic. We use Fefferman-Graham coordinates for definiteness but since Killing vectors

are geometrical invariants, nothing will depend upon this specific choice.

3.1 Global Killing vectors

Killing vectors are vector fields along which the metric does not change. All diffeomor-

phisms preserving the Fefferman-Graham coordinate system are generated by the vector

fields given in (2.10). Therefore, Killing vectors have the same form as χ’s, but with the

extra requirement that δL± given by (2.12) should vanish. Let us denote the functions ε±
with this property by K± and the corresponding Killing vector by ζ (instead of χ). Then,

ζ is a Killing vector if and only if

K ′′′+ − 4L+K
′
+ − 2K+L

′
+ = 0, K ′′′− − 4L−K

′
− − 2K−L

′
− = 0. (3.1)

These equations were thoroughly analyzed in [26] and we only provide a summary of the

results relevant for our study here. The above linear third order differential equations

have three linearly independent solutions and hence Bañados geometries in general have

six (local) Killing vectors which form an sl(2,R)× sl(2,R) algebra, as expected. The three

solutions take the form K+ = ψiψj , i, j = 1, 2 where ψ1,2 are the two independent solutions

to the second order Hill’s equations

ψ′′ = L+(x+)ψ (3.2)

where L+(x+ + 2π) = L(x+). Therefore, the function K+ functionally depends upon L+

but not on L′+, i.e. K+ = K+(L+). This last point will be crucial for computing the

commutation relations and checking integrability as we will shortly see. The same holds

for the right moving sector. In general, ψi are not periodic functions under φ ∼ φ + 2π
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and therefore not all six vectors described above are global Killing vectors of the geometry.

However, Floquet’s theorem [55] implies that the combination ψ1ψ2 is necessarily periodic.

This implies that Bañados geometries have at least two global Killing vectors. Let us

denote these two global Killing vectors by ζ±,

ζ+ = χ(K+,K− = 0;L±), ζ− = χ(K+ = 0,K−;L±), (3.3)

where χ is the vector field given in (2.10). These two vectors define two global U(1)

isometries of Bañados geometries.

The important fact about these global U(1) isometry generators is that they commute

with each symplectic symmetry generator χ (2.10): since the vectors are field-dependent,

one should use the adjusted bracket (2.21) which reads explicitly as[
χ(ε;L), ζ(K;L)

]
∗ =

[
χ(ε;L), ζ(K;L)

]
L.B.
−
(
δLε ζ(K;L)− δLKχ(ε;L)

)
,

where the first term on the right-hand side is the usual Lie bracket. Since K = K(L), the

adjustment term reads as

δLε ζ(K(L);L) = δεL
∂

∂L
ζ(K;L) + ζ

(
δLε K;L

)
, (3.4)

δLKχ(ε;L) = δKL
∂

∂L
χ(ε;L) = 0 (3.5)

where we used the fact that ζ, χ are linear in their first argument as one can see from (2.10)

and we used Killing’s equation. We observe that we will get only one additional term with

respect to the previous computation (2.23) due to the last term in (3.4). Therefore,[
χ(ε;L), ζ(K(L);L)

]
∗ = ζ(εK ′ − ε′K;L)− ζ

(
δLε K;L

)
. (3.6)

Now the variation of Killing’s condition (3.1) implies that

(δK)′′′ − 4L(δK)′ − 2L′δK = 4δLK ′ + 2(δL)′K.

Then, recalling (2.12) and using again (3.1) we arrive at

δLε K = εK ′ − ε′K, (3.7)

and therefore [
χ(ε;L), ζ(K(L);L)

]
∗ = 0. (3.8)

The above may be intuitively understood as follows. ζ being a Killing vector field does not

transform L, while a generic χ transforms L. Now the function K is a specific function of

the metric, K = K(L). The adjusted bracket is defined such that it removes the change

in the metric and only keeps the part which comes from Lie bracket of the corresponding

vectors as if L did not change.

It is interesting to compare the global Killing symmetries and the symplectic symme-

tries. The symplectic symmetries are given by (2.10) and determimned by functions ε±.

The functions ε± are field independent, so that they are not transformed by moving in the
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phase space. On the other hand, although the Killing vectors have the same form (2.10),

their corresponding functions ε± which are now denoted by K±, are field dependent as a

result of (3.1). Therefore the Killing vectors differ from one geometry to another. Accord-

ingly if we want to write the Killing vectors in terms of the symplectic symmetry Virasoro

modes χ±n (2.24), we have

ζ+ =
∑
n

c+
n (L+)χ+

n , ζ− =
∑
n

c−n (L−)χ−n . (3.9)

For example for a BTZ black hole, one can show using (3.1) that the global Killing vectors

are ζ± = χ±0 while for a BTZ black hole with Virasoro hair or “BTZ Virasoro descendant”,

which is generated by the coordinate transformations in section 2.4, it is a complicated

combination of Virasoro modes. For the case of global AdS3 with L± = −1
4 (but not for

its descendents), (3.1) implies that there are six global Killing vectors which coincide with

the subalgebras {χ+
1,0,−1} and {χ−1,0,−1} of symplectic symmetries.

We close this part by noting the fact that although we focused on single-valued K

functions, one may readily check that this analysis and in particular (3.8) is true for any

K which solves (3.1). Therefore, all six generators of local sl(2,R) × sl(2,R) isometries

commute with symplectic symmetry generators χ (2.10). This is of course expected as all

geometries (2.5) are locally sl(2,R)× sl(2,R) invariant. We shall discuss this point further

in section 6.

3.2 Conserved charges associated with the U(1) Killing vectors

Similarly to the Virasoro charges (2.15), the infinitesimal charges associated to Killing

vectors can be computed using (A.24), leading to

δJ+ =
`

8πG

∫ 2π

0
dφ K+(L+)δL+, δJ− =

`

8πG

∫ 2π

0
dφ K−(L−)δL−. (3.10)

Integrability of Killing charges. Given the field dependence of the K-functions, one

may inquire about the integrability of the charges J± over the phase space. In appendix A.2,

we find the necessary and sufficient condition for the integrability of charges associated with

field dependent vectors. However, in the present case, the integrability of J± can be directly

checked as follows

δ1(δ2J) =
`

8πG

∮
δ1K(L) δ2L =

`

8πG

∮
∂K

∂L
δ1L δ2L, (3.11)

and therefore δ1(δ2J)− δ2(δ1J) = 0.

Having checked the integrability, we can now proceed with finding the explicit form

of charges through an integral along a suitable path over the phase space connecting a

reference field configuration to the configuration of interest. However, as we will see in

section 4, the Bañados phase space is not simply connected and therefore one cannot reach

any field configuration through a path from a reference field configuration. As a result, the

charges should be defined independently over each connected patch of the phase space. In

section 4 we will give the explicit form of charges over a patch of great interest, i.e. the

one containing BTZ black hole and its descendants. We then find a first law relating the

variation of entropy to the variation of these charges.
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Algebra of Killing and symplectic charges. We have already shown in section 3.1

that the adjusted bracket between generators of respectively symplectic and Killing sym-

metries vanish. If the charges are correctly represented, it should automatically follow that

the corresponding charges Ln, J+ (and L̄n, J−) also commute:

{J±, Ln} = {J±, L̄n} = 0. (3.12)

Let us check (3.12). By definition we have

{J+, Ln} = −δKLn, (3.13)

where one varies the dynamical fields in the definition of Ln with respect to the Killing

vector K. Since K leaves the metric unchanged, we have δKL+(x+) = 0 and therefore

directly δKLn = 0. Now, let us also check that the bracket is anti-symmetric by also

showing

{Ln, J+} ≡ −δLnJ+ = 0. (3.14)

This is easily shown as follows:

δLnJ+ =
`

8πG

∫ 2π

0
dφ K+δε+nL =

`

8πG

∫ 2π

0
dφ K+

(
ε+nL

′
+ + 2L+ε

+
n
′ − 1

2
ε+n
′′′
)

=
`

8πG

∫ 2π

0
dφ

(
−L′+K+ − 2L+K

′
+ +

1

2
K ′′′+

)
ε+,n = 0 (3.15)

after using (2.12), integrating by parts and then using (3.1). The same reasoning holds for

J− and L̄n.

In general, the Bañados phase space only admits two Killing vectors. An exception is

the descendants of the vacuum AdS3 which admit six globally defined Killing vectors. In

that case, the two U(1) Killing charges are J± = −1
4 and the other four SL(2,R)

U(1) ×
SL(2,R)

U(1)

charges are identically zero. In the case of the decoupled near-horizon extremal phase

space defined in section 5 we will have four global Killing vectors with the left-moving

U(1)+ charge J+ arbitrary, but the SL(2,R)− charges all vanishing Ja− = 0, a = +1, 0,−1.

4 Phase space as Virasoro coadjoint orbits

As discussed in the previous sections, one can label each element of the phase space in

either Fefferman-Graham coordinates or Gaussian null coordinates, described respectively

by (2.5) and (2.33), by its symplectic charges Ln, L̄n and its global commuting Killing

charges J±. Moreover, the phase space functions L± transform under the coadjoint action

of the Virasoro algebra, see (2.12). Hence, we are led to the conclusion that the phase

space forms a reducible representation of the Virasoro group composed of distinct Virasoro

coadjoint orbits.

Construction of Virasoro coadjoint orbits has a long and well-established literature,

see e.g. [40] and references therein. In this literature the δL± = 0 (i.e. (3.1)) equation is

called the stabilizer equation [35] and specifies the set of transformations which keeps one

in the same orbit. The stabilizer equation and classification of its solutions is hence the
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key to the classification of Virasoro coadjoint orbits. Since an orbit is representation of the

Virasoro group it might as well be called a conformal multiplet. The elements in the same

orbit/conformal multiplet may be mapped to each other upon the action of coordinate

transformations (2.27). Explicitly, a generic element/geometry in the same orbit (specified

by L̃±) is related to a single element/geometry with L± given as (2.31) for arbitrary periodic

functions Ψ±. One canhence classify the orbits by the set of periodic functions L±(x±)

which may not be mapped to each other through (2.31). One may also find a specific L±,

the representative of the orbit, from which one can generate the entire orbit by conformal

transformations (2.31). In the language of a dual 2d CFT, each orbit may be viewed as

a primary operator together with its conformal descendants. Each geometry is associated

with (one or many) primary operators or descendants thereof, in the dual 2d CFT. From

this discussion it also follows that there is no regular coordinate transformation respecting

the chosen boundary conditions, which moves us among the orbits.

4.1 Classification of Virasoro orbits

Let us quickly summarize some key results from [40]. In order to avoid notation clutter we

focus on a single sector, say the + sector (which we refer to as left-movers). One may in

general distinguish two classes of orbits: those where a constant representative exists and

those where it doesn’t. The constant L+ representatives correspond to the better studied

geometries, e.g. see [26, 56] for a review. They fall into four categories:

• Exceptional orbits En with representative L = −n2/4, n = 0, 1, 2, 3, · · · . The orbit

E0 × E0 admits the zero mass BTZ as a representative. (The n = 0 case coincides

with the hyperbolic orbit B0(0), see below.) The E1 × E1 orbit admits global AdS3

as a representative and therefore corresponds to the vacuum Verma module in the

language of a 2d CFT on the cylinder. For n ≥ 2, En×En is represented by an n-fold

cover of global AdS3.

• Elliptic orbits Cn,ν , with representative L = −(n+ν)2/4, n = 0, 1, . . . and 0 < ν < 1.

The geometries with both L± elliptic orbit representatives with n = 0 correspond

to conic spaces, particles on AdS3 [4] and geometries in this orbit may be viewed as

“excitations” (descendants) of particles on the AdS3.

• Hyperbolic orbits B0(b), with representative L = b2/4, where b is generic real non-

negative number b ≥ 0. The b = 0 case coincides with the E0 orbit. The geometries

with both L± = b2±/4 are BTZ black holes. The special case of b± = 0 is the massless

BTZ and b− = 0 is extremal BTZ.

• Parabolic orbit P+
0 , with representative L = 0. The geometries associated with

P+
0 ×B0(b) orbits correspond to the self-dual orbifold [45] which may also be obtained

as the near horizon geometry of extremal BTZ black holes. In particular, P+
0 ×B0(0)

corresponds to null selfdual orbifold [57]. The P+
0 × P

+
0 orbit corresponds to AdS3

in the Poincaré patch and its descendants, which in the dual 2d CFT corresponds to

vacuum Verma module of the CFT on 2d plane.
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The non-constant representative orbits, come into three categories, the generic hy-

perbolic orbits Bn(b) and two parabolic orbits P±n , n ∈ N. Geometries associated with

these orbits are less clear and understood. This question will be addressed in a future

publication [58].

To summarize, if we only focus on the labels on the orbits, the En,P±n orbits have only

an integer label, the Cn,ν is labeled by a real number between 0 and 1 and an integer, and

the hyperbolic ones Bn(b) with an integer and a real positive number.

4.2 Killing charges as orbit labels

As shown in (3.15), all the geometries associated with the same orbit have the same J±
charges. In other words, J± do not vary as we make coordinate transformations using χ

diffeomorphisms (2.10); J± are “orbit invariant” quantities. One may hence relate them

with the labels on the orbits, explicitly, J+ should be a function of b or ν for the hyperbolic

or elliptic orbits associated to the left-moving copy of the Virasoro group and J− a similar

function of labels on the right-moving copy of the Virasoro group.

The Bañados phase space has a rich topological structure. It consists of different

disjoint patches. Some patches (labeled by only integers) consist of only one orbit, while

some consist of a set of orbits with a continuous parameter. On the other hand, note that

the conserved charges in covariant phase space methods are defined through an integration

of infinitesimal charges along a path connecting a reference point of phase space to a point

of interest. Therefore, the charges can be defined only over the piece of phase space simply

connected to the reference configuration. For other patches, one should use other reference

points. In this work we just present explicit analysis for the B0(b+)×B0(b−) sector of the

phase space. Since this sector corresponds to the family of BTZ black holes of various mass

and angular momentum and their descendants, we call it the BTZ sector. Note that there

is no regular coordinate transformation respecting the chosen boundary conditions, which

moves us among the orbits. In particular for the BTZ sector, this means that there is no

regular coordinate transformation which relates BTZ black hole geometries with different

mass and angular momentum, i.e. geometries with different b±.

We now proceed with computing the charges J± for an arbitrary field configuration in

the BTZ sector of the phase space. Since the charges are integrable, one can choose any path

from a reference configuration to the desired point. We fix the reference configuration to be

the massless BTZ with L± = 0. We choose the path to pass by the constant representative

L± of the desired solution of interest L̃±(x±). Let us discuss J+ (the other sector follows

the same logic). Then the charge is defined as

J+ =

∫
γ
δJ+ =

∫ L̃+

0
δJ+ =

∫ L+

0
δJ+ +

∫ L̃+

L+

δJ+. (4.1)

We decomposed the integral into two parts: first the path across the orbits, between

constant representatives L+ = 0 and L+ and second the path along (within) a given orbit

with representative L+. Since the path along the orbit does not change the values J±
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(δχJ± = 0), the second integral is zero. Accordingly, the charge is simply given by

J+ =
`

8πG

∫ L+

0

∮
dϕK+(L)δL (4.2)

where L+ is a constant over the spacetime. Solving (3.1) for constant L± and assuming

periodicity of φ, we find that K± = const. Therefore the Killing vectors are ∂± up to a

normalization constant, which we choose to be 1. Hence K+(L) = 1, and

J+ =
`

4G
L+, J− =

`

4G
L−. (4.3)

Therefore the Killing charges are a multiple of the Virasoro zero mode of the constant

representative.

4.3 Thermodynamics of Bañados geometries

Since the BTZ descendants are obtained through a finite coordinate transformation from

the BTZ black hole, the descendants inherit the causal structure and other geometrical

properties of the BTZ black hole. We did not prove that the finite coordinate transforma-

tion is non-singular away from the black hole Killing horizon but the fact that the Virasoro

charges are defined all the way to the horizon gives us confidence that there is no singularity

between the horizon and the spatial boundary. The geometry of the Killing horizon was

discussed in more detail in [26].

The area of the outer horizon defines a geometrical quantity which is invariant under

diffeomorphisms. Therefore the BTZ descendants admit the same area along the entire

orbit. The angular velocity and surface gravity are defined geometrically as well, given a

choice of normalization at infinity. This choice is provided for example by the asymptotic

Fefferman-Graham coordinate system which is shared by all BTZ descendants. Therefore

these chemical potentials τ± are also orbit invariant and are identical for all descendants

and in particular are constant. This is the zeroth law for the BTZ descendant geometries.

One may define more precisely τ± as the chemical potentials conjugate to J± [58].

Upon varying the parameters of the solutions we obtain a linearized solution which obey

the first law

δS = τ+δJ+ + τ−δJ−. (4.4)

This first law is an immediate consequence of the first law for the BTZ black hole since all

quantities are geometrical invariants and therefore independent of the orbit representative.

In terms of L±, the constant representatives of the orbits in the BTZ sector, one has (4.3)

and [15]

τ± =
π√
L±

(4.5)

and the entropy takes the usual Cardy form

S =
π

3
c
(√

L+ +
√
L−

)
. (4.6)

One can also write the Smarr formula in terms of orbit invariants as

S = 2(τ+J+ + τ−J−). (4.7)
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The only orbits which have a continuous label (necessary to write infinitesimal varia-

tions) and which admit a bifurcate Killing horizon are the hyperbolic orbits [26, 58]. The

extension of the present discussion to generic hyperbolic orbits (and not just for the BTZ

sector) will be postponed to [58].

5 Extremal phase space and decoupling limit

We define the “extremal phase space” as the subspace of the set of all Bañados geometries

(equipped with the invariant presymplectic form) with the restriction that the right-moving

function L− vanishes identically. The Killing charge J− is therefore identically zero. Also,

perturbations tangent to the extremal phase space obey δL− = 0 but δL+ is an arbitrary

left-moving function.

A particular element in the extremal phase space is the extremal BTZ geometry with

M` = J . It is well-known that this geometry admits a decoupled near-horizon limit which

is given by the self-dual spacelike orbifold of AdS3 [45]

ds2 =
`2

4

−r2dt2 +
dr2

r2
+

4|J |
k

(
dφ− r

2
√
|J |/k

dt

)2
 , φ ∼ φ+ 2π, (5.1)

where k ≡ `
4G . A Virasoro algebra exists as asymptotic symmetry in the near-horizon limit

and this Virasoro algebra has been argued to be related to the asymptotic Virasoro algebra

defined close to the AdS3 spatial boundary [23]. Since these asymptotic symmetries are

defined at distinct locations using boundary conditions it is not entirely obvious that they

are uniquely related. Now, using the concept of symplectic symmetries which extend the

asymptotic symmetries to the bulk spacetime, one deduces that the extremal black holes

are equipped with one copy of Virasoro hair. The Virasoro hair transforms under the action

of the Virasoro symplectic symmetries, which are also defined everywhere outside of the

black hole horizon.

One subtlety is that the near-horizon limit is a decoupling limit obtained after changing

coordinates to near-horizon comoving coordinates. We find two interesting ways to take the

near-horizon limit. In Fefferman-Graham coordinates the horizon is sitting at r = 0 and it

has a constant angular velocity 1/` independently of the Virasoro hair. Therefore taking

a near-horizon limit is straightforward and one readily obtains the near-horizon Virasoro

symmetry. It is amusing that the resulting vector field which generates the symmetry

differs from the ansatz in [23], as well as the original Kerr/CFT ansatz [39] and the newer

ansatz for generic extremal black holes [29, 37]. The difference is however a vector field

which is pure gauge, i.e. charges associated with it are zero.

A second interesting way to take the near-horizon limit consists in working with co-

ordinates such that the horizon location depends upon the Virasoro hair. This happens

in Gaussian null coordinates. Taking the near-horizon limit then requires more care. This

leads to a yet different Virasoro ansatz for the vector field which is field dependent. After

working out the details, a chiral half of the Virasoro algebra is again obtained, which also

shows the equivalence with the previous limiting procedure.
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5.1 Decoupling limit in Fefferman-Graham coordinates

The general metric of the extremal phase space of AdS3 Einstein gravity with Brown-

Henneaux boundary conditions and in the Fefferman-Graham coordinate system is given by

ds2 =
`2

r2
dr2 − r2dx+dx− + `2L(x+)dx+2

, x± = t/`± φ, φ ∼ φ+ 2π (5.2)

where we dropped the + subscript, L+ = L. It admits two global Killing vectors: ∂− and

ζ+ defined in subsection 3.1. In the case of the extremal BTZ orbit, the metrics (5.2) admit

a Killing horizon at r = 0 which is generated by the Killing vector ∂− [26].

One may readily see that a diffeomorphism χ(ε+, ε− = 0) defined from (2.10) with

arbitrary ε+(x+), namely

χext =
`2ε′′+
2r2

∂− + ε+∂+ −
1

2
rε′+∂r, (5.3)

is tangent to the phase space. Indeed, it preserves the form of the metric (5.2). Remarkably,

the field dependence, i.e. the dependence on L+, completely drops out in χext. Note

however that although χext is field independent, the Killing vector ζ+ is still field dependent.

From the discussions of section 2.1 it immediately follows that χext generates symplectic

symmetries.

One may then take the decoupling limit

t→ ` t̃

λ
, φ→ φ+ Ωext

` t̃

λ
, r2 → 2`2 λr̃, λ→ 0 (5.4)

where Ωext = −1/` is the constant angular velocity at extremality. As a result x+ → φ and

x− → 2 t̃λ−φ. Functions periodic in x+ are hence well-defined in the decoupling limit while

functions periodic in x− are not. Therefore, the full Bañados phase space does not admit

a decoupling limit. Only the extremal part of the Bañados phase space does. Also, since
t̃
λ is dominant with respect to φ in the near-horizon limit, the coordinate x− effectively

decompactifies in the limit while x+ remains periodic. Since −dx+dx− is the metric of the

dual CFT, this leads to the interpretation of the decoupling limit as a discrete-light cone

quantization of the dual CFT [23].

In this limit the metric (5.2) and symplectic symmetry generators (5.3) become

ds2

`2
=
dr̃2

4r̃2
− 4r̃dt̃dφ+ L(φ)dφ2 (5.5)

χext =
ε′′(φ)

8r̃
∂t̃ − r̃ε

′(φ)∂r̃ + ε(φ)∂φ, (5.6)

where we dropped again the + subscript, ε+ = ε. As it is standard in such limits, this

geometry acquires an enhanced global SL(2,R)− ×U(1)+ isometry [25, 26]. The sl(2,R)−
Killing vectors are given as

ξ1 =
1

2
∂t̃, ξ2 = t̃∂t̃ − r̃∂r̃, ξ3 =

[(
2t̃2 +

L

8r̃2

)
∂t̃ +

1

2r̃
∂φ − 4t̃r̃∂r̃

]
. (5.7)
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and obey the algebra

[ξ1, ξ2] = ξ1, [ξ1, ξ3] = 2ξ2, [ξ2, ξ3] = ξ3, (5.8)

The u(1)+ is still generated by ζ+.

As it is explicitly seen from the metric (5.5), absence of Closed Timelike Curves (CTC)

requires L(φ) ≥ 0. This restricts the possibilities for orbits which admit a regular decou-

pling limit. The obvious example is the extremal BTZ orbit for which the decoupling

limit is a near-horizon limit. Representatives of these orbits are the extremal BTZ black

holes with L+ ≥ 0 constant and the near-horizon metric (5.5) is precisely the self-dual

orbifold (5.1) after recognizing J = `
4GL = c

6L and setting t̃ =
√
L+t/4 and r̃ = r.6

From the analysis provided in [40] one can gather that all orbits other than the hy-

perbolic B0(b) and the parabolic P+
0 orbits, admit a function L(φ) which can take neg-

ative values. The corresponding geometries therefore contain CTCs. The only regular

decoupling limit is therefore the near-horizon limit of generic extremal BTZ (including

massless BTZ [59]). Therefore, the near-horizon extremal phase space is precisely the

three-dimensional analogue of the phase space of more generic near-horizon extremal ge-

ometries discussed in [36, 37]. In other words, geometries of the form (5.5) which are free

of CTCs are in P+
0 × P

+
0 or P+

0 × B0(b), b ≥ 0 orbits.

Under the action of χext above, one has

δχL(φ) = εL(φ)′ + 2L(φ)ε′ − 1

2
ε′′′ (5.9)

in the decoupling limit. With the mode expansion ε = einφ, one may define the symplectic

symmetry generators ln which satisfy the Witt algebra,

i[lm, ln] = (m− n)lm+n. (5.10)

The surface charge is integrable and given by

Hχ[Φ] =
`

8πG

∮
dφ ε(φ)L(φ). (5.11)

Moreover, one may show that the surface charges associated to the SL(2,R)− Killing vec-

tors, Ja−, vanish. Interestingly, we find that the t̃ and r̃ components of χext (5.6) do not

contribute to the surface charges. The various ansatzes described in [23, 29, 37, 39] which

differ precisely by the ∂t̃ term are therefore physically equivalent to the one in (5.6).

One may also work out the algebra of charges Hn associated with ε = einφ:

{Hm, Hn} = (m− n)Hm+n +
c

12
m3δm+n,0, (5.12)

where c is the usual Brown-Henneaux central charge.

6For the case of the massless BTZ, one should note that there are two distinct near-horizon limits; the

first leads to null self-dual orbifold of AdS3 and the second to the pinching AdS3 orbifold [59].
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The charge J+ associated with the Killing vector ζ+ commutes with the Hn’s, as

discussed in general in section 3.2. Following the analysis of section 4.3, one may associate

an entropy S and chemical potential τ+ which satisfy the first law and Smarr relation

δS = τ+δJ+ , S = 2τ+J+. (5.13)

These are the familiar laws of “near horizon extremal geometry (thermo)dynamics” pre-

sented in [60, 61].

5.2 Near horizon limit in Gaussian null coordinates

Let us now consider the analogue extremal phase space but in Gaussian null coordinates. It

is defined from the complete phase space discussed in section 2.5 by setting the right-moving

function L− = 0. The metric is

ds2 =

(
−r

2

`2
+ 2L+(u+)

)
du2 − 2dudr + 2`L+(u+)dudφ+ r2dφ2, (5.14)

where u± = u/` ± φ, φ ∼ φ + 2π. It depends upon a single function L+(u+). One may

analyze the isometries of metrics (5.14). The Killing vectors are within the family of

ξ’s (2.36) with δξL± = 0 (cf. (2.38)). Since L− = 0 in this family, there are three local

Killing vectors associated with solutions of Y ′′′− = 0, i.e. Y− = 1, u−, (u−)2. The first Killing

vector is ξ1 = ∂− = 1
2(`∂u − ∂φ). The other two are not globally single-valued but we will

display them for future use,

ξ2 = u−∂−+
`

2r
∂φ−

1

2

(
r − `2L+

r

)
∂r, ξ3 = (u−)2∂−+u−

`

r
∂φ+

[
`− u−

(
r − `2L+

r

)]
∂r.

(5.15)

Together they form an sl(2,R) algebra (5.8). There is also a global U(1)+ associated with

the Y+ functions, which is the periodic solution to δξL+ = 0.

The set of geometries (5.14) together with ξ(Y+, Y− = 0) (cf. (2.36)) form a phase

space, elements of which fall into the Virasoro coadjoint orbits. Orbits are labeled by J+.

We consider for simplicity only the extremal BTZ orbit. The above geometries then have

a Killing horizon at variable radius r = rH(u+), unlike the Fefferman-Graham coordinate

system studied in the previous section. The function rH(u+) is defined from the function

L+(u+) through

`
drH
du+

+ r2
H = `2L+(u+) . (5.16)

This Killing horizon is generated by the Killing vector ∂−. Requiring the function rH to be

real imposes a constraint on the Virasoro zero mode
∫ 2π

0 du+L+(u+) ≥ 0 which is obeyed

in the case of the hyperbolic B0(b) orbit. It is notable that upon replacing rH = `ψ
′

ψ , (5.16)

exactly reduces to Hill’s equation ψ′′ = L+ψ.

Let us now perform the following near-horizon limit,

r = rH(u+) + εr̂, u =
û

ε
, φ = φ̂+ Ωext

û

ε
, ε→ 0 (5.17)
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where Ωext = −1
` is the extremal angular velocity. In this limit u+ = φ̂ is kept finite. The

metric takes the form

ds2 = −2dr̂dû− 4r̂
rH

(
φ̂
)

`
dûdφ̂+ r2

H

(
φ̂
)
dφ̂2. (5.18)

Note also that rH(φ̂) is a function of L+(φ̂), as is given in (5.16). For constant rH the

metric (5.18) is the self-dual AdS3 metric. In general, it admits a SL(2,R)−×U(1)+ global

isometry. The explicit form of generators of SL(2,R)− are obtained from (5.15) upon the

limit (5.17) as

ξ1 =
`

2
∂û, ξ2 = û∂û−r̂∂r̂+

`

2rH

(
φ̂
)∂φ̂, ξ3 =

2û2

`
∂û+

(
`− 4ûr̂

`

)
∂r̂+

2û

rH

(
φ̂
)∂φ̂. (5.19)

Let us now analyze the presymplectic form and the corresponding charges. To this end,

we first recall that we obtained in section 2.5 that both the Lee-Wald and the invariant

presymplectic form vanish on-shell for the general case. Therefore, both presymplectic

structures also vanish for the special case L− = 0. All transformations that preserve the

phase space are therefore either symplectic symmetries or pure gauge transformations,

depending on whether or not they are associated with non-vanishing conserved charges.

The symplectic symmetry vector field generators ξ̂ may naively be defined from (2.36),

where we set L− = Y− = 0 and take the above near horizon limit. Doing so we obtain:

ξ̂ =

(
Y − `

2rH
Y ′
)
∂φ̂ −

1

ε

(
rHY −

`Y ′

2

)′
∂r̂,

where Y = Y (φ̂), rH = rH(φ̂) and primes denotes derivatives with respect to φ̂. Since this

vector field admits a diverging 1/ε term, it is not well-defined in the near-horizon limit.

Moreover, this vector field does not generate perturbations tangent to the near-horizon

phase space. In doing the near-horizon change of coordinates, it is required to change

the generator of symplectic symmetries. One may check that a term like f(φ̂)∂r̂ for both

Barnich-Brandt or Iyer-Wald charges is pure gauge since it does not contribute to the

charges. Therefore, the problematic 1/ε term may be dropped from ξ̂ to obtain

ξ̂ =

(
Y − `

2rH
Y ′
)
∂φ̂ . (5.20)

In fact, the vector field (5.20) is the correct vector field in the near-horizon phase space

since Lξgµν is tangent to the phase space (5.18) with the transformation law

δξrH = rH∂φ̂Y + Y ∂φ̂rH −
`

2
∂2
φ̂
Y . (5.21)

This transformation law is consistent with the definition (5.16) and the Virasoro trans-

formation law (2.38). It is stricking that the resulting symplectic symmetry genera-

tor (5.20) takes a quite different form from (5.6) as well as all other ansatzes in the

literature [23, 29, 37, 39].
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Using the expansion in modes Y = einφ̂ we define the resulting vector field ln. Since the

vector field is field-dependent, we should use the “adjusted bracket” defined in section 2.3.

Doing so, we obtain the Witt algebra

i[lm, ln]∗ = (m− n)lm+n. (5.22)

One may then check that the surface charges associated with ξ̂ are integrable, us-

ing the integrability condition for general field dependent generators, cf. discussions of

appendix A.2. For the surface charges the Barnich-Brandt and Iyer-Wald prescriptions

totally agree since the invariant and Lee-Wald presymplectic forms coincide off-shell. We

then obtain

Qξ̂ =
1

8πG

∫ (
r2
H

`
Y − rHY ′

)
dφ̂. (5.23)

After adding a boundary term dBξ̂ where,

Bξ̂ =
1

8πG
rHY, (5.24)

to the integrand and after using (5.16), we find the standard Virasoro charge

Qξ̂ =
`

8πG

∫
L+

(
φ̂
)
Y
(
φ̂
)
dφ̂. (5.25)

We have therefore shown that the near-horizon Virasoro symplectic symmetry can be di-

rectly mapped to the Brown-Henneaux asymptotic symmetry at the boundary of AdS3.

6 Discussion and outlook

We established that the set of all locally AdS3 geometries with Brown-Henneaux boundary

conditions form a phase space whose total symmetry group is in general a direct prod-

uct between the left and right sector and between U(1) Killing and Virasoro symplectic

symmetries quotiented by a compact U(1):(
U(1)+ ×

Vir+

U(1)+

)
×
(

U(1)− ×
Vir−

U(1)−

)
. (6.1)

Elements of the phase space are solutions with two copies of “Virasoro hair” which can have

two different natures: either Killing symmetry charges or symplectic symmetry charges.

One special patch of the phase space consists of the set of descendants of the global AdS3

vacuum, where the two compact U(1)’s are replaced with two SL(2,R)’s with compact U(1)

subgroup: (
SL(2,R)+ ×

Vir+

SL(2,R)+

)
×
(

SL(2,R)− ×
Vir−

SL(2,R)−

)
. (6.2)

In the case of the phase space with Poincaré AdS boundary conditions, the U(1)’s are

instead non-compact.

In the case of the decoupling (near-horizon) limit of extremal black holes, the (let say)

right sector is frozen to L− = 0 in order to be able to define the decoupling limit. In the
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limit the U(1)− isometry is enhanced to SL(2,R)− and the U(1)− subgroup decompactifies.

The exact symmetry group of the near-horizon phase space is a direct product of the left-

moving Killing and left-moving non-trivial symplectic symmetries, isomorphic to Virasoro

group quotiented by a compact U(1)+,

SL(2,R)− ×
(

U(1)+ ×
Vir+

U(1)+

)
. (6.3)

The global Killing SL(2,R)− charges are fixed to zero, and there is no right-moving symplec-

tic symmetry. We studied two particular decoupling limits which realized this symmetry.

Taking the decoupling limit in Fefferman-Graham coordinates leads to zooming at fixed

coordinate horizon radius while taking the decoupling limit in Gaussian null coordinates

amounts to zooming on a wiggling horizon radius. We noticed that both decoupling limits

lead to the same charge algebra. In principle it should also be possible to have geometries

associated with (
SL(2,R)+ ×

Vir+

SL(2,R)+

)
×
(

U(1)− ×
Vir−

U(1)−

)
,

where the representative of the left-movers is fixed to have L+ = −1/4.

Orbits and Killing charges. The above obviously parallels the construction of Vira-

soro coadjoint orbits where the group that quotients the Virasoro group is the “stabilizer

group” [35, 40]. The stabilizer group, as intuitively expected, appears as the Killing isom-

etry algebra of the locally AdS3 geometries. Importantly for making connection with

Virasoro orbits, the Killing vectors commute with the Virasoro symmetries. Their associ-

ated conserved charges J± therefore label individual orbits. There are, nonetheless, other

options for the stabilizer group besides compact U(1) and SL(2,R) which are, in general,

labeled by n-fold cover of these stabilizer groups. This will lead to an extra integer label

which being discrete, is not covered in the analysis of the type we presented here. This

may be associated with a topological charge [58].

Relationship with asymptotic symmetries. It is well-known that all geometries with

Brown-Henneaux boundary conditions admit two copies of the Virasoro group as asymp-

totic symmetry group [8]:

Vir+ ×Vir− . (6.4)

In the case of the vacuum AdS3 orbit, the global asymptotic SL(2,R)+×SL(2,R)− subgroup

of the Virasoro group exactly coincides with the SL(2,R)×SL(2,R) isometries with constant

charges and the asymptotic symmetries reduce to (6.2). For generic orbits, only a U(1)+×
U(1)− subgroup of the SL(2,R)+×SL(2,R)− is an isometry while the remaining generators

are symplectic symmetries, which matches with (6.1). The novelty is that the conserved

charges are not defined at infinity only, they are defined at finite radius.

Symplectic charges and the Gauss law. The electric charge of a set of electrons can

be computing as the integral of the electric flux on an enclosing surface. It was observed

some time ago that Killing symmetries lead to the same property for gravity [62]. The

total mass of a set of isolated masses at equilibrium can be obtained by integrating the
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Killing surface charge on an enclosing surface. This property arises after viewing gravity

as a gauge theory on the same footing as Maxwell theory. Here, we generalized the result

of [62] to symplectic symmetries. Given a configuration with a symplectic symmetry and

given a surface in a given homology class, one can define associated symplectic charge

which is conserved upon smoothly deforming the surface.

On the presymplectic form. We reviewed the definition of the Lee-Wald and the

invariant presymplectic forms and noticed that only the invariant one was vanishing on-

shell in both Fefferman-Graham and Gaussian null coordinates. This enabled us to define

symplectic symmetries on any closed circle which encloses all geometrical and topological

defects. Together with the Killing symmetries, they extend the asymptotic symmetries of

Brown-Henneaux in the bulk spacetime with identical results in both coordinate systems.

However, the Lee-Wald presymplectic structure is equal on-shell to a boundary term in

Fefferman-Graham coordinates. A natural question is whether a suitable boundary term

can be added to the Lee-Wald presymplectic structure which fits among the known am-

biguities in order that it vanishes exactly on-shell. We expect that it would be possible,

but for our purposes the existence of an on-shell vanishing presymplectic structure was

sufficient.

Coordinate independence and gauge transformations. Every structure we could

find in Fefferman-Graham coordinates could be mapped onto the same structure in Gaus-

sian null coordinates. We therefore expect that there is a gauge transformation between

these coordinate systems which can be defined in the bulk spacetime. On general grounds,

we expect that one could enhance the set of metrics with additional gauge transformation

redundancy and incorporate more equivalent coordinate systems. Such a procedure would

however not add any physics classically since the physical phase space and charges would

be left invariant. The advantage of either Fefferman-Graham or Gaussian null coordinates

is that their only admissible coordinate transformations (which preserve the coordinates)

are the physical symplectic and Killing symmetries. In that sense, they allow to express

the phase space in a fixed gauge.

Generalization to other boundary conditions. Boundary conditions alternative to

Dirichlet boundary conditions exist for AdS3 Einstein gravity [46–48]. Our considerations

directly apply to these boundary conditions as well. As an illustration, the semi-direct

product of Virasoro and Kac-Moody asymptotic symmetries found for chiral boundary

conditions [47] can be extended to symplectic symmetries in the corresponding phase space.

Indeed, it is easy to check that both the Lee-Wald and the invariant symplectic structures

vanish for arbitrary elements in, and tangent to, the phase space. The BTZ black holes

equipped with Virasoro and Kac-Moody charges can be qualified as BTZ black holes with

Virasoro and Kac-Moody hair all the way to the horizon.

Generalization to Chern-Simons theories. Three dimensional Chern-Simons theo-

ries are also theories without bulk dynamics. It is therefore natural to expect that any

asymptotic symmetry will be a combination of Killing and symplectic symmetries. In the
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example of the SL(2,R) × SL(2,R) gauge group and Brown-Henneaux boundary condi-

tions, it follows from the explicit definition of the phase space that the presymplectic form

identically vanishes. Indeed, either using Fefferman-Graham or Null Gaussian coordinates,

(3.11) or (3.19) of [29], one directly gets that ω = 0. Both in the left and right sectors,

the presymplectic form is ω ∝ Tr(δ1A ∧ δ2A − δ2A ∧ δ1A) and it separately vanishes

since δA ∝ dt+ in the left sector and δA ∝ dt− in the right sector. The result similarly

follows for higher spin gauge theories. The asymptotic symmetries discussed in [63–69] can

therefore be promoted to a combination of Killing and symplectic symmetries.

Acknowledgments

We would like to thank Glenn Barnich, Kamal Hajian and especially Hossein Yavartanoo

for fruitful discussions. AS would like to thank the Physics department at the Université
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A Conserved charges for field dependent vectors

In this appendix, we provide with the formalism of conserved charges in Einstein gravity in

the case of field dependent vectors like those in (2.10) and establish that the expression of

charges obtained from covariant phase space methods [54] or cohomological methods [33]

apply to this case as well. We also discuss the integrability of charge variations in the case

of field dependent vectors. We will keep the spacetime dimension arbitrary since no special

feature arises in three dimensions.

A.1 Expression for the charges

Field dependence and the Iyer-Wald charge. Assume we have a vector χ which

is a function of the dynamical fields Φ such as the metric. In our example, the metric

dependence reduces to χ = χ(L+, L−). We call this a field dependent vector. We want

to find the corresponding charge δQχ and the integrability condition for such vectors.

We proceed using the approach of Iyer-Wald [54] and carefully keep track of the field

dependence. We adopt the convention that δΦ are Grassman even. First define the Noether

current associated to the vector χ as

Jχ[Φ] = Θ[δχΦ,Φ]− χ ·L[Φ], (A.1)

where L[Φ] is the Lagrangian (as a top form), and Θ[δχΦ,Φ] is equal to the boundary

term in the variation of the Lagrangian, i.e δL = δL
δΦδΦ + dΘ[δΦ,Φ]. Using the Noether

identities one can then define the on-shell vanishing Noether current as δL
δΦLχΦ = dSχ[Φ].
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It follows that Jχ+Sχ is closed off-shell and therefore Jχ ≈ dQχ, where Qχ is the Noether

charge density (we use the symbol ≈ to denote an on-shell equality). Now take a variation

of the above equation

δJχ = δΘ[δχΦ,Φ]− δ(χ ·L)

= δΘ[δχΦ,Φ]− χ · δL− δχ ·L
≈ δΘ[δχΦ,Φ]− χ · dΘ[δΦ,Φ]− δχ ·L . (A.2)

Using the Cartan identity Lχσ = χ · dσ + d(χ · σ) valid for any vector χ and any form σ,

we find

δJχ =
(
δΘ[δχΦ,Φ]− δχΘ[δΦ,Φ]

)
+ d(χ ·Θ[δΦ,Φ])− δχ ·L. (A.3)

The important point here is that

δΘ[δχΦ,Φ] = δ[Φ]Θ[δχΦ,Φ] + Θ[δδχΦ,Φ] , (A.4)

where we define δ[Φ] to act only on the explicit dependence on dynamical fields and its

derivatives, but not on the implicit field dependence in χ. Therefore, we find

δJχ =
(
δ[Φ]Θ[δχΦ,Φ]− δχΘ[δΦ,Φ]

)
+ d(χ ·Θ[δΦ,Φ]) +

(
Θ[δδχΦ,Φ]− δχ ·L

)
= ωLW[δΦ , δχΦ ; Φ] + d(χ ·Θ[δΦ,Φ]) + Jδχ , (A.5)

where

ωLW[δΦ , δχΦ ; Φ] = δ[Φ]Θ[δχΦ,Φ]− δχΘ[δΦ,Φ], (A.6)

is the Lee-Wald presymplectic form [34]. Note that the variation acting on Θ[δχΦ,Φ], only

acts on the explicit field dependence. This is necessary in order for ωLW[δΦ , δχΦ ; Φ] to

be bilinear in its variations. Reordering the terms we find

ωLW[δΦ , δχΦ ; Φ] = δJχ − Jδχ − d(χ ·Θ[δΦ,Φ])

= δ[Φ]Jχ − d(χ ·Θ[δΦ,Φ]). (A.7)

If δΦ solves the linearized field equations, then Jχ ≈ dQχ implies δ[Φ]Jχ ≈ d(δ[Φ]Qχ).

As a result we obtain

ωLW[δΦ , δχΦ ; Φ] ≈ dkIWχ [δΦ; Φ] (A.8)

where kIWχ is the Iyer-Wald surface charge form

kIWχ =
(
δ[Φ]Qχ − χ ·Θ[δΦ,Φ]

)
. (A.9)

Therefore the infinitesimal charge associated to a field dependent vector and a codimension

two, spacelike compact surface S is defined as the Iyer-Wald charge

δHχ =

∮
S
kIWχ [δΦ; Φ] =

∮
S

(
δ[Φ]Qχ − χ ·Θ[δΦ,Φ]

)
. (A.10)

The key point in the above expression is that the variation does not act on χ. One may

rewrite the charge as

δHχ =

∮
S

(
δQχ −Qδχ − χ ·Θ[δΦ,Φ]

)
. (A.11)
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Field dependence and the Barnich-Brandt charge. There is another definition of

the presymplectic structure which leads to a consistent covariant phase space framework.

This is the so-called invariant presymplectic form [33] defined through Anderson’s homo-

topy operator [70]:

ωinv[δ1Φ, δ2Φ; Φ] = −1

2
Inδ1Φ

(
δ2Φi δL

δΦi

)
− (1↔ 2), (A.12)

InδΦ ≡
(
δΦi ∂

Φi
,µ

− δΦi∂ν
∂

Φi
,νµ

+ δΦ,ν
∂

∂Φ,νµ

)
∂

∂dxµ
.

The invariant presymplectic form only depends on the equations of motion of the La-

grangian and is therefore independent on the addition of boundary terms in the action.

This presymplectic structure differs from the Lee-Wald presymplectic structure by a specific

boundary term E

ωinv[δ1Φ, δ2Φ; Φ] = ωLW[δ1Φ, δ2Φ; Φ] + dE[δ1Φ, δ2Φ,Φ], (A.13)

where E is given by [33, 50]

E[δ1Φ, δ2Φ,Φ] = −1

2
In−1
δ1Φ Θ[δ2Φ,Φ]− (1↔ 2). (A.14)

Here, Θ[δΦ,Φ] is defined as InδΦL, which agrees with the Lee-Wald prescription and An-

derson’s homotopy operator for a n− 1 form is given for second order theories by

In−1
δΦ ≡

(
1

2
δΦi ∂

∂Φi
,ν

− 1

3
δΦi∂ρ

∂

∂Φi
,ρν

+
2

3
δΦi

,ρ

∂

∂Φi
,ρν

)
∂

∂dxν
. (A.15)

The identity (A.13) follows from [δ, IpδΦ] = 0 and the equalities

0 6 p < n : Ip+1
δΦ d+ dIpδΦ = δ, (A.16)

p = n : δΦi δ

δΦi
+ dInδΦ = δ. (A.17)

The presymplectic structure evaluated on the field transformation generated by the

(possibly field-dependent) vector field χ, ωinv[δ1Φ, δχΦ; Φ], is defined from a contraction as

ωinv[δ1Φ, δχΦ; Φ] = (∂(µ)δχΦ)
∂

δ2Φi
(µ)

ωinv[δ1Φ, δ2Φ; Φ]. (A.18)

It then follows from (A.13) that

ωinv[δΦ, δχΦ; Φ] = ωLW[δΦ , δχΦ ; Φ] + dE[δΦ, δχΦ,Φ]. (A.19)

Inserting (A.8) from the above analysis, we find

ωinv[δΦ , δχΦ ; Φ] ≈ dkBBχ [δΦ; Φ] (A.20)

where kBBχ is the Barnich-Brandt surface charge form,

kBBχ [δΦ; Φ] = δ[Φ]Qχ − χ ·Θ[δΦ,Φ] +E[δΦ, δχΦ,Φ]. (A.21)
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After evaluation on a codimension two, spacelike compact surface S, the infinitesimal

charge is

δHχ ≡
∮
S
kBBχ [δΦ; Φ] =

∮
S

(
δ[Φ]Qχ − χ ·Θ[δΦ,Φ] +E[δΦ, δχΦ,Φ]

)
. (A.22)

This formula is identical to the standard Barnich-Brandt formula, which is therefore valid

even when χ has an implicit field dependence.

The Barnich-Brandt surface charge form can be alternatively defined as kBBχ [δΦ; Φ] =

In−1
δΦ Sχ[Φ] where Sχ is the on-shell vanishing Noether current defined earlier. Here the

formalism requires that the homotopy operator only acts on the explicit field dependence in

Sχ[Φ] but not on the possible implicit field dependence in χ. Otherwise the commutation

relations (A.16) would not be obeyed. (Also, if the operator In−1
δΦ acts anyways on the field-

dependence in χ, the resulting terms will vanish on-shell by definition of Sχ[Φ].) One can

then show that this definition is equivalent on-shell to kBBχ [δΦ; Φ] = In−1
χ ωinv[δΦ , δχΦ ; Φ]

where the homotopy operator In−1
χ obeys dIn−2

χ + In−1
χ d = 1 [33, 50]. For the purposes of

this homotopy operator, χ is considered as a field by itself and the implicit field dependence

in Φ is irrelevant. One always obtains the same expression (A.21).

A special feature of the cohomological formalism is that the presymplectic form is not

identically closed in the sense that

δ
[Φ]
1 ωinv[δ2Φ, δ3Φ,Φ] + (2, 3, 1) + (3, 1, 2) = d

[
δ

[Φ]
1 E[δ2Φ, δ3Φ,Φ] + (2, 3, 1) + (3, 1, 2)

]
is a boundary term, not zero. A prerequisite in order to have a well-defined charge algebra

is that in the phase space∮ (
δ

[Φ]
1 E[δ2Φ, δχΦ,Φ] + δ

[Φ]
2 E[δχΦ, δ1Φ,Φ] + δχE[δ1Φ, δ2Φ,Φ]

)
= 0. (A.23)

This condition will be obeyed for the phase spaces considered here.

In 3d Einstein theory, the charges are given explicitly by

kEinstein
χ =

√
−g

8πG
(dn−2x)µν

{
χν∇µh− χν∇σhµσ + χσ∇νhµσ +

1

2
h∇νχµ − hρν∇ρχµ

+
α

2
hσν(∇µχσ +∇σχµ)

}
, (A.24)

where α = 0 according to the definition of Iyer-Wald and α = +1 according to the definition

by Barnich-Brandt. Here (dn−2x)µν = 1
2εµναdx

α in 3 dimensions. The last prescription also

coincides with the one of Abbott-Deser [71]. In the case of Killing symmetries, there is no

difference between the Iyer-Wald and Barnich-Brandt or Abbott-Deser charges. However,

there is a potential difference for symplectic symmetries.

Equations (A.8) or (A.20) relates the charges computed on different surfaces. Consider

the infinitesimal charges (A.10) or (A.22) evaluated on two different codimension two,

spacelike compact surface S1 and S2. Denote a surface joining these two by Σ. Then

taking the integral of (A.8) or (A.20) over Σ and using Stokes’ theorem, one obtains

δHχ

∣∣∣
S2

− δHχ

∣∣∣
S1

=

∫
Σ
ω[δΦ , δχΦ ; Φ]. (A.25)
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Killing symmetries (δχΦ ≈ 0) or symplectic symmetries (ω[δΦ , δχΦ ; Φ] ≈ 0, δχΦ 6= 0)

therefore lead to conserved charges.

A.2 Integrability of charges

In order the charge perturbation defined in (A.10) or (A.22) to be the variation of a finite

charge Hχ[Φ] defined over any field configuration Φ connected to the reference configuration

Φ̄ in the phase space, it should satisfy integrability conditions. More precisely, integrability

implies that the charges defined as Hχ =
∫ Φ

Φ̄ δHχ along a path γ over the phase space does

not depend upon γ. In the absence of topological obstructions in the phase space, it

amounts to the following integrability conditions

I ≡ δ1δ2Hχ − δ2δ1Hχ = 0. (A.26)

which can be conveniently written as

I ≡ δ[Φ]
1 δ2Hχ + δ2Hδ1χ − (1↔ 2) = 0. (A.27)

Using (A.22) in the first term we note that the Noether charge term drops by anti-

symmetry in (1↔ 2). We obtain

I =

∮ (
δ

[Φ]
1 E[δ2Φ, δχΦ; Φ]− χ · δ[Φ]

1 Θ[δ2Φ; Φ]
)

+ δ2Hδ1χ − (1↔ 2). (A.28)

We can then use the cocyle condition (A.23) to obtain

I =

∮ (
−δχE[δ1Φ, δ2Φ; Φ]− χ · δ[Φ]

1 Θ[δ2Φ; Φ] + χ · δ[Φ]
2 Θ[δ1Φ; Φ]

)
+ δ2Hδ1χ − δ1Hδ2χ.

We can replace δχ by δΦ
χ or Lχ in the first term. With the help of Cartan identity Lχ =

dχ · +χ · d and using the definition of the invariant presymplectic form (A.13) we finally

obtain

I = −
∮
χ · ωinv[δ1Φ, δ2Φ; Φ]−

(
δ1Hδ2χ − δ2Hδ1χ

)
= 0 . (A.29)

The term in parentheses arises due to the field dependence of vectors.

By dropping the E term, one obtains the integrability condition for field dependent

vectors according to the definition of charges of Iyer-Wald. The result is simply

I = −
∮
χ · ωLW[δ1Φ, δ2Φ; Φ]−

(
δ1Hδ2χ − δ2Hδ1χ

)
= 0 . (A.30)
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