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1 Introduction

NonAbelian vortices — vortex solutions carrying nonAbelian continuous orientational ze-

romodes {Bi} — have been extensively investigated in the last decade, revealing many

interesting features arising from the soliton and gauge dynamics, topology, and global

symmetries [1]–[5]. Typically they occur in a system in the color-flavor locked phase, i.e.,

systems in which the gauge symmetry is broken by a set of scalar condensates that, how-

ever, leave a color-flavor diagonal symmetry intact. Color-flavor locked systems appear to
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be quite ubiquitous in Nature. Standard QCD at zero temperature exhibits some charac-

teristic features of this sort, as can be seen in a hidden-symmetry perspective [6]. They

occur in the infrared effective theories of many N = 2 supersymmetric theories softly

broken to N = 1, and may carry important hints about the mechanism responsible for

quark confinement [7]. In particular they could shed light on the mysteries of nonAbelian

monopoles. They are realized in high-density QCD in the color superconductor phase [8],

which may well be realized in the interiors of neutron stars.

Other fascinating aspects associated with these vortex solutions appear when further

gauge fields are introduced, coupled to part or all of the color-flavor diagonal global sym-

metry. We shall refer to these systems as “gauged nonAbelian vortices” in this paper.

All sorts of global effects, such as nonAbelian Aharonov-Bohm phases and scattering, an

obstruction to part of the “unbroken” gauge symmetry, nonAbelian statistics under the

exchange of parallel vortices, Cheshire charges, etc. make their appearance, depending on

the vortex orientations, {Bi}. These phenomena have been investigated in various gen-

eral contexts [9]–[13] with gauge symmetry breaking, G → H, with π1(G/H) 6= 1, and

more recently, in the context of concrete model, e.g., in a U0(1)× SUl(N)× SUr(N) gauge

theory, with scalar fields in the bifundamental representation of the two SU(N) gauge

groups [14]–[16].

A sort of paradox or dilemma seems to arise, however. One of the most important,

characteristic features of nonAbelian vortices is their collective dynamics. Quantum fluc-

tuations of the vortex internal orientational modes are described by various 2D (vortex

worldsheet) sigma models, such as CPN−1.1 The CPN−1 interactions are asymptotically

free: the vortex orientation {Bi} fluctuates strongly at large distances. As a result, all of

the global topological effects mentioned above would be washed away.

Let us remind ourselves that a characteristic feature of a color-flavor locked vacuum is

the fact that all massless Nambu-Goldstone particles are eaten by the broken gauge fields,

all of which become massive, maintaining mass degeneracy among them. No massless

scalars or gauge bosons survive in the bulk. In the vortex sector, the only massless modes

are those of the vortex orientational zeromodes, which are a kind of Nambu-Goldstone ex-

citation, confined within the vortex worldsheet. In the case of gauged nonAbelian vortices,

instead, some combinations of the gauge bosons remain massless in the 4D bulk, and their

coupling to the fluctuations of the 2D zeromodes {Bi} are expected to affect significantly

the dynamics of the latter. Some preliminary studies of these issues have been done [14, 15].

It is the purpose of the present article to examine more thoroughly the effects of the

unbroken 4D gauge interactions on the gauged nonAbelian vortex collective dynamics in

the 2D vortex worldsheet. A nontrivial task is that of disentangling the effects of the

extra gauge fields on the static vortex configuration itself from those of residual dynamical

effects of the 4D massless gauge modes and their couplings to the massless 2D orientational

modes. These problems will be worked out systematically below.

1This occurs in a model with U0(1)×SU(N) gauge theory. Similar models, involving color-flavor locked

vacua with SO(2N) or USp(2N) gauge symmetry, yield sigma models with target Hermitian symmetric

spaces, such as SO(2N)/U(N), USp(2N)/U(N), etc.
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This paper is organized as follows. In section 2 the model and the main properties

of the vortex solution are presented together with a brief review of the associated global

effects. The closely related question of topological and geometric obstructions is reviewed,

generally and in our concrete model, in section 3. Vortex fluctuations and the induced

excitations of the 4D Yang-Mills modes are worked out in section 4 and section 5. Section 6

is dedicated to clarifying the connection between the global, topological aspects of the

gauge-vortex system and the dynamics of the zeromode excitations of the vortex. Finally,

in section 7 we examine the apparent discontinuity in physics in the limit in which one of

the nonAbelian gauge factors, SUr(N) (or SUl(N)), is decoupled. It is argued that it is

essentially due to the noncommutativity of the two limits, gr → 0 and R → ∞, where R

is an infrared cutoff introduced to regularize the energy divergences caused by the vortex

fluctuations. Appendix A deals with the peculiarity of the solution of Gauss’s equations in

the particular gr = 0 case. Appendix B proves the uniqueness of the Ansatz eq. (4.4) used

to solve Gauss’s equations in section 4 and section 5.

2 The model, vortex solutions and AB effect

Even though our study can be generalized to the case of an arbitrary gauge group of

the type

G = U0(1)×GL ×GR ,

we shall choose, for concreteness, to work with GL = GR = SU(N). The matter sector

consists of a complex scalar field Q in the bifundamental representation of the two SU(N)

factors, with unit charge with respect to U0(1).

2.1 Vortex solutions

We shall work with a BPS-saturated action2

L = −1

2
Tr(F (l)

µνF
(l)µν)− 1

2
Tr(F (r)

µν F
(r)µν)− 1

4
fµνf

µν + Tr(DµQ
†DµQ)

− g2
0

2
(TrQ†Q− v2

0)2 −
g2
l

2
(Tr taQQ†)2 − g2

r

2
(Tr taQ†Q)2, (2.1)

where v2
0 = Nξ and the covariant derivative is

DµQ = ∂µQ− iglA(l)
µ Q− ig0aµQ+ igrQA

(r)
µ . (2.2)

The scalar-field condensate in the vacuum takes the form

〈Q〉 =
√
ξ 1N , (2.3)

leaving a left-right diagonal SU(N) gauge group unbroken. The fields

Aµ =
1√

g2
r + g2

l

(grA
(l)
µ + glA

(r)
µ ) , (2.4)

2This is, after adding the appropriate adjoint scalar fields (not relevant for the vortex solution hence set

to zero), the truncated bosonic sector of a N = 2 supersymmetric theory.
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remain massless in the bulk, whereas the orthogonal combination

Bµ =
1√

g2
r + g2

l

(glA
(l)
µ − grA(r)

µ ) (2.5)

and the U(1) field aµ, become massive.

The nontrivial first homotopy group

π1

(
U0(1)× SUL(N)× SUR(N)

SUL+R(N)

)
= Z , (2.6)

means that the system admits stable vortices, which are our main interest below. The

vortex solutions can be found by the BPS completion of the expression for the tension (for

configurations depending only on the transverse coordinates x and y):

T =

∫
d2x

{
1

2

(
f12 + g0(TrQ†Q−Nξ)

)2
+ Tr

[(
F

(r)
12 − gr t

a Tr(Q†Qta)
)2

+
(
F

(l)
12 + gl t

a Tr(Q† taQ)
)2]

+ Tr |D1Q+ iD2Q|2 + g0N ξ f12

}
. (2.7)

The BPS equations are accordingly:

D1Q+ iD2Q = 0 , f12 + g0(TrQ†Q−Nξ) = 0 , (2.8)

F
(r)
12 − gr t

a Tr(Q†Qta) = 0 , F
(l)
12 + gl t

a Tr(Q† taQ) = 0 . (2.9)

For a minimal vortex with a fixed orientation in color-flavor, for example (1,1N−1), one

can take the scalar field Ansatz to be3

Q =

(
eiθQ1(r) 0

0 Q2(r) 1N−1

)
, (2.10)

whereas the nonAbelian and Abelian gauge fields can be written in the diagonal form

ai = − 1

g0

εijxj
r2

1− f
N

; (2.11)

A
(l)
i = − gl

g′2
εijxj
r2

1− fNA

NCN
TN2−1 ; (2.12)

A
(r)
i =

gr
g′2

εijxj
r2

1− fNA

NCN
TN2−1 , (2.13)

where

TN2−1 ≡ CN

(
N − 1 0

0 −1N−1

)
, CN ≡

1√
2N(N − 1)

, (2.14)

and

g′ ≡
√
g2
l + g2

r . (2.15)

3We consider the minimal winding vortex below; the generalization of the formulas below to higher-

winding solutions is straightforward.
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The boundary conditions are

f(0) = fNA(0) = 1 , f(∞) = fNA(∞) = 0 ,

Q1(∞) = Q2(∞) =
√
ξ . (2.16)

The BPS equations (2.8)–(2.9) then show that the profile functions satisfy

f ′

r
− g2

0N
[
Q2

1 + (N − 1)Q2
2 −Nξ

]
= 0 , (2.17)

f ′NA

r
− g′2Q

2
1 −Q2

2

2
= 0 , (2.18)

rQ′1 −Q1

(
(N − 1)fNA + f

N

)
= 0 , rQ′2 −Q2

(
−fNA + f

N

)
= 0 , (2.19)

which can be solved by numerical methods. These equations are identical to those found

earlier for the global nonAbelian vortex, i.e., for gr = 0 or gl = 0, except for the fact that

the gauge fields compensating the scalar winding energy ∂Q/∂θ are now shared between

the left and right SU(N) fields. In other words, the static vortex profile remains basically

unmodified as compared to the standard nonAbelian vortex (and for that matter, the ANO

vortex), with a well-defined width, ∼ 1√
ξ
. The vortex tension is given by (see eq. (2.7))

T = 2πξ . (2.20)

2.2 The Aharonov-Bohm effect

Whenever the (untraced) Wilson loop in some representation of a gauge field around the

vortex is not equal to unity, particles belonging to that representation are transformed

when encircling the vortex. The transformation is given by the (untraced) Wilson loop.

This is called the Aharonov-Bohm (AB) effect.

These Wilson loops are easily calculated from eqs. (2.11)–(2.13)

lim
r→∞

exp

(
ig0

∮
a

)
= exp

(
2πi

N
1N

)
; (2.21)

lim
r→∞

exp

(
igl

∮
A(l)

)
= exp

(
2πi

g2
l

g′2

(
1− 1

N 0

0 − 1
N 1N−1

))
; (2.22)

lim
r→∞

exp

(
igr

∮
A(r)

)
= exp

(
−2πi

g2
r

g′2

(
1− 1

N 0

0 − 1
N 1N−1

))
. (2.23)

To obtain the AB phase given a representation of G is now quite straightforward. For

example, consider the scalar field Q, which is of charge 1 under U(1)0, transforms in the

fundamental of SU(N)l and the antifundamental of SU(N)R. The corresponding AB phase

is simply the product of (2.21) and (2.22) divided by (2.23), which is the identity, so Q

does not transform. This is an important consistency check because the Q field condenses

and any condensate must be single valued.

The AB phase can be calculated using the gauge fields in the ultraviolet A(l) and A(r)

basis or in the mass eigenstate A and B basis. Of course the two answers must agree. To use
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the second basis, one needs the corresponding Wilson loops, which are the exponentials of

lim
r→∞

i
glgr
g′

∮
A = lim

r→∞
i
glgr

g′2

∮ (
grA

(l) + glA
(r)
)

= 0N , (2.24)

lim
r→∞

ig′
∮
B = lim

r→∞
i

∮ (
glA

(l) − grA(r)
)

= 2πi

(
1− 1

N 0

0 − 1
N 1N−1

)
. (2.25)

The fact that
∮
A vanishes implies that the AB phase is independent of the A charge, it

only depends on the charge under the massive gauge field B and U(1)0.

Rewriting (2.2) at spatial infinity as

DµQ = ∂µQ− ig′BµQ− ig0aµQ , (2.26)

one sees that in the mass basis Q has charge 1 under U(1)0 and also under B. Therefore

upon circumnavigating a vortex at large radius, Q is rotated by the exponential of

lim
r→∞

∮
i(g0a+ g′B) = 2πi

(
−1 0

0 0N−1

)
. (2.27)

This exponential is unity and so again we recover the fact that Q is invariant. The in-

variance of Q, which is necessary for the condensate to be well-defined, imposes that the

matrix in eq. (2.27) is integral. This in fact is the quantization condition on the nonAbelian

vortex charge. In the low energy gauge theory it is the topological condition that the flux

of a Higgsed gauge field is quantized. In particular, it is preserved by any continuous

deformation of the vortex.

2.3 Vortex zeromodes (degeneracy)

The solution (2.10) further breaks the unbroken color-flavor diagonal H = SUl+r(N)

group as

H = SU(N)→ H̃ = U(N − 1) , (2.28)

implying the existence of degenerate solutions, corresponding to the coset,

H/H̃ = SU(N)/U(N − 1) ∼ CPN−1. (2.29)

The general solutions are related to (2.10) by global SUl+r(N) transformations,

{Q,A(l)
i , A

(r)
i } → U {Q,A(l)

i , A
(r)
i }U

†, (2.30)

i.e.,

Q(B) = U(B)

(
eiθQ1(r) 0

0 Q2(r) 1N−1

)
U †(B) , (2.31)

A
(l, B)
i = U(B)A

(l)
i U †(B) , A

(r,B)
i = U(B)A

(r)
i U †(B) , (2.32)

where the rotation matrix

U =

(
X−

1
2 −B†Y −

1
2

X−
1
2B Y −

1
2

)
, X ≡ 1 +B†B , Y ≡ 1N−1 +BB†, (2.33)
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(known as the reducing matrix) depends on the (N − 1)-component complex vector B, the

inhomogeneous coordinates of CPN−1. The tension (2.20) obviously does not depend on

the internal orientation {Bi}.
That the vortex (internal) moduli space is exactly a CPN−1 in our model has been

verified recently in [16, 17] by studying these vortex solutions in the large-winding limit,

where vortex configurations can be analytically determined, and accordingly all zero modes

can be determined by following the analysis à la Nielsen-Olesen-Ambjorn [19]–[21].

In contrast with the standard nonAbelian vortices (which appear in theories with

gr = 0 or gl = 0), here the gauged vortex solutions with distinct moduli {Bi} are related

by global part of the SU(N) gauge transformations. The moduli can be promoted to

collective coordinates if they are allowed to depend on z and t. The orthogonal parts of the

collective coordinates can combine with each other, or with the (z, t)-independent parts

of the fields, in gauge-invariant combinations. As a result the corresponding oscillations

do correspond to physical degrees of freedom, which are eaten in a kind of mini-Higgs

mechanism.

Even in the case of vortices with constant {Bi}, the relative orientations of multi-

ple vortex systems do have observable effects and hence are physical [12, 13, 16, 17].

Consider two or more parallel vortices with different orientations, {Bi}. Generalizing

eqs. (2.21)–(2.23), particles carrying (for instance) fundamental charges with respect to

G = U0(1) × SUL(N) × SUR(N), will experience various nonAbelian Aharonov-Bohm

(AB) effects (“gauge transformations”) when encircling one of them, ψ → Γψ,

Γ(B) =

e 2πi
N , U(B)

 e
2πi

g2l
g′ 2

N−1
N

e
−2πi

g2l
g′ 2

1
N 1N−1

U(B)†,

U(B)

 e
−2πi

g2r
g′ 2

N−1
N

e
2πi

g2r
g′ 2

1
N 1N−1

U(B)†

 . (2.34)

If a particle is in a generic representation of G, it will experience an AB effect similar to

the above but with appropriate charge and generators.

If there are multiple vortices with orientations {B1, B2, . . .}, various closed paths en-

circling these vortices give rise to nonAbelian AB effects: the gauge transformations expe-

rienced by a particle depend on the order in which various vortices are circumnavigated.

These and many other beautiful features related to such systems have been discussed

in [12, 13, 16, 17].

3 Topological and geometric obstructions

In the vacuum our scalar condensate breaks the gauge symmetry G down to a smaller

gauge group H. In the presence of a vortex the symmetry is broken yet further. However,

far from the vortex, the symmetry group H is restored. There are natural gauges, such

as the regular gauge used above, in which the scalar condensate is position-dependent and
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therefore so is the embedding of H in G. The AB effect potentially makes the embedding

of H yet more complicated, as elements of H do not generally commute with the AB phase.

3.1 Topological obstructions in general

In various contexts it is useful to define a global symmetry corresponding to the gauge

symmetryH. The fact that the embedding of H inG is, in many gauges, position dependent

means that such a global, continuous definition of the generators of H may not exist for

all values of the azimuthal angle θ.

Indeed there are many well-known cases where such an obstruction is known to exist.

For example, consider nonAbelian monopoles. These are ’t Hooft-Polyakov monopoles

which preserve a nonAbelian symmetry group H which is a subgroup of the ultraviolet

gauge group G. Consider a sphere S2 which links a monopole. It is known [22, 23] that it

is not possible to continuously define a set of generators of H on this S2. The obstruction

arises as follows. The connection defines a trivial G gauge bundle on S2, as the gauge

field is continuous and globally defined inside of the sphere. The gauge symmetry G is

broken to H, and so one obtains an H subbundle of the G bundle. However the H bundle

is nontrivial. Indeed, it is the nontriviality of the H bundle that gives ’t Hooft-Polyakov

monopoles their topological charge.

This nontrivial bundle poses no problem for the existence of the monopole. H can be

defined on northern and southern hemispheres of the S2 and these hemispheres are related

by a gauge transformation which corresponds to the generator of π1(H). However when

H is nonAbelian, this gauge transformation acts nontrivially on any set of generators of

H and so implies that no set of generators of H can be extended over the S2. This means

that no global H symmetry exists. Colored dyons would be charged under such a global

H symmetry, and so the topological obstruction to a global definition of H has the very

physical consequence that no colored dyons exist.

A similar obstruction can occur in the case of vortices, as was discovered in ref. [24, 25]

which introduced the Alice string. Again a symmetry group G is broken to H. In this case

H = U(1). The vortex is linked by a circle S1 and so the high energy theory is described

by a trivial G bundle on S1 and the low energy theory by an H bundle on S1. Again the

H bundle is nontrivial. As the base space of the bundle is just a circle, the bundle can be

trivialized on θ ∈ (0, 2π) and so it is entirely characterized by the transition function when

passing θ = 2π.

The Alice string is particularly exotic because a particle encircling the Alice string

negates its electric charge. Whenever particles encircling a vortex change the representation

of H under which they transform, the H bundle is not principle. Nonprinciple U(1) bundles

have transition functions in Iso(U(1)), the group of isometries of U(1). So each U(1) bundle

corresponds to an element of Iso(U(1)). This is essentially an infinite dihedral group, it

consists of multiplication by elements in U(1) and the inversion of an element in U(1).

Group multiplication by a fixed element of U(1) yields the AB effect. The total space of

the U(1) bundle is a torus and the multiplication by a fixed element simply means that

the modulus of this torus is not purely imaginary, nonetheless the bundle is trivial. On the

other hand, the Alice string corresponds to the bundle in which the U(1) fiber is inverted,

– 8 –
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corresponding to the negation of electric charge, when circumnavigating the vortex. The

total space of the bundle is the Klein bottle, it is not homeomorphic to the torus and the

bundle is not trivial. In particular, H cannot be globally defined, since the generator of

the Lie algebra of H changes sign when circumnavigating the circle.

How can we classify such topological obstructions to the global definition of H? The

obstruction was a consequence of the nontrivial topology of the H bundle over S1 and

indeed an obstruction implies a nontrivial H bundle although the converse is not necessarily

true. These bundles are classified geometrically by an element of Iso(H), the choice of

monodromy when winding around the vortex. In the case of gauged nonAbelian vortices,

no particles change representations when encircling the vortex so the only elements of

Iso(H) which appear as monodromies are multiplication by elements of H. Therefore our

bundles over S1 are in one to one correspondence with elements of H.

Now for a topological obstruction we only are interested in an element of H up to

a continuous deformation. Any two elements of H in the same connected component of

H are related by a continuous deformation and so topologically H bundles over S1 are

classified by π0(H), the set of connected components of H. In particular, if the AB phase

represents the trivial class in π0(H) then there is no topological obstruction to a global

construction of H.

Similarly in the case of monopoles, nontrivial H bundles over S2 are classified by π1(H),

although, as the original ’t Hooft-Polyakov monopole case illustrates, a nontrivial bundle

is not sufficient for a topological obstruction to the existence of a dyon, it is also necessary

that the transition functions act nontrivially on the generators of the Lie algebra of H.

3.2 Topological obstruction in our case?

To determine whether or not there is a topological obstruction in our case, we will first

need a more careful global definition of G and H, paying particular attention to torsion

elements, which are often responsible for topological obstructions. There are three kinds of

gauge fields, the photon carrying U(1)0 and the gluons carrying the left and right SU(N).

Thus the gauge group could in principle be as large as U(1)× SU(N)l× SU(N)r. However

the gauge symmetries which leave all of the fields invariant have no physical effect and

so, to avoid confusion, should be quotiented out of the total gauge group. There are four

kinds of fields. The three gauge fields and the scalar field Q. All three gauge fields leave

U(1)0 invariant. The left gauge fields SU(N)l are invariant under U(1)0×SU(N)r and also

under their own center ZlN ⊂ SU(N)l. Similarly the right gauge fields are invariant under

U(1)0 × SU(N)l × ZrN .

If these were the only fields, the total gauge symmetry would be SU(N)r/ZrN ×
SU(N)l/ZlN . However the scalar field Q is charge one under U(1)0, transforms in the funda-

mental of SU(N)l and the antifundamental of SU(N)r. This means that SU(N)l×SU(N)r
acts freely on Q except for the central ZN ’s. If one acts on Q with eij/N ∈ SU(N)l and

eik/N ∈ SU(N)r then the total effect will be to multiply Q by ei(j−k)/N . Therefore one

must quotient the gauge symmetry by the ZN diagonal symmetry of ZlN × ZrN , in other

words by the elements for which j = k. Including U(1)0 makes the story slightly more

complicated. Again U(1)0 generally acts freely on Q except for the Nth roots of unity. If
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one acts on Q by eim/N ∈ U(1)0 as well as the central elements of SU(N)l × SU(N)r as

above, then

Q −→ ei(m+j−k)/NQ (3.1)

and so Q is only invariant if

m+ j = k modN . (3.2)

Therefore for any pair (j,m) ∈ Z2
N there exists a k, given by (3.2), such that the corre-

sponding gauge action leaves Q invariant. In conclusion, the total gauge group G needs to

be quotiented by this unphysical Z2
N , which leaves all of the fields in the theory invariant.

We then conclude

G =
U(1)0 × SU(N)l × SU(N)r

Z2
N

. (3.3)

If in addition one includes matter transforming in the fundamental of SU(N)l or SU(N)r
then only a single ZN should be quotiented, while with the inclusion of both there would

be no quotient at all.

What about H? This is the symmetry group left invariant by a vacuum value of Q.

This is not invariant under any rotation, so the U(1)0 is eliminated. Furthermore, as Q

is proportional to the identity, the SU(N)l and SU(N)r elements must be equal, leaving a

single SU(N)l+r. The central ZN ⊂ SU(N)l+r consists of transformations such that j = k

and m = 0 so they lie in the Z2
N denominator in G and so need to be quotiented out,

leaving the projective unitary group

H =
SU(N)l+r

ZN
. (3.4)

Note that if matter transforming under only SU(N)l and/or SU(N)r is included then this

ZN is no longer quotiented out of G and so H = SU(N)l+r. In either case, so long as all

fields have integral U(1)0 charge, H is path connected and so π0(H) = 0. Therefore no H

bundle over the circle can be nontrivial, so there is no topological obstruction to globally

defining H.

In fact, it is not difficult to explicitly construct elements of H at arbitrary θ. H is the

symmetry group at large r, where eq. (2.10) reduces to

Q =
√
ξ

(
eiθ 0

0 1N−1

)
, (3.5)

corresponding to the gauge in which the modulus B vanishes. Elements of H must preserve

this form of Q. Given an element M of SU(N), one can construct an element of H as follows.

Let the U(1)0 transformation be trivial. Let the SU(N)l transformation be M and let the

SU(N)r transformation be

ur = exp

(
− iθTN2−1

NCN

)
M † exp

(
iθTN2−1

NCN

)
. (3.6)

This transformation preserves Q because Q times the first factor in the right hand side

of (3.6) is proportional to the identity.
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Summarizing, we have observed that π0(H) = 0 implies that all H gauge bundles over

a circle are trivial. Therefore ours must be trivial and so no topological obstruction can

exist to a global definition of H. However if we allow matter with nonintegral U(1)0 charges

then G and H will change, becoming covers of the definitions above. In such a case π0(H)

is no longer necessarily trivial. Nonetheless as U(1)0 is abelian we do not expect this to

lead to a topological obstruction in the definition of H.

What does this all mean physically? In the monopole case, the fact that the ’t Hooft-

Polyakov monopole has no obstruction to a global definition of H but its nonAbelian

generalization does implies that the former can be modified to carry the electric charge but

the latter cannot. In the present case, the lack of a topological obstruction to the definition

of H means that the color electric charge of a perturbed vortex solution is well defined.

This color electric charge can be calculated by simply integrating the current multiplied

by the H generators described in (3.6) and traced.

3.3 Geometric obstruction

We have seen that there is no topological obstruction to the global definition of H at all

azimuthal angles θ. However the nonAbelian Aharonov-Bohm effect yields a closely related

phenomenon: a geometric obstruction. It is not possible to globally construct generators

of H which are covariantly constant with respect to the gauge field.

Recall that the scalar fields in the regular gauge have a nontrivial winding at spatial

infinity

〈Q〉(θ) =
√
ξ U

(
eiθ

1

)
U−1 =

√
ξ ei

θ
N e

iζl
θ

NCN
T

(U)

N2−1 · 1 · eiζr
θ

NCN
T

(U)

N2−1 , (3.7)

where the rotated SU(N) generator is given by T
(U)
N2−1

= U TN2−1 U
†.4

A covariantly constant embedding of the unbroken symmetry group H — the little

group of 〈Q〉(θ) — inside the original symmetry group G becomes θ dependent, and as a

result some of the generators are not globally defined.

Let us rewrite (3.7) as

〈Q〉(θ) = u(θ)〈Q〉(0) , (3.8)

where u(θ) can be read off from (3.7) for the various simple factors in G:

u1(θ) = ei
θ
N , ul(θ) = e

iζl
θ

NCN
T

(U)

N2−1 , ur(θ) = e
−iζr θ

NCN
T

(U)

N2−1 . (3.9)

This rewriting, equation (3.8), is more adequate for a discussion valid in general gauge

symmetry breaking systems, G→ H, with u(θ) ∈ G, u(0) = 1.

In such systems, in order for the energy
∫
|DiQ|2 to be finite, the gauge field must

approach Ai = −i∂iu(θ)u(θ)−1 asymptotically. That is, u(θ) is determined by integrating

the gauge field

u(θ) = P ei
∫ θ
0 A·dl, (3.10)

where the integral is computed along a circle at radial infinity.

4We also recall that ζl ≡ g2l
g2
l
+g2r

, ζr ≡ g2r
g2
l
+g2r

.
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Let T a be a basis of generators for Lie(G). Define the Lie algebra automorphism

T a → T a(θ) = u(θ)T au(θ)−1. (3.11)

A covariantly constant embedding of the unbroken symmetry group H inside G varies

with θ:

T a(θ)〈Q〉(θ) = 0 if Ta 〈Q〉(0) = 0 . (3.12)

In general, after a full circuit

T a(2π) = u(2π)T au(2π)−1 = OabT b, (3.13)

where O must be a real orthogonal matrix to preserve Hermiticity and normalization of the

generators with respect to the invariant inner product (T a, T b) := Tr(T aT b). By a basis

change in Lie(H) O can always be diagonalized (every orthogonal matrix is unitarily diag-

onalizable over C). The diagonal basis will involve in general complex linear combinations

of the original generators. However, since O is real its eigenvalues come in conjugate pairs

λ and λ∗ and corresponding eigenvectors v and v†, i.e., v+v† and i(v−v†). In such a basis

T a(2π) = e2πiξaT a. (3.14)

The covariantly constant generators for which ξa = 0 are globally well-defined and generate

the unbroken symmetry group H̃ ⊂ H. The generators for which ξa 6= 0 are not.

4 Zeromode excitations

Let us now allow the vortex orientation zeromodes {Bi} to fluctuate. If {Bi} are allowed

to depend only on {z, t} the field equations (2.8)–(2.9) containing the x and y derivatives

and the corresponding gauge fields components are unmodified. The other field equations

however are modified, and in order to describe the zero mode excitations one must take

into account the correct response of the gauge fields to the {z, t} modulation of the vortex

orientation. The new gauge components, induced by the the nonAbelian Gauss and Biot-

Savart effects, satisfy the following equations of motion:

DiF (l)
iα = iglT

a Tr
[
Q†T aDαQ− (DαQ)†T aQ

]
(4.1)

and

DiF (r)
iα = −igrT a Tr

[
T aQ†DαQ− (DαQ)†QT a

]
(4.2)

(α = z, t; i = x, y).

It turns out that the form of the new gauge field components consistent with these

equations is given by the following Ansatz

aα = 0 , (4.3)

A(l)
α = ρlWα + ηlVα , A(r)

α = ρrWα + ηrVα , (4.4)
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where

Wα ≡ i ∂αT (U)T (U), Vα ≡ ∂αT (U),

T (U) = UTU †, T =

(
1

−1N−1

)
.

(4.5)

The profile functions ρ(r, θ) and η(r, θ), as we are going to see next, satisfy the equations

that follow from the insertion of the Ansatz into equations (4.1) and (4.2).

For the standard, ungauged, nonAbelian vortices (with gr = 0 or gl = 0), it was

convenient to develop the effective action using the vortex solution in the singular gauge,

the one in which the scalar fields do not wind [1]. For the gauge nonAbelian vortex

instead the use of the singular gauge is somewhat subtle, as the gauge fields in such a

gauge develops Dirac sheet singularities [16]. Below we shall work in the regular gauge,

eq. (2.10)–eq. (2.13). We shall also see that result obtained for the ungauged vortex in the

singular gauge is correctly reproduced.

The price that we pay for using the regular gauge is that the equations of motion take a

more complicated form as the background and quantum fields depend upon the azimuthal

angle. The color structure of the gauge fields (4.4) is also richer than in the case of the

standard nonAbelian vortices, where the only color structure (in the singular gauge) was

Wα = i ∂αT
(U)T (U) = 2i U (U †∂αU)⊥U

†, (4.6)

where

(U †∂αU)⊥ ≡
1

2
{U †∂αU − T U †∂αU T} (4.7)

is the Delduc-Valent projection [18] on the Nambu-Goldstone direction in the tangent space.

The form (4.6) means that the massless excitations correspond to the Nambu-Goldstone

modes, whose direction must be kept orthogonal to the “rotating background”, UQU † [5].

The more general form of the gauge field Ansatz (4.4) contains an additional term that

arises from the gauge transformation to the regular gauge (see eq. (4.18) below). The

strongest justification for the Ansatz, however, comes from the fact it allows one to resolve

the color structure of the equations in a closed form (4.1), (4.2).

To lowest order the excitations above the static, constant tension vortex are described

by the effective action

Seff =

∫
dtd3x

[
Tr(F

(l)
iα F

(l) α
i ) + Tr(F

(r)
iα F

(r) α
i ) + Tr |DαQ|2

]
. (4.8)

We neglect here the terms coming from F
(l/r)2
αβ which would generate higher derivative terms

in the effective action; we shall come back later to discuss the validity of this approximation.

By inserting the Ansatz, a straightforward calculation [26] yields

Seff = I
∫
dz dt Tr(∂αT

(U))2, (4.9)
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where (σl ≡ 1 + 2glρl, σr ≡ 1 + 2grρr)

I =

∫
dθ dr r

[
(∂rρl)

2 +
1

r2
(∂θρl)

2 + (∂rηl)
2 +

1

r2
(∂θηl)

2

+

(
gl

2g′2

)2(1−fNA

r

)2

(σ2
l + 4g2

l η
2
l )−

(
gl
g′2

)(
1−fNA

r2

)
(σl∂θηl − 2glηl∂θρl)

+ (∂rρr)
2 +

1

r2
(∂θρr)

2 + (∂rηr)
2 +

1

r2
(∂θηr)

2

+

(
gr

2g′2

)2(1−fNA

r

)2

(σ2
r + 4g2

rη
2
r ) +

(
gr
g′2

)(
1−fNA

r2

)
(σr∂θηr − 2grηr∂θρr)

+
Q2

1 +Q2
2 − 2Q1Q2 cos θ

4

[
(1 + glρl + grρr)

2 + (glηl + grηr)
2
]

+
Q2

1 +Q2
2 + 2Q1Q2 cos θ

4

[
(glηl − grηr)2 + (glρl − grρr)2

]
+Q1Q2 sin θ(grηrσl − glηlσr)

]
,

(4.10)

and ∫
dz dt Tr(∂αT

(U))2 = 8

∫
dz dtX−1∂αB

†Y −1∂αB (4.11)

is the standard CPN−1 sigma model action. The equations for the profile functions ρ and

η can be determined by minimizing I. Alternatively they can be derived directly from the

equations of motion (4.1) and (4.2).

Note that, in spite of the fact that terms with two different color structures Wα =

i∂αT
(U)T (U) and Vα = ∂αT

(U) appear in various contributions, the total action is simply

proportional to Tr(∂αT
(U))2, due to the following identities:

TrW 2
α = TrV 2

α = 4N X−1∂αB
†Y −1∂αB , TrWαVα = 0 . (4.12)

4.1 Equations for ρ and η

By minimizing I with respect to ρr, ηr, ρl and ηl, given the other functions Q1,2, f0, fNA

fixed, one finds the following four coupled equations

1

g2
l

∆ηl −
2

g′2
1− fNA

r2
∂θρl −

(
gl
g′2

)2(1− fNA

r

)2

ηl −
Q2

1 +Q2
2

2
ηl +

Q1Q2 sin θ

2gl
σr

+
Q1Q2 cos θ

gl
grηr = 0 ,

1

g2
l

∆ρl +
2

g′2
1− fNA

r2
∂θηl −

gl
2g′4

(
1− fNA

r

)2

−
(
gl
g′2

)2(1− fNA

r

)2

ρl

−Q
2
1 +Q2

2 − 2Q1Q2 cos θ

4gl
− Q2

1 +Q2
2

2
ρl +

Q1Q2 cos θ

gl
grρr −

Q1Q2 sin θ

gl
grηr = 0 .

(4.13)
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1

g2
r

∆ηr +
2

g′2
1− fNA

r2
∂θρr −

(
gr
g′2

)2(1− fNA

r

)2

ηr −
Q2

1 +Q2
2

2
ηr −

Q1Q2 sin θ

2gr
σl

+
Q1Q2 cos θ

gr
glηl = 0 ,

1

g2
r

∆ρr −
2

g′2
1− fNA

r2
∂θηr −

gr
2g′4

(
1− fNA

r

)2

−
(
gr
g′2

)2(1− fNA

r

)2

ρr

−Q
2
1 +Q2

2 − 2Q1Q2 cos θ

4gr
− Q2

1 +Q2
2

2
ρr +

Q1Q2 cos θ

gr
glρl +

Q1Q2 sin θ

gr
glηl = 0 .

(4.14)

It can be verified that the same equations follow directly from the Gauss equations,

after factoring out the common color structures Wα and Vα.

4.2 Global (gr = 0) nonAbelian vortex

A nontrivial check of the equations found above is provided by the consideration of the

ungauged vortex case. After setting the right gauge coupling to zero gr = 0 and ηr = ρr = 0,

equations (4.13) reduce to (gl ≡ g, ηl ≡ η and ρl ≡ ρ)

∆η − 2
1−fNA

r2
∂θρ−

(
1− fNA

r

)2

η +
Q1Q2 sin θ

2
g − Q2

1 +Q2
2

2
g2η = 0 ,

∆ρ+ 2
1−fNA

r2
∂θη −

1

2g

(
1−fNA

r

)2

−
(

1−fNA

r

)2

ρ− Q2
1 +Q2

2 − 2Q1Q2 cos θ

4
g

−Q
2
1 +Q2

2

2
g2ρ = 0 .

(4.15)

In order to compare them to the equations studied earlier [1]–[5], it is necessary to gauge

transform form the singular to the regular gauge. In the singular gauge the gauge field

A
(s)
α is given by

A(s)
α = ρ(s)Wα . (4.16)

The gauge transformation from the singular to regular gauge is achieved by

u = e
iθT

(U)

N2−1
/NCN . (4.17)

That is:

Aα = uA(s)
α u−1 − i

g
∂αuu

−1 =
1

2g
(cos θ σ(s) − 1)Wα +

1

2g
(sin θ σ(s))Vα , (4.18)

where σ(s) ≡ 1+2gρ(s). Apart from an irrelevant U0(1) transformation eiθ/N , (4.17) is just

a gauge transformation

u = U

(
eiθ 0

0 1N−1

)
U †, (4.19)

which winds the scalar fields once. A useful relation is

TN2−1

NCN
=
N − 2

2N
1N +

T

2
,

T
(U)
N2−1

NCN
=
N − 2

2N
1N +

T (U)

2
. (4.20)
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The profile functions are accordingly transformed as
ρ(s) → ρ =

1

2g
(cos θ σ(s) − 1) ,

η(s)(= 0)→ η =
1

2g
(sin θ σ(s)) .

(4.21)

This gauge transformation can be expressed in a more elegant form by introducing the

complex combination of the profile functions

ψ ≡ σ + 2igη , σ = 1 + 2gρ ; (4.22)

ψ(s) = σ(s) , σ(s) = 1 + 2gρ(s). (4.23)

Eq. (4.21) then becomes simply

ψ(s) → ψ = eiθψ(s). (4.24)

At this point it is a simple matter to verify that our equations in the regular gauge

give the same profile function (for the gr = 0 theory) known from the earlier studies. We

write the equations (4.15) in terms of ψ as a single complex equation:

∆ψ − 2i
1− fNA

r2
∂θψ −

(
1− fNA

r

)2

ψ + g2Q1Q2e
iθ − g2

2
(Q2

1 +Q2
2)ψ = 0 . (4.25)

By substituting (4.24) into this equation one gets, after some simple algebra,

1

r
∂r
(
r∂r ψ

(s)
)
−
(
fNA

r

)2

ψ(s) − g2

[
Q2

1 +Q2
2

2
ψ(s) −Q1Q2

]
= 0 . (4.26)

This is precisely the equation for the profile function ψ(s) = σ(s) = 1 + 2gρ(s) found

earlier [1]–[5] in the singular gauge, whose solution is given by

ψ(s) = σ(s) =
Q1

Q2
, (4.27)

as can be shown by using the BPS equations for Q1, Q2, f and fNA. The result for ψ in

the regular gauge is then

ψ = eiθ
Q1

Q2
. (4.28)

5 Solution of Gauss’s equations and vortex excitation energy

To study the solutions of equations (4.13) and (4.14) and to obtain the associated excitation

energy, it is convenient to use the complex combination of the profile functions (ρ, η) already

introduced in section 4.2, this time both for the left and right fields:

ψl ≡ σl + 2iglηl , (σl = 1 + 2glρl) ,

ψr ≡ σr + 2igrηr , (σr = 1 + 2grρr) . (5.1)
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Then equations (4.13) and (4.14) reduce to two complex equations

∆ψl − 2ζl
1− fNA

r2
∂θ(iψl)−

(
ζl(1− fNA)

r

)2

ψl − g2
l

(
Q2

1 +Q2
2

2
ψl −Q1Q2e

iθψr

)
= 0 ,

(5.2)

∆ψr + 2ζr
1− fNA

r2
∂θ(iψr)−

(
ζr(1− fNA)

r

)2

ψr − g2
r

(
Q2

1 +Q2
2

2
ψr −Q1Q2e

−iθψl

)
= 0 .

(5.3)

5.1 Partial-waves and asymptote

These equations can be solved via the partial wave decomposition:

ψl =
∑
m∈Z

φml e
imθ, ψr =

∑
m∈Z

φmr e
i(m−1)θ. (5.4)

Note the particular way that the left and right fields are correlated in angular momentum,

reflecting the minimum winding of the vortex. The θ dependence in fact drops out of

equations (5.2) and (5.3) and one gets an infinite tower of pairs of {φml (r), φmr (r)} decoupled

from each other and satisfying5

∆rφ
m
l −

(
m− ζlA

r

)2

φml − g2
l

(
Q2

1 +Q2
2

2
φml −Q1Q2φ

m
r

)
= 0 , (5.5)

∆rφ
m
r −

(
m− 1 + ζrA

r

)2

φmr − g2
r

(
Q2

1 +Q2
2

2
φmr −Q1Q2φ

m
l

)
= 0 , (5.6)

with

A(r) = 1− fNA(r) , A(0) = 0 , A(∞) = 1 . (5.7)

Taking the difference of (5.5) and (5.6), one can prove that φml → φmr exponentially fast

at spatial infinity. The asymptotic form of equation (5.5) for r →∞, where Q1, Q2 →
√
ξ,

A→ 1 and φml → φmr , is (
∂2
r +

1

r
∂r

)
φml −

(
m− ζl
r

)2

φml = 0 . (5.8)

This equation has two independent solutions:

φml ∝ r±(m−ζl), if m 6= ζl , (5.9)

or

φml ∝ ln(r) , const. if m = ζl . (5.10)

Similarly, the asymptotic form of equation (5.6) for φmr is(
∂2
r +

1

r
∂r

)
φmr −

(
m− 1 + ζr

r

)2

φmr = 0 , (5.11)

which is the same as equation (5.8) since ζl + ζr = 1.

5∆r denotes the radial part of the two dimensional Laplacian: ∆raα = 1
r
∂r(r∂raα).
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Near the vortex core (r = 0), where Q1 → 0 and A→ 0, eq. (5.5) behaves as(
∂2
r +

1

r
∂r

)
φml −

(
m

r

)2

φml = 0 . (5.12)

This equation has two independent solutions:

φml ∝ r±m if m 6= 0 , (5.13)

or

φml ∝ log r , const. if m = 0 . (5.14)

Similarly, from (5.6):

φmr ∝ r±(m−1) if m 6= 0 , (5.15)

or

φmr ∝ log r , const. if m = 0 . (5.16)

For the m = 0 wave, the solution behaving as log r at the origin is excluded by the regularity

requirement, and so are the negative-power solutions for m 6= 0.

5.2 Exact solution

Equations (5.2) and (5.3) can be solved exactly once the vortex profile functions are known.

Define the function ϕ = ϕ(r) as follows:

ϕ ≡ − logQ1(r) + logQ2(r) + log r , e−ϕ =
Q1

rQ2
. (5.17)

ϕ is regular at r = 0 and behaves as ϕ ' log r at large r. With f , fNA, Q1, Q2 defined in

eq. (2.17)–(2.19), ϕ(r) satisfies the differential equations

1− fNA

r
= ϕ′,

1

r
(rϕ)′ = −g

′2

2
(Q2

1 −Q2
2) . (5.18)

The properties of the function ϕ have been studied in detail in [27].

By using the first equation of eq. (5.18), eq. (5.2) and eq. (5.3) can be rewritten as{
∆− 2ζl

ϕ′

r
i∂θ − (ζlϕ

′)2 − ζlg
′2

2
(Q2

1 +Q2
2)

}
ψl + ζlg

′2Q1Q2e
iθ ψr = 0 ,{

∆ + 2ζr
ϕ′

r
i∂θ − (ζrϕ

′)2 − ζrg
′2

2
(Q2

1 +Q2
2)

}
ψr + ζrg

′2Q1Q2e
−iθ ψl = 0 . (5.19)

Note the following Z2 symmetry

(ψl, ζl) ←→ (ψ∗r , ζr) . (5.20)

In order to simplify the equations we set

ψl = e−ζlϕψ̃l , ψr = eζrϕψ̃r , (5.21)
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and we use a complex formulation. Eqs. (5.19) then become{
∆− 4ζlϕ

′ z̄

r
∂z̄ − g2

l Q
2
2

}
ψ̃l + g2

l Q
2
2 z ψ̃r = 0 ,{

∆ + 4ζrϕ
′ z̄

r
∂z̄ − g2

rQ
2
1

}
ψ̃r + g2

rQ
2
1z
−1 ψ̃l = 0 . (5.22)

It can now be easily seen that the holomorphic functions ψ̃l, ψ̃r that satisfy

∂z̄ψ̃l = 0 , ∂z̄ψ̃r = 0 , and ψ̃l = z ψ̃r (5.23)

solve (5.22) (∆ ∝ ∂z∂z̄). Using the Z2 symmetry, we find another set of solutions. The

general solution to eq. (5.2) and eq. (5.3) is therefore given by the linear combinations

ψl = e−ζlϕ z χr(z) + eζlϕ χ̄l(z̄) ,

ψr = eζrϕ χr(z) + e−ζrϕ z̄ χ̄l(z̄) , (5.24)

in terms of two arbitrary holomorphic functions χr(z) and χl(z). At large r, they behave as

ψl ' eiθ rζr χr(z) + rζl χ̄l(z̄) ' eiθψr ,
ψr ' rζr χr(z) + e−iθrζl χ̄l(z̄) . (5.25)

The solution of the minimum excitation energy (m = 1 wave for gr < gl, see the next

subsection) corresponds to the particular choice above,

χr(z) = const. ; χ̄l(z̄) = 0 . (5.26)

The holomorphic and antiholomorphic terms correspond to the positive and negative an-

gular momenta respectively in the partial wave decomposition, (5.4).

For the special choice of the U0(1) coupling,

2Ng2
0 = g′

2 ≡ g2
r + g2

l , (5.27)

eqs. (2.17)–(2.19) become simply

fNA = f = 1− rϕ′ ; Q1 =
√
ξ re−ϕ ; Q2 =

√
ξ , (5.28)

and the function ϕ = ϕ(r) in this case coincides with the solution of Taubes’ equation

1

r
(rϕ)′ =

m2
0

2
(1− e−2ϕr2) , (5.29)

with

lim
r→0

rϕ′ = 0 , lim
r→∞

(ϕ− log r) = 0 , (5.30)

and with m2
0 ≡ g′2ξ = 2Ng2

0ξ.
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5.3 Divergences of the energy

To study the excitation energy we consider the integral I in (4.10) which appears in front

of the CPN−1 action in (4.9). In terms of ψl and ψr it simplifies considerably:

I =

∫
dθ dr r

[
1

4g2
l

(
|∂rψl|2 +

1

r2
|∂θψl|2 +

(
Aζl
r

)2

|ψl|2 − 2ζl
A

r2
Im(ψ∗l ∂θψl)

)

+
1

4g2
r

(
|∂rψr|2 +

1

r2
|∂θψr|2 +

(
Aζr
r

)2

|ψr|2 + 2ζr
A

r2
Im(ψ∗r∂θψr)

)

+
Q2

1 +Q2
2

8

(
|ψl|2 + |ψr|2

)
− Q1Q2

2
Re(ψlψ

∗
re
−iθ)

]
.

(5.31)

First of all, we note that this expression is positive semidefinite:

I ≥
∫
dθ dr r

[
1

4g2
l

(
|∂rψl|2 +

1

r2

(
|∂θψl| −Aζl|ψl|

)2)
+

1

4g2
r

(
|∂rψr|2 +

1

r2

(
|∂θψr| −Aζr|ψr|

)2)]
,

(5.32)

(using |z| ≥ Re(z), Im(z)). As the integrand of I is homogeneous in ψl and ψr, the

absolute minimum of the integral is given by I = 0, at ψl = ψr = 0. Going back to

our Ansatz (4.4), we see that such minimum corresponds to constant profile functions

ρl = −1/2gl, ρr = −1/2gr and ηl = ηr = 0, and thus, from eqs. (4.4)–(4.5), one sees that

A(l)
α = − i

2gl
∂α(UTU †)(UTU †) , A(r)

α = − i

2gr
∂α(UTU †)(UTU †) , (5.33)

is a pure SU(N)l+r gauge form,

0 = ∂αQ
(B=0) → Dα(UTU †) = 0 . (5.34)

In addition,

Seff = I
∫
dz dt Tr(∂αT

(U))2 = 0 , (5.35)

as it should. Our interest is in excitations of the above static vortex configuration, with

T = 2πξ. Therefore we shall assume ψl 6= 0, ψr 6= 0 in what follows.

Inserting the partial wave expansion (5.4), I becomes the sum of different angular

momentum excitations:

I = 2π

∫
dr r

∑
m

[
1

4g2
l

(
(∂rφ

m
l )2 +

(
m−Aζl

r

)2

(φml )2

)

+
1

4g2
r

(
(∂rφ

m
r )2 +

(
m− 1 +Aζr

r

)2

(φmr )2

)

+
Q2

1 +Q2
2

8

(
(φml )2 + (φmr )2

)
− Q1Q2

2
φml φ

m
r

]
.

(5.36)
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For large r this becomes

I ∼ 2π

4g′2ζl(1− ζl)

∫
dr r

∑
m

(
(∂rφ

m
l )2 +

(
m− ζl
r

)2

(φml )2

)
. (5.37)

The contribution to the integral from a single mode

φml ∼ φmr ∼ rs, s = |m− ζl| , (5.38)

is therefore

I ∼ R2|m−ζl|, (5.39)

where R is an infrared cutoff. As the contributions to the energy of the various modes

are decoupled, the excitation of minimum energy has m corresponding to the minimum

value of s.

For gr < gl we have

1 > ζl =
g2
l

g2
l + g2

r

> 1/2 ,

and thus the mode with least energy is the one with m = 1 for which the divergence is

I ∼ R2(1−ζl) = R2ζr . (5.40)

The solution is given by ψl = φl e
iθ, ψr = φr with φl and φr (dropping the index m = 1)

satisfying the system
∆rφl −

(
1− ζlA

r

)2

φl − g2
l

(
Q2

1 +Q2
2

2
φl −Q1Q2φr

)
= 0 ,

∆rφr −
(
ζrA

r

)2

φr − g2
r

(
Q2

1 +Q2
2

2
φr −Q1Q2φl

)
= 0 .

(5.41)

In concluding that the energy diverges as (5.39), we have assumed implicitly (5.38),

that is that the φml,r has the growing power law behavior. This does not necessarily follow

from the general result (5.13)–(5.15). This can however be shown as follows. Multiply

equation (5.5) by φml and (5.6) by φmr , divide the first equation by g2
l and the second by

g2
r and sum the two equations. Integrating this over the xy plane, one gets

1

g2
l

φml r ∂rφ
m
l

∣∣∣∣∞
0

+
1

g2
r

φmr r ∂rφ
m
r

∣∣∣∣∞
0

=

∫ ∞
0
dr r

(
1

g2
l

[
(∂rφ

m
l )2 +

(
m−Aζl

r

)2

(φml )2

]
+

1

g2
r

[
(∂rφ

m
r )2 +

(
m−1+Aζr

r

)2

(φmr )2

]

+
Q2

1+Q2
2

2

(
(φml )2+(φmr )2

)
− 2Q1Q2φ

m
l φ

m
r

)
=

2

π
I . (5.42)

Namely, we have reproduced the well known result that any action quadratic in the fields

with the standard kinetic term, computed at its minimum, is a total derivative and thus
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fNAHrL = f HrL

Q1HrL

2 4 6 8 10 12 14
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0.2

0.4

0.6

0.8

1.0

Figure 1. Vortex profile functions for 2Ng20 = g′
2
. We take the parameters normalized to ξ = g′1.

is determined by the boundary values of the fields only. Since the contributions from the

lower limit vanish on the left hand side (φml , φmr must be regular) and as the right hand

side is positive definite, φml ∼ φmr cannot vanish at r =∞.

The minimum excitation energy (m = 1 wave for gr < gl) corresponds to the particular

choice

χr(z) = const. , χ̄l(z̄) = 0 , (5.43)

in eq. (5.24). The exact solution of (5.41) is then

φl =

(
Q1

Q2

)ζl
(γr)ζr , φr =

(
Q2

Q1

)ζr
(γr)ζr , (5.44)

where γ is a constant. Note that in the limit gr → 0 (ζr → 0, ζl → 1) this minimum-

energy solution smoothly approaches the known profile function for the standard, ungauged

nonAbelian vortex, brought to the regular gauge form, eq. (4.28).

We present below some numerical solutions for the vortex profile functions and the

corresponding zero modes. We consider for simplicity the case (5.27) for which the profile

functions simplify to (5.28). For this set of solutions, the vortex profile functions are given

in figure 1. Also, φl and φr given by (5.44) are plotted for several different values of gl and

gr for constant g′, in figure 2. In figure 3 the planar density in I is plotted. The integral

I can be expressed by using (5.42), up to a certain infrared cutoff R, as

I(R) =
π

2g2
l

φl r ∂rφl

∣∣∣∣R
0

+
π

2g2
r

φr r ∂rφr

∣∣∣∣R
0

. (5.45)

This is plotted in figure 4 as a function of R for the particular solution (5.44). For R �
1/g′
√
ξ it can be approximated, up to exponential vanishing terms, by

I(R) ' π

2g2
l

(
g′
√
ξ R
)2ζr +O

(
e−g

′√ξR) . (5.46)

For gr > gl instead, ζl < 1/2, so the excitation energy is minimum for the m = 0 mode,

for which φl ∼ const. and φr ∼ r near r → 0, and φl ∼ φr ∼ rζl at r → ∞. One has also

in this case

I ∼ R2ζr , (5.47)
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0 2 4 6 8 10 12 14
r

0.5

1.0

1.5

2.0

2.5

3.0

Φl

0 2 4 6 8 10 12 14
r

0.5

1.0

1.5

2.0

2.5

3.0

Φr

Figure 2. The numerical solutions for φl and φr following from eq. (5.44), for various values of

(gl, gr) = (cos θ, sin θ) with θ = π/2 · (0; 0.1; 0.2; 0.3; 0.4; 0.5) (from the bottom to the top). The

normalization is fixed by choosing γ such that φr(0) = 1.

0 2 4 6 8 10 12 14
r

0.5

1.0

1.5

2.0

I density

Figure 3. The integrand of I (5.36) as a function of r is given here for the same set of values of

the coupling constants as in figure 2.

Π �2

0 5 10 15
R
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4

6

8
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IHRL

Figure 4. I(R) as defined in (5.45).
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which is the same as in (5.40). The solution is ψl = φl and ψr = φre
−iθ with φl and φr

satisfying 
∆rφl −

(
ζlA

r

)2

φl − g2
l

(
Q2

1 +Q2
2

2
φl −Q1Q2φr

)
= 0 ,

∆rφr −
(

1− ζrA
r

)2

φr − g2
r

(
Q2

1 +Q2
2

2
φr −Q1Q2φl

)
= 0 .

(5.48)

These are the same as equations (5.41) in which φl and φr are interchanged.

5.4 Infrared cutoff

We have introduced above an infrared cutoff R in the (x, y) plane, to regularize the integral

I in (5.45). The divergences arise due to the presence of the massless SU(N)l+r gauge fields

in the bulk. There are certain limitations to the parameter space where the effective action

in (4.8)–(4.10) can be applied. First of all we neglected in (4.8) the terms coming from

F
l/r
αβ and we have to check when this approximation is reliable. The extra term that we are

neglecting in the action is

TrF
l/r
αβ

2
=

1

8g2
l/r

(
|ψl/r|2 − 1

)2
Tr(∂αT

′∂αT
′∂βT

′∂βT
′ − ∂βT ′∂αT ′∂βT ′∂αT ′) . (5.49)

This is a higher derivative correction to the effective action, it is thus proportional to

1/λ4 where λ is the typical wavelength of the fluctuation of the 2D sigma model we are

considering. In order for this terms to be negligible with respect to the two-derivative term

the effective action (4.9) we need (neglecting some irrelevant coefficients)

(g2
l + g2

r )R
2
(
(g′
√
ξ R)2ζr − ζr − 1

)
g2
l g

2
rλ

4
� (g′

√
ξ R)2ζr

g2
l λ

2
. (5.50)

This is thus a low-derivative condition, but related to the choice of the cutoff R:

R√
ζr
� λ . (5.51)

Another restriction comes from the fact that the SU(N) unbroken gauge theory is

asymptotically free (unless, e.g., one introduces many fermions) and becomes strongly

coupled at large distances. Our lowest-order calculations are thus valid only for wavelengths

much less than the confinement length, 1/Λ4D. At the same time, by definition of the vortex

effective action, one is calculating the fluctuations at length scales much larger than the

vortex size, 1/g′
√
ξ. To summarize, one must assume

1

gr
√
ξ
� R√

ζr
� λ� 1

Λ4D
(5.52)

for the validity of our analysis.
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6 Origin of the non-integer power divergences

In this section it will be shown that the non-integer power divergences just found are

intimately related to the geometric obstruction discussed in section 3. Our theory has

vortex solutions as a consequence of the bulk symmetry breaking G → H, π1(G/H) 6= 1.

When H is nonAbelian, a given vortex configuration further breaks H into H̃ ⊂ H: the

action of the unbroken generators in H/H̃ generates the internal zeromodes.

We recall also that the presence of the vortex makes the embedding H ⊂ G position-

dependent in the regular gauge. As a consequence, in a covariantly constant basis some

of the generators become multivalued. Multivalued symmetries give rise to Aharonov-

Bohm scattering of gauge bosons at large distances from the vortex. The corresponding

zero modes lead to nontrivial effects, like cosmic string color superconductivity. They also

explain the precise nature of the non-integer, powerlike divergences encountered.

Let us summarize these features in a model independent fashion following the reasoning

of Alford et al. [9, 10]. Consider a generic Lagrangian

L = −1

2
Tr(FµνF

µν) + |DµQ|2 − V (Q) , (6.1)

which describes a gauge theory with gauge group G coupled to a scalar field Q, with

Dµ = ∂µ−igAµ and Aµ = AaµT
a, where T a are the generators of G in the Q representation,

normalized as Tr(T aT b) = δab/2. The scalar potential is chosen so that Q condenses,

breaking the full gauge group G to a subgroup H. For a nontrivial π1(G/H) vortex

configurations exist. The elementary vortex is oriented in some fixed direction in the Lie

algebra that we denote as S. One may take the following Ansatz

Q = u(θ)Q0(r) , Ar = 0 , Aθ = aθ(r)S , Aα = 0 , (6.2)

where α = z, t. Q0 approaches a uniform vacuum configuration at spatial infinity and u(θ)

describes the asymptotic winding of the scalar condensate,

u(θ) = eiθS . (6.3)

The Ansatz for the gauge fields is determined by the requirement of finiteness of the energy.

In particular, a necessary condition is that |DiQ| → 0 as r →∞, which implies Ar → 0 and

Aθ → (1/g)S. Therefore, the boundary conditions on the profile function aθ are aθ → 1/g

as r → ∞ and aθ → 0 as r → 0. Since the vacuum of the theory leaves an unbroken

symmetry group, which however can act nontrivially on our Ansatz, the vortex carries

orientational moduli, describing its embedding in the Lie algebra. Through a global gauge

transformation U of H, one obtains a vortex with a generic orientation,

Q = Uu(θ)Q0(r) , Ar = 0 , Aθ = aθ(r)S
(U), Aα = 0 , (6.4)

where S(U) = USU †. In the spirit of the moduli space approximation, U is taken to depend

on the string worldsheet coordinates t and z. Then,

Q = U(t, z)u(θ)Q0(r) , Ar = 0 , Aθ = aθ(r)S
(U)(t, z) , Aα 6= 0 . (6.5)
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As soon as U is taken to fluctuate along the string, nontrivial Aα fields are induced,

whose precise form is dictated by the equations of motion. Their behavior at spatial

infinity, however, is fixed by the requirement |DαQ| → 0, which implies that Aα approaches

(the U transform of) the gauge fields belonging to H ⊂ G left unbroken by the vacuum

configuration u(θ)Q0(∞).

We may now gauge transform by U †(t, z), going to what we shall call the static gauge.

This gauge choice makes computation somewhat simpler. The new Ansatz is

Q = u(θ)Q0(r) , Ar = 0 , Aθ = aθ(r)S , Aα 6= 0 . (6.6)

One obtains for Fiα

Fiα = ∂iAα − igai[S,Aα] , (6.7)

where Ai = ai(r)S. Passing to the static gauge allowed us to eliminate the ∂αAi piece.

The equations of motion following from the Lagrangian density (6.1) are

DµDµQ = − ∂V

∂Q†
, DiFiα = igT aQ†T aDαQ+ h.c. . (6.8)

We focus now on the second of equations (6.8), which is the nonAbelian Gauss law. Sub-

stituting it into our Ansatz, the left hand side becomes

DiFiα = ∆Aα − 2ig
aθ
r2

[S, ∂θAα]− g2a
2
θ

r2
[S, [S,Aα]]

= ∆rAα +
1

r2

(
∂θ − igaθ[S, · ]

)2
Aα . (6.9)

This rewriting also follows from the fact that in static gauge Fiα = DiAα and

DiFiα = DiDiAα = ∆rAα +
1

r2
D2
θAα , (6.10)

where the covariant derivatives in r reduce to the ordinary derivatives since Ar = 0. At

large r the right hand side of Gauss’s equation vanishes as the covariant derivative of the

scalar field approaches zero. One obtains thus a Laplace-type equation

∆rAα ' −
1

r2

(
∂θ − i[S, · ]

)2
Aα . (6.11)

One may expand Aα in eigenstates of the operator ∆θ = ∂θ − i[S, · ], which at spatial

infinity commutes with ∆r,

∆θ ψ
s
α = isψsα , (6.12)

with s being a real contant. The eigenfunction in (6.12) can be written as

ψsα = eisθu(θ)Aα(r, 0)u(θ)†, (6.13)

using the fact that (
∂θ − i[S, · ]

)
eiθSMe−iθS = 0 , (6.14)
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for any θ independent matrix M .6 If a parallel transport by u(θ) describes the embedding

of H inside G, we see that if Aα at θ = 0 is oriented along some generator Sa, at θ 6= 0 it

is oriented along the rotated generator Sa(θ).

One can now see the consequences of the requirement of single valuedness of ψsα. If Sa

is covariantly constant and belongs to the globally defined subgroup H̃ ⊂ H, then

u(2π)Sau(2π)† = Sa, (6.15)

and the single-valuedness condition for ψsα implies that s ∈ Z. If, on the contrary, Sa is

not globally defined,

u(2π)Sau(2π)† = e2πiξaSa, (6.16)

with some non integer constant ξa. The single valuedness of ψsα then implies that

s ∈ Z− ξa. (6.17)

Using (6.13) in (6.11), one finds the asymptotic behavior,

∆rψ
s
α '

s2

r2
ψsα =⇒ ψsα ∝ r±s. (6.18)

The energy grows like R2|s|. Allowing for a nonvanishing angular momenta m ∈ Z
in (6.9), (6.11), one gets in general

Aα ∼ O(R|s−m|) , Energy ∼ O(R2|s−m|) . (6.19)

Such a general argument, however, carries us only this far. In particular, the determi-

nation of the generators along which the fields Aα are excited can only be done by studying

the nonAbelian Gauss equation for all r and requiring that the color matrix structures of

the left and right hand sides match precisely, as has been done in sections 4 and 5. Related

to this, the non-integer power s cannot be determined by a general argument based on the

asymptotic behaviors of the fields alone. Both of these features carry information about

the vortex configuration at finite r.

In our specific U0(1) × SUl(N) × SUr(N) theory, it was found that the gauge fields

excited by the vortex modulation lie in the directions

A(l)
α = ρlWα + ηlVα , A(r)

α = ρrWα + ηrVα , (6.20)

with
Wα ≡ i ∂αT (U)T (U), Vα ≡ ∂αT (U),

T (U) = UTU †, T =

(
1

−1N−1

)
.

(6.21)

Knowing this, and knowing how these gauge fields are parallel-transported around the

vortex (see (3.9)),

A(l)
α → ul(θ)A(l)

α ul(θ)†, ul(θ) ≡ e
iζl

θ
NCN

T
(U)

N2−1 , (6.22)

6This is simply the condition of parallel transport of a constant.
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(similarly for A
(r)
α ), one finds that upon encircling the vortex(

Wα

Vα

)
→

(
cos(2πζl) sin(2πζl)

− sin(2πζl) cos(2πζl)

)(
Wα

Vα

)
, (6.23)

where the commutation relations

[Wα, T
(U)] = 2iVα , [Vα, T

(U)] = −2iWα , (6.24)

have been used. The eigenvalues of the monodromy matrix (6.23) are thus e−2πiζl and

e2πiζl , with respective eigenvectors v = ∂αT
(U)T (U) + ∂αT

(U) and its Hermitian conjugate

v†. Thus in our model ξa in equation (3.14) or (6.16) is given concretely by

ξa = ±ζl = ±
g2
l

g2
l + g2

r

. (6.25)

Our results in section 5 indeed agree with the general expectations (6.19) with this specific

index.

These discussions clearly illustrate the connection between the global features of the

system discussed in section 3 and the dynamical properties of the vortex excitation explored

in section 5. In particular, let us note that for the standard nonAbelian vortex (gr = 0

or gl = 0) ξa reduces to an integer. Thus no geometric obstruction, no nonAbelian AB

effects, no non-integer-power growth of vortex excitation energy, etc., occur. The 2D

CP
N−1 dynamics becomes fully operative, and at the same time the massless, free SUr(N)

(or SUl(N)) Yang-Mills system in 4D simply decouples from the vortex system.

7 Discussion

In this paper we discussed in some detail the topological and dynamical features of an

interacting 4D-2D coupled quantum field theory, in the context of the underlying U0(1)×
SU(N)× SU(N) gauge theory in an SU(N)l+r symmetric (“color-flavor” locked) vacuum.

Of course, such a system can be considered ab initio, just by starting with a given 2D

system possessing some global symmetry, and making it local, by introducing 4D gauge

fields coupled to it [29, 30], i.e., embedding the 2D system in 4D spacetime. Another venue,

which we have opted to follow here, is to study such a 4D-2D coupled quantum field theory

which emerges as a low-energy effective description of the vortex sector of the underlying

4D system. Here the 2D variables are the fluctuations of the vortex collective coordinates,

whereas the 4D degrees of freedom are part of the original Yang-Mills fields, the coupling

among them being fixed by the local gauge symmetries of the underlying theory.

This is a new type of interacting quantum field theory, in which field variables living

in different dimensions interact nontrivially. Our way of approaching the problem gives

an existence proof that such a theory can be consistently defined, as the underlying 4D

system is a consistent local gauge theory.

In a standard nonAbelian vortex, the modulation of the vortex internal orientation

is described by a 2D sigma model (CPN−1 in the case of U0(1) × SU(N) theory) on
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the vortex worldsheet. The CPN−1 model in two dimensions is asymptotically free and

becomes strongly coupled at low energies Λ�
√
ξ. The renormalization group flow of two

dimensional model “carries on” the evolution of the 4D gauge coupling which was frozen

at the vortex mass scale
√
ξ, into the infrared, showing a remarkable realization of 2D-4D

duality [2, 4, 28].

When the orientational mode dynamics becomes strongly coupled, the orientation

{Bi} of the vortex in the Lie algebra fluctuates wildly, and the AB effects are washed away.

This is consistent with the fact that there is no spontaneous symmetry breaking and no

Goldstone bosons in 2D: the spectrum has a mass gap.

As soon as gr is turned on, however, the physics changes immediately, and drastically.

The presence of massless fields in the bulk makes the coefficient in front of the effective

CP
N−1 action divergent and the vortex fluctuations become nonnormalizable. They be-

come infinitely costly to excite. At the same time, the AB effects and all sorts of topological

and nonlocal effects emerge.

One wonders however how such a discontinuous change of physics is possible at gr → 0.

As in the phenomena of phase transitions, physics cannot really exhibit such a qualitative

change at gr → 0, if the spacetime is finite.7 The expression (5.40) indeed shows that

the limits gr → 0 and R → ∞ do not commute, pointing clearly to the origin of the

discontinuity. Stated differently, it is because one is accustomed to thinking about infinitely

extended spacetime in relativistic-field-theory applications that physics looks discontinuous

at gr = 0.

Let us look into the nature of this discontinuity more carefully. At large r the divergent

effects such as eq. (5.38)–eq. (5.40) come from the dominant, massless SUl+r(N) gauge

field excitations (the massive fields in the bulk Higgs mechanism give only exponentially

suppressed contributions). They are nonetheless the result of the interactions with the 2D

vortex collective coordinates, the fluctuations of {Bi}, and in fact, the non-integer power

and the precise direction in color space in which the massless gauge fields are excited, both

reflect the details of the vortex configurations near the vortex core.

What happens in the gr → 0 limit is that most of these divergent effects smoothly

transit into the continuum spectrum of the free SUr(N) Yang-Mills system, now decoupled

from the vortex. The fact that they appear in the coefficient in front of the vortex effective

action

Seff =

∫
dtd3x

[
Tr(F

(l)
iα F

(l) α
i ) + Tr(F

(r)
iα F

(r) α
i ) + Tr |DαQ|2

]
= I

∫
dz dt Tr(∂αT

(U))2 (7.1)

does not necessarily mean that they are related to the vortex physics.

Summarizing, if one first takes the IR cutoff R → ∞, the screening of the massive

gauge fields implies that the massless gauge fields dominate, leading to the power law

scalings. On the other hand, if one takes the limit gr → 0 first, for the vortex effective

action of minimum energy cost, i.e., the contribution of the partial m = 1 wave, one finds

7Here the relevant dimension is the extension of the transverse (x, y) space R.
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from (5.46) that

lim
gr→0

I(R) =
π

2g2
l

+O
(
e−gl

√
ξR
)
. (7.2)

Taking then the R→∞ limit we recover the physics of the standard nonAbelian vortices

with a finite CPN−1 coupling

I =
π

2g2
l

. (7.3)

Taking the limits in this order, the only massless degrees of freedom that remains are the

CP
N−1 orientational modes in the vortex worldsheet.

The renormalization of the CPN−1 model, for the ungauged nonAbelian vortex, is

given by

8πI(µ) = log

(
µ

Λ2D

)
(7.4)

namely I is decreasing logarithmically as the RG scale µ decreases. For the gauged non-

Abelian vortex, we find another effect: I is increasing as the cutoff scale 1/R gets smaller,

this time as a power law (5.46), due to the interaction with the massless unbroken SU(N).

We may thus conjecture the CPN−1 model coupled to the 4D massless gauge fields will re-

main frozen in the Higgs phase, at least as long as the massless SU(N) field in 4D remains in

the Coulomb phase. Note that Coleman’s theorem on the absence of the Nambu-Goldstone

modes in two-dimensional spacetime would not apply here due to the interaction of the 4D

massless gauge fields. This would mean that the global and topological effects related to

the vortex orientation {Bi} would not be washed away by the 2D quantum effects.

To compute the effective action in this paper, we have integrated out all gauge fields,

including the massless gauge fields in the bulk. This is formally not quite consistent from

the renormalization group point of view. One should integrate away the massive gauge fields

first, and obtain the effective action defined at the vortex mass scale
√
ξ, which should play

the role of an UV cutoff for the study of further quantum effects. The effective action at

ΛUV =
√
ξ would consist of two pieces: the full 4D action for the massless gauge fields

living in the bulk and the 2D action describing the fluctuations of the internal orientation,

{Bi}, which is a sort of Nambu-Goldstone bosons living in the vortex worldsheet. Their

coupling is dictated by the full H ⊂ G gauge invariance. By integrating out the coupled

massless 4D gauge fields and the 2D fields {Bi} simultaneously down to some infrared

cutoff scale µ, and varying it, one would find an appropriate RG flow towards the infrared.

Although such a renormalization group program is still to be properly set up and be

worked out, we believe that the number of results established and the subtle issues of

decoupling/transitions to the gr → 0 limit clarified here, should provide us with a useful

starting point for such a task.

Let us end with a few remarks on other types of vortex systems in which certain bulk

4D zero modes exist and are coupled nontrivially with the 2D worldsheet modes. The first

is the famous superconducting cosmic string model by Witten [31], based on a U(1)×U(1)

gauge theory. Our model can in fact be regarded as a nonAbelian generalization of that

model. There is an even closer connection with the model discussed in [15] which is the

immediate predecessor of the present paper, where the “right” gauging was made only in
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a U(1) subgroup of the flavor group. Both in Witten’s model and in [15], the divergences

found are logarithmic; there are no nontrivial topological effects such as discussed in the

present work.

The second is the case of the so-called semilocal vortices, where due to a larger flavor

symmetry (as compared to color), some massless Nambu-Goldstone bosons survive in the

4D bulk, and interact nontrivially with the vortex orientational zeromodes. Interesting

features of the vortex effective action in these systems have been investigated in [32]–[35].

Again, the divergences in the effective 2D action caused by the 4D massless degrees of

freedom are always found to be logarithmic, as the latter is due to massless scalar particles.

No topological effects are present.

Thus the nature of the non-integer-power behaved infrared divergences analyzed in

the present paper (and in [9, 10]) is quite distinct from, and new as compared to, those

occurring in these other systems. The effects discussed here reflect in an essential manner

the presence of an unbroken Yang-Mills gauge interactions in the 4D bulk, coupled to “2D

massless matter” describing the vortex internal excitations. These bring in rather subtle

and elegant connections between the global, topological features of the 4D system (such

as the nonAbelian Aharonov-Bohm effects, nonAbelian statistics, etc.) and the dynamical

aspects of the 2D effective action, as is described in detail in this paper.
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A Excitation energy in the standard nonAbelian vortex (gr = 0)

In this appendix we consider the special case gr = 0 and discuss how the analysis of

section 5 gets modified. By partial wave expansion

ψl =
∑
m

φml e
imθ ;

ψr = 1 ,

(A.1)

one finds

I = 2π

∫
dr r

(
1

4g2
l

∑
m

(
(∂rφ

m
l )2 +

(
m−A
r

)2

(φml )2

)

+
Q2

1 +Q2
2

8

(∑
m

(φml )2 + 1

)
− Q1Q2

2
φ1
l

)
.

(A.2)
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It will be shown below that actually only for m = 1 there exist physical solutions. Substi-

tuting accordingly the Ansatz (A.1) in (A.2), keeping only the m = 1 term and dropping

the index l for the SUL(N), i.e.,

ψl = φ1 eiθ ≡ σseiθ, (A.3)

one gets

I =

∫
dθ dr r

[
1

4g2

(
(∂rσ

s)2 +

(
fNAσ

s

r

)2
)

+
Q2

1 +Q2
2

8

(
(σs)2 + 1

)
− Q1Q2

2
σs

]
. (A.4)

This is a familiar expression for I found earlier [1]–[5]: by making use of the equations for

{Q1,2, fNA}, it can be shown that at its minimum

I =
π

2g2
. (A.5)

Thus for the standard nonAbelian vortex, where SUR(N) (hence the color-flavor diagonal

SU(N)) is a global symmetry, there are no divergences in I in front of the CPN−1 action

(eq. (4.9)). The vortex orientational zeromodes fluctuate strongly in the infrared in the

vortex worldsheet.

Consider instead the contribution of a single wave φml , m 6= 1. By dropping the indices

l for SUL(N) and m for the angular momentum (φ ≡ φml ) one has

I = 2π

∫
dr r

[
1

4g2
l

(
(∂rφ)2 +

(
m−A
r

)2

φ2

)
+
Q2

1 +Q2
2

8
(φ2 + 1)

]
. (A.6)

The equation of motion for φ is

∆φ =

(
m−A
r

)2

φ+
Q2

1 +Q2
2

2
g2
l φ . (A.7)

Near the origin r = 0 (Q1 → 0, Q2 → const. and A→ 0) this becomes(
∆− m2

r2

)
φ ∼ 0 , (A.8)

which has solutions φ ∼ r±m (or φ ∼ const., log r for m = 0). As r → ∞ (Q1, Q2 →
√
ξ

and A→ 1), eq. (A.7) becomes

∆φ ∼
(
m− 1

r

)2

φ+ µ2φ ∼ µ2φ , (A.9)

where µ ≡ gl
√
ξ is the W-boson mass. The solution is a combination of modified Bessel

functions of the first and second kind, i.e., at large r

φ ∼ c1 e
µr + c2 e

−µr
√
r

, (A.10)
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with some constants c1,2. To show that the exponentially growing term is necessarily

present for the solution regular at the origin (φ ∼ r|m|), multiply eq. (A.7) by φ and

integrate over the (x, y) plane, to get

φ r ∂rφ|∞0 =

∫
dr r

[
(∂rφ)2 +

(
m−A
r

)2

φ2 +
Q2

1 +Q2
2

2
g2
l φ

2

]
> 0 . (A.11)

This would lead to a contradiction, unless c1 6= 0.

Such an exponentially growing behavior for the gauge fields must be regarded as un-

physical (not an acceptable quantum state), and we discard them.

It is amusing to see what makes the difference in the special case m = 1. The normal-

ization integral I is

I = 2π

∫
dr r

[
1

4g2
l

(
(∂rφ)2 +

(
1−A
r

)2

φ2

)
+
Q2

1 +Q2
2

8
(φ2 + 1)− Q1Q2

2
φ

]
(A.12)

and the equation of motion is

∆φ =

(
1−A
r

)2

φ+ g2
l

Q2
1 +Q2

2

2
φ− g2

l Q1Q2 . (A.13)

The crucial difference is the last term in (A.12), (A.13). At r → 0, (A.13) gives

∆φ ∼ 1

r2
φ , (A.14)

whose regular solution behaves as φ ∼ r. At r →∞, instead,

∆φ = µ2(φ− 1) , (A.15)

which implies φ ∼ 1 + c e
±µr
√
r

. From the exact solution of (A.13) we know that actually φ

behaves as

φ ∼ 1− e−µr√
r
. (A.16)

The procedure which has led to (A.11) before yields this time

φ r ∂rφ|∞0 =

∫
dr r

[
(∂rφ)2 +

(
m−A
r

)2

φ2 + g2
l

Q2
1 +Q2

2

2
φ2 − g2

l Q1Q2φ

]
. (A.17)

Even though the l.h.s. vanishes in this case also, the integrand of the right hand side is no

longer positive definite, thus no contradiction arises.

We conclude that in the gr = 0 theory, the only physical mode in eq. (A.6) is the m = 1

wave. This is to be contrasted with the powerlike divergent modes for the general gauged

vortex, eqs. (5.40), eq. (5.47). Even though these latter solutions are nonnormalizable also,

they represent the continuous spectrum of the theory and as such are to be regarded as

physical excitation modes.
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B Gauge fixing for ψl and ψr

We have seen in the main text that the Ansatzes (4.4)–(4.5),

A(l)
α = iρlWα + ηl Vα , A(r)

α = iρrWα + ηr Vα , (B.1)

where
Wα ≡ ∂αT (U)T (U), Vα ≡ ∂αT (U),

T (U) = UTU †, T =

(
1

−1N−1

)
,

(B.2)

solve the Gauss equation, given the vortex configuration

Q(B) = U(B)

(
eiθQ1(r) 0

0 Q2(r) 1N−1

)
U †(B) . (B.3)

One wonders whether this is also necessary, i.e., if there are any other choice for the gauge

fields which solve it. The equations of motion (5.2) and (5.3), or the expression for the

energy (5.31), are clearly invariant under a common phase rotation,

ψl → eiβψl , ψr → eiβψr . (B.4)

By recalling the definitions

ψl = σl + 2iglηl , (σl = 1 + 2glρl) , (B.5)

ψr = σr + 2igrηr , (σr = 1 + 2grρr) , (B.6)

one can however show that the scalar and gauge fields

{eiβψl, eiβψr, Q(θ)} (B.7)

are gauge equivalent to

{ψl, ψr, Q(θ + β)} . (B.8)

The algebra needed is the same as the one involved in the gauge transformation from

the singular to regular gauge, see eqs. (4.19)–(4.24). In other words, the apparent extra

zeromode corresponds to the space rotation (the shift of the origin of θ): it does not

represent a physical zeromode.
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Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in
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