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breaking, forming S, and the soft SUSY breaking mass for S, which is a key to explain the
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1 Introduction

Supersymmetry (SUSY) is a promising candidate beyond the standard model (SM). Dy-

namical SUSY breaking gives a beautiful explanation for the question why the electroweak

scale is so small compared to the Planck scale or the unification scale [1] (for a review,

see [2]) and the gauge mediation mechanism [3–5] (for early attempts, see [6–10]) (for

reviews, see e.g. [11, 12]) can naturally explain why dangerous flavor-changing neutral

currents are highly suppressed.1

However, the observed Higgs mass, 125 GeV, may conflict to a minimal realization of

such a scenario [19]. To obtain the observed Higgs mass in the minimal supersymmetric

standard model (MSSM), a significant radiative correction from top/stop loops [20–22]

are required, then, in the gauge mediation scenario, sparticle masses should be very large

because there is no large stop trilinear coupling.

The simplest modification would be to add a SM singlet chiral superfield S. In such a

model, the SHuHd superpotential interaction provides an additional F -term contribution

to the Higgs potential and it can push the lightest Higgs boson mass up without large

stop contributions. This is known as the next-to-minimal supersymmetric standard model

(NMSSM) and have been widely investigated so far (for reviews, see e.g. [23, 24]).

Although the additional F -term contribution to the Higgs potential is appealing, the

viable parameter space is restricted because large singlet couplings, e.g., SHuHd tends to

1In this sense, SUSY models explaining the muon g − 2 anomaly based on gauge mediation [13–18]

are more convincing than those based on gravity mediation. This is because the light slepton and

chargino/neutralino are always required.
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blow up at high energy. Furthermore, such a singlet extension of the gauge mediation

scenario is not straightforward: since the singlet does not have any SM gauge charge, the

SUSY breaking hardly mediates to the singlet sector, which makes it difficult to achieve

the correct electroweak symmetry breaking (EWSB); therefore, further extensions, e.g.,

introducing extra vector-like matter fields coupling to S [25–27],2 and the coupling between

S and messengers [28–31] have been studied.3

The solution may be “hidden”. In this paper, we propose a possibility that the NMSSM

singlet is a meson in the hidden sector. This meson is composed by particles which are

charged under a strong gauge symmetry as in Fat Higgs models [33–35] (see also [36, 37]).

The dynamics of the strong gauge symmetry provides a meta-stable SUSY breaking vacuum

around the origin of the field space [38] and messengers of gauge mediation also couple to

the SUSY breaking sector [39]. The SHuHd coupling is provided by integrating out some

heavy particles charged under the strong gauge symmetry, then, the particle decoupling is

also a trigger of the confining dynamics and creates a meta-stable SUSY breaking vacuum.

Since the singlet is also a member of the hidden sector, the SUSY breaking can mediate

to the singlet directly. In fact, the singlet receives the SUSY breaking at two loop and it

plays an important role to achieve the correct EWSB in our scenario. Although this is not

a gauge-mediated SUSY breaking, such a soft mass of the singlet does not cause dangerous

flavor-changing neutral currents either.

Supposing the TeV superparticle mass spectrum, a viable SUSY breaking scale will be

about O(100)–O(1000) TeV in our scenario. This would be also an appealing prediction.

Such a O(100) TeV SUSY breaking provides a cosmologically safe gravitino mass of order

eV. A large SHuHd coupling is possible because the singlet composite scale is not very far

from the electroweak scale. Also by the naturalness discussion of the EWSB (for “natural

supersymmetry” spectra, see e.g. [40–42]), such a low messenger scale is favored because

radiative corrections to the Higgs potential can be relatively small due to the short running.

The rest of the paper is organized as follows. In the next section, we present our model

and discuss the formation of the NMSSM singlet and the dynamical SUSY breaking in that

model. The mediation of the SUSY breaking to ordinary superpartners is also discussed.

In section 3, we show expected mass spectra at the electroweak scale and investigate the

phenomenology of the model. In section 4, we conclude the discussion and comment on

possible future directions.

2 The framework

In this section, we first present our model and describe the formation of the NMSSM singlet

and dynamical SUSY breaking at a meta-stable vacuum. A 2-loop radiative correction from

the SUSY breaking sector generates a negative soft mass-squared for the singlet. We also

explain gauge-mediated SUSY breaking for ordinary superparticles.

2In refs. [26, 27], it has been pointed out that the domain wall problem in the Z3 invariant NMSSM is

solved with these new vector-like matter fields, which make Z3 anomalous.
3See also ref. [32].
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SU(N)H SU(3)C SU(2)L U(1)Y

QI (I = 1, · · · , Nf ) N 1 1 0

Q̄I (I = 1, · · · , Nf ) N̄ 1 1 0

Φc 1 3 1 −1/3

Φ̄c 1 3̄ 1 1/3

Φl 1 1 2 1/2

Φ̄l 1 1 2 −1/2

f N 3 1 −1/3

f̄ N̄ 3̄ 1 1/3

Ψu N 1 2 1/2

Ψ̄d N̄ 1 2 −1/2

Xm, Ym 1 1 1 0

Table 1. The matter content and charge assignment of a model of the composite NMSSM with

dynamical SUSY breaking and its gauge mediation.

2.1 Composite NMSSM

Let us consider a supersymmetric SU(N)H gauge theory with (N + 6) vector-like flavors.

The five flavors, Ψu, Ψ̄d and f , f̄ , are charged under the standard model gauge symmetries

while the other Nf = N + 1 flavors are SM singlets. The matter content and charge

assignment are summarized in table 1. The theory is in the conformal window, 3N/2 ≤
N + 6 < 3N . To maintain the perturbative gauge coupling unification, the rank of the

gauge group is constrained as N . 4 with a vector-like pair of 5 + 5̄ messengers of gauge

mediation at an intermediate scale around 100 TeV–1000 TeV. In the case that the two

pairs of the messengers exist, the perturbativity of the couplings holds up to ∼ 1015 GeV

with N = 4, evaluated by two-loop renormalization group equations. The constraint may

be relaxed if there is a large positive anomalous dimension, giving negative contributions

to the beta-functions of the SM gauge couplings [43].

We take the following superpotential in addition to the usual MSSM Yukawa couplings,

W = λuHuΨ̄dQNf + λdHdΨuQ̄Nf +
∑
I

mIQIQ̄I

+
∑
ij

ηijXmQiQ̄j +
∑
A

(
ηAc YmΦA

c Φ̄A
c + ηAl YmΦA

l Φ̄A
l

+McΦ
A
c Φ̄A

c +MlΦ
A
l Φ̄A

l

)
+mΨΨuΨ̄d +mfff̄ +MXYXmYm +MY Y

2
m/2 ,

(2.1)

where λu, λd, ηij (i, j = 1, · · · , Nf − 1, I = 1, · · · , Nf ), ηAc and ηAl are dimensionless

coupling constants and mΨ, mf , MXY , MY , mI , Mc and Ml are mass parameters. The

fields ΦA
c , ΦA

l , Φ̄A
c , and Φ̄A

l act as messenger superfields after the SUSY is broken, and Mc

and Ml should be smaller than the confinement scale Λ, which will be described later:

Mc,Ml � Λ. (2.2)
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The index A denotes the messenger number, and A = 1, . . . , N5. We assume the following

hierarchies among the mass parameters,

mΨ ∼ mf > Λ� m1 > m2 > · · · > mNf−1 � mNf . (2.3)

The last large hierarchy may be explained by imposing an approximate symmetry with a

charge assignment, (charge of mNf ) � (charge of mi). Also, couplings of the messenger

fields to QNf and Q̄Nf are forbidden by this approximate symmetry.

The theory is first in the conformal window and the hidden gauge coupling is in a fixed

point at sufficiently high energies. At the mass scale below mΨ ∼ mf ∼MXY , Ψu, Ψ̄d, f ,

f̄ , Xm and Ym, are integrated out. It is assumed that MY �MXY . Solving the equations

of motion of these fields at classical level, we obtain the following superpotential in the

effective theory,

W ′ = −λuλd
mΨ

QNf Q̄NfHuHd

−
∑
ij

(
ηijηc
MXY

QiQ̄jΦcΦ̄c +
ηijηl
MXY

QiQ̄jΦlΦ̄l

)
+
∑
ijkl

ηijηklMY

2M2
XY

QiQ̄jQkQ̄l

+
∑
I

mIQIQ̄I +McΦcΦ̄c +MlΦlΦ̄l,

(2.4)

where the index A is omitted here and hereafter. Decoupling of the five flavors, the effective

theory is a SQCD with (N+1) flavors where the gauge coupling gets strong and finally the

theory (s-)confines. The confinement scale Λ is near the mass scale mΨ ∼ mf when the

gauge coupling is sufficiently strong before the confinement. Below the confinement scale,

the hidden quarks, QI , Q̄J , form meson chiral superfields and the first term of the above

superpotential leads to the NMSSM cubic coupling, SHuHd (S ∼ QNf Q̄Nf ), in a similar

manner to the model of [34]. Here, MY � MXY is favored to suppress masses of meson

superfields.

The low-energy effective theory of a SQCD with (N + 1) flavors has the following

dynamically generated superpotential as well as the superpotential eq. (2.4),

Wdyn =
1

Λ2Nf−3

(∑
IJ

BIMIJ B̄J − detMIJ

)
, (2.5)

where MIJ = QIQ̄J are meson chiral superfields and BI = εII1···INQI1 · · ·QIN /N !, B̄I =

εII1···IN Q̄I1 · · · Q̄IN /N ! are (anti-)baryons. We can rewrite these composite chiral superfields

in terms of canonically normalized fields,

SIJ ∼
MIJ

Λ
, bI ∼

BI

ΛNf−2
, b̄I ∼

B̄I

ΛNf−2
, (2.6)

where the Kähler potential cannot be controlled and we have just put the dynamical scale

Λ so that SIJ , bI and b̄I have mass dimension one correctly. The total superpotential of
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the theory is then given by

Weff = λSSHuHd +McΦcΦ̄c +MlΦlΦ̄l

+
∑
ij

(λcijSijΦcΦ̄c + λlijSijΦlΦ̄l)

+
∑
IJ

η bISIJ b̄J −
∑
I

η′mIΛSII − η′′
detSIJ

ΛNf−3
,

(2.7)

where S ≡ SNfNf and η, η′, η′′ in front of the terms of the last line are O(1) numerical

factors. Mass terms, SijSkl, will be discussed later. The other coupling constants are

estimated as

λS ∼
λuλdΛ

mΨ
, λcij ∼

ηijηcΛ

MXY
, λlij ∼

ηijηlΛ

MXY
. (2.8)

For Nf = N + 1 > 3, the last term ∼ detSIJ is irrelevant and not important around

SIJ = 0. We then ignore this term in the discussion of SUSY breaking below.

2.2 Dynamical SUSY breaking

We now show that dynamical SUSY breaking occurs at a meta-stable vacuum around the

origin of the meson field space in the present model. There is a local minimum at

b = b̄ =


√
m1Λ

0
...

0

 , SIJ = 0, (2.9)

and the origin of the other fields in the theory. We have not written the O(1) numerical

factors η, η′ explicitly. The F -terms of the mesons SIJ at this minimum are given by

nonzero values,

FSIJ = −
(
∂W

∂SIJ

)∗
= mIδIJΛ 6= 0 for I, J 6= 1, (2.10)

which means SUSY is broken dynamically [38]. There is a supersymmetric vacuum far

away from the origin of the meson field space, but the lifetime of the meta-stable vacuum

is sufficiently long if m1 � Λ is satisfied. With these F -terms, the gravitino mass is given by

m2
3/2 '

∑
I 6=1

|mIΛ|2

3M2
P

, (2.11)

imposing the condition for the vanishing cosmological constant. Here, MP (' 2.43 ×
1018 GeV) is the reduced Planck mass.

Let us analyze the mass spectrum on the meta-stable vacuum. Here, we ignore the

small mass parameter mNf just for simplicity. We expand the baryons around the vacuum,

b =


√
m1Λ + δχ1

δχ2

...

δχNf

 , b̄ =


√
m1Λ + δχ̄1

δχ̄2

...

δχ̄Nf

 . (2.12)

– 5 –
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The supermultiplets of S11, SI1 and S1I (I 6= 1) form mass terms of order
√
m1Λ with

(δχ1 + δχ̄1), δχI , δχ̄I respectively. The supermultiplet of (δχ1 − δχ̄1) is the massless

Nambu-Goldstone (NG) multiplet of the spontaneously broken baryon number symmetry.

When we gauge this symmetry, we just obtain the massive Abelian gauge multiplet by the

super Higgs mechanism. Alternatively, we can explicitly break the symmetry and make the

NG mode massive. The meson scalars SIJ (I, J 6= 1) are flat directions at classical level

but all of them except for the NMSSM singlet scalar S get nonzero masses by the 1-loop

Coleman-Weinberg potential.

The scalar of S remains massless even at 1-loop level. However, there is an important

2-loop correction for this scalar field, which gives a runaway potential for the NMSSM

singlet scalar. Near the origin, the generated negative soft mass-squared is given by [44]

V2−loop ≈ −1.26 η6 m2Λ

(16π2)2
S†S, (2.13)

which makes it possible to explain the correct EWSB with the non-zero 〈S〉, and then

the Higgsino mass term is generated by the superpotential interaction λSSHuHd as in the

usual NMSSM. Here, m2 � m3 is assumed. The potential (2.13) indicates that the size of

the soft mass depends on the SUSY breaking scale
√
m2Λ while that tachyonic soft mass

has to be smaller than the electroweak scale to preserve naturalness. Then, if the coupling

η is O(1),
√
m2Λ is not bigger than ∼ 100 TeV in the present model. In this case, the

cosmologically safe gravitino with a mass around 10 eV is predicted.

We need to stabilize the runaway direction of the NMSSM scalar from the poten-

tial (2.13). In addition, some of the fermion components in SIJ are massless and need

SUSY mass terms. For these reasons, we consider higher dimensional operators,

∆W =
λIJKL
M0

QIQ̄JQKQ̄L = m̃IJKLSIJSKL, (2.14)

where M0 is some ultra-violet (UV) mass scale and

m̃IJKL ∼
λIJKLΛ2

M0
. (2.15)

Here, among the higher dimensional operators, W 3 QiQ̄jQkQ̄l arises from eq. (2.1). The

higher dimensional operators in eq. (2.14) can give nonzero masses for all the meson scalars

and fermions except for the massless goldstino of SUSY breaking. The mass terms

m̃NfNfpp, m̃ppNfNf (p =, 2 . . . , Nf − 1) (2.16)

should be suppressed, since otherwise the EWSB scale is destabilized by ∆V ∼
Fpp(m̃ppNfNf + m̃NfNfpp)S + h.c. We can suppress these dangerous mass terms by im-

posing a symmetry which forbids (QNf Q̄Nf )(QpQ̄q), where q = 2, . . . , Nf − 1.

In addition, the linear terms ∆V ∼ Fpp(m̃ppqr + m̃qrpp)Sqr + h.c. shift the vacuum

expectation values of the pseudo-moduli mesons from the origin, ∆Sqr ∼ 16π2Λ2/M0 ∼
16π2m̃ as discussed in [39, 45]. This must be smaller than 4π

√
m2Λ so that the analysis

of SUSY breaking above is valid and also smaller than the messenger masses Mc ∼Ml for

the messengers not to be tachyonic (see below). Consequently, m̃ppqr and m̃qrpp can not

be significantly larger than 0.1–1 TeV.

– 6 –
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QNf Q̄Nf Qp Q̄q X1 X2 X3 Xm Ym (HuΨ̄d) (HdΨu) (Φl,cΦ̄l,c)

U(1) −4/5 −1/5 −1/5 0 1 4/5 2/5 1/5 −1/15 4/5 1/5 1/15

M1 M2 M3 MXY mNf mp MY Ml,c

U(1) −2 −8/5 −4/5 −2/15 1 1/5 2/15 −1/15

Table 2. The example of the U(1) charge assignment. The mass parameters mNf
, mp, MXY , MY

and Ma(a = 1, 2, 3) are considered to be spurions of U(1) symmetry breaking. (Also, mΨ (mf ) has

a non-vanishing charge.).

The higher dimensional operators (2.14) to satisfy the constraints can be UV completed

in the following renormalizable superpotential for instance,

W = X1QNf Q̄Nf +
∑
p

(X2QNf Q̄p +X3QpQ̄Nf )

+
∑
p,q

Xm(QpQ̄q) +MXYXmYm +
1

2
MY Y

2
m

+
1

2
(M1X

2
1 +M2X

2
2 +M3X

2
3 ) , (2.17)

where p, q = 2, . . . , Nf−1, and Xa (a = 1, 2, 3) are chiral superfields which are singlet under

the standard model and SU(N)H gauge symmetries. The mass parameters are larger than

the confinement scale:

M1,M2,M3,MXY ,MY > Λ. (2.18)

The above superpotential is explained by an approximate U(1) symmetry, with a charge

assignment summarized in table 2. A Yukawa coupling is implicitly multiplied by each of

cubic terms. Linear terms of X1, Xm and Ym have been removed by shifts of the fields.

The charge of (HuHd) is chosen to be non-zero such that the bare mass term, so-called

µ-term, is prohibited. The MSSM matter fields, which are not shown here, are also charged

under this approximate symmetry.

When new fields Xi are integrated out, we obtain the higher dimensional opera-

tors (2.14) with forbidden λpqNfNf and λNfNfpq, correctly. (Therefore, m̃NfNfpp and

m̃ppNfNf vanish.) Other mass terms which mix the NMSSM singlet S to other mesons

e.g. mNfNfpNf are prohibited. Since the symmetry forbids the messengers-QNf (Q̄Nf ) cou-

plings such as ΦlΨ̄dQNf in the superpotential eq. (2.1), couplings of S to the messenger

pairs, SΦcΦ̄c and SΦlΦ̄l, vanish: the EWSB scale is not destabilized.

2.3 Gauge mediation

We now consider gauge mediation of SUSY breaking to ordinary superparticles. Integrating

out the messenger fields, the gaugino mass and scalar masses are generated as

msoft ∼
g2

16π2

m̄Λ

M
, (2.19)

where g denotes the standard model gauge coupling and we have defined m̄ ≡
∑

i 6=1 λiimi.

Here, M ∼ Mc ∼ Ml is the messenger mass scale. To obtain the soft masses at the

– 7 –
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electroweak scale, we set

Λmess ≡
m̄Λ

M
∼ 100 TeV. (2.20)

The condition that the messenger fields are not tachyonic gives m̄Λ < M2. The messengers

also give the 1-loop Coleman-Weinberg potential to the meson scalars Sij , which also leads

to the shifts of the pseudo-moduli [39]. Since there is a vacuum with lower energy where

the messenger scalars are condensed, a tachyonic direction appears around Sij ∼ M (the

existence of this vacuum is essential for non-vanishing leading order gaugino masses. See

e.g. [45–47]). Then, the stabilized point of the pseudo-moduli has to be smaller than the

messenger mass scale M , which gives a constraint, M > λ2
√
mΛ. Note that the transition

between the SUSY breaking local minimum to the minimum with Sij ∼ M provides a

similar but more stringent constraint, M & 3λ
√
mΛ [48],4 which will be discussed in the

next section.

3 Phenomenology

We now turn to discuss the phenomenology of the model. As mentioned in the previous

section, gaugino, squark and slepton masses are the same as those in usual gauge mediation

with a messenger mass M and B-term of m̄Λ = MΛmess. On the other hand, values of soft

breaking parameters in the extended Higgs sector are different from those of usual gauge

mediation scenarios.

The low-energy effective superpotential of the extended Higgs sector can be written as

W ⊃ ξFS +
1

2
µ′S2 + λSSHuHd, (3.1)

where ξF = −mNfΛ in eq. (2.7) and µ′ = 2m̃NfNfNfNf in eq. (2.14), thus, we treat these

and λS as free parameters here. Note that the large λS of ∼ 1 is quite natural as shown in

appendix B.

The coupling of S3 term will be suppressed because it is provided from a higher dimen-

sional operator, (QNf Q̄f )3, and hence, it has been neglected. The corresponding SUSY

breaking terms are defined as

V ⊃
(
ξSS +

1

2
m′2SS

2 +AλλSSHuHd + h.c.

)
+m2

S |S|2 +m2
Hu |Hu|2 +m2

Hd
|Hd|2,

(3.2)

where the m2
S receives the negative two-loop contribution ∼η6m2Λ/(16π2)2∼η6(m3/2MP )/

(16π2)2 written in eq. (2.13). It turns out that this negative m2
S is important for the

successful EWSB. The other soft mass parameters are

Aλ ≈ 0 GeV, ξS ≈ 0 GeV, m′S ≈ 0 GeV, (3.3)

at the messenger scale because the singlet S does not couple messenger fields directly.

Hereafter we assume all parameters are real for simplicity.

4If the messenger superfields are not thermalized, the constraint becomes weaker as M & 1.5λ
√
mΛ,

provided that the SUSY breaking local minimum is selected in the early universe.

– 8 –
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3.1 EWSB and Higgs mass

To show the viable parameter space and typical mass spectra, we discuss the feature of the

extended Higgs sector. We define neutral scalar components of Higgs as H0
u = vu + (hu +

iau)/
√

2, H0
d = vd+(hd+iad)/

√
2 and S = vS+(sR+isI)/

√
2, respectively. These vu, vd, vS

denote vacuum expectation values and tan β ≡ vu/vd and v ≡
√
v2
u + v2

d ' 174.1 GeV. The

vacuum conditions can be obtained by

m2
Z

2
≈ −µ2

eff +
m2
Hd
−m2

Hu
tan2 β

tan2 β − 1
,

sin 2β ≈ 2(µeffµ
′ + λSξF )

m2
Hu

+m2
Hd

+ 2µ2
eff + λ2

Sv
2
,

µeff ≈ −
λSµ

′

2

2ξF − λSv2 sin 2β

m2
S + µ′2 + λ2

Sv
2
,

(3.4)

at tree level. Here m2
Z = (g2

Y + g2
2)v2/2 and µeff ≡ λSvS . Note that without the negative

m2
S , µeff is predicted to be around −λSξF /µ′. As a result, the predicted value of tan β is

huge: the successful EWSB does not occur, unless the Lagrangian with eq. (3.1) and (3.2)

becomes a MSSM limit by λS → 0 and (λSξF /µ
′) = fixed.5

Using the following base h′1
h′2
h′3

 =

 cosβ − sinβ 0

sinβ cosβ 0

0 0 1


 hd
hu
sR

 , (3.5)

the CP-even Higgs mass squared matrix can be written as

M2
H =

M2
H11 M

2
H12 M

2
H13

M2
H22 M

2
H23

M2
H33

 , (3.6)

where

M2
H11 ≈ m2

Z(cos 2β)2 + λ2
Sv

2(sin 2β)2,

M2
H22 ≈ 2(µeffµ

′ + λSξF )/ sin 2β

+
(
m2
Z − λ2

Sv
2
)

(sin 2β)2,

M2
H33 ≈ µ′(−λSξF + λ2

Sv
2 sinβ/2)/µeff ,

M2
H12 ≈ (−m2

Z + λ2
Sv

2) sin 4β/2,

M2
H13 ≈ λSv(2µeff − µ′ sin 2β),

M2
H23 ≈ −λSvµ′ cos 2β,

(3.7)

at tree level. As we can see, there are positive and negative contributions to the lightest

Higgs boson mass: a positive contribution is the additional F -term in M2
H11, λ2

Sv
2(sin 2β)2

5There are several gauge mediation models explaining the successful EWSB, where the effecitive µ-term

and Bµ terms are described by the VEV and the NMSSM-like singlet [49–53].
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Figure 1. The lightest Higgs boson mass mh and an off-diagonal component of the neutral CP-

even Higgs mass matrix MH13. We take (λS , tanβ, µeff/|µeff |) = (1.0, 4.0, 1) and (M,Λmess, N5) =

(300 TeV, 180 TeV, 1). Here, αs(MZ) = 0.1185 and mt(pole) = 173.34 GeV.

and a negative contribution comes from M2
H13 after diagonalizing the mass squared ma-

trix. Therefore, small tan β and µeff ∼ µ′ sin 2β/2 are favored to push the lightest Higgs

boson mass up.

Actually, we can see that the lightest Higgs boson mass is maximized around the

minimum of |MH13| in figure 1. In our numerical calculations, the Higgs boson mass and

SUSY mass spectra are calculated using NMGMSB [54], which is contained in NMSSMTools

4.8.2. The NMSSM parameters are taken as (λS , tanβ, µeff/|µeff |) = (1.0, 4.0, 1), while

parameters in the messenger sector are (Λmess,M,N5) = (180 TeV, 300 TeV, 1), where N5

is a number of the messenger pairs. It should be noted that considering above discussion

on the Higgs boson mass and vacuum conditions in eq. (3.4), the values of µeff , µ′,
√
ξF

and mS would be the same order in the viable parameter space.

We also estimate the fine-tuning of the EWSB scale using the following fine-tuning

measure [55, 56]:6

∆ = max
{∣∣∣∣ ∂ ln v

∂ ln |a|

∣∣∣∣},
(
a ∈ fundamental mass

parameters

)
(3.8)

where a = ξF , µ
′, Λmess, |m2

S | in our case. (d ln |ξF |, d ln |Λmess| and d ln |m2
S | correspond to

d ln |mNf |, d ln |m̄| and d ln |m2|, respectively.)

In figure 2, the fine-tuning measure ∆ is shown on the gluino mass (pole mass)-M

plane. Within the green (shaded) region, the lightest Higgs boson mass is in a range of

122–128 GeV. It is noticed that, thanks to the additional F -term contribution, the observed

Higgs boson mass around 125 GeV is easily explained even with the 1.2 TeV gluino mass

in the gauge mediation scenario, as pointed out in ref. [31]. The larger gluino mass can

of course also be consistent with the observed Higgs boson mass by changing the λS value

6The definition of ∆ here differs from the original one by a factor 2. With the definition of eq. (3.8),

∂ ln v/∂ ln |µ| ' 2µ2/m2
Z in the MSSM.
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Figure 2. The fine-tuning measure ∆ (black solid). We take λS = 1.0, tanβ = 4, µeff > 0,

µ′ = 6 TeV and N5 = 2, while the other parameters are the same as in figure 1. In the green

(shaded) region, the lightest Higgs boson mass is in a range of 122–128 GeV.

to slightly smaller. As a result, the fine-tuning of the EWSB scale is drastically improved,

compared to the MSSM in gauge mediation; ∆ . 100 for M ' 200 TeV.

3.2 Cosmology

Before closing this section, let us discuss cosmological aspects and implications to the

collider signals. In our model, the gravitino mass is estimated as

m3/2 '
m̄Λ

λ

1√
3MP

≈ 7 eV ·
(

Λmess

100 TeV

)(
M

300 TeV

)
1

λ
, (3.9)

where λ is a typical value of λii, provided λii ∼ λjj(i 6= j).

To satisfy the warm dark matter constraint, the gravitino should be lighter than

16 eV [57], and in this range there is no constraint on the reheating temperature. Then,

the messenger scale is bounded from above as

M < 6.7× 105 GeV · λ
(

100TeV

Λmess

)
, (3.10)

with

λ & 0.15 ·
(

Λmess

100 TeV

)2

, (3.11)

which is required not to conflict with M2 > m̄Λ. On the other hand, to avoid the un-

stable SUSY breaking minimum with a life-time shorter than the age of the universe, the

messenger scale should be [48]

M & 9× 105GeV · λ2

(
Λmess

100 TeV

)
. (3.12)
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Combining the above three conditions, we get the upper-bound on Λmess as

Λmess . 150 TeV. (3.13)

For N5 = 1, it is difficult to satisfy this upper-bound taking into account null results of

latest LHC SUSY searches.7 By demanding that the gluino mass, mg̃, be larger than 1.4

(1.6) TeV, the lower-bound on Λmess is

Λmess & 180 (205) TeV/N5, (3.14)

for Λmess/M = 1/2. Therefore, N5 > 1 is required. With the very light gravitino, the

next-to-lightest SUSY particle (NLSP), which is likely to be the stau in our model, decays

promptly (for a very light gravitino spectrum search, see [58]). In our case, right-handed

sleptons are almost degenerated in mass, and the strong constraint comes from the SUSY

searches in final states with multi-jets, multi-leptons (& 3) and missing transverse momen-

tum [59]. The chargino needs to be heavier than 850–900 GeV, resulting in the lower-bound

on the gluino mass as mg > 2.4–2.7 TeV with a GUT relation among gaugino masses. Here,

mg̃ is the gluino mass.

In the meantime, if the gravitino mass is in a range

m3/2 & O(10) keV, (3.15)

the gravitino can be a cold dark matter [60, 61] with an appropriate reheating temperature

or the late-time entropy production [62, 63]. The lower bound on the gravitino mass in

turn leads to the lower bound on the messenger scale:

M > 4.2× 108GeV · λ
( m3/2

10 keV

)(100 TeV

Λmess

)
, (3.16)

or equivalently

(m̄Λ/λ)1/2 & 2.1× 108 GeV
( m3/2

10 keV

)1/2

. (3.17)

In this case, the stability bound of the SUSY breaking minimum, eq. (3.12), is no longer

important. Note that the messenger scale can be still low as ∼ 106 GeV for λ ∼ 0.01, and

η ∼ 0.2 (see eq. (2.7)).

Since the typical decay length of the NLSP is O(10) m, the stau NLSP is strongly

constrained as mτ̃1 & 450–500 GeV [64, 65], where mτ̃1 is the (lighter) stau mass. Therefore,

the bino NLSP predicted with N5 = 1 may be favored if the gravitino is the cold dark

matter. In this case, the LHC signatures as well as limits of SUSY particle masses are

similar to those in gravity mediation, and the strongest constraint comes from the SUSY

searches with multi-jets and missing transverse momentum. So far, it is expected that

mg̃ & 1.4–1.6 TeV is required [66], depending on the squark mass.

Finally, we show the typical mass spectra and fine-tuning measure ∆ in table 3. At

the point I with N5 = 1, the bino-like neutralino is the NLSP and m3/2 & O(10) keV which

7It may be possible to avoid this constraint if the reheating temperature is sufficiently low or the gravitino

abundance is diluted by the late-time entropy production, allowing the larger gravitino mass than 16 eV.
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Parameters Point I Point II

Λmess (TeV) 185 130

M (TeV) 1000 200

N5 1 3

tanβ 4.5 5.0

λS 0.9 0.92

µeff (GeV) 783 893

µ′ (GeV) 6000 4000

ξF (GeV)2 −4.5× 106 −3.3× 106

m2
S (GeV)2 −1.95× 106 −1.41× 106

∆ 165 235

Particles Mass (GeV) Mass (GeV)

g̃ 1430 2890

q̃ 1840–1940 2570–2680

t̃2,1 1860, 1660 2610, 2410

χ̃±2,1 807, 486 1130, 886

χ̃0
5 5160 3610

χ̃0
4 807 1130

χ̃0
3 796 910

χ̃0
2 486 886

χ̃0
1 253 580

ẽL,R(µ̃L,R) 652, 326.6 810, 392.9

τ̃2,1 652, 325.9 810, 392.3

H± 851 1137

A2,1 4940, 847 3380, 1133

h1 124.7 125.1

Table 3. Mass spectrum in sample points. Values of λS and tanβ show the values at the SUSY

scale and values of ξF , µ′ and M2
S show the values at the messenger scale in this table. Here, A1

(A2) denotes the lighter (heavier) CP-odd Higgs.

enables us to explain the observed dark matter by the gravitino. As discussed above, the

gravitino mass with m3/2 < 16 eV is difficult to be achieved in this case. On the other

hand, at the points II, the stau is the NLSP; therefore, m3/2 < 16 eV is required to avoid

the strong constraint on the stable stau without increasing the SUSY mass scale. In such

a very light gravitino region, there is no constraint on the reheating temperature and the

observed dark matter relic would be explained by another particle (e.g. QCD axion).

4 Conclusion and discussion

We have proposed a new scheme for the NMSSM in gauge mediation, where in general

the successful EWSB does not occur due to the absence of the soft SUSY breaking mass
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parameter for S. In our framework, S is a composite meson in the hidden QCD, which

is responsible for the dynamical SUSY breaking. The required soft SUSY breaking mass

for S naturally arises after SUSY is broken dynamically, and the electroweak symmetry is

successfully broken.

Although the UV Lagrangian eq. (2.1) contains two singlets, it is possible to construct

a model without singlets as shown in appendix A, where the required particle content

becomes less. In this case, there are additional contributions to the soft masses for the

singlet and Higgs doublets, and all trilinear couplings. The stop, sbottom and stau masses

are also modified. Therefore, the quite different phenomenology is expected to appear.

As a concrete model of the dynamical SUSY breaking, we have utilized the ISS model.

However, it is possible to consider other dynamical SUSY breaking models. For instance,

if the IYIT model [67, 68] is adopted, a model similar to the Dirac NMSSM [69] appears as

a low-energy effective theory [70], which also increases the Higgs boson mass in a similar

but different way. It needs to be checked whether the correct EWSB is explained.

In our model, the gravitino can be either very light as ∼ 10 eV or O(10) keV. In the

former case, there is no upper bound for the reheating temperature, but the gravitino can

not explain the observed dark matter abundance. One needs another candidate for a dark

matter. For instance, the stable baryon in the hidden QCD may explain the observed

abundance of the dark matter. In the latter case, the gravitino is cold enough and a

dark matter candidate. Although the gravitino tends to be over-produced in general, it is

possible to fit for the standard cosmology if the late-time entropy production exists [62, 63].
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A UV model without singlets

An UV model without singlets is shown. The particle contents are less than eq. (2.1). The

superpotential is

W = λuHuΨ̄dQNf + λdHdΨuQ̄Nf

+
∑
A

(
ηciΦ

A
c f̄Qi + η̄ci Φ̄

A
c fQ̄i + ηliΦ

A
l Ψ̄dQi + η̄liΦ̄

A
l ΨuQ̄i

+McΦ
A
c Φ̄A

c +MlΦ
A
l Φ̄A

l

)
+mΨΨuΨ̄d +mfff̄ +mIQIQ̄I .

(A.1)

– 14 –



J
H
E
P
0
1
(
2
0
1
6
)
0
6
6

After integrating out f , f̄ , Ψu and Ψ̄d, the number of the flavor becomes Nf = N + 1 and

the theory confines. Then, the low-energy effective Lagrangian is

Weff = λSSHuHd +McΦcΦ̄c +MlΦlΦ̄l

+ λcijSijΦcΦ̄c + λlijSijΦlΦ̄l

+ λ̃ui SNf iHuΦ̄l + λ̃diSiNfHdΦl

+ η bISIJ b̄J − η′mIΛSII − η′′
detSIJ

ΛNf−3
.

(A.2)

In this model, there are messenger-Higgs couplings, SNf iHuΦ̄l and SiNfHdΦl. These cou-

plings generate two-loop negative contributions to m2
S other than the contribution shown

in eq. (2.13). The soft masses of Hu and Hd as well as those of the stop, sbottom and

stau are also modified by two-loop effects. The trilinear couplings Aλ, At, Ab and Aτ
are generated at the one-loop level, where At, Ab and Aτ are those of the stop, sbottom,

and stau, respectively. Size of one-loop corrections to m2
Hu

and m2
Hd

are parametrically

similar to those of two-loop contributions. These one-loop corrections to m2
Hu,d

vanish for

Λmess/M → 0.

B Couplings at the fixed point

In this appendix, we estimate the couplings relevant to λS . Provided that λuHuΨ̄dQNf ,

λdHdΨuQ̄Nf and ηijXmQiQ̄j in eq. (2.1) are at the fixed point, using the a-maximization

technique [71], the anomalous dimensions of the fields are

γHu = γHd = 0.148, γΨu = γΨ̄d
= −0.088,

γf = γf̄ = −0.114, γQNf = γQ̄Nf
= −0.060,

γQi = γQ̄i = −0.106, γXm = 0.211, (B.1)

for N = 4. On the other hand, the one-loop calculations give

γHu =
1

16π2
(Nλ2

u), γHd =
1

16π2
(Nλ2

d),

γXm =
1

16π2
(Nf − 1)Nη2

Q , (B.2)

where ηij = ηQ is taken for simplicity. Then, the fixed point values of λu, λd and ηQ
are estimated as λu = λd ≈ 2.42, ηQ ≈ 1.44. After f and f̄ are integrated out, the

theory becomes stronger but still in the conformal window. The couplings become larger

as λu = λd ≈ 5.11, ηQ ≈ 2.71 and we obtain a sizable λS coupling.
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