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1 Introduction

Strings of 5d supersymmetric Yang-Mills theories have been studied in the past to some

extend [1–5]. Among the main important questions regarding these strings are whether

they form bound states. In particular one is interested in bound states of BPS strings which

become particles of finite mass in 4d once the five-dimensional theory is compactified on

a circle. One of the interesting questions is whether the strings only form bound states

once they are given momentum along the circle. Upon further compactification of the

five-dimensional theory on a two-torus r strings can wrap the torus and contribute to

the metric on the Coulomb branch of the resulting three-dimensional theory as instanton

corrections [4] weighted by the exponent of minus the instanton action:

e−VrT−irλ, (1.1)

where V is the volume of the torus, T is the tension of the strings and λ the dual to the

three-dimensional vector. Furthermore, note that the above exponential comes with a pre-

factor given by the elliptic genus Zr of r strings wrapping the torus. Computing these Zr
is in general a very complicated task as one has to compute the elliptic genus of a sigma

model whose target space is the moduli space of magnetic monopoles [4, 5].

However, there is an alternative to this whenever one knows how to geometrically

engineer the five-dimensional quantum field theory. Within the framework of geometric

engineering the strings are realized as M5 branes wrapping a four-cycle in a non-compact

Calabi-Yau threefold and the elliptic genus of the strings gets related to the partition

function of twisted N = 4 SYM on the four-manifold [6]. Such partition functions are

mathematically generating functions of sheaves on algebraic surfaces, and recently there

has been a lot of progress in obtaining them [7–10]. Such sheaf counting can then be
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applied to surfaces which are relevant for geometrically engineering the five-dimensional

theory in order to obtain the elliptic genus of the magnetic string as has been done in [5]

for the case of del Pezzo surfaces.

In this paper we want to put forward yet another prescription for obtaining the elliptic

genera Zr for a subclass of five-dimensional theories which can be obtained from a six-

dimensional parent through circle reduction. The six-dimensional parent theory has itself

strings and in a compactification to five dimensions they may or may not wrap the circle. In

case they do wrap the circle their elliptic genus can be computed through various techniques

which have recently been developed [11–14] and allow to obtain the partition function of

the six-dimensional theory on T 2 × R4:

Z6d
R4×T 2 =

∑
n

e−nφZnT 2 , (1.2)

where ZnT 2 denotes the elliptic genus of n strings and φ is the vev of the scalar in the 6d

tensor multiplet. In case the strings do not wrap the circle from 6d to 5d they become

strings of the five-dimensional theory. Our claim is that the elliptic genus of the strings in

5d can be obtained from the elliptic genus of the strings in 6d in the Nekrasov-Shatashvilli

limit and we will demonstrate this explicitly for the case of the 5d N = 1∗ SU(2) gauge

theory. In doing this we connect to recent mathematical results on generating functions

of Poincaré polynomials of moduli spaces of sheaves on ruled surfaces [15]. Perturbative

expansions of elliptic genera for strings of the 5d N = 1∗ theory have been obtained in the

past using instanton calculus [16], but our results are more complete since they provide

analytic expressions for elliptic genera of any magnetic charge.

The organization of this paper is as follows: In section 2 we explain the duality which

connects the strings in 6d to the strings in 5d. In section 3 we derive expressions for the

corresponding elliptic genera, in section 4 we elaborate on a specific example and finally,

in section 5 we end with some concluding thoughts.

2 A 6d/5d duality

In this section we want to review the geometric engineering of five-dimensional quantum

field theories which have a six-dimensional parent and the duality which connects the two

theories in 6d and 5d. The duality we want to discuss is a special case of the duality

considered in [17] where the Calabi-Yau fourfold is taken to be CY3 × T 2.

Consider M-theory compactified on a non-compact elliptic Calabi-Yau manifold X

with a section π : X → B and with fibers given by two-tori E. Here B is a non-compact

complex two-fold of the form

B = O(−n)→ P1, (2.1)

with n a positive integer. Alternatively, X can be viewed as the anti-canonical bundle over

a surface D which is locally given by the product of the elliptic fiber E and the P1. This

setup leads to a five-dimensional quantum field theory with eight supercharges, that is with

N = 1 supersymmetry. Furthermore, the five-dimensional field theory has BPS strings [1]
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which are M5 branes wrapped around D. Their Central charge is given by their number r

times their tension T :

Zstrings = rT = rVol(D). (2.2)

Consider for example the case n = 2 which is also the main example of this paper. This

case is special in that it gives rise to a five-dimensional theory with N = 2 supersymmetry,

namely 5d N = 2 SU(2) gauge theory. However, as will be reviewed below, there is a

“mass-deformation” which leads to the N = 1∗ theory. The strings of this theory are

uplifts of the four-dimensional magnetic monopole solution.

Next, we want to follow a chain of dualities which connect M-theory on X with Type

IIB on B. We start by applying the fiber-wise duality between M-theory on E and Type

IIB on S1: take the elliptic curve E to be a rectangular torus

E = S1
R̃1
× S1

R̃2
, (2.3)

and compactify on S1
R̃1

to Type IIA. Then the Type IIA coupling constant will be (setting

α′ = 1) λIIA = R̃1. T-dualizing along S1
R̃2

one arrives at Type IIB on R5 × S1
1

R̃2

×B with

coupling λIIB = λIIA/R̃2. In fact λIIB varies with the position on B and the resulting

vacuum can be seen as compactifying F-theory first on X, as studied in [18], and then

further on S1
1

R̃2

. We are particularly interested in the fate of the M5 branes which give rise

to strings in 5d along this chain of dualities. These become D4 branes upon compactification

to Type IIA and then subsequently D3 branes wrapping P1 after T-dualizing to Type IIB.

As D3 branes wrapping P1 give rise to strings of minimal 6d SCFTs which have recently

been studied in [14], we have managed to map strings in 5d to strings in 6d. To summarize

we arrive at the following duality:

6d 5d

Type IIB on B × S1 × R5 M-theory on X × R4

strings: D3/P1 ←→ M5/D

Example: 5d N = 1∗ SU(2) gauge theory. Let us now present an example to

illuminate the idea presented above. Consider the case n = 2, that is take B = O(−2)→ P1

to be the resolved A1 singularity. Type IIB compactified on this manifold gives rise to the

(2, 0) superconformal theory and a further compactification on a circle gives maximal Super-

Yang-Mills in five dimensions. The dual M-theory has to be compactified on E × B. The

mass deformation to the N = 1∗ theory can be introduced by making E singular of Kodaira

type I1 along P1 ⊂ B. The Kähler class of the resolution of the I1 fiber corresponds in this

picture to the mass m of the adjoint hypermultiplet. The relevant Calabi-Yau has been

discussed in the language of toric geometry in [11]. The underlying toric diagram there is

depicted in figure 1 (a).

The edges of the toric skeleton show the locus where a circle of a two-torus fiber

degenerates and the vertices are points where the whole two-torus degenerates. Therefore

the circular direction with length R̃2 actually describes the elliptic fiber E. In our toric

description E is a circle fibration over this circular direction with total volume R̃1R̃2
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ϕ

R2

m

∼

(a) The toric diagram

ϕ

m

R2
∼

(b) The M5 brane locus

Figure 1. In (a) we see the toric diagram for the Calabi-Yau which geometrically engineers 5d

N = 1∗ SU(2) gauge theory. The red marks denote that the corresponding legs are identified. In

(b) we see the same toric geometry but this time the locus of the M5 brane wrapping D = E × P1

is marked blue.

which is identified in the geometric engineering picture with the Yang-Mills coupling, i.e.

R̃1R̃2 = 1
g2Y M

. Furthermore, strings in 5d arise by wrapping an M5 brane on the four-cycle

depicted in blue in figure 1 (b) and will therefore have the following tension:

T = vol(E × P1) =
φ

g2YM
. (2.4)

3 Elliptic genus of the 5d string

In the previous section we saw that the strings in 6d get related to the strings in 5d. In

this section we want to study their elliptic genus by further compactifying both theories on

a two torus T 2. The elliptic genera will then contribute to the partition function/moduli

space of the resulting four- and three-dimensional theories. We start by taking the radii of

the torus to be as follows where for simplicity we focus on the rectangular case

T 2 = S1
R1
× S1

R2
, (3.1)

and identify the complex structure of T 2 with the volume of E, which is a constant, giving1

τ = i
R1

R2
= iR̃1R̃2. (3.2)

The resulting theories live now on T 2×R4 and T 2×R3. We can now introduce a twisting

of R4 ∼= C× C (with coordinates z1 and z2) along the cycles of T 2 as done in [11]:

U(1)ε1 ×U(1)ε2 : (z1, z2) 7→ (e2πiε1z1, e
2πiε2z2), (3.3)

1Normalizing R1 = R̃1 = 1 the relation follows from the F-theory/M-theory duality relation 1
R2

= R̃2

as discussed in the previous section.
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ϵ1

ϵ2

R4

T 2

(a) 6d

ϵ2

R3

T 2

(b) 5d

Figure 2. In (a) we see the strings of the six-dimensional theory wrapping a T 2 and probing R4.

In (b) we see strings of the five-dimensional theory wrapping the two-torus and probing R3.

and similarly for R3 ∼= C × R (with coordinates z2 and x) where only one of the U(1)εi
can act:

U(1)ε2 : (x, z2) 7→ (x, e2πiε2z2). (3.4)

The situation for the two cases is shown in figure 2. The picture suggests a very sim-

ple relation between the two elliptic genera. Recall that the elliptic genus, which is a

supersymmetric protected index, of the strings in 6d is defined as [11]:

Zn(Qτ , ε1, ε2,ml) = TrRR

[
(−1)FQHL

τ Q
HR

τ e2πiε1J1e2πiε2J2yJI
N∏
l=1

e2πimlFl

]
, (3.5)

where Qτ = e2πiτ , J1, J2 are the Cartans of SO(4)R4 = SU(2)1 × SU(2)2, JI is the Cartan

of an SU(2) R-symmetry2 with fugacity y = e2πim0 , and Fl are Cartans of the flavor group.

Now we claim that the elliptic genus of the strings in 5d is just given by setting ε1 = 0

in (3.5) which corresponds to the Nekrasov-Shatashvili limit [19]. In particular it is defined

by the operation

ZNS
r (Qτ , ε2,ml) = R̃es2πiε1=0Zr(Qτ , ε1, 2ε2,ml), (3.6)

2The dependence on y may or may not be present. For example, the E-string theory does not couple to

the JI -current. On the other and, in the case of the M-string y can be identified with the mass-deformation

parameter Qm as explained in [11].
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where we identify the Cartan generator of SO(3)R3 with J2 and the factor 2 is introduced

for conventional reasons. Now it is crucial to observe that equation (3.6) is not the ordinary

residue operation. The ordinary residue does not transform covariantly under SL(2,Z) if

Zr has higher than single order poles in ε1 in its Laurent expansion. In order to take this

into account we define the modified residue operation R̃es which gives rise to an SL(2,Z)

modular object. To this end we observe that the elliptic genus of r strings, denoted by Zr,

has a representation in the following form:

Zr =
r∑

d=1

ϕd(τ, ε1, ε2,ml), (3.7)

where the functions ϕd with d = 1, . . . , r are meromorphic Jacobi forms with poles of order

d at ε1 = 0. Note that the above expansion is unique as all ϕd have an order 2r pole at

ε1 = −ε2 = ε = 0 (unrefined limit) which reflects the fact that r strings are probing R4.

We can now define our residue to be given by

R̃es2πε1=0Zr = Res2πiε1=0ϕ1. (3.8)

This leads to a unique Jacobi form with elliptic parameters ε2 and ml. In the next subsec-

tion we will elaborate on this claim by defining BPS generating functions.

3.1 BPS degeneracies

In this section we want to define generating functions for BPS degeneracies which we

identify with protected spin characters associated to the excitations of the BPS strings

in 5d. To this end recall that the full partition function of the six-dimensional theory

on T 2 × R4 can be identified with the refined topological string partition function of the

Calabi-Yau X:

Ztop = 1 +
∞∑
r=1

e−rφZr(Qτ , ε1, ε2,ml). (3.9)

To connect to strings in 5d we define the NS limit of the above partition function:3

ZNS
top(Qτ , ε2,ml) = R̃es2πiε1=0Ztop(Qτ , ε1, 2ε2,ml), (3.10)

On the other hand, we also know that BPS degeneracies are associated (up to multi-

covering) with expansion coefficients of free energies of the topological string. These are

defined by taking the logarithm of the partition function

Ftop = log
(
ZNS
top

)
=

∞∑
r=1

e−rφFr(Qτ , ε2,ml), (3.11)

where the relation between the Fr and Zr is given as follows

Fr(Qτ , ε2,ml) =
∑

r1+···rk=r

(−1)k

k

k∏
i=1

ZNS
ri (Qτ , ε2,ml). (3.12)

3For conventional reasons and to connect to the literature about Poincaré polynomials the dependence

on ε2 has a factor of 2 in the right-hand side of equation (3.10).
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This relation is reminiscent to the relation between BPS invariants and virtual Poincaré

polynomials as given in [10, 20]. In fact we take this relation seriously and define Fr as

generating functions for invariants Ω̄:

Fr(Qτ , ε2,ml) =
∑
n,il

Ω̄({r, n, il}, t, y)Qnτ

N∏
l=1

Qilml
, (3.13)

where t = e−2πiε2 , Qml
= e2πiml . Furthermore, {r, n, il} ≡ γ denotes the charge vector

associated to the BPS strings. The invariants Ω̄ can further be related to protected spin

characters as in [10] (see also [21, 22] for similar definitions in a different context):

Ω(γ, t, y) =
∑
m|γ

µ(m)

m
Ω̄(γ/m,−(−t)m, ym), (3.14)

where µ(m) is the arithmetic Möbius function. The function Ω(γ, t, y), known as the BPS

degeneracy, is defined in [23]

Ω(γ, t, y) = TrBPS(−t)2J2y2JI . (3.15)

The indices Ω̄ and Ω are in fact subject to wall-crossing but we have chosen to neglect the

dependence on the modulus as the topological string free energies compute these indices

at a certain point in the moduli space which we shall clarify later. Furthermore, in cases

where no exotics are present in the spectrum [24], the index Ω(γ,−t,−t) is independent of

JI and is related to the Poincaré polynomial of moduli spaces of sheaves on surfaces [25]

where J2 is interpreted as the Cartan of the SU(2) Lefschetz action on the cohomology.

For us it turns out to be more convenient to define the following quantity4

Ω(γ, t) ≡ Ω(γ, t, 1) =
P (γ, t)

t− t−1
, (3.16)

with

P (γ, t) = t−dimCM(γ)

2dimCM(γ)∑
l=0

(−1)lbl(M(γ))tl. (3.17)

These Poincaré polynomials are associated to moduli spaces of sheaves on the surface D as

the M5 brane which gives rise to the strings in 5d is wrapping T 2×D and when we take the

size of T 2 to be small we obtain the partition function of twisted N = 4 SU(r) Yang-Mills

theory [26] on D as observed in [6]. The associated Euler numbers are then equivalent to

the instanton numbers of the twisted Yang-Mills theory [6] which are obtained by taking

the limit

Ω(γ) = lim
t→1

(t− t−1)Ω(γ, t). (3.18)

The fact that the Nekrasov-Shatashvili limit of the refined topological string on the Calabi-

Yau X corresponds to generating functions for Poincaré polynomials of sheaves on D was

4More generally we have (t− t−1)Ω(γ, t, y) =
∑

m,n∈Z(−t)m+n−dimCMym−nhm,n(M(γ)), where we have

identified 2J2 = m + n − dimC(M) with the Cartan of the SU(2) Lefschetz action on the Dolbeault

cohomology and 2JI = m− n with the “Hodge” SU(2).
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already observed for rank one sheaves and D = 1
2K3 in [25] and conjectured to hold for

arbitrary rank for that case in [27]. The elliptic genus of the 6d strings now provides a

way to test this conjecture for other X and D and for all ranks r since its knowledge is

equivalent to the all genus result of the refined topological string. We shall test our claim

by using the elliptic genus of M-strings to obtain the elliptic genus of strings of the 5d

N = 1∗ SU(2) theory in the next section.

4 Strings of 5d N = 1∗ SU(2) gauge theory

To learn about strings of 5d N = 1∗ gauge theory we need to study strings of the 6d

(2, 0) theory, namely M-strings. Their elliptic genus was computed in [11] by using the

topological vertex formalism and by a 2d quiver gauge theory in [12]. The result for r

M-strings can be written in a compact form as follows

Zr(τ, ε1, ε2,m) =
∑
|ν|=r

∏
(i,j)∈ν

θ1(τ ; zij)θ1(τ ; vij)

θ1(τ ;wij)θ1(τ ;uij)
, (4.1)

where ν is a Young tableau and |ν| denotes the number of boxes in ν. Furthermore,

(i, j) ∈ ν specifies a box in the i’th row and j’th column and the elliptic parameters as

functions of y = Qm = e2πim, q = e2πiε1 and t = e−2πiε2 are given by

e2πzij = Q−1m qνi−j+1/2t−i+1/2, e2πivij = Q−1m ti−1/2q−νi+j−1/2,

e2πiwij = qνi−j+1tν
t
j−i, e2πuij = qνi−jtν

t
j−i+1, (4.2)

and the theta function defined as

θ1(τ ; z) = iQ1/8
τ eπiz

∞∏
k=1

(1−Qkτ )(1−Qkτe2πiz)(1−Qk−1τ e−2πiz). (4.3)

In order to obtain the elliptic genus of the 5d strings we have to apply the residue operation

of (3.10) to (4.1). It can be easily seen that the result is the following

ZNS
r (τ, ε2,m) = −i

∏r−1
k=−r θ1(τ ;−m+ (2k + 1)ε2)

η(τ)3θ1(τ ; 2rε2)
∏r−1
k=1 θ1(τ ; 2kε2)2

, (4.4)

where the only contribution in (3.6) comes from fully anti-symmetric Young tableaux and

ε2 got rescaled by a factor of 2 in accord with the definition (3.10). Now one can convince

oneself that this result agrees for m = 0 exactly with the result obtained in [15] for the

generating function of rank r sheaves on a rationally ruled surface with an elliptic curve as

base.5 This surface is the surface D described in section 2 for the geometric engineering

of the 5d N = 1∗ SU(2) theory. As it is just the direct product D ∼= P1 × E one can view

the P1 as the rational fiber and E as the elliptic curve base. Henceforth we will denote

the P1 by f . Then the exact result in [15] is that (4.4) is the generating function for rank

5The expression (4.4) for the generating function of rank r sheaves on P1 × T 2 was already conjectured

in [9] (Conjecture 4.3).
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r semi-stable sheaves on D with Kähler class J = f and c1 · f = 0 mod r. In order to

derive (4.4) from the expression given in [15] one has to use that the motivic zeta function

of an elliptic curve is given by:

ZE(τ, t) =
(1− tQτ )(1− tQτ )

(1−Qτ )(1− t2Qτ )
. (4.5)

The choice J = f is at the boundary of the Kähler cone. In order to connect to the weak

coupling chamber of the four-dimensional gauge theory which arises by circle compactifi-

cation from the five-dimensional one, one has to move slightly away from the boundary as

argued in [5] (see also [28]). This is done by choosing

J = f + δE, (4.6)

with δ � 1.

4.1 Magnetic charge r = 1

For r = 1 we obtain the following NS-limit of the M-string elliptic genus:

ZNS
1 (τ, ε2,m) =

1

η(τ)θ1(τ ;−2ε2)

θ1(τ ;−m+ ε2)θ1(τ ;−m− ε2)
η(τ)2

. (4.7)

This result has a nice interpretation in terms of the moduli space of magnetic monopoles

of magnetic charge r = 1. Their bosonic moduli space is given by R3 × S1 which explains

the factor
1

η(τ)θ1(τ ;−2ε2)
, (4.8)

with η(τ) corresponding to the boson parametrizing S1 and θ1(τ ;−2ε2) corresponding to

R3 on which U(1)ε2 acts equivariantly. Moreover, the second factor, namely

θ1(τ ;−m+ ε2)θ1(τ ;−m− ε2)
η(τ)2

, (4.9)

corresponds to the four fermionic zero-modes which are present due to the adjoint hyper-

multiplet of the 5d N = 1∗ theory [29]. We can also expand expression (4.7) in powers

of Qτ :

ZNS
1 (τ, ε2,m) =

(Qm − t)(Qmt− 1)

Qmt(t− t−1)
− (Qm − t)2(Qmt− 1)2(1 + t2)

Q2
mt

3(t− t−1)
Qτ

+
(Qm − t)2(Qmt− 1)2(t3 +Q2

mt
3 −Qm(1 + t2)3)

Qmt5(t− t−1)
Q2
τ +O(Q3

τ ). (4.10)

As τ = iR1
R2

where R2 is the radius of the circle compactifying the five-dimensional theory

to four dimensions, we see that Qτ = 0 corresponds to the four-dimensional limit while

higher powers of Qτ correspond to higher momentum along S1
R1

. When we set the mass

m of the adjoint hypermultiplet to zero, i.e. when we go to the limit of the maximal SYM

theory in five dimensions, we can extract the Betti numbers shown in table 1.
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Qnτ b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

n = 0 1 2 1

n = 1 1 4 7 8 7 4 1

n = 2 1 4 9 18 30 36 30 18 9 4 1

Table 1. Betti numbers for r = 1 and m = 0.

k bk0 bk1 bk2

0 1 1

1 1

Table 2. Refined Betti numbers bki = h
i+k
2 , i−k

2 for r = 1 and Q0
τ .

k bk0 bk1 bk2 bk3 bk4 bk5 bk6

0 1 5 5 1

1 2 4 2

2 1 1

Table 3. Refined Betti numbers bki = h
i+k
2 , i−k

2 for r = 1 and Q1
τ .

k bk0 bk1 bk2 bk3 bk4 bk5 bk6 bk7 bk8 bk9 bk10

0 1 7 20 20 7 1

1 2 9 17 9 2

2 1 5 5 1

3 1

Table 4. Refined Betti numbers bki = h
i+k
2 , i−k

2 for r = 1 and Q2
τ .

One can see that the Betti numbers in the above table give zero Euler numbers. This is

to be expected as the string of maximal SYM in 5d has (4, 4) world-sheet supersymmetry

instead of (0, 4). Therefore, the left-moving side is also supersymmetric and leads to a

perfect cancellation between fermions and bosons. The mass-deformation breaks the left-

moving supersymmetry and can be thought of as introducing a grading in the cohomology

ring of the moduli space of the string given by powers of Qm. In order to define an elliptic

genus for the (4, 4) string reference [16] proposed to set Qm = −1. However, recalling

that the mass m couples to the R-symmetry current JI , one can extract from (4.10) the

more refined information (see also page 4 of [30] for an explanation of the relation between

Hodge numbers, spin and R-symmetry) shown in tables 2, 3 and 4.
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Qnτ b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10

n = 1 1 4 7 8 8 8 8 8 7 4 1

Table 5. Betti numbers for r = 2 and m = 0.

k bk0 bk1 bk2 bk3 bk4 bk5 bk6 bk7 bk8 bk9 bk10

0 1 5 6 6 5 1

1 2 4 4 4 2

2 1 1 1 1

Table 6. Refined Betti numbers bki = h
i+k
2 , i−k

2 for r = 2 and Q1
τ .

4.2 Magnetic charge r = 2

The elliptic genus for two strings takes the following form:

ZNS
2 (τ, ε2,m) = −iθ1(τ ;−m+ 3ε2)θ1(τ ;−m+ ε2)θ1(τ ;−m− ε2)θ1(τ ;−m− 3ε2)

η(τ)3θ1(τ ;−2ε2)2θ1(τ ;−4ε2)
. (4.11)

Following the rules of section 3.1 we can extract from this the following BPS generating

function:

ZNS
2 (τ, ε2,m)− 1

2
ZNS
1 (τ, ε2,m)2 +

1

2
ZNS
1 (2τ, 1/2 + 2ε2, 2m), (4.12)

where the last term is added to subtract multi-covering contributions. However, as argued

in [5], one has to add to the above expression the following term

1

1− t4
ZNS
1 (τ, ε2,m)2, (4.13)

which is due to moving infinitesimally away from the boundary of the Kähler cone (4.6),

in order to arrive in the weak coupling chamber of the field theory. Expanding the sum

of (4.12) and (4.13) in powers of Qτ we can again obtain Betti numbers. One notices

that the expansion starts with the first power of Qτ which is consistent with fact that the

four-dimensional limit of our five-dimensional field theory is the SU(2) N = 2∗ theory and

is known to not have any bound states with magnetic charge greater than one. At first

order in Qτ we then obtain the Betti numbers shown in table 5. Again one notices that

the corresponding Euler number is zero. Refining the information by taking into account

the mass-deformation one arrives at the numbers shown in table 6.

5 Concluding thoughts

In this paper we have presented a proposal for how to obtain elliptic genera of strings in

five-dimensional field theory from strings in a six-dimensional parent theory. The main

restrictions we imposed on the elliptic genus are SL(2,Z) modularity and the connection

to sheaf counting on ruled surfaces. Our prescription naturally fulfils both requirements

and is also consistent with knowledge about moduli spaces and bound states of magnetic
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monopoles. Moreover, an interesting advantage of the definition (3.10) is that it easily

connects to sheaf counting for more general ruled surfaces of the form P1×Σg where Σg is

a genus g Riemann surface [31].

However, the question remains whether it is unique, that is, whether there is any other

way to obtain an elliptic genus which also fulfils the above mentioned requirements? In

fact, it turns out that there is another prescription as explored in reference [32]. In [32]

the authors define the elliptic genus of 5d strings by first computing the topological string

free energy on the relevant elliptic Calabi-Yau manifold

F = log (Ztop) =

∞∑
r=1

e−rφFr(Qτ , ε1, ε2,ml), (5.1)

and then take the Nekrasov-Shatashvilli limit to obtain the elliptic genus:6

FNS
r = Res2πiε1=0Fr(Qτ , 2ε2,ml). (5.2)

This definition equally gives an SL(2,Z) invariant result as Fr has only simple poles in ε1.

Note though, that the result obtained is different from the definition presented in this paper

as the two operations “taking the logarithm” and “taking the NS-limit” do not commute.

Also, it is not clear how (5.2) connects to sheaf counting. Let us compare the results of

the two prescriptions for one and two strings. For a single string they both agree as (5.2)

also gives the result (4.7). For two strings, however, we find7

FNS
2 = ZNS

2 − θ1(−m− ε2)θ′1(−m− ε2)θ1(−m+ ε2)
2

2η6θ1(−2ε2)2
(5.3)

+
θ1(−m− ε2)2θ1(−m+ ε2)θ

′
1(−m+ ε2)

2η6θ1(−2ε2)2
− θ1(−m− ε2)2θ1(−m+ ε2)

2θ′1(−2ε2)

2η6θ1(−2ε2)3

We see that the first term agrees with our prescription but the second term is different

from −1
2Z

NS
1 (τ, ε2,m)2 with the difference being

− 1

2

θ1(−m− ε2)θ1(−m+ ε2)

η6θ1(−2ε2)2
×
(
θ1(−m− ε2)θ1(−m+ ε2) + θ′1(−m− ε2)θ1(−m+ ε2)

−θ′1(−m+ ε2)θ1(−m− ε2) +
θ′1(−2ε2)

θ1(−2ε2)

)
.

It would be very interesting to see whether this difference is due to wall-crossing in the

moduli space of sheaves by moving from the edge to the interior of the Kähler cone of the

ruled surface. In such a case, the prescription (5.2) would equally connect to sheaf counting

and the two different definitions for elliptic genera would be naturally connected.
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