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1 Introduction

An exact expression for the difference of the ultraviolet (UV) and infrared (IR) Euler

anomaly ∆a ≡ aUV−aIR was derived forN = 1 supersymmetric gauge theories by Anselmi,

Freedman, Grisaru, and Johansen (AFGJ) [1]. Thereafter it has served as a fruitful labora-

tory for testing different techniques by rederiving the result. Examples include verification

up to fourth loop order [2], the use of the local renormalisation group (RG) [3] and em-

ploying superspace techniques assuming a gradient flow equation [4]. In the latter case an

expression valid outside the fixed point has been obtained [4] of a form conjectured earlier

by a perturbative approach [5].

In this paper ∆a|N=1 is derived by using the techniques of conformal anomaly match-

ing and dilaton effective action. The latter were used by Komargodski and Schwimmer

(KS) [6, 7] to derive the a-theorem ∆a ≥ 0 as conjectured in 1988 by Cardy [8]. A cru-

cial ingredient is the introduction of an external field called the dilaton by coupling it

to the renormalisation scale µ → µeτ(x), thereby introducing a local scale interpretation

analogous to the the local RG pioneered by Shore [9, 10]. The locality of the approach

is crucial and served Jack and Osborn to derive a proof the a-theorem at weak coupling

(i.e. perturbation theory) by using it as a source term in a field theory in a generic curved

background. KS and later Komargodski [7] focused on the four point dilaton function and

were able to prove the a-theorem based on analyticity assumptions. In essence the dilaton

serves as a compensator field to the Weyl-rescaling

gµν → e−2α(x)gµν . (1.1)
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The transformation (1.1) corresponds to changing distances locally and implies that coor-

dinate and momenta invariants change as x2 → e−2α(x)x2 and p2 → e2α(x)p2. Variation

of the logarithm of the partion function with respect to the Weyl-parameter results in the

vacuum expectation value (VEV) of the trace of the energy momentum tensor (EMT).

For a theory on a curved space, with no explicit scale symmetry breaking, the EMT is

parametrised by [11, 12]

〈Θ〉 = aE4 + bW 2 + cH2 + c′�H , (1.2)

where the abbreviations

Θ ≡ T ρ
ρ , H ≡ R

d− 1
, (1.3)

are used throughout. The quantities E4 = R2
µναβ − 4R2

µν +R2, W 2 = R2
µναβ − 4

(d−2)R
2
µν +

2
(d−1)(d−2)R

2 and R are the Euler density, the Weyl tensor squared and the Ricci-scalar;

and Rµναβ and Rµν denote the Riemann and Ricci tensors. The Euler density E4 is a

topological quantity and the Weyl tensor squared W 2 vanishes on a conformally flat space.

The absence of c, and therefore the H2-term, in a 4D conformal field theory (CFT) was

shown in ref. [13, 14]. The �R term can be removed by a finite H2-counterterm in the

action [11] and will therefore not be discussed any further throughout. The constants a, b, c

and c′ depend on the dynamics of the theory. Their free field values for various spins were

computed in [11]. Note, the non-vanishing of a and b therefore establish the conformal or

Weyl anomaly in 4D [11, 12].

This work is structured as follows. In section 2 the general framework is outlined by

restating some of the results of [6] in a language appropriate for this work. The specific

construction is presented and illustrated in sections 2.1 and 2.2 respectively. In section 3,

in particular 3.1, the AFGJ Euler anomaly result is rederived within our framework using

the Konishi anomaly. The paper ends with conclusions in section 4. Appendices A, B

and C include a review of the derivation of the NSVZ beta function using the Konishi

anomaly, the derivation of the the trace anomaly for a free theory for a dilaton background

field without additional background curvature and renormalisation group equations for the

generating functional.

2 General framework

Consider a massless theory with fields φ and a coupling g. The path integral is given by

eW (g(µ),µ) =

∫

[Dφ]µ e−SW(g(µ),µ,φ) , (2.1)

where the action SW is to be understood in a Wilsonian sense and W is proportional

to the negative free energy. For the purposes of this work SW is interpreted to be on a

renormalisation trajectory from the UV to an IR fixed point.

In massless theories correlation functions depend on ratios of q2/µ2 where q denotes

an external momentum. Hence the renormalisation scale transforms as µ → e−αµ under

the Weyl-rescaling. An external field, known as the dilaton τ , is introduced in the action

SW(g(µ), µ, φ) → Sτ ≡ SW(g(µeτ ), µeτ , φ) . (2.2)
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transforming under Weyl-rescaling (1.1) as

τ → τ + α , (2.3)

such that the product µeτ is Weyl-invariant. The dilaton therefore serves as a spurion

(or compensator) formally restoring scale invariance. In this work no dynamic nature is

attributed to the dilaton field which is in line with [7] but not the first paper [6] on the

a-theorem in 2011. The dilaton serves as a source term for the EMT and when made a

local field the, yet to-be-defined, Wess-Zumino term carries the information on the Euler

anomaly. Promoting the dilaton to a local field τ → τ(x) requires local Weyl invariance

and demands changes similar to passing from global to local gauge invariance. The specific

implementation will be discussed in the the explicit examples. The space-dependance of

τ augments the couplings to local objects g(µ) → g(µeτ(x)). Note that the functional

form µeτ renders local Weyl-rescaling equivalent to a local RG transformation. The path

integral becomes τ -dependent,

eWτ =

∫

[Dφ]µe
−Sτ =

∫

[Dφ]µe
−SW(g(µeτ ),µeτ ,φ) . (2.4)

The quantity Wτ corresponds to the generating functional of the correlation functions

(connected component) of the traces of the EMT. The Wess-Zumino action1

SWZ =

∫

d4x 2
(

2�τ(∂τ)2 − (∂τ)4
)

+O(R) , (2.5)

was shown to be the source term [6] of the Euler anomaly. Above R stands for the non-

dilaton curvature background. More precisely, using arguments of conformal anomaly

matching it was shown that the difference of the UV and IR dilaton effective action, with

with g∗(UV,IR) ≡ g(∞, 0),

∆Wτ ≡
∫ g∗UV

g∗IR

dg ∂gWτ = −
∫ ∞

−∞
d lnµ∂ lnµWτ = Wτ (g

∗
UV)−Wτ (g

∗
IR) = −∆a SWZ + . . . ,

(2.6)

contains a term proportional to SWZ times the sought after quantity ∆a ≡ a(µUV) −
a(µIR) [6]. Hence determining ∆a reduces to finding ∂ lnµWτ . Note that the second equality

in (2.6) follows from (C.1) in the limit m → 0 and using dg/β = d lnµ.

2.1 Dilaton dependent conformal factor

In this work a theory is considered which can be reinterpreted as a free field theory in a

conformally flat background

g̃ρλ = e−2s(τ)δρλ , (2.7)

which carries the information on the RG flow parameters. Above δρλ denotes the flat

Euclidian metric with positive signature. The adaption to Minkowski space is straightfor-

ward as it results in the appearance of various factors of i only. By using (C.5) from the

1The Wess-Zumino action, above, is analogous to the Wess-Zumino term [15] of pions in connection with

the the axial anomaly.
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appendix2,3

∂ lnµWτ =

∫

d4x
√

g̃ 〈Θ〉τ , (2.8)

and (2.6) we may write a more explicit formula for the difference of the Euler anomaly ∆a

∆a =

∫ ∞

−∞
d lnµ

∫

d4x
√

g̃〈Θ〉τ |SWZ
, (2.9)

where where |SWZ
denotes the following projection

〈Θ〉τ = ãẼ4 + c̃H̃2 = 〈Θ〉τ |SWZ
SWZ + . . . . (2.10)

The coefficients ã and c̃ depend on the dynamics of the theory. The Wess-Zumino action

SWZ is defined in (2.5) and we follow the rule that the tilde denotes geometric quantities,

e.g. Ẽ4 and H̃2, evaluated in the background metric g̃µν .
4 The quantity ∆a is determined

once ã and c̃ are known. In the next section we will discuss a very simple toy model that

illustrates these ideas and will serve as a stepping stone for the N = 1-computation.

2.2 Weyl anomaly of free scalar field in conformally flat background

We consider a scalar field theory on a flat space, focusing solely on the kinetic term

SW(µ) =

∫

d4xZ(µ)δρλ∂ρφ∂λφ , (2.11)

thereby ignoring other contributions. The usefulness of which will, hopefully, become clear

in section 3.1. Taking Z(µ) → Z(µeτ(x)) amounts to passing to Sτ (2.2). The factor

Z(µeτ(x)) can be absorbed into the metric by a local Weyl-rescaling by choosing α = s

in (1.1) with

s(µeτ ) = −1

2
lnZ(µeτ(x)) ⇒ g̃ρλ = Zδρλ . (2.12)

The theory then becomes a field theory on a conformally flat space with metric g̃µν (2.12)

Sτ (µ) =

∫

d4x
√

g̃g̃ρλD(s)
ρ φD

(s)
λ φ . (2.13)

Above D
(s)
ρ = ∂ρ− (∂ρs) denotes the Weyl-covariant derivative5 analogous to the covariant

derivative in gauge theories. The coefficients of the trace anomaly (1.2) for a theory with

metric g̃ρλ and one free scalar field are given by (cf. [11, 16] or the explicit computation in

appendix B)

ã = afree(0) , c̃ = 0 , c̃′ = −2afree(0) , afree(0) =
1

360

1

16π2
=

1

5760π2
, (2.14)

2Note that metric (2.7) is not a physical or geometric metric as it does not transform like (1.1) under

Weyl-rescaling s(τ) → s(τ + α) unless s(x) = x. The latter is the case in [6], ĝρλ = e−2τ(x)δρλ, and

constitutes one of the differences with respect to our approach.
3The subscript τ refers to the VEV of the trace of the EMT with respect to the partition function (2.4).
4Conformal flatness of g̃ implies that W̃ 2 = 0.
5Adding the Weyl-covariant derivatives is equivalent to the replacement � → �− 1

6
R̃ which is the usual

conformally coupled scalar in a curved space of metric g̃ρλ.
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or equivalently 〈Θ〉τ = afree(0) (Ẽ4 − 2�̃R̃). As stated earlier, the coefficient c′ is of no

importance for this work and is therefore discarded. The Euler density in terms of s is

given by
√

g̃Ẽ4 = −8

(

1

2
�(∂s)2 − ∂ · (∂s(�s− (∂s)2))

)

. (2.15)

Using the explicit form s = −1
2 lnZ(µeτ ) the Euler term becomes

√

g̃Ẽ4 = −
[

γ2�(∂τ)2 + (2γγ̇ − 2γ2)∂λ(∂λτ�τ)− γ3∂λ(∂λτ(∂τ)
2)

−6γγ̇(∂τ)2�τ − 3γ2γ̇(∂τ)4
]

, (2.16)

where here and below we use the abbreviation γ̇ ≡ d
d log µγ and the following expressions

∂ργ = γ̇ ∂ρτ , ∂ρs = −1

2

∂ lnZ(µeτ )

∂(µeτ )
∂ρ(µe

τ ) = −1

2
γ ∂ρτ , γ =

∂ lnZ(µ)

∂ lnµ
, (2.17)

have been used. The quantity ∆a is obtained by integrating over d lnµ and projecting on

SWZ. In doing so γ and γ̇ can be treated as being space-independent, since expanding

γ(µeτ ) = γ(µ) + O(τ(x)) leads to terms which are not contained in SWZ. Furthermore

it is then clear that the first line in (2.16) can be discarded since it is a total derivative

and therefore inequivalent to the SWZ (2.5) bulk-term. In order to project the second line

of (2.16) on SWZ (2.5) it is convenient (following [6, 7])6

�τ = (∂τ)2 , (2.18)

under which all four-derivative invariants vanish, except for

SWZ|(2.18) =
∫

d4x 2(�τ)2 . (2.19)

Using (2.9) and performing the integral over d lnµ we get

∆a =
1

2
afree(0)

[

3A1 +A2] , (2.20)

where

A1 =

∫ ∞

−∞
d lnµ 2γγ̇ =

∫ γUV

γIR

dγ 2γ = (γ2UV − γ2IR) ,

A2 =

∫ ∞

−∞
d lnµ 3γ2γ̇ =

∫ γUV

γIR

dγ 3γ2= (γ3UV − γ3IR) , (2.21)

and γIR,UV ≡ γ(g∗IR,UV) are the values of the anomalous dimensions at the respective fixed

points. For further reference the final result (2.20) is stated with explicit coefficients A1

and A2

∆a =
1

2

(

(γ3UV − γ3IR) + 3(γ2UV − γ2IR)
)

afree(0) . (2.22)

This result constitutes an important intermediate result for the derivation of ∆a|N=1.

6We note in passing that eq. (2.18) is the lowest order equation of motion [6] when a dynamic nature is

attributed the dilaton.
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3 N = 1 supersymmetric gauge theory

The theory considered in this section is a N = 1 supersymmetric gauge theory with flavour

symmetry SU(Nf )×SU(Nf ) and gauge group SU(Nc). The action can be written in terms

of the usual vector superfield V and matter superfields (Φf , Φ̃f ) as, e.g. [17],

SW(µ) =

∫

d6z
1

g2(µ)
trW 2 + h.c.+

1

8
Z(µ)

∑

f

[
∫

d8zΦ†
fe

−2V Φf +

∫

d8zΦ̃†
fe

−2V Φ̃f

]

,

(3.1)

whereW 2 is the supersymmetric gauge field kinetic term, g is referred to as the holomorphic

coupling constant parametrisation and d6z and d8z include integration over the fermionic

superspace variables.

The main tool in deriving ∆a|N=1 is the use of the Konishi anomaly [18–20]. The

latter is illustrated in appendix A as a method to derive the NSVZ beta function. In

section 3.1 the Konishi anomaly is used to write the Wilsonian action such that the RG

flow can be absorbed into the metric. This procedure makes it amenable to the free field

theory computation in the dilaton background discussed in section 2.2.

3.1 ∆a|N=1 from dilaton effective action and Konishi anomaly

We consider the N = 1 supersymmetric gauge theory with Wilsonian effective action given

in (A.1). Choosing a rescaling factor, with γ∗ = −b0/Nf (A.6),

(Φf , Φ̃f ) →
(

µ′

µ

)γ∗/2

(Φf , Φ̃f ) (3.2)

on the matter fields the Konishi anomaly turns the action into the following form

SW(µ) =

∫

d6z
1

g(µ′)2
trW 2 + h.c.+

+
1

8

∑

f

[
∫

d8zẐ(µ)Φ†
fe

−2V Φf +

∫

d8zẐ(µ)Φ̃†
fe

−2V Φ̃f

]

, (3.3)

with

Ẑ(µ) ≡ Z(µ)

(

µ′

µ

)γ∗

, (3.4)

where µ′ > µ is an arbitrary scale which can be thought off as a UV cut-off ΛUV. Crucially,

the RG flow is absorbed into the precoefficient Ẑ(µ) in front of the matter term. Eq. (3.3)

is the analogue of the action (2.11) for the scalar field to the degree that the running of

the theory is parametrised by a coefficient in front of the matter kinetic term.

Again following the procedure in (2.2) a dilaton is introduced through

Ẑ(µ) → Ẑτ (µ) = Ẑ(µeτ(x)) = Z(µeτ(x))

(

µ′

µeτ(x)

)γ∗

. (3.5)

To keep the procedure manifestly supersymmetric, following [21] the dilaton is promoted

to a (chiral) superfield T such that

T | = τ + iω , Ẑ(µeT )| = Ẑ(µeτ ) . (3.6)

– 6 –
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Above ω is the axion and the bar stands for projection on to the lowest component of the

multiplet. It will be seen that Ẑ in (3.3) can be absorbed into the background geometry

by a local Weyl-rescaling. To preserve local SUSY invariance the Weyl transformations

are promoted to super-Weyl transformations. Under the latter, the trW 2-term is invariant

whereas the matter term transforms as follows (c.f [22])

∫

d8zΦ†e−2V Φ →
∫

d8ze−Ae−A†

Φ†e−2V Φ , (3.7)

with the superfield A = α + iβ + . . . being the super-Weyl parameter corresponding to

α in (1.1). Note that such a formalism is automatically local Weyl-invariant and that

there is no need to introduce the Weyl-covariant derivatives as in (2.12). Furthermore, the

transformation (3.7) amounts to a Weyl-rescaling of the vielbein7

eaρ → e−
A
2 e−

A†

2 | eaρ = e−αeaρ . (3.8)

Upon identifying α = s in eq. (2.12)

eaρ → ẽaρ =

√

Ẑτ (µ)e
a
ρ . (3.9)

The action SW (µeT ) (3.3) can then be written in a manifestly locally supersymmetric form;

cf. section 6.3 in [23]. Eq. (3.9) results in

g̃ρλ = ẽaρẽ
a
λ = e−2s(µeτ )δρλ , s(µeτ ) = −1

2
ln Ẑ(µeτ(x)) . (3.10)

Notice that the UV scale µ′ is arbitrary and that therefore a physical quantity like 〈Θ〉τ
should not depend on it. Since the geometric terms Ẽ4 and H̃2 are independent of µ′,8 the

form of (2.10) implies that ã and c̃ are µ′-independent and therefore constants. This means

that ã and c̃ assumed the values at the (free) UV fixed point and the geometric quantities

are to be evaluated in the background metric g̃ρλ carrying the dynamic information. This

allows us to recycle, in large parts, the computation in section 2.2 as outlined below.

A free theory in a curved background is in particular conformal and therefore free

of the R̃2-term (i.e. c̃ = 0). Since the dilaton couples to the matter part only, the trace

anomaly is exhausted by the free field theory computation of the matter-fields in the

curved background with metric (3.10). Equivalence to the example in the previous section

is achieved through the formal replacement Z → Ẑ (following from (3.10)) which implies

γ → δγ ≡ γ−γ∗ and the change in the number of degrees of freedom ν. More precisely the

matter superfield consists of a complex scalar and a Weyl fermion which contribute [11]

ν ≡ 2
∣

∣

∣

C-scalar
+

11

2

∣

∣

∣

Weyl-fermion
=

15

2
(3.11)

7Under a super-Weyl transformation, the supersymmetric generalization of vielbein transforms as Ea
µ →

e−
A

2 e−
A

†

2 Ea
µ, which corresponds to the standard Weyl transformation eaµ → e−αeaµ after projecting on the

lowest component of Ea
µ. In the interest of clarity we would like to add that eaµ = δaµ on flat space.

8To see this notice that these terms depend on derivatives of s only (c.f (2.15)). The latter are related

to the anomalous dimension γ(µeτ ) through the relation (2.17) which is independent of µ′.

– 7 –
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in units of a real scalar field. This number has to be multiplied by the number of flavours

2Nf (two matter-field per flavour) and colours Nc (the SU(Nc) Casimir of the adjoint

representation). Hence ∆a is given by 2NfNcν∆a|(2.22)γUV,IR→δγUV,IR
. Now, (γUV, γIR) = (0, γ∗)

implies (δγUV, δγIR) = (−γ∗, 0) and therefore

∆a|N=1 =
15

2
NcNf (−γ3∗ + 3γ2∗)a

free
(0) . (3.12)

We note that (3.12) is indeed the same as the non-perturbative result quoted in (eq. 4.18)

in [1] when taking into account the explicit form of γ∗ (A.6). The formula above is valid

in the conformal window 3/2Nc < Nf < 3Nc where the UV theory is asymptotically

free and the IR theory acquires a non-trivial fixed point. Within these boundaries the

anomalous dimension γ∗ takes on the values −1 to 0 and the quantity ∆a is therefore

manifestly positive in accordance with the a-theorem. The latter has been proven forN = 1

supersymmetric theories by using R-symmetries and is known as a-maximization [24].

The adaption to gauge groups other than SU(Nc), provided they are asymptotically free,

amounts to replacing the SU(Nc)-Casimir Nc by the corresponding Casimir of the group.

4 Discussion and conclusion

In this short paper we rederived the difference of the Euler term in N = 1 supersymmetric

gauge theories (3.12) valid in the conformal window. By an appropriate rescaling of the

matter superfield and choosing the Weyl-parameter α (1.1) to equal the logarithm of the

matter prefactor (3.10), the computation was shown to be equivalent to one of the (free)

UV theory in a curved background carrying the information on the flow. This allowed for

∆a|N=1 to be computed from the free field theory example, in section 2.2, with a simple

formal replacement for γIR and γUV. It is noted that the structure of ∆a|N=1 is completely

given by the Wess-Zumino term of the dilaton effective action. The aspect of matching the

computation with a free theory bears some resemblance to the original AFGJ-derivation [1]

in that independence on an RG-scale is exploited in evaluating certain quantities in the

UV where they correspond to free field theory computations. An extension to the non-

supersymmetric case is not straightforward because it relies on the one-loop exactness of

the rescaling anomaly in supersymmetric gauge theories. From sections A and 3.1 it is seen

that an exact expression of ∆a in non-supersymmetric theories is related to finding an exact

beta function. The Konishi anomaly is a rescaling anomaly which inN = 1 supersymmetric

theories is, by holomorphicity, bound to the axial anomaly. The latter is generally one-loop

exact by topological protection of the axial charge. In non-supersymmetric theories there

is no holomorphicity and the Konishi anomaly is an unknown function which could be

determined order by order in perturbation theory. An extension of some of the ideas in

this paper to non-supersymmetric theories, in direction other than the Konishi anomaly,

is presented elsewhere [25].

We end the paper with remarks of the speculative and qualitative kind. Reformulating

a gauge theory as a free theory in a curved background is reminiscent of the anti-de Sitter

space/conformal field theory duality which has given rise to a lot of work and inspiration

– 8 –
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over the past two decades. The extension to theories with more than one relevant coupling

is not immediate. One might wonder whether bi-gravity, whose renormalisation group

flow has been studied in [26], might be a possible avenue for a theory with two relevant

couplings. A practical requirement is that the UV theory is to asymptotically free in order

to retain computability.
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A N = 1 effective action and the Konishi anomaly

Using arguments of holomorphicity it can be argued that the running of the coupling g,

of the Wilsonian effective action of the supersymmetric gauge theory (3.1), is one-loop

exact [17, 27] and reads

SW(µ) =

(

1

g2(µ′)
− b0

8π2
ln

µ′

µ

)
∫

d6ztrW 2 + h.c.

+
1

8
Z(µ)

∑

f

[
∫

d8zΦ†
fe

−2V Φf +

∫

d8zΦ̃†
fe

−2V Φ̃f

]

, (A.1)

where b0 ≡ 3Nc −Nf and µ′ > µ is an arbitrary scale which can be identified with the UV

cut-off ΛUV. Rescaling the matter fields by

(Φf , Φ̃f ) → Z−1/2(Φf , Φ̃f ) , (A.2)

is accompanied by the Konishi anomaly [18–20], and leads to the effective action [27]

SW(µ) =

∫

d6z
1

g2(µ)
trW 2 + h.c.+

∑

f

[
∫

d8zΦ†
fe

−2V Φf +

∫

d8zΦ̃†
fe

−2V Φ̃f

]

, (A.3)

where the running has been removed from the matter term and all the running is absorbed

in front of the gauge field term which in this case defines the running gauge coupling to be

1

g2(µ)
=

1

g2(µ′)
− 1

8π2

(

b0 ln
µ′

µ
−Nf lnZ

)

. (A.4)

The µ′-independence of g(µ) implies an RGE which solves to the holomorphic NSVZ beta

function [28–30]

β ≡ ∂

∂ lnµ
g = −g3

Nf

16π2
(γ − γ∗) . (A.5)

Above we have used the following notation

γ ≡ ∂ lnZ(µ)

∂ lnµ
, γ∗ ≡ −b0/Nf = 1− 3Nc/Nf . (A.6)
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In the range 3/2Nc < Nf < 3Nc the theory is in the so-called conformal window. Theories

of the latter kind are asymptotically free in the UV and flow to a non-trivial (γIR = γ∗ 6= 0)

IR fixed point. The lower bound 3/2Nc follows from the unitarity bound on the scaling

dimension of the composite squark field ∆q̃q̃ = 2 + γ∗ ≥ 1 and the upper bound of 3Nc is

derived from the requirement of asymptotic freedom.

B Free theory trace anomaly in dilaton background field

In this appendix the trace anomaly of a free scalar field theory (2.13) is evaluated on a con-

formally flat background g̃ρλ = e−2s(x)δρλ. The path integral is Gaussian and evaluates to

eW =

∫

Dφe−S(0)
=

√

det∆(0) = exp
1

2
Tr ln∆(0) , (B.1)

where ∆(0) = e−2s(−� + (�s − (∂s)2) is the kinetic operator obtained from (2.13) by

integration by parts. The contribution can be evaluated using Schwinger’s formula

W =
1

2
Tr ln∆(0) =

1

2

∫ ∞

0

dt

t
Tr(e−t∆(0)

) . (B.2)

This expression requires regularisation since it is UV-divergent as t → 0. Noting that the

mass dimension of the t-variable is two, a UV cutoff ΛUV is introduced as follows

Wreg =
1

2

∫ ∞

Λ−2
UV

dt

t
Tr(e−t∆(0)

) . (B.3)

Using W = W (µ/ΛUV) and (C.5) one gets9

∫

d4x
√

g̃〈Θ〉 = − lim
ΛUV→∞

∂

∂ ln ΛUV
Wreg = − lim

ΛUV→∞
Tr(e

− ∆(0)

Λ2
UV ) = −b4 , (B.4)

where b4 is a coefficient of the asymptotic Heat Kernel expansion

Tr(e−t∆(0)
) =

∑

n≥0

bnt
n−d
2 . (B.5)

Using the plane-wave basis to evaluate the trace we obtain
∫

d4x
√

g̃〈Θ〉 = − 1

16π2

1

90

∫

d4x
[

3�2s− 2�(∂s)2 − 4∂ · (∂s((∂s)2 −�s))
]

, (B.6)

which decomposes into the the following invariants

∫

d4x
√

g̃〈Θ〉 = 1

16π2

1

90

∫

d4x
√

g̃

(

− 1

2
�̃R̃+

1

4
Ẽ4

)

, (B.7)

where the geometric quantities R̃ and Ẽ4 are defined with respect to the metric g̃ρλ(s)

given above. The result quoted in (2.14) follows by comparing the equation above to (1.2).

9In general there are also quadratic and quartic divergences which need to be subtracted by suitable

counterterms. In a supersymmetric theory those divergences cancel to zero.
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C Renormalisation group equations for W

In this appendix we summarise the RG equation obeyed by W and how they relate to the

trace anomaly. For future reference and completeness an explicit scale symmetry breaking

term in form of a matter mass term is added. The quantum vacuum transition amplitude

W obeys an RG equation
(

∂

∂ lnµ
+ β

∂

∂g
− γm

∂

∂ lnm

)

W = 0 , γm ≡ −∂ lnm

∂ lnµ
, (C.1)

which follows from dW
dµ = 0.10 Assuming a space-dependent metric, dimensional analysis

gives an equation of the form
(

∂

∂ lnµ
+

∂

∂ lnm
+ 2

∫

d4x gµν(x)
δ

δgµν(x)

)

W = 0 . (C.2)

Equations (C.1), (C.2) can be combined into an RG equation with no explicit µ-derivative

(

β
∂

∂g
− (1 + γm)

∂

∂ lnm
− 2

∫

d4x gµν(x)
δ

δgµν(x)

)

W = 0 . (C.3)

The adaption of these equations to Wτ involves replacing µ → µeτ everywhere. Note, if

τ is made space-dependent then g(µeτ ) and m(µeτ ) and the partial derivatives are to be

replaced by functional derivatives ∂
∂g →

∫

d4x δ
δg(x) and ∂

∂m →
∫

d4x δ
δm(x) respectively.

A definition of the trace of the EMT is given by

〈Θ〉 = −2
gµν(x)
√

g(x)

δ

δgµν(x)
W (C.4)

where g(x) denotes the determinant of the metric. Combining (C.4) with (C.2) the following

equations are obtained
∫

d4x
√
g 〈Θ〉anom =

∂

∂ lnµ
W ,

∫

d4x
√
g 〈Θ〉expl =

∂

∂ lnm
W , (C.5)

where the subscripts “anom” and “expl” refer to anomalous and explicit scale breaking

respectively.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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