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1 Introduction

Classical electromagnetism is conventionally described by Maxwell’s field theory and there

seems to be little room for debate about its formulation. In [1] and [2], however, building

upon [3] an alternative approach to determining the electromagnetic field strength tensor

for a pair of charged particles led directly to a novel interacting string theory. This theory

contained contact interactions on the string worldsheet which served to produce expectation

values of Wilson lines in Abelian quantum field theory. In the case of electrostatics, the

description given in [3] was in terms of point particles whose worldlines have their endpoints

fixed to the charged particles. The electric field at a position in space-time was arrived at

via a weighted average over all such worldlines which also pass through the given point. The

physical picture which motivated this approach (and the later interacting string theory)

is of Faraday’s lines of force as fundamental objects which become the physical degrees of

freedom of the electromagnetic field.

To complement this work on contact interactions in string theory it seems appropriate

to return to worldline theories to explore the consequences of allowing point particles to

interact when their worldlines intersect. Such theories are of significant physical interest,

since the so-called worldline formalism of quantum field theory [4–6] expresses physical

quantities in a field theory in terms of the quantum mechanics of point particles which

trace out worldlines in space-time [7–9]. This technique can also be extended to non-

Abelian theories and chiral fermions [10] where it may provide insight to the unification

of the fundamental forces [11]. The coupling between matter fields and the gauge field is

– 1 –



J
H
E
P
0
1
(
2
0
1
6
)
0
3
3

described in the point particle theory as a Wilson-line interaction for the particle worldlines

in the presence of a background field. For example, the partition function for a single scalar

field minimally coupled to an Abelian gauge field, A, is expressed in the worldline formalism

(which we derive in more detail later in the paper) by an integral over all closed curves ω

Z =

∫ ∞
0

dT

T

∮
Dω e−Spoint[ω]W [A] ; W [A] = ei

∫
dω·A, (1.1)

where Spoint [ω] = m
∫
dτ
√
ω̇2 is an action describing the dynamics of a point particle and

W [A] is the Wilson loop describing the interaction of the particle with the gauge field

(we have absorbed the coupling strength into A). The right hand side is interpreted as

quantum mechanics on the worldline of this particle and it is this first quantised theory

which we propose to modify in this paper.

Field theory is the conventional framework in which to introduce interactions and the

local nature of this approach naturally leads to particles interacting upon contact. How-

ever, the worldline formalism can offer substantial calculational advantages over traditional

approaches in field theory, especially since it represents a reorganisation of the usual pertur-

bative expansion in Feynman diagrams and makes the local gauge invariance manifest [12].

It is therefore important to develop worldline techniques further and one of the most basic

modifications to the theory must be to introduce direct interactions between these par-

ticle worldlines. As we shall describe below, a modification to the worldline theory can

be interpreted as inducing a change in the underlying field theory, so the results of this

program may provide new tools to complement the conventional techniques familiar to field

theorists. We comment on this in section 5.

Direct inter-particle interactions can be found in many previous publications. One

of the most well-known approaches is the action at a distance formulation of electrody-

namics by Feynman and Wheeler [13, 14], originally proposed to address the problem of

radiation reaction. This built upon earlier work in formulating a consistent theory in-

volving direct inter-particle interactions by Tetrode [15] and Fokker [16], who described

electromagnetic phenomena in terms of interactions between particles with light-like sepa-

ration. Ramond generalised this work and found a set of consistency constraints limiting

the form of the interaction that can be introduced into worldline theories [17]. This was

further extended to include direct inter-string interactions as well as interactions between

particles and strings [18–22]. A number of further theories involving action at a distance

have been proposed to describe various other phenomena within this framework — see for

example [23–27].

The general principle is to couple the worldlines of the particles together by adding

extra terms to the free particle action, Spoint. An illustrative example would be to consider

a theory of two particles whose worldlines are described by ωµa (τa) and ωµb (τb) and to

introduce [25, 28]

Sint = gagb

∫
ωa

dτa

∫
ωb

dτb ω̇a (τa) · ω̇b (τb)D (ωa − ωb) (1.2)
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as an interaction term in the action.1 Here the function D must be symmetric and accounts

for the relative strength of interaction as a function of particle separation. In the literature

discussed above D (ωa − ωb) has been taken to be supported for light-like, time-like and

space-like separations, the last of which is the relativistic generalisation of an instantaneous

interaction. In Feynman-Wheeler theory, for example, D (ωa − ωb) is taken to be the sum

of advanced and retarded Green functions of the (space-time) Laplacian. As is now well

known, these action at a distance theories are often cast into a form reminiscent of a field

theory, although the “fields” are not independent variables but are rather defined in terms

of the particle trajectories and the choice of D. For instance, if we take [29]

D (ωa − ωb) =
1

4π
δ
(

(ωa − ωb)2
)
− m

8π

θ
(

(ωa − ωb)2
)

√
(ωa − ωb)2

J1

(
m

√
(ωa − ωb)2

)
(1.3)

which is the time symmetric Green satisfying
(
∂µ∂

µ −m2
)
D (ωa − ωb) = −δ4 (ωa − ωb)

then we may define

Aµ (x) =
∑
a

ga

∫
dτa ω̇

µ
a (τa)D (ωa (τa)− x) . (1.4)

This satisfies the Maxwell equations and gauge condition(
∂ν∂

ν −m2
)
Aµ (x) = jµ (x) ; jµ (x) = −

∑
a

ga

∫
dτa ω̇

µ
a (τa) δ

4 (x− ωa) ,

∂µA
µ (x) = 0 (1.5)

and in terms of A the interaction between the particles takes the form∑
a

ga

∫
ωa

dτa ω̇a (τa) ·A (ωa (τa)) (1.6)

which shows that the action at a distance formalism contains the same equations of motion

and interactions as more traditional approaches using field theory.

The proposal we will make will follow the same form as (1.2) except that we shall choose

D (ωa − ωb) = δ4 (ωa − ωb) so as to provide contact interactions between the worldlines.

This also ensures that, although in principle (1.2) implies the interaction is non-local on the

worldlines, the particles only communicate when they meet so that the theory is local in

space-time. In other words we are no longer considering action at a distance but we allow

particles to interact when they find themselves at the same space-time position. As stated

above, we have previously considered such contact interactions between strings, where the

theory found application to classical electromagnetism and quantum electrodynamics. We

now intend to explore the same ideas for the case of point particles.

This article revisits and extends the results of [3] and also generalises that work to the

case of fermionic particles. It then goes beyond leading order in the coupling strength to

1To be precise this provides vector-like interactions between point particles. Scalar interactions can be

produced by replacing each ω̇i
µ by

(
ω̇2
i

) 1
2 .
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demonstrate that in fact the full quantum theory of a set of interacting point particles is

consistent and free of unwanted divergences. We develop the functional approach to one

dimensional field theory for consistency with [1, 2] and for the generalisation to fermionic

particles we will find it most natural to form the theory in superspace. We will first consider

a single particle worldline with fixed endpoints that is constrained to pass through a given

point in space and will relate it to classical electrostatics and the well-known phenomenon

of confinement. We then repeat a similar calculation for spin 1/2 particles to explore the

fermionic version of the theory before considering an arbitrary set of interacting worldlines.

We will see that the partition function of this theory is related to propagators of the Klein-

Gordon operator.

The structure of this article is as follows. In section 2 the bosonic theory presented at

lowest order in [3] is reviewed before we generalise it to include spin degrees of freedom in

section 3. In section 4 we also carry out the first analysis of the theory beyond the classical

limit to explore higher order corrections to the result in [3]. Following this a full quantum

theory of interacting worldlines is described and quantised in section 5. Some supporting

calculations on our regularisation scheme are given in the appendix.

2 Bosonic particles — the classical electric field

We begin by working in D spatial dimensions and consider a static charged particle at

position a and an oppositely charged particle at b. The classical electric dipole field for

this configuration is the well known solution to Maxwell’s equations in the presence of these

point particles. In [3] an alternative proposal was made which generates the electric field

by carrying out an average over a set of curves joining the two sources. This concept goes

some way to reviving Faraday’s notion of electric flux lines and it is this calculation that

we now review and extend.

An expression satisfying Gauss’ law2 was given in [3]:

E′i (x) = q

∫
C
dτ

dωi

dτ
δD (ω (τ)− x) (2.1)

where the integral is taken over any curve C with endpoints at a and b. The form of

this field is reminiscent of the Dirac string which was introduced to describe the field of a

magnetic monopole [30, 31] but we shall use it here in the context of electrostatics, where

C is interpreted as a single line of flux stretched between a and b. The expression for E′

does not satisfy ∇×E′ = 0, and so cannot represent the physical field of a pair of charged

particles, but we shall see that its statistical average does. This average is over all curves

with endpoints fixed at a and b and is defined in reparameterisation invariant form as

〈Ω (ω)〉T =
1

Z

∫ ω(1)=b

ω(0)=a
DeDω Ω (ω) δ

(∫ 1

0
e dτ − T

)
e−S[ω,e] ; S [ω, e] =

∫ 1

0

ω̇2

2e
dτ

(2.2)

where Ω is any reparameterisation invariant functional of the path (we work in Euclidean

space). The action is that of Brink, diVecchia and Howe [32] describing the dynamics of a

2We put ε0 = 1 and denote the electric charge by q so ∇ ·E′ = qδD (x− a)− qδD (x− b).
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bosonic point particle (we take the particle to have zero mass3) whose worldline traces out

a curve ω (τ), which the square of the einbein, e (τ), equips with a one dimensional metric.

The normalisation constant is defined by 〈1〉 = 1. This action is invariant under diffeo-

morphisms τ → τ̃ that preserve the parameter interval if under such reparameterisations

e2(τ) transforms as a metric and ω (τ) as a scalar:

ẽ(τ̃) dτ̃ = e(τ) dτ ; ω̃(τ̃) = ω(τ). (2.3)

This idea of averaging a quantity over curves with fixed endpoints is similar in spirit to

some applications of the worldline approach to the Casimir effect — in [33, 34] the force

between two planar bodies induced by quantum fluctuations of a scalar field was arrived

at by counting closed worldlines which intersect both surfaces. Open worldlines have also

been used to calculate dressed propagators for matter interacting with a background gauge

field [35].

The δ-function in (2.2) will appear unfamiliar, both in the context of quantum me-

chanics and the worldline formalism, since it picks out paths of fixed intrinsic length4 T .

The Coulomb field for the pair of particles was arrived at in [3] by taking the average of

E′ in the limit as T →∞:

lim
T→∞

〈
E′ (x)

〉
T

= lim
T→∞

q

Z

∫ b

a
DeDω δ

(∫
e dτ − T

) ∫
C
dτ ω̇ δ3 (ω (τ)− x) e−S[ω,e].

(2.4)

Taking this limit means that the lines of flux can fluctuate on a macroscopic scale. This

is necessary because the field at the point x is constructed by adding together the con-

tributions from all curves that start and end at the location of the charges and which

intersect the spatial point in question. In order that the field permeate all of space, rather

than being confined to regions that are of a comparable scale to the distance between the

points (in comparison to
√
T ), we must allow the worldlines unconstrained fluctuations.

For comparison to [1, 2], which involved averages based on Polyakov’s formulation of spin-

ning strings, T plays a similar role to the string tension, α′. In our earlier work we found

it necessary to take the limit in which the strings were tensionless (α′ →∞) which allowed

the fluctuations of the string worldsheet to be macroscopically large. This ensured that

the averages were not dominated by the minimal spanning surface of the string boundaries

and allowed an Abelian gauge field to be supported throughout space-time. In the current

context, the large T limit plays an analogous role, ensuring that the field lines have access

to all of space. In section 4 we will return to discuss the consequences of finite values of T ,

exploring also the low T limit for both bosonic and fermionic particles.

3A mass term could have been included in the action defined in (2.2) via the inclusion of a cosmological

term 1
2
m2

0

∫ 1

0
e dτ . Usually it is necessary to do so in order to remove a divergence in the functional

determinant from the integral over ω by a renormalisation of this bare mass m0 to a physical mass m. In

the current case the divergence is cancelled by Z and since E′ does not involve the einbein the effect of

including m would also be cancelled by the normalisation.
4In the worldline approach it would be more common to interpret T as a modulus which remains after

gauge fixing the einbein. As has been discussed in [3], the average defined in (2.2) retains reparameterisation

invariance, despite the δ-function restricting the functional integral to the subset of einbeins which give the

paths a fixed length.
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In the current context of point particle worldlines, it is also possible to interpret T as

an effective temperature so that the functional average defined by (2.2) can be regarded as

a thermal statistical average. This was explained in [3] and can be seen by exploiting the

reparameterisation invariance to set the einbein to be constant along the worldline. The

constraint then imposes e = T and the action can be written as βH where β = T−1 andH =∫ 1
0 ω̇

2/2dτ . Then integrating over all curves with fixed endpoints can be seen as allowing

thermal fluctuations of the worldlines, the relative weighting of each configuration being

related to the temperature. As discussed above, desiring that large-scale fluctuations are

not penalised in the average requires the limit T →∞. We will return to this interpretation

at the end of this section when we consider the effect of applying our theory in Minkowski

space via a Wick rotation of one of the spatial coordinates. In the meantime we think of the

constraint in the geometrical context of holding the length measured along the worldline

constant and now return to demonstrate that the average of E′ results in the Coulomb field.

In [3] this result was shown using techniques derived from canonical quantisation.

Here we confirm the result using the functional methods we will use for the fermionic

generalisation of this claim. To do so we must address the overcounting caused by the

reparameterisation symmetry. Following Polaykov [36] (see also [2, 37]) we recall that for

open curves the measure on the space of one dimensional metrics can be written

De = dcDV

√(∫
dτ e

)
Det (D†D) ; DV =

d

dτ
(V e) (2.5)

where c represents a scaling of the einbein and V generates an infinitesimal reparameterisa-

tion. This volume element follows because any metric can be written as a combined scaling,

generated by c, plus reparameterisation, generated by V , about some reference metric, ê.

We choose to expand about ê = >, a constant, whereby D†DV = −e−2 d
dτ

(
e−1 d

dτ (eV )
)

=

− 1
>2

d2V
dτ2

. The infinite product over the eigenvalues of this operator can be ζ-function

regulated as in appendix A, and the volume element becomes

De = d>DV, (2.6)

whilst the constraint on path lengths becomes δ (>− T ). Since the components of the

functional average are taken to be invariant under reparameterisations the functional in-

tegral with respect to V evaluates to the volume of the reparameterisation group, which

cancels with the corresponding contribution from the normalisation constant. So for the

average of E′ (x) we must determine

〈I (x)〉 ≡ q

Z ′

∫
Dω

∫
dDk

(2π)D

∫ 1

0
dτ1

dω (τ1)

dτ1
eik·(ω(τ1)−x)e−

∫ 1
0

ω̇2

2T
dτ (2.7)

where Z ′ is what remains after the volume of the reparameterisation group has been can-

celled from Z and we have used the Fourier decomposition of the δ-function. The insertion

that arises has a familiar form — it is the one dimensional version of the vertex operator

used in bosonic string theory and it frequently appears in calculations in the worldline

formalism:

V µ
k (τ) = ω̇µ (τ) eik·ω(τ). (2.8)
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Unlike in string theory we integrate this operator over all momenta. From the point of

view of the one dimensional quantum theory (2.7) is the amplitude for the path from a to

b to pass through the point x. Before calculating this expectation value we also note that

the structure of the insertion allows us to constrain its dependence on momentum — if we

contract (2.8) with kµ and integrate over τ we find a contribution only from the endpoints

of the domain ∫
dτ kµV

µ
k (τ) = −i

(
eik·ω(1) − eik·ω(0)

)
= −i

(
eik·b − e−ik·a

)
(2.9)

which we shall refer to as the generalised Gauss’ law.

The insertion can be generated by introducing a source, j (τ), and defining J (τ) =

−q djdτ − ikδ (τ − τ1). Then the above equation becomes

1

Z ′

∫
Dω

∫
dDk

(2π)D

∫ 1

0
dτ1 e

−ik·x δ

δj (τ1)
e−

∫ 1
0

ω̇2

2T
+ω·Jdτ

∣∣∣∣∣
j=0

. (2.10)

We split ω into its classical part in the absence of a source and a piece which absorbs the

source and accounts for the quantum fluctuations ω (τ) = ωc (τ) + ω̃ (τ). Here ω satisfies

the source-free classical equation of motion −1
T
d2ω
dτ2

= 0 with endpoints at a and b:

ω (τ) = a + (b− a) τ. (2.11)

The Dirichlet boundary conditions mean that ω̃ (τ) is required to vanish at the endpoints. It

can be split into a classical piece, ω̃c, satisfying −1
T
d2ω̃c
dτ2

= J (τ) and a quantum fluctuation,

ω̄ (τ). Integrating over ω̄ leads to a functional determinant (which we evaluate with ζ-

function regularisation in appendix A) and because the path is open there are also boundary

contributions. We find

(2πT )−
D
2 e−

(b−a)2

2T

Z ′

∫
dDk

(2π)D

∫ 1

0
dτ1 e

−ik·x δ

δj (τ1)

exp

(
− 1

2
k2G (τ1, τ1)− iq

∫ 1

0
dτ k · j (τ)

d

dτ
G (τ1, τ)

+
q2

2

∫ 1

0

∫ 1

0
dτdτ ′ j (τ) · j

(
τ ′
) d
dτ

d

dτ ′
G
(
τ, τ ′

))
exp

(
−q
∫ 1

0
dτ j (τ) · d

dτ
ωc (τ) + ik · ωc (τ1)

)∣∣∣∣
j=0

. (2.12)

In the above equation G (τ1, τ2) is the Green function on the interval [0, 1] with Dirichlet

boundary conditions G (0, τ2) = 0 = G (1, τ2). Its explicit form is

G (τ1, τ2) = −T
2

(|τ1 − τ2| − (τ1 + τ2) + 2τ1τ2) ; − 1

T

d2G

dτ2
1

= δ (τ1 − τ2) . (2.13)

and G (τ1, τ1) is the coincident limit, which in one dimension is finite. Worldline Green

functions play an important role in first quantised formulations of field theory and as such
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have been analysed extensively [38]. The numerator of the prefactor in (2.12) is the heat-

kernel for the free particle and this cancels exactly with Z ′. Carrying out the functional

differentiation and setting j = 0 yields for the average in momentum representation

〈I (k)〉 = −q
∫ 1

0
dτ1

[
ω̇c (τ1)− 1

2
ik

d

dτ1
G (τ1, τ1)

]
e−

1
2
k2G(τ1,τ1)eik·ωc(τ1). (2.14)

Since we will eventually take the limit T → ∞ it is useful at this point to extract the

T dependence in order to make an expansion in powers of 1
T . Define then G̃ (τ1, τ2) ≡

1
TG (τ1, τ2) and note that

G̃ (τ1, τ1) = −τ1 (τ1 − 1) . (2.15)

This function vanishes on the boundary and is increasing (decreasing) for τ < 1/2 (τ >

1/2). In this parameterisation (2.14) becomes

〈I (k)〉 = −q
∫ 1

0
dτ1

[
ω̇c (τ1)− T

2
ik

d

dτ1
G̃ (τ1, τ1)

]
e−

1
2
k2TG̃(τ1,τ1)eik·ωc(τ1). (2.16)

In the large T limit the suppression caused by the exponent exp
(
−1

2k
2TG̃ (τ1, τ1)

)
causes

the contributions to the integral to arise primarily when τ1 → 0 and τ1 → 1 (where the

coincident Green function vanishes). We therefore expand the field ω about these points

and integrate a small distance, h, along the worldline. At lowest order in 1
T we have:

− q
∫ h

0
dτ1

[
ω̇c (0)− T

2
ik

d

dτ1
G̃ (τ1, τ1)

]
e−

1
2
k2TG̃(τ1,τ1)eik·ωc(0)

− q
∫ 1

1−h
dτ1

[
ω̇c (1)− T

2
ik

d

dτ1
G̃ (τ1, τ1)

]
e−

1
2
k2TG̃(τ1,τ1)eik·ωc(1) (2.17)

and the damping caused by the form of the coincident Green function in the exponent

allows the integration regions to be extended by setting h = 1
2 as we take T → ∞. Each

integral has two terms, the second of which provides the leading order contribution:

−Tik
2

∫ 1
2

0
dτ1

d

dτ1
G̃ (τ1, τ1) e−

1
2
k2TG̃(τ1,τ1) =

ik

k2

[
e−

1
2
k2TG̃( 1

2
, 1
2) − 1

]
→ − ik

k2
(2.18)

where the last line holds as k2T → ∞. Noting that for 0 ≤ τ ≤ 1/2 we have G̃ (τ, τ) ≥ τ
2

the first terms of each line in (2.17) can be bounded∫ 1
2

0
dτ1 e

− 1
2
k2TG̃(τ1,τ1) ≤

∫ 1
2

0
dτ1 e

− 1
4
k2Tτ1

=
4

k2T

[
1− e−

1
8
k2T
]

(2.19)

which is O
(

1
k2T

)
. Putting this together with the contribution from the other end of the

path we arrive at the momentum space expression

〈I (k)〉 =
qik

k2

(
eik·a − eik·b

)
+O

(
1

k2T

)
(2.20)
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We check our answer by compatibility with the generalised Gauss’ law: dotting with k

produces the expected contribution (2.9). Finally, taking the limit T → ∞ and setting

D = 3 the result can be written in position space as

〈I (x)〉 =
q

4π
∇
(
− 1

|x− a|
+

1

|x− b|

)
(2.21)

which is indeed the classical dipole electric field. This average therefore determines F0i for

static oppositely charged particles. In [3] the case of magnetostatics was also considered

for a fixed closed current carrying wire, and the time varying situation was also examined.

These cases require treating the curve C as dynamical so that the natural weight becomes

not the action of a point particle but that of extended objects, naturally leading to the use

of string theory. This picture was explored further in [1, 2] where a theory of tensionless

spinning strings interacting on contact was shown to be equivalent to the Abelian theory

of quantum electrodynamics.

The calculation presented above provides an interesting method of determining the

classical static dipole electric field, albeit somewhat unconventional. The utility of the

functional approach is the ease with which it can be extended. Before generalising to

fermionic particles we show that a simple change can instead generate the classical electric

field due to a static point particle. This is desirable since it is presumably more useful to

deal with a single particle rather than be constrained to dealing with oppositely charged

pairs (except when considering the worldlines of virtual particle / anti-particle pairs). For

a single particle at the point a we proceed as above with the exception that we constrain

only one end of the worldlines. This is a simple change of the boundary condition at the

upper end of the interval; the variation of the action shows that the only other consistent

choice we can make is the Neumann condition ω̇ (1) = 0.

There are three effects of this change. Firstly the determinant of the kinetic operator
−1
T

d2

dτ2
becomes independent of T (see appendix A). This has no relevance because it is

cancelled by the same change in Z ′. Of more importance is the change in the Green

function. With the new boundary conditions we find

G′ (τ1, τ2) = −T
2

(|τ1 − τ2| − (τ1 + τ2)) ; G′ (τ1, τ1) = Tτ1. (2.22)

Note that the coincident Green function now only vanishes at τ1 = 0, the end of the curve

tied to the particle at a. Finally the classical solution must clearly differ; now ωc = a

satisfies the equation of motion and boundary conditions. In particular ω̇ = 0 and there

are no boundary contributions from the classical action so that (2.16) becomes

〈I (k)〉 = q

∫ 1

0
dτ1

1

2
ik

d

dτ1
G′ (τ1, τ1) e−

1
2
k2G′(τ1,τ1)eik·a. (2.23)

Defining G′ (τ1, τ2) ≡ TG̃′ (τ1, τ1) we could again consider the above equation for large T

whereby the integrand is suppressed by the exponent exp
(
−1

2k
2TG̃′ (τ1, τ1)

)
except for

τ1 ≈ 0. The integrand is a total derivative however so we can determine the exact answer.

We obtain

〈I (k)〉 =
iqk

k2

(
1− e−

1
2
k2T
)
eik·a (2.24)
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which in the limit T →∞ has inverse Fourier transform equal to the static electric field of

a point particle of charge q at the spatial point a.

〈I (x)〉 =
q

4π

x− a

|x− a|3
. (2.25)

It is interesting to note that (2.24) gives the exact average at finite T . We will come to

explore corrections to the classical fields for both of the above configurations of particles

below. We have already commented on the calculation of the static magnetic field of a

closed loop of current carrying wire given in [3]. This required a functional average over

surfaces with boundary fixed to the wire and already invoked the use of string theory.

There the two dimensional worldsheet Green function was required to vanish at both ends

of the string since the endpoints were constrained to lie on the boundary. The analogous

method of applying Dirichlet boundary conditions to only one end corresponds to opening

up the wire into a small segment and ensures that the only contribution to the average

comes from a strip close to the end of the string fixed to the wire. The average then yields

the Biot-Savart law for that segment of wire. Mixed boundary conditions are discussed

further in the full interacting string theory in appendix A of [2] where it is shown to provide

propagators of the field theory.

For the most part we took D to be arbitrary, only specialising to D = 3 spatial

dimensions for the sake of compatibility with [3] and an illustration of some of the physical

content of the average. In a four dimensional space-time we will have to deal with 4 bosonic

coordinates so we append ω0 to the three fields ω considered above. The Euclidean average

is then constructed over all paths which intersect the spatial point xµ =
(
x0,x

)
whose

endpoints are fixed to the particles at aµ =
(
a0,a

)
and bµ =

(
b0,b

)
. The average takes

the form

〈Iµ (x)〉 =

〈
q

∫
dτ
dωµ

dτ
δ4 (ω (τ)− x)

〉
. (2.26)

If we restrict attention to the case of a single point particle at position aµ discussed above

the generalisation of (2.24) provides the Euclidean space average

〈Iµ (k)〉 =
iqk

k2

(
1− e−

1
2
k2T
)
eik·a. (2.27)

We can interpret this in Minkowski space by treating the boundary data aµ as some fixed

point on the worldline of the particle and Wick rotating the above result. In the T → ∞
limit then

〈Iµ (x)〉 =
q

4π2
∂µ

1

|x− a|2 + iε
(2.28)

where we use the iε procedure to specify the positions of the poles.

The physical interpretation of this result is less obvious because it relies on the choice

of aµ (also bµ had we included a second particle). If we return to a static picture then

consider an observer at xµ in the rest frame of the charged particle. The calculation in

D = 3 spatial dimensions was an average over all possible particle paths starting at a

and passing through x but in four dimensional space-time they are also required to pass

though x at the time x0 = t, say. We are restricting our attention to a static configuration
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and suppose that we ought to integrate over all possible starting points on the worldline

aµ at which the path ωµ could begin whilst still passing through xµ. Recall that the

parameter T can be interpreted as a temperature, which in Euclidean space implies that

our calculation is a thermal average. In section 4 of [3] an argument was given based

on the construction of thermal Green functions that the retarded solutions to Maxwell’s

equations are inherited from the Feynman propagator if the Minkowski space calculation

is seen as a finite temperature quantum expectation value. Application of this procedure

to the current problem provides

〈Iµ (x)〉 =
q

4π
∂µ
δ
(
x0 − a0 − |x− a|

)
|x− a|

(2.29)

so that the only contribution comes from paths whose endpoints are joined along the

causal light-cone. In the rest frame of the particle its worldline has constant a and inte-

grating (2.29) with respect to a0 yields the static electric field expected at x0 = t:

F00 = 〈I0 (x)〉 = 0; F0i = 〈Ii (x)〉 =
q

4π

x− a

|x− a|3
(2.30)

The same result could be arrived at by integrating (2.28) over a0 immediately if the contour

for the a0 integral is chosen to fall above the poles on the real axis; the discussion of the

thermal average in [3] can thus be seen as justification for this choice of contour. The

result (2.30) is then familiar as the field created at position (x0,x) due to a point electric

charge which had position a a time |x− a| earlier, which appears in the more familiar

action at a distance theories discussed in the introduction.

It should be stressed that this procedure yields the correct static field but is not appli-

cable for the general time dependent problem. This has been dealt with in [3] and [1]. It

requires string theory to correctly describe the dynamics of extended curves whose bound-

aries are fixed to the worldlines of the charged particles. The contact interaction is then

between fundamental strings, between worldsheets rather than worldlines. The static prob-

lem considered above is an unusual way to arrive at the electric field but is nonetheless

of interest because of its straightforward generalisation. In the following sections we first

include spin degrees of freedom before returning to an analysis of the result when the pa-

rameter T is taken to be finite. We then generalise the work to form a full quantum theory

of point particles with contact interactions.

Following on from the bosonic theory we wish to provide an extension to the theory

in [3]. The following sections comprise the new contribution in this article. We have three

aims in sight. The first is to extend the work to fermionic fields and the second is to

determine the corrections to both results which are present at finite T . We finally ask

whether the interaction exponentiates as in [1, 2] — we shall address this issue in section 5.

3 Fermionic particles

In this section we consider a theory of spin 1/2 particles and generalise the theory presented

above for application to this case. Spinning particles have been considered in action at
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a distance theories in the past [39–41] and it is natural to expect some spin-dependent

modifications to the results found in the previous section. We continue to work with

massless particles for simplicity and it will also prove most convenient to work in four

dimensional Euclidean space (this is more natural for fermionic theories — we discuss how

we may relate this to the three dimensional case below). To deal with fermions it is useful

to construct the theory in superspace. We therefore introduce the Grassmann variable θ

to extend the parameter domain τ → (τ, θ). We further introduce the scalar superfield5

X (τ, θ) = ω (τ) + θe
1
2 (τ)ψ (τ) (3.1)

and the supereinbein

E (τ, θ) = e (τ) + θe
1
2 (τ)χ (τ) , (3.2)

where ψ is the superpartner to ω and χ is the gravitino. We also define the superderivative

D = ∂θ + θ∂τ . (3.3)

Under the local supersymmetry transformations parameterised by V (τ), the generator

of reparameterisations, and η (τ), a Grassmann function generating pure supersymmetry

transformations,

τ → τ + V (τ) + θη (τ) ; θ → θ + η (τ) +
1

2
θV̇ (τ) (3.4)

the superderivative transforms homogeneously

DX→ Λ (τ, θ)DX (3.5)

and the supereinbein transforms as

E→ Λ2 (τ, θ) E (3.6)

where Λ (τ, θ) = 1 + 1
2 V̇ (τ) + θη̇ (τ). Requiring the integration measure to transform as

dτdθ → Λ−1 (τ, θ) dτdθ the following action is invariant:

S [E,X] =
1

2

∫
dτdθE−1D2X ·DX. (3.7)

Integrating over θ allows this to be cast in the more familiar component form6

1

2

∫
dτ e−1ω̇2 + ψ̇ · ψ − χ

e
ω̇ · ψ. (3.8)

Under canonical quantisation the equations of motion for the auxiliary fields χ and e lead

to the first class constraints p · ψ = 0 and then p2 = 0 respectively. Here pµ = ω̇µ/e is

5The strange looking factors of e
1
2 are necessary for the action given in the text to reduce to the familiar

action of Brink, Di-Veccia and Howe [32]. Another convention for the superfields exists where we scale

ψ → e−
1
2ψ and χ→ e

1
2χ.

6The supersymmetry transformations of the component fields follow from those of the superfields and

(in the absence of reparameterisations) are: δηω = ηψ; δηψ = η
e

(
ω̇ − 1

2
χψ
)

; δηe = ηχ; δηχ = 2η̇. Under

reparameterisations, ψ is a worldline scalar like ω, whilst χ transforms as e.
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the momentum corresponding to the field ω. The fundamental anti-commutation relations

{ψµ, ψν} = δµν can be solved by taking ψµ = 1√
2
γµ so that on the state space the former

of the constraints enforces the Dirac equation on physical states and the latter informs us

the particle has zero mass [32]. Below we shall pursue again the functional quantisation of

this action.

We also require the supersymmetric generalisation of the interaction and the constraint

on the intrinsic length of the path. The natural invariant interaction term is

I (x) = q

∫
dτdθDX δ4 (X− x) , (3.9)

whose functional average will be taken over all worldlines with endpoints attached to fixed

charges. Fourier decomposing the δ−function and integrating over θ puts this into the form

q

∫
d4k

(2π)4

∫
dτ (ω̇ − eψik · ψ) eik·(ω−x) (3.10)

which is analogous to the supersymmetric vertex operator familiar in the context of the

spinning string and the worldline formulation of spinor field theory:

V µ
k (τ) = (ω̇µ (τ)− e (τ)ψµ (τ) ik · ψ (τ)) eik·ω(τ) (3.11)

Such an expression was examined in a string setting in [1, 2] but for now we continue

to explore the point particle theory. We contend that the generalisation of the electric

field part of the field strength tensor should be generated by a functional average of (3.10)

with an appropriate weight. This weight will be of course that corresponding to the action

in (3.8). Note also that the anti-commuting nature of ψ ensures that the generalised Gauss’

law (2.9) still holds for this interaction.

The final element we need is the supersymmetric version of the constraint on path

lengths. Previously we inserted δ
(∫
e dτ − T

)
into the functional average but this changes

under supersymmetry transformations. Introducing an arbitrary Grassmann number Ξ,

the natural invariant quantity is

δ

(∫
dτdθE

1
2 − 1

2
Ξ

)
(3.12)

which imposes a Grassmannian constraint on χ rather than on the metric. In the massless

case considered here it is not possible to construct a local function of e and χ which is

supersymmetric. Instead we follow Polyakov [36] and give a superspace version of the

non-local and invariant quantity he termed the superlength:

δ

(
−1

2

∫ ∫
dτ1dθ1 E

1
2 (τ1, θ1)D1D2G (τ1, θ1; τ2, θ2) E

1
2 (τ2, θ2) dτ2dθ2 − T

)
, (3.13)

where G (τ1, θ1; τ2, θ2) = |τ1 − τ2 − θ1θ2| is a superinvariant Green function and Di is the

super-derivative acting on the parameters (τi, θi). In components the first of these con-

straints takes the form

δ

(
1

2

∫
dτ χ (τ)− 1

2
Ξ

)
(3.14)
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whilst the latter can be written

δ

(∫
dτ e (τ)− 1

8

∫ ∫
dτ1χ (τ1) sg (τ1 − τ2)χ (τ2) dτ2 − T

)
(3.15)

with sg (τ) = τ
|τ | equal to the sign of its argument. We shall require the superlength

constraint in the functional average because it will be seen to provide the appropriate

fixing of the einbein and we will also impose the complementary constraint (3.14) which

will similarly fix χ.

To continue the calculation it is necessary to determine the measure on the space of the

gravitino and ψ and also to specify the boundary conditions we will use. It is well known

that the purpose of the fields ψ is to represent the γ matrices (in canonical quantisation

we have seen it suffices to take ψµ ∝ γµ), which is why it is desirable to work in a four

dimensional space-time. For instance, consider the partition function of a free fermion ψ

coupled to a source ζ. Integrating the exponential of the action over ψ yields an object with

spinor indices and choosing the boundary conditions on the integral allows us to extract

each component of the result. Specifically in appendix C of [2] we have shown that, for

example, ∫
Dψ e−

∫
dτ( 1

2
ψ̇·ψ+ζ·ψ)

∣∣∣∣ψ2=−iψ1;ψ4=iψ3

ψ2=iψ1;ψ4=−iψ3

= T
(
e
− 1√

2

∫
dτ ζ·γ

)
11
, (3.16)

where T represents time ordering along the worldline. We also showed that the volume

element for χ can be written

Dχ = dχ0Dη

(∫
e−1dτ

)− 1
2

Det−
1
2

(
−
(

1

e

d

dτ

)2
)

(3.17)

where χ0 is the constant piece of χ required for consistency with the boundary conditions

of open worldlines. This volume elements follows because χ can be expressed as a super-

symmetry transformation, generated by η, plus a change proportional to e about some

reference, χ̂. We gauge fix by expanding about ê = > — a constant — and χ̂ = χ0.

These are consistent choices which cover the physically distinct configurations and on

this gauge slice the action becomes

1

2

∫
dτ

ω̇2

>
+ ψ̇ · ψ − χ0

>
ω̇ · ψ (3.18)

whilst the interaction vertex is given by

(ω̇µ (τ)−>ψµ (τ) ik · ψ (τ)) eik·ω(τ). (3.19)

Similarly, using ζ-function regularisation for the functional determinants (see appendix A),

the volume elements become

DeDχ = d>dχ0DVDη. (3.20)

The super-length constraint reduces to

δ (>− T ) , (3.21)
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and the analogous version for χ becomes

δ (χ0 − Ξ) , (3.22)

which can be used to carry out the integrals over > and χ0. We shall again eventually take

T to infinity so we can expand in powers of 1
T and we will take the dimensionful Grassmann

parameter Ξ to vanish. The action and insertions are locally supersymmetric so that the

integrals with respect to V and η will evaluate to the volumes of the reparameterisation

group and supersymmetry group respectively. These constants, albeit formally divergent,

are cancelled by their counterparts if we normalise against the bare partition function.

We pause here to derive an important result using (3.16). We consider the expectation

value over the fermionic fields 〈ψµ (τ)ψν (τ)〉
∣∣
αβ

where we have attached the spinor indices

α and β to the beginning and end of the worldline respectively.7 The insertions can be

generated by introducing a fermionic source η and carrying out functional differentiation,

after which we set η = χ0

2
√

2T
ω̇ to produce the linear term in the action. Then (3.16) gives

〈ψµ (τ)ψν (τ)〉αβ =
1

2Z

∫
dχ0δ (χ0 − Ξ)

δ

δηµ (t)

δ

δην (t)
T
(
e
∫
dτ η·γ

)
αβ

∣∣∣∣
η=

χ0ω̇

2
√
2T

(3.23)

where the constant Z is determined in the appendix. If we impose Ξ = 0 the result of the

functional differentiation and the integral over χ0 is

〈ψµ (τ)ψν (τ)〉 =
1

2
(δµν − γµγν) (3.24)

which crucially is independent of the field ω, since by setting Ξ = 0 we have decoupled the

fields ω and ψ in the action. This result is consistent with the symmetry properties of the

Grassman fields and will play a key role in the forthcoming calculations.

We now return to (3.10) and take its functional average over worldlines fixed to charges

at aµ and bµ. Carrying out the integral over > we are left with the gauge fixed Fourier

space expectation value

〈Iµ (k)〉= q

Z

∫
DωDψdχ0δ (χ0 − Ξ)

∫ 1

0
dτ1 (ω̇µ−Tψµik · ψ) eik·ωe−

∫ 1
0 dτ

ω̇2

2T
+ 1

2
ψ̇·ψ−χ0

2T
ω̇·ψ

=
q

Z ′

∫
Dω

∫ 1

0
dτ1

(
ω̇µ − Ti

2
(kµ − γµk · γ)

)
eik·ωe−

∫ 1
0 dτ

ω̇2

2T (3.25)

where for the last line we have integrated over ψ to produce the gamma matrices and

integrated over χ0 before putting Ξ = 0. It remains to determine the expectation values

of these integrands and carry out the integral over τ1. The integral over ω can be found

to give

q

∫ 1

0
dτ1

(
ω̇µc (τ1)− Ti

2
(kµ − γµk · γ)− 1

2
ikµ

∂

∂τ1
G (τ1, τ1)

)
e−

1
2
k2G(τ1,τ1)eik·ωc(τ1) (3.26)

7We have written the fields at equal times but there is of course a time-ordering issue. We take the

convention that the field to the left is understood to be evaluated at an infinitesimally greater time, ε, than

that on the right, after which we take the limit ε→ 0+.

– 15 –



J
H
E
P
0
1
(
2
0
1
6
)
0
3
3

Making further use of the redefinition G (τ1, τ2) = TG̃ (τ1, τ2) this can be cast in the form

q

∫ 1

0
dτ1

(
ω̇µc (τ1)− Ti

2
(kµ − γµk · γ)− T

2
ikµ

∂

∂τ1
G̃ (τ1, τ1)

)
e−

1
2
k2TG̃(τ1,τ1)eik·ωc(τ1)

(3.27)

From the exponent exp
(
−1

2k
2TG̃ (τ1, τ1)

)
it is easy to understand that the latter two

terms in brackets will contribute at leading order in 1
T and that the first term will once

again be sub-leading. In the limit of large T we can follow the calculations of the bosonic

theory and approximate the integral by evaluating the classical path ωc on each boundary

and then integrating a short distance, h, along the worldline. We calculate

q

∫ h

0
dτ1

(
ω̇µc (0)− Ti

2
(kµ − γµk · γ)− T

2
ikµ

∂

∂τ1
G̃ (τ1, τ1)

)
e−

1
2
k2TG̃(τ1,τ1)eik·ωc(0)

+ q

∫ 1

1−h
dτ1

(
ω̇µc (1)− Ti

2
(kµ − γµk · γ)− T

2
ikµ

∂

∂τ1
G̃ (τ1, τ1)

)
e−

1
2
k2TG̃(τ1,τ1)eik·ωc(1)

(3.28)

and as before the suppression caused by the exponent at large T allows us to extend the

integrands by setting h = 1/2. Carrying out the integrals in the large T limit leads to

〈Iµ (k)〉 = q

[
i

k2
γµk · γ

(
eik·a − eik·b

)
+O

(
1

k4T

)]
. (3.29)

In the limit T →∞ only the first term contributes and so we have determined

〈I (k)〉 =
iq

k2
γ k · γ

(
eik·a − eik·b

)
. (3.30)

We may double check our work by contracting with kµ to verify against (2.9) that the index

structure is correct. In position space the expression above becomes

〈I (x)〉 =
q

4π2
γ γ · ∇

(
1

|x− a|2
− 1

|x− b|2

)
, (3.31)

which we take as the generalisation of the Coulomb field found in the previous section.

We conclude this section by commenting on how this approach could be applied to a

three dimensional space. The main obstacle to this case is the structure of (3.16) which

imposes boundary conditions relating pairs of the ψµ. Furthermore the proof of this equa-

tion presented in [2] does not hold for the three dimensional version of the Clifford algebra

because the chirality operator does not anti-commute with the other matrices; in particular

the trace of a product of an odd number of gamma matrices does not in general vanish.

We present two alternatives to address this issue. The first is to use the symmetry of the

problem to choose a coordinate system such that the two charges are placed on the z = 0

plane and to restrict our attention to determine the field only on this plane. Then we need

consider a super-field, ω, which consists of only two components and the fields ψ essentially
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become the σ-matrices σ1 and σ2:〈
Ii (k)

〉
=

q

Z

∫
DωDψdχ0

∫ 1

0
dτ1

(
ω̇i − Tψiik ·ψ

)
eik·ωe−

∫ 1
0 dτ

ω̇2

2T
+ψ̇·ψ+

χ0
T
ω̇·ψ

=
q

Z ′

∫
Dω

∫ 1

0
dτ1

(
ω̇i − Ti

2

(
ki − σik · σ

))
eik·ωe−

∫ 1
0 dτ

ω̇2

2T

(3.32)

where i ∈ {1, 2}. Carrying out the integral over the two-dimensional field ω and following

the same steps as the four dimensional case leads to

〈I (k)〉 =
iq

k2
σ k · σ

(
eik·a − eik·b

)
. (3.33)

It is more satisfactory to instead modify the four dimensional theory in such a way

that statements can be made for the three dimensional case. This can be done in two

equivalent ways. The three dimensional version of the vertex operator is

Vk = (ω̇ − eψik ·ψ) eik·ω. (3.34)

We could use this as an insertion in the four dimensional theory by defining in some inertial

frame Iµ = (0, I) where the 3-vector I is constructed out of the three dimensional vertex

operator above. Then (3.16) continues to hold except that the part of the expectation

value which does not cancel with Z contains only a three dimensional source so the right

hand side of that equation becomes

T
(
e
− 1√

2

∫
dτζ·γ

)
. (3.35)

This is equivalent to beginning with an entirely three dimensional theory but introducing

a further pair of fields ω0, ψ0. Into the integral of some functional of the three dimensional

fields we introduce a supersymmetric invariant factor in the numerator and denominator

as follows:

1

Z3

∫
DωDψdχ0Ω (ω,ψ) e−

∫ 1
0 dτ

ω̇
2T

+ 1
2
ψ̇·ψ−χ0

2T
ω̇·ψ
∫

Dω0Dψ0e
−

∫ 1
0 dτ

ω̇0
2T

+ 1
2
ψ̇0·ψ0−χ02T

ω̇0·ψ0∫
Dω0Dψ0e

−
∫ 1
0 dτ

ω̇0
2T

+ 1
2
ψ̇0·ψ0−χ02T

ω̇0·ψ0

.

(3.36)

We then combine the denominator of the fraction with the three dimensional normalisation

Z3 to form ∫
DωDψdχ̃0 e

−
∫ 1
0 dτ

ω̇
2T

+ 1
2
ψ̇·ψ− χ̃0

2T
ω̇·ψ−χ0

2T
ω̇0·ψ0 (3.37)

where the integration is now over four bosonic and four fermionic fields. We apply the

boundary conditions for open paths to both the numerator and denominator of (3.36). The

integration in (3.37) produces an expression dependent on χ0 which feeds back into (3.36).

Carrying out the integral over χ0 and the four integrations with respect to ψ produces two

terms which conspire to yield

1

Z ′

∫
Dω Ω (ω,γ) e−

∫ 1
0 dτ

ω̇2

2T (3.38)
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where the normalisation Z ′ is precisely the correct factor to ensure that 〈1〉 = 1. This is

what we would calculate if we were to take the expectation of Iµ = (0, I) as defined above

in a theory with four pairs of fields. It is easy to modify (3.30) to respect this change:

〈I (k)〉 =
iq

k2
γ k · γ

(
eik·a − eik·b

)
(3.39)

which is to be integrated with respect to the three-vector k. We may choose the repre-

sentation

γi =

(
0 −iσi

iσi 0

)
, (3.40)

to show that this approach involves the Pauli matrices in a similar way to (3.33), but now

we need four-index spinors. With this representation γ k ·γ is block diagonal with the two

blocks taking the same form as (3.33), differing from one another by a sign.

4 Analysis at finite T

The classical fields of the previous sections were found in the limit that the dimensionful

parameter T was taken to be large compared to momenta. We discussed above how this

limit can be interpreted as making the intrinsic length of the worldlines stretched between

the charged particles macroscopically large. An interesting question is to ask about the form

of the statistical average for finite T in order to explore how the fields change. In this section

we give the subleading correction to the fields at large T and also consider the opposing

limit T → 0. We shall do so for the lowest order interaction which generates the classical

fields. The geometrical interpretation of changing T is to explore the contribution to the

average from worldlines of different fixed lengths, but as we have discussed earlier it may

also be considered as varying the temperature at which the thermal average is calculated.

Therefore, at lower values of T , we expect that large fluctuations of the worldlines will

be penalised and so the functional averages will become dominated by curves close to the

shortest path between the charges.

4.1 Corrections in the bosonic case

We first analyse the bosonic particle with mixed boundary conditions whose high T limit

produced the classical electric field of a point particle (2.24). That equation was exact in

T and its position space form is found by carrying out the inverse Fourier transform. We

shall specialise here to the three physical spatial dimensions. Aligning the z-axis parallel to

the spatial separation x− a the angular integrals of (2.24) can be carried out to produce

〈I (x)〉T = −q∇
∫ ∞

0

dk

(2π)2 2
sin (k |x− a|)
k |x− a|

(
1− e−

1
2
k2T
)

= −q∇ 1

4π |x− a|

1− Erf

√ |x− a|2

2T

 . (4.1)
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At large T this can be expanded in powers of 1
T and we find

〈I (x)〉T = −∇ q

4π

(
1

|x− a|
− 2

√
1

2πT
+

1

3

√
1

2πT

|x− a|2

T
+O

(
T−

5
2

))
(4.2)

valid for |x− a|2 /T � 1. The leading order correction arises from the third term in

brackets:

〈I (x)〉T =
q

4π

x− a

|x− a|3
− q

6π

√
1

2π

x− a

T
3
2

+O
(
T−

5
2

)
(4.3)

giving the finite T deviation from the inverse square law.

The other limit of interest is at small T so we consider an expansion of (4.1) about

T = 0. The change in functional form is more dramatic because we find

〈I (x)〉T = −q
2
∇ 1√

2π

( √
T

|x− a|2
− T

3
2

|x− a|4
+O

(
T

5
2

))
(4.4)

which carries a different power of the spatial separation. Carrying out the differentiation

we acquire

〈I (x)〉T =
q

4π

√
2π

(
2
√
T (x− a)

|x− a|4
− 4T

3
2 (x− a)

|x− a|6
+O

(
T

5
2

))
(4.5)

in the limit that |x− a|2 /T � 1.

The corrections to the dipole field are less trivial to determine because of the time

dependence in ωc. For large T the integrand is still dominated by contributions at either

end of the curve. We first expand about τ = 0:

eik·ωc(τ1) = eik·a
(

1 + ik · (b− a) τ1 −
k2

2
(k · (b− a))2 τ2

1 + . . .

)
. (4.6)

When integrated against exp
(
−1

2k
2TG (τ1, τ1)

)
each extra power of τ1 results in a further

power of 1
k2T

. The first term in the square brackets of (2.16) is already subleading in
1
T so its contribution to the leading order correction comes from the first term in (4.6).

Integrating this from the boundary to τ1 = 1
2 gives

−2q (b− a)

k2T
eik·a +O

(
T−2

)
(4.7)

plus corrections exponentially suppressed at large k2T . At first order the second term

of (2.16) provided the classical dipole field and its leading order correction arises from the

O (τ1) term in (4.6). Straightforward integration of this evaluates to

2qk k · (b− a)

k4T
eik·a +O

(
T−2

)
(4.8)

up to further terms which are again exponentially suppressed. It is instructive to combine

these two terms as follows: the ith component is given by

− 2q

T

[
δij

k2
− kikj

k4

]
(b− a)j eik·a (4.9)
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which highlights the transverse nature of the correction. The index structure of (4.8) means

the integral with respect to k has the form∫
d3k

(2π)3

kikj

k4
eik·(a−x) = Aδij +B

(a− x)i (a− x)j

|a− x|2
(4.10)

for some constants A and B of dimension [length]−1. They can be determined by contract-

ing each side of the above equation first with δij and also with (a− x)i (a− x)j . The first

of these gives

3A+B =

∫
d3k

(2π)3

eik·(a−x)

k2
=

−1

4π |x− a|
(4.11)

and the second yields

|a− x|2 (A+B) =

∫
d3k

(2π)3

(k · (a− x))2

k4
eik·(a−x). (4.12)

Choosing the z-axis to align with x− a again allows the angular integrals to be done and

we find that the remaining integral with respect to the magnitude of k is proportional to

1

(2π)2

∫ ∞
0

dk

[
sin (k |x− a|)
k |x− a|

+
2 cos (k |x− a|)

(k |x− a|)2 − 2 sin (k |x− a|)
(k |x− a|)3

]
(4.13)

Integrating the second term in square brackets by parts once and the final term by parts

twice serves to cancel the first term. It is then easy to check that the integral evaluates to

zero so A+B = 0 and (4.10) evaluates to

−1

8π |x− a|

[
δij − (a− x)i (a− x)j

|a− x|2

]
. (4.14)

So (4.8) evaluates to

q

4πT |x− a|

[
(b− a) + (x− a)

(x− a) · (b− a)

|x− a|2

]
+O

(
T−2

)
, (4.15)

to which it remains to add the contribution with the analogous calculation for the other

end of the curve fixed to the point b. The final correction at order 1
T is determined to be

q

4πT |x− a|

[
(b− a) + (x− a)

(x− a) · (b− a)

|x− a|2

]
− q

4πT |x− b|

[
(b− a) + (x− b)

(x− b) · (b− a)

|x− b|2

]
(4.16)

and is easy to check that this is divergence free. This is the variation from the classical

dipole field for large values of T which is present in this model. It is interesting to note that

with the relaxation of the limit to large but finite T comes dependence on the direction

(b− a) which is independent of the spatial point in question. In figure 1 we provide an

example of the deviation from the well-known dipole field for finite T by plotting the

streamlines of the electric field.
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Figure 1. The field lines for large but finite T demonstrating the small deviation from the classical

dipole field. In this plot we set T = 10 |b− a|2.

We finally turn to the low T limit of the dipole field for which it is more convenient

to carry out the integral with respect to k of (2.16), before looking at an expansion in

powers of T . Here we shall see more striking dependence on the direction of separation

between the two charges, since as T → 0 one expects the fluctuations of the worldlines

to be almost completely frozen out. Then the field will be concentrated in a small region

(measured with respect to T ) about the straight line from a to b. The result of carrying

out the inverse Fourier transform of (2.16) is

〈I (x)〉T =
−q

(2π)
3
2

∫ 1

0

dτ1(
TG̃ (τ1, τ1)

) 3
2

[
˙̃G (τ1, τ1)

2G̃ (τ1, τ1)
(x− ωc)− ω̇c

]
exp

(
− (x− ωc)2

2TG̃ (τ1, τ1)

)
,

(4.17)

Examining the T -dependence of this expression we see that the limit T → 0 provides a

representation of the δ function so that the field is supported only on the classical straight

line path joining a to b:

δ3

(∫ 1

0
dτ1 (x− ωc (τ1))

)
= δ3

(∫ 1

0
dτ1 (x− (a + (b− a) τ1))

)
. (4.18)

This makes sense since the T → 0 limit implies the worldline’s intrinsic length is small,

so it must find the configuration that minimises the intrinsic distance traced out by the

particle. Alternatively, as we have stated above, there can be no thermal fluctuation about

the classical solution to the equations of motion.

To determine the form of the field at finite T we shall employ a Laplace approximation.

For small T the contribution to the integrand of (4.17) is concentrated about the positions

of the maxima of the exponent exp
(

(x−ω(τ1))2

2TG̃(τ1,τ1)

)
. The precise version of Laplace’s method
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we shall invoke is that for small T and arbitrary well-behaved functions f (τ) and g (τ)∫ 1

0
dτf (τ) e−

1
T
g(τ) =

∑
τ0

√
2πT

g̈ (τ0)
f (τ0) e−

1
T
g(τ0) (1 +O (T )) (4.19)

where the τ0 ∈ [0, 1] are determined by the condition that g (τ0) be a maximum. In this case

a straightforward calculation shows that the exponent of (4.17) attains a single maximum

within the integration range at8

τ0 =
|x− a|

|x− a|+ |x− b|
. (4.20)

If the spatial point x lies on the line joining a to b then the exponent vanishes at

this value of τ1, in agreement with the T → 0 limit which provides δ-function support

on this line. Furthermore the first term in square brackets of (4.17) vanishes because

x− ωc (τ0) = 0. In this case the field is approximated at lowest order in T by

q

2πTG̃ (τ0, τ0)

(b− a)

|b− a|

=
q

2πT

|b− a|
|x− a| |x− b|

(b− a) (4.21)

which has its minimum half way between the charges, where its magnitude is

2q

πT
(4.22)

Away from this line the exponent in (4.19) enforces an exponential decay in the mag-

nitude of the field. Indeed we find

(x− ωc (τ0))2

2G̃ (τ0, τ0)
=

1

2

[
|x− a| |x− b| (|x− a|+ |x− b|)2

− 2 (x− a) · (x− b)
|x− a|+ |x− b|

|x− b|
+ |x− a| |x− b|

]
(4.23)

and the direction of the field depends on the spatial point through the first term in (4.17).

It is possible to use (4.19) to determine the contribution at an arbitrary spatial point but

the result is less illuminating than a visual representation of the field lines and the field

magnitude. It is most useful to plot the streamlines, tangent to the field at each spatial

point. Figure 2 and figure 3 show the field strength and direction on the z = 0 plane of a

pair of oppositely charged particles placed at positions a = (3, 0, 0) and b = (−3, 0, 0) for

two values of the parameter T . We have imposed a sharp cut-off about the positions of the

charges to avoid the divergence encountered there.

The form of these field configurations suggests that the low T limit of this theory

gives some sort of confining field, albeit not one with a potential linear in the separation

8This expression is consistent with the behaviour of the system under exchange of a and b because this

is equivalent to sending τ → 1− τ .
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Figure 2. Field magnitude and field streamlines in the low T limit — in this plot T = 1
60 |b− a|2.

Figure 3. Field magnitude and field streamlines in the low T limit — in this plot T = 1
1000 |b− a|2.

The field decays exponentially as described in the text which gives rise to the white-space in the

plot, in which the field is negligibly small.

of the charges. In this way T interpolates between the classical field associated to a pair

of charges and a regime in which field lines are concentrated about the line joining the

charges. The emergence of confining behaviour has briefly been considered for action at a

distance theories before [42, 43] and we add to the discussion with our determination of

the field lines with this new model. The three dimensional plot in figure 4 highlights how

the low T lines of flux are compressed into a thin tube. This completes our discussion of

the correction to the bosonic theory at finite T .

4.2 Corrections in the fermionic case

In this case we shall consider four dimensional space-time and will briefly state the result

of analysing the order 1
T corrections to (3.30). The general approach is identical to that

of the bosonic theory. We have already determined the momentum space correction to the
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Figure 4. Confining field lines in the low T limit — here T = 1
500 |b− a|2.

first and last terms in (3.27) in the previous section. For the contribution corresponding

to the end of the curve at aµ the µth component is given by

2q

T

[
δµν

k2
− kµkν

k4

]
(b− a)ν eik·a. (4.24)

We also find a subleading contribution from the middle term in (3.27) which takes the form

2q

T
[δµα − γµγα]

kαkν

k4
(b− a)ν eik·a (4.25)

so now we must determine the four dimensional integral∫
d4k

(2π)4

kµkν

k4
eik·(a−x). (4.26)

Symmetry dictates it must be equal to Aδµν + B (a− x)µ (a− x)ν |a− x|−2 where the

constants A and B have dimension [length]−2. Proceeding as before we contract with δµν

and (a− x)µ (a− x)ν to produce two equations. The first gives

4A+B =

∫
d4k

(2π)4

eik·(a−x)

k2
=

−1

4π2 |x− a|2
(4.27)

and the second leads to

|a− x|2 (A+B) =

∫
d4k

(2π)4

(k · (a− x))2

k4
eik·(a−x). (4.28)

This integral can be carried out by first doing the integral with respect to k0, where double

poles are encountered at k0 = ±i |k|. The remaining integral over the three dimensional
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vector k can be done by choosing the z-axis to align with x− a as above. Then we are left

to determine

π

2

∫ ∞
0

dk

(2π)3

∫ 1

−1
d (cos θ) ke−k|x0|+ik|x| cos θ

[
|x0|2 (k |x0| − 1)− 2ik |x| |x0|2 cos θ

− |x|2 (k |x0|+ 1) cos2 θ

]
. (4.29)

Integrating over θ leaves only

π

2

∫ ∞
0

dk

(2π)3 e
−k|x0|

[
|x0|2 (k |x0| − 1)

sin k |x|
k |x|

+ 2 |x0|2
(

sin k |x|
k |x|

− cos k |x|
)

− |x|2 (k |x0|+ 1)

(
sin k |x|
k |x|

+ 2
cos k |x|
k2 |x|2

− 2
sin k |x|
k3 |x|3

)]
. (4.30)

Carrying out the k-integral several times by parts yields |x− a|2 (A+B) = 1
8π2 so (4.26)

evaluates to
−1

8π2 |x− a|2

[
δµν − 2

(a− x)µ (a− x) ν

|x− a|2

]
. (4.31)

So in position space (4.24) becomes

−q
4π2T |x− a|2

[
(b− a)µ + 2 (x− a)µ

(x− a) · (b− a)

|x− a|2

]
, (4.32)

for which it can be verified that the divergence vanishes, and (4.25) becomes

−q
4π2T |x− a|2

(δµν − γµγν)

[
(b− a)ν − 2 (x− a)ν

(x− a) · (x− a)

|x− a|2

]
, (4.33)

which is also divergence free. The first order correction is found by subtracting these

and including the contribution from the other end of the curve. We find at order 1
T the

expectation value of the insertion evaluates to

〈Iµ (x)〉T =
q

4π2T |x− a|2
γµ γ ·

[
(b− a)− 2 (x− a)

(x− a) · (x− a)

|x− a|2

]
− q

4π2T |x− b|2
γµ γ ·

[
(b− a)− 2 (x− b) (x− b) · (x− b)

|x− b|2

]
. (4.34)

The form of this correction has a similar functional form to that of the bosonic particle

discussed above.

We may also ask about the low T expansion to determine the behaviour of the system

in this regime. It is again useful to carry out the integral over k first to arrive at

〈Iµ (x)〉T =
−q

(2π)2

∫ 1

0

dτ1(
TG̃ (τ1, τ1)

)2

[
˙̃G (τ1, τ1)

2G̃ (τ1, τ1)
(x− ωc)µ − ω̇µc

− (x− ωc)ν

2G̃ (τ1, τ1)
(δµν − γµγν)

]
exp

(
− (x− ωc)2

2TG̃ (τ1, τ1)

)
. (4.35)

– 25 –



J
H
E
P
0
1
(
2
0
1
6
)
0
3
3

In the limit that T vanishes we have a representation of the four dimensional δ−function

supported on the straight line joining the charges in Minkowski space. Applying Laplace’s

approximation allows us to determine the leading order behaviour which we illustrate for

a point x on the line from a to b. In this case we clearly find the maximum at the point

where ωc (τ0) = x (τ0 remains unchanged from (4.20)) so the first and last terms vanish.

Explicit application of (4.19) results in

q(
2πTG̃ (τ0, τ0)

) 3
2

b− a
|b− a|

=
q

(2πT )
3
2

|b− a|2

|x− a|
3
2 |x− b|

3
2

(b− a) (4.36)

which achieves a minimum at the midpoint of the line of magnitude

q

(πT )
3
2

. (4.37)

For sufficiently small T , this will be greater than the corresponding minimum associated

to the bosonic theory.

This section contained some analytic results for bosonic and fermionic point particles

beyond the leading order behaviour. It is especially interesting to note the small T limit of

the system which demonstrates a localisation of the field about the classical path between

the charges. In the following section we return to the definition of the interaction between

particles and use it to construct a full quantum theory.

5 Contact interactions between particles

In this section we extend our work to describe a set of particles which interact when their

worldlines intersect. Accordingly we work in a D = 4 dimensional space-time. This section

carries out the analogous analysis to that in [2] where a collection of strings interacting

upon contact was considered. In this section we limit our discussion to bosonic particles.

To describe the dynamics of a collection of interacting particles we augment the free action,

S0, of each point particle with a non-local contact interaction as follows:

Stot =
∑
i

S0 [ei, ωi] +
g

2

∑
ij

∫
ωi

∫
ωj

dτidτj ω̇i (τi) · ω̇j (τj) δ
4 (ωi (τi)− ωj (τj)) (5.1)

There are two ways to motivate this interaction. In correspondence with the introduction

of [2] one can substitute the expression for E′, the insertion used in section 2, into the

standard action of Maxwell electromagnetism for the energy of a static electric field:

SE =
1

4

∫
d3xE ·E =

e2

4

∫
ω

∫
ω
dτ1dτ2 ω̇ (τ1) · ω̇ (τ2) δ3 (ω (τ1)− ω (τ2)) (5.2)

which produces a self-interaction along the worldline in question (we have integrated over

the spatial point x). It is natural to then extend this to encompass interactions between
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distinct particles as we have done in (5.1). An alternative is to follow the worldline ap-

proach9 and consider two particles which interact via the exchange of a single massive

gauge boson between the points ωµ1 and ωµ2 . The propagator for this process may be taken

as ∆µν (ω1, ω2) ∝ e2

2

∫
d4p e

ip·(ω1−ω2)

p2+m2 , which (as has been discussed by Feynman [44] —

see also [7]) should be inserted into the path integral and integrated with respect to the

points of emission and absorption along each worldline. To take into account all possible

interactions of this type, one is thus required to include a term∫∫
dω1dω2 ∆µν (ω1, ω2) (5.3)

in the worldline theory. To achieve (5.1) from here it suffices to parameterise the paths

by variables τ1 and τ2 and take the limit that the mediating boson has large mass so

that p2

m2 → 0. This provides the appropriate δ-function contact term, since the range of

the interaction will be heavily supressed in this limit, and the resulting expression can be

identified with (5.1) by setting e2 = gm2.

The form of (5.1) may appear unusual but it is straightforward to verify that it satisfies

the consistency criteria described by Kalb and Ramond for interactions of this type [17, 18].

We also recall from the discussion in the introduction that the δ-function ensures that

the interaction is local in space-time. We must specify fixed boundary conditions for

each particle, which we denote by ωi (0) = aµi and ωi (1) = bµi . The coupling strength g

determines the relative strength of interactions between the worldlines (we have taken the

couplings between all pairs of particles to be the same, rather than introducing separate

coupling constants gi as presented in the introduction) and its sign determines whether the

interaction is repulsive (g > 0) or attractive (g < 0).

We shall consider the partition function of the theory described by Stot and determine

its physical content as well as investigating whether there are divergences which need regu-

larising. In order to build upon our earlier results which allowed us to relate the worldline

theory to electrostatics we will retain the constraint on the path length of each worldline

which was used in earlier sections, so that for each particle we impose
∫
dτi ei (τi) = T .

Since there is no reason to keep hold of this arbitrary dimensionful parameter we will fol-

low the choice made in sections 2 and 3 by considering the large T limit. We expect this

limit to be the correct one for (5.1) to provide an extension of electrostatics and to ensure

the interaction between particle worldlines is not unduly restricted to a localised region of

space-time. In this theory we do not anticipate divergences corresponding to the coinci-

dence of operators due to the well behaved nature of Green functions on one dimensional

domains but we do stand to encounter unwanted divergences in taking the T → ∞ limit.

We will also find that the definition of the contact interaction will require slight refinement

corresponding to the rather trivial vanishing of the argument of the δ-function when τ = τ ′

and the worldlines ωi and ωj are the same.

Before proceeding we pause to point out how this action differs from the quantum

mechanics which arises in both the action at a distance theories and the worldline formalism

of a scalar quantum field. To compare with the action at a distance theories discussed in

9I am grateful to the reviewer of this article for their insight in pointing this out.
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the introduction we may define a functional of the worldlines in order to recast the action

above as if the particles interacted with a current. Let

Jµ (x) =
∑
i

∫
ωi

dωµi δ
4 (x− ωi) , (5.4)

which we know from section 2 satisfies ∂µJ
µ (x) =

∑
i δ

4 (x− ai)− δ4 (x− bi) so is sourced

only at the points corresponding to the end of the worldlines (this is necessary in order

that they be held in place). Then the interaction between the particles can be written as

g

2

∑
a

∫
ωa

dτa ω̇a (τa) · J (ωa (τa)) (5.5)

and the equations of motion for the particles take the form (for illustration we gauge fix

the einbein to e = 1 which imposes the first class energy-momentum constraint ω̇2 = m2)

m
d

dτ

(
ω̇aµ√
ω̇2
a

)
=
g

2
ω̇νa∂[ν Jµ] (5.6)

which are well-known for the minimal vector coupling between worldlines and a background

current.10 We must recall, however, that this background current is not an independent

degree of freedom because it depends on the particle worldlines (which must satisfy the

equations of motion) and is also not a conserved quantity.

We also comment briefly on the relationship to the worldline formulation of quantum

field theory to further justify its study. Although we have discussed how the interaction

can be thought of as arising due to the exchange of very heavy gauge bosons between the

worldlines, it can also be compared to the transition amplitude of the worldlines in some

potential. If we consider a massless scalar field, φ, with an interaction potential U (φ)

(for simplicity we suppose that φ does not couple to any gauge field) then the one-loop

effective action, Γ [φ], is defined by integrating over the quadratic quantum fluctuations of

the matter degrees of freedom [45]:

Γ [φ] = −1

2
Tr ln

(
−∂2 + U ′′ (φ)

−∂2

)
. (5.7)

This is then rewritten in the worldline formalism by expressing the logarithm as an integral

using the Schwinger proper time trick [46] and the functional trace as a quantum mechanical

transition amplitude for a point particle to traverse a closed loop:

Tr ln

(
−∂2 + U ′′ (φ)

−∂2

)
∝
∫ ∞

0

dT

T

∫
dDω

〈
ω
∣∣ exp

[
−T

(
−∂2 +m2 + U ′′ (φ (ω (τ)))

])∣∣ω〉
(5.8)

=

∫ ∞
0

dT

T

∮
Dω exp

(
−
∫ 1

0
dτ
ω̇2

2T
+m2T + U ′′ (φ (ω (τ)))T

)
10For completeness we point out that the equation for the “field” Jµ can be imposed by introducing

a trivial space-time action g
4

∫
d4xJµJµ whose variation, in conjunction with that of (5.5), ensures the

correct on-shell assignment in (5.4). This is slightly different from the form of the theory discussed in

the introduction where the interaction is truly non-local and is carried by a Green function with may be

supported away from the null light cone. In that case the equations of motion and the space-time action

would be familiar from minimal electromagnetism.
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The effect of the self-interaction potential is to modify what would otherwise be the quan-

tum theory of a free particle via an additional term U ′′ (φ (ω (τ))) in the action. In the case

that m = 0 and there is no field potential the particle action reduces to S0 which we used

for functional averages in section 2. There we carried out the integral over T by making

use of the constraint on path lengths.

The calculation of the effective action must now proceed perturbatively (for example,

by expanding φ about the centre of mass of the worldline, which is the zero mode of

the kinetic operator [8]). However, if for the sake of illustration we wish to calculate the

2N -point one-loop scattering amplitude, we may functionally differentiate N -times with

respect to φ and then expand the field as a sum of N plane waves:

φ (ω) =

N∑
i=1

eipi·ω (5.9)

Now, the physical picture of the interaction in (5.1) is of a pair of worldlines meeting

at a point, where they interact before independently separating. This reminds us of the

Feynmann diagram in φ4 theory so let us consider U (φ) = λ
4!φ

4, which leads to an additional

worldline interaction λ
2φ (ω (τ))2. Carrying out the Fourier integration over momentum the

one-loop 2N -point amplitude 〈φ (x1) . . . φ (x2N )〉 can be written in position space as a sum

over permutations of pairings of the form

λN
∫ ∞

0
dT TN−1e−m

2T

∫
Dω

N∏
i=1

∫ 1

0
dτi δ

4 (ω (τi)− x2i) δ
4 (ω (τi)− x2i−1) e−

∫ 1
0 dτ

ω̇2

2T .

(5.10)

The interpretation of this is that the δ-functions force the joining of pairs of points x2i

and x2i−1 to a point on the virtual worldline ω (τi), reproducing a quartic interaction

vertex. The interaction that we propose in (5.1) is slightly different since we couple pairs

of worldlines to one another directly without the need for a virtual loop to mediate the

process but the interaction when pairs of lines intersect has the same form. The one-loop

example considered here can be interpreted in terms of worldline interactions by imagining

a particle travelling between two space-time points whose worldline intersects a second,

closed worldline at a single point only.

Our integrand, however, does not consist only of the minimal scalar measures
∫
dτi

but carries with it directional information11 through the factors of ω̇µ. So we imagine

a four point contact interaction between pairs of worldlines which depends also on the

tangent vectors to the worldlines at the point of contact. We get an idea of what this

would mean for the corresponding field theory by dimensional analysis of the coupling

strength. In D-dimensions, [g] = lengthD−2, whilst a scalar field has [φ] = length1−D
2 . If we

introduce a coupling constant λ then the field-theory interaction Lint = λ
∫
∂µφ∂

µφφ2 dDx

is dimensionless if the dimensions of λ are the same as g. This suggests that the worldline

theory proposed here is related to a field theory with quartic coupling containing two

11I wish to thank Paul Mansfield for helpful discussions on the physical interpretation of the interaction

described in this paragraph.

– 29 –



J
H
E
P
0
1
(
2
0
1
6
)
0
3
3

derivatives (we must recall, however, that the constraint on path lengths being imposed

means that we are not reproducing the entire content of the field theory, which would

require us to integrate over T rather than consider only the contribution as T →∞). With

this heuristic picture of how the contact interaction can be interpreted we now return to

determine the partition function of the modified worldline theory.

We shall carry out the calculation as a perturbative expansion in g. Expressing the

δ-function in its Fourier representation introduces vertex operators

ω̇ (τi) · ω̇ (τj) δ
4 (ω (τi)− ω (τj)) =

∫
d4k

(2π)4Vk (τi) · V−k (τj) (5.11)

At first order in g the correction to the partition function of the non-interacting theory

takes the form

g

2

∑
jk

∫ (∏
i

D (ωi, ei)

Z
δ

(∫
eidτi − T

)
e−S0[ei,ωi]

)∫ ∫
dωj · dωk δ4 (ωj − ωk) (5.12)

There are two contributions to this sum. When the worldlines are distinct (5.12) can be

factorised to make use of the result in section 2:

g

2

∑
j 6=k

∫ ∏
i 6=j,k

D (ωi, ei)

Z
δ

(∫
eidτi − T

)
e−S0[ei,ωi]

×
∫

D (ωj , ej)

Z
δ

(∫
ejdτj − T

)
e−S0[ej ,ωj ]

∫
dωµj

〈∫
dωµk δ

4 (ωj − ωk)
〉
T

=

g

8π2

∑
j 6=k

∫
D (ωj , ej)

Z
δ

(∫
ejdτj−T

)
e−S0[ej ,ωj ]

∫
dωµj

∂

∂ωµj

(
1

|ωj − ak|2
− 1

|ωj−bk|2

)
(5.13)

where we have taken the large T limit and discarded contributions of order 1
T arising from

the expectation value in the first line. The integral over ωj at the far right of the bottom

line produces a boundary contribution and we recall that the boundary conditions ensure

this is a constant throughout the functional integral over ωj . So the functional integral is

rendered trivial and the result is

g

4π2

∑
j 6=k

[(
1

|aj − ak|2
− 1

|aj − bk|2

)
−

(
1

|bj − ak|2
− 1

|bj − bk|2

)]
. (5.14)

The interpretation of this is a pairwise interaction between the fixed ends of the open

worldlines of the theory, whose form we recognise as the space-time Green function
(
∂2
)−1

.

This is the Green function of the scalar field theory whose worldline reformulation leads

to the quantum theory described by S0 which we have discussed above. The effect of

the contact interaction is to couple the end points of the worldlines to one another via

the propagators in (5.14). This retrospectively suggests that the high T limit was a good

choice, since it leads to a familiar interaction with the long-distance properties that one
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would hope for in quantum field theory, in much the same way that the same limits taken

in sections 2 and 3 yielded familiar electrostatics fields.

This can be contrasted with the result we found in the case of interacting strings in [1]

and [2]. We have already explained how the endpoints of the strings were fixed to lie on

some specified worldlines. The effect of the contact interaction on the worldsheet came

primarily from the region close to its boundary, B, and provided an interaction between

the worldlines which took the form∑
a,b

1

2π2

∫
Ba

∫
Bb

dωa · dωb
|ωa − ωb|2

, (5.15)

which now contains the space-time propagator of a vector field integrated over all points on

the boundary of each string. In fact the Fourier transform of the Green function took the

form δµν (k) = ηµν/k
2−kµkν/(k2)2, which is the propagator for an Abelian gauge boson, A

in the gauge ∂ ·A = 0. In this way we related the tensionless limit of the interacting string

theory to quantum electrodynamics, where the contact interaction served to produce the

interactions between the worldlines and the gauge field. The calculation of the partition

function of the point particle theory is related to (5.15) as analogous to the contribution

arising from two fixed points in space-time. If these are taken to be points ωa and ωb on

two curves Ba and Bb then the string theory result arises by then integrating over all such

points on the curves (see also the end of section 2 where we discussed the transition from

a spatial average to averaging over curves in space-time). In the string theory version this

integral is generated by the extra structure in the worldsheet contact interaction which

produces the integration measure and automatically counts the contributions from every

point on the string boundary.

Returning now to the point particle theory we must address the case j = k separately

as then the worldlines being integrated over are the same. In the string theory case [1, 2] we

found that two contributions make up this interaction — a renormalisation of the free string

action and cosmological constant and a contribution corresponding to self-intersection of

the string. For point particles, however, no such self-intersection ought to be present since

the vanishing of
g

2

∫ ∫
dτ1dτ2 ω̇ (τ1) · ω̇ (τ2) δ4 (ω (τ1)− ω (τ2)) (5.16)

is only at τ1 = τ2. Naively this would provide g
2δ (0) × Length (ω), suggestive of a renor-

malisation of the non-interacting part of the action. A second major difference between

the theory of point particles we consider here and the string theory equivalent is that the

current case does not require us to worry about encountering a conformal anomaly. In

particular there are no short distance divergences associated to the Green function which

would require regularisation. To make all this more precise we must consider

〈Iµν〉T =

∫
d4k

(2π)4

∫ ∫
dτ1dτ2

g

2

〈
dωµ

dτ1
eik·ω(τ1)e−ik·ω(τ2)dω

ν

dτ2

〉
T

(5.17)

where we have again used the Fourier representation of the four-dimensional δ-function.

The insertions are once more easily generated via the introduction of sources and the
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integral over ω provides the following generalisation of (2.12)

g

2

∫
d4k

(2π)4

∫ ∫
dτ1dτ2

δ

δjµ (τ1)

δ

δjν (τ2)

exp

(
− 1

2

2∑
i,j=1

ki · kj G (τi, τj)− i
∫
dτ

2∑
i=1

ki · j (τ)
d

dτ
G (τi, τ)

+
1

2

∫ ∫
dτdτ ′ j (τ) · j

(
τ ′
) d
dτ

d

dτ ′
G
(
τ, τ ′

))

exp

(
−
∫
dτ j (τ) · d

dτ
ωc (τ) +

2∑
i=1

iki · ωc (τi)

)∣∣∣∣∣
j=0

(5.18)

where k1 = k = −k2. It is trivial to carry out the functional differentiation and it proves

useful to define

Ψ (τ1, τ2) ≡ G (τ1, τ1) +G (τ2, τ2)− 2G (τ1, τ2) (5.19)

in order to express the answer as

g

2

∫ 1

0
dτ1

∫ 1

0
dτ2 exp

(
−1

2
k2Ψ (τ1, τ2)

)[
ω̇µc ω̇

ν
c −

i

2
kµω̇νc d

2
tΨ (τ1, τ2)

+
i

2
kν ω̇µd1

tΨ (τ1, τ2)− 1

2

(
ηµν − kµkν

k2

)
d1
td

2
tΨ (τ1, τ2)

]
eik·(ωc(τ1)−ωc(τ2)) (5.20)

which must then be integrated over k. In the above equation we have integrated by parts

to produce the transverse projector for the final term in square brackets. In the worldline

formalism it is often advantageous to follow an alternative integration by parts procedure

advocated by Bern and Kosower [47, 48] which removes all second derivatives of Green

functions.12 The interpretation of this technique has its roots in the pinching of Feynman

diagrams present in the underlying field theory, but as we do not necessarily have such a

model behind our work it is unnecessary for us to adhere to it. Now

Ψ (τ1, τ2) = T
(
|τ1 − τ2| − (τ1 − τ2)2

)
(5.21)

actually coincides with twice the Green function with periodic boundary conditions [38].

As such it satisfies −1
2T

d2

dτ21
Ψ (τ1, τ2) = δ (τ1 − τ2)−1 and is a function of τ1−τ2 only. Noting

also that ωc (τ1) − ωc (τ2) = (b− a) (τ1 − τ2) we learn that the entire expression (5.20) is

in fact a function of the separation τ1 − τ2. We use this to fix the zero by setting τ2 = 0

and multiplying by
∫ 1

0 dτ2 = 1. Furthermore Ψ (τ1, 0) = Tτ1 (1− τ1) is just the coincident

Green function we met in section 2 so we must determine

g

∫ 1

0
dτ1 exp

(
−1

2
k2G (τ1, τ1)

)[
ω̇µc ω̇

ν
c +

i

2
kµω̇νc d

1
tG (τ1, τ1) +

i

2
kν ω̇µd1

tG (τ1, τ1)

+
1

2

(
ηµν − kµkν

k2

)
d1
td

1
tΨ (τ1, 0)

]
eik·(b−a)τ1 . (5.22)

12The worldline approach was originally proposed by Strassler as a means of arriving at earlier results re-

lating field theory amplitudes to the infinite tension limit of string theory [49, 50], so that many calculational

tricks used by string theorists are borrowed for worldline calculations.
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Anticipating that we will eventually take the limit T → ∞ we need only consider an

expansion in powers of 1
T . The leading order contributions again come only from the ends

of the interval where the coincident Green function vanishes so it suffices to expand about

τ1 = 0 and τ1 = 1. We shall consider each term in (5.22) separately; at lowest order in 1
T

the first takes the form

gω̇µc ω̇
ν
c

∫
dτ1 e

− 1
2
k2G(τ1,τ1)eik·(b−a)τ1

=
2g

k2

[
eik·(b−a) − 1

] ω̇µc ω̇νc
T

+O
(

1

k4T 2

)
(5.23)

Upon integrating over k the latter term in square brackets vanishes whilst the former

provides (2π |b− a|)−2. The contribution we seek is the trace of this — we note that since

the derivative of the classical solution to the equations of motion is a constant we may

express the above expression as

g

π2 |b− a|2

∫ 1

0
dτ

ω̇2
c

2T
+O

(
1

k4T 2

)
. (5.24)

We interpret this as providing a renormalisation of the free action and note that it is

suppressed in the large T limit.

The second and third terms in (5.22) involve a derivative of the Green function and as

such provide contributions that are independent of T . Taking the trace we require

gik · ω̇c
∫
dτ1 Ġ (τ1τ1) e−

1
2
k2G(τ1,τ1)eik·(b−a)τ1

= g
ik · ω̇c

2k2

[
eik·(b−a) − 1

]
+O

(
1

k2T

)
(5.25)

Carrying out the integral over k provides

− g ω̇c · (b− a)

4π2 |b− a|4
+O

(
1

k2T

)
(5.26)

Recognising that ω̇ = b− a we may also cast this into the form

− g

4π2 |b− a|2

∫ 1

0

ω̇2
c

|b− a|2
+O

(
1

k2T

)
(5.27)

providing a finite renormalisation of the free action.

Finally we take the last term of (5.22) and consider its trace. We use the defining

equation of the Green function to write its contribution as

− g
∫ 1

0
dτ1 T (δ (τ1)− 1) e−

1
2
k2G(τ1,τ1)eik·(b−a)τ1 (5.28)

Both terms are independent of the field ωc which suggests that we should interpret them

as renormalisations of a cosmological constant term in the action
∫ 1

0 dτ T . The δ-function

gives us

− g
∫ 1

0
dτ T (5.29)
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exactly as required, albeit formally divergent when we take T to infinity,13 whereas the

second evaluates to

− 2g

k2

[
eik·(b−a) − 1

]
+O

(
1

k2T

)
, (5.32)

which upon integrating over k becomes

− g

2π2

1

|b− a|2
+O

(
1

k2T

)
. (5.33)

This surprisingly takes the same form as (5.14) and suggests that there is after all a self-

interaction present in the theory, sensitive only to the boundary of the worldline.

To lend this more weight we could approach the calculation in a complementary fashion.

We note that Ψ (τ1, τ2) vanishes only at τ2 = τ1 so we could arrange our calculation by

instead expanding about this point. When τ1 is not close to the boundary (measured

with respect to 1
k2T

) integrating τ2 about τ1 corresponds to integrating over their relative

separation and the leading order contribution arises by setting the T -independent exponent

exp (ik · (b− a) (τ1 − τ2)) equal to unity. This gives the terms above which are absent of

an exponent. When τ1 is close to the boundary we must take care because τ2 is restricted

to lie in [0, 1]. So for example when τ1 ≈ 0 we must integrate τ2 a small distance from this

boundary along the line but must also consider the contribution when τ2 is integrated from

the opposite boundary along the line. Indeed for the latter case we consider, following the

notation of section 2,

g

2

∫ h

0
dτ1

∫ 1

1−h
dτ2 T (δ (τ1 − τ2)− 1) e−

1
2
k2Ψ(τ1,τ2)eik·(b−a)(τ1−τ2). (5.34)

The δ-function is not supported for this configuration of variables, besides it is the second

term with which we are concerned. At leading order in 1
T we evaluate the trailing exponent

at the point τ1 = 0, τ2 = 1. A change of variables τ = 1 − τ2 yields Ψ (τ1, 1− τ) =

T
(

(τ1 + τ)− (τ1 + τ)2
)

and the integral becomes

− g

2

∫ h

0
dτ1

∫ 2h

0
du e−

1
2
k2G(u,u)e−ik·(b−a) (5.35)

where we have set u = τ1 + τ . At leading order this provides

− g

k2
e−ik·(b−a) (5.36)

13The integral over k also provides an infinite volume factor multiplying this result. We may tidy this up

by carrying out the k−integral before integrating over τ1. Doing so turns (5.28) into

− g
∫
dτ1

(
π

2G (τ1, τ1)

)D
2

e
−

(b−a)2τ21
2G(τ1,τ1) (δ (τ1)− 1) . (5.30)

We are concerned only with the contribution arising from the δ-function so we need the value of the exponent

as τ1 → 0+. An easy calculation shows that the exponent vanishes leaving only

− g
(π

2

)D
2

lim
τ1→0

(G (τ1, τ1))−
D
2 (5.31)

which diverges.
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which is to be compared with (5.32). The sign of the exponent is not important and the

factor of two is found by including the configuration where the positions of τ1 and τ2 in the

above calculation are swapped. So the physical information arises when the two points are

close to opposite boundaries, whereas the renormalisations appear from the region where

the two points coincide. This is in fitting with the naive analysis of the form of the contact

interaction when the worldlines are the same.

The self-interaction (5.33) also has the appropriate factor of two difference for it to

be subsumed into the sum (5.14) so that at first order in the expansion of the interaction

we find

g

4π2

∑
j,k

′
[(

1

|aj − ak|2
− 1

|aj − bk|2

)
−

(
1

|bj − ak|2
− 1

|bj − bk|2

)]
. (5.37)

We write
∑′ to denote that when j = k we discard the first and last terms in the summand

where the separation vanishes. This concludes the analysis of the first order effect of the

contact interaction present in this theory. In the following section we turn to consider higher

order interactions and show that the result above is not spoilt and that this propagator

interaction between the end of the worldlines exponentiates.

5.1 Expansion to arbitrary order

We may consider expanding the part of the action corresponding to the inter-particle

interaction to arbitrary order in the coupling strength. When the interaction is between

distinct worldlines we may repeat the analysis at first order to simplify the calculation to a

form familiar from section 2. Here we address the problem of having a fixed even number,

N , of points to be integrated over the same worldline which could potentially spoil the

result at order g
N
2 or higher. The reason for this is that we must be cautious in taking the

limit T →∞, in case the clustering of points on the worldline produces dependence on T

which would cause the result to diverge. So we consider〈
V µ
k1

(τ1)V ν
k2 (τ2) . . . V α

kN
(τN )

〉
T

(5.38)

where we understand that each point must be integrated from τi = 0 to 1.

Wick’s theorem produces a common factor to all of the contractions that could be

formed out of the above product of fields which takes the form

exp

−1

2

N∑
i,j=1

ki · kjG (τi, τj)

ei∑i ki·ω(τi) (5.39)

We are interested in taking the high T limit, whereby the leading contribution will be

from the regions of integration where the exponent vanishes. There are no short distance

divergences which require regularisation so we may consider the points to be arbitrarily

close to one another. This leads us to consider two cases. The exponent can be made to

vanish by ensuring that each individual Green function G (τi, τj) vanishes, which requires

us to localise each of the points close to either end of the domain. Alternatively we might
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consider bringing a collection of points coincident, which is instructive in order to compare

with the results of the previous subsection. As no regularisation is required we keep the

discussion of this case brief. It is useful to split (5.39) as

exp

−1

2

N∑
i=1

k2
iG (τi, τi)−

∑
j 6=i

ki · kjG (τi, τj)

ei∑i ki·ω(τi) (5.40)

which makes it clear that for an arbitrary configuration of the points away from the bound-

ary the first factor damps the integrand. Now suppose that some number, n, of these points

are brought to the same point τ1. Then these points contribute

exp

−1

2
G (τ1, τ1)

(
n∑
i=1

ki

)2

+ . . .

ei∑i ki·ω(τi) (5.41)

where the . . . represents terms which depend on the relative separation between each point

and τ1. Recall that G (τ1, τ1) = TG̃ (τ1, τ1) vanishes only at the boundary of the domain.

Consider how this exponent behaves under the integral with respect to k1, say. In the large

T limit a Laplace approximation implies its effect is to provide14

δ (
∑

i ki)(
2TG̃ (τ1, τ1)

)2 . (5.42)

Since in one dimension the coincident Green function is finite we see that all contributions

from such a configuration are suppressed by a factor of T−2. The size of the integrals

over the relative separation τi − τ1 can be examined by power counting in 1
T . The largest

contribution arises when all fields take part in a contraction and can be arranged into a

series of n
2 second order derivatives. A simple calculation shows that this contribution is

of order T
n
2 . But after integrating the other n− 1 points about τ1 the resulting expression

is of order T . In combination with (5.42) this contribution can be seen to be subleading in
1
T , so no unwanted divergences are encountered.

Returning to the case that all of the points are on the boundary, each of the Green

functions in (5.39) vanishes. So we expect a contribution to the expectation value from

the region of integration where each point is close to the boundary. We have learnt in

the previous subsection that the O (1) term arises when we contract the fields inside each

vertex operator amongst themselves. The exponents exp (ik · ωc (τi)) can be approximated

at leading order by replacing them with their values at the appropriate boundary — we

denote this by exp (ik · ωBi). So we consider a term with r such contractions:

r∏
j=1

(∫ h

0
+

∫ h

1−h

)
dτj ik

µj
j Ġjje

− 1
2
k2Gjje

ikj ·ωBj
N∏

i=r+1

(∫ h

0
+

∫ h

1−h

)
dτi ω̇cie

− 1
2
k2Giieiki·ωBi

=

r∏
j=1

ik
µj
j

k2
j

(
eikj ·a − eikj ·b

) N∏
i=r+1

[
ω̇ci
k2
i T

+O
(

1

(k2T )2

)]
(5.43)

14This should be considered in light of the results at first order where we had k1 = k = −k2 where the

exponent vanished throughout the domain when τ1 = τ2. We exclude such cases here because we understand

that they lead to a simple renormalisation of the action.
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The leading order contribution clearly requires r = N so that all fields are contracted,

whereby the above expression reduces to

N∏
j=1

ik
µj
j

k2
j

(
eikj ·a − eikj ·b

)
. (5.44)

We now impose pairwise ki+1 = −ki and contract µi and µi+1 to produce the expectation

value of the contact interaction at order g
N
2 :

− 2
N
2 g

N
2

N
2∏
i=1

eik·(b−a)

k2
i

. (5.45)

As our analysis has been for an arbitrary number of points the result at this order is not

spoilt by considering a higher order term in the expansion of the contact interaction. The

above equation is simply the Fourier space version of the order g
N
2 contribution to the

exponential of the sum of boundary interactions (5.37), from which we conclude that this

interaction between worldlines exponentiates absent of short-distance divergences.

6 Discussion

In this paper we have considered contact interactions in the context of theories of point

particles. We have demonstrated a novel way of generating the static electric field for a

pair of point particles by considering fluctuating worldlines whose endpoints are fixed to

the positions of the charges. The functional approach we used for calculation allowed us to

generalise this construction to include spin 1/2 particles and we then used the formalism

to construct a quantum theory describing a set of point particles interacting upon contact.

The result for fermionic particles is interesting because it suggests an unusual electric force

acting on Dirac spinors due to the charged particles. Both results depend somewhat on the

choice of boundary conditions imposed on the worldline fields at either end of the paths

and we also found it necessary to introduce constraints on the worldline metric and its

super-partner to reconstruct the classical field of static charged particles.

We demonstrated that the worldline contact interaction provides an unconventional

method of generating the static dipole electric field due to equal and oppositely charged

particles, and also modified the boundary conditions on the curves to produce the field of

a static point charge. This result required us to take the intrinsic lengths of the curves,

T , to be very large but we also investigated the corrections to the fields for finite values

of T . The inverse square law for electrostatic interactions has been verified to a very high

precision which provides a bound on the size of the deviations from this behaviour. This

in turn allows us to find a minimum bound for T . An alternative method of estimating

the size of T follows from the 1/T corrections to the retarded Green function given in

equation (2.30) which are discussed in section 4. This would imply corrections to the speed

of propagation of light, c, which is also known to extremely high precision.

Should future experiment further refine these two quantities then we may increase our

lower bound on T , or we may test unexpected deviations against the results provided by
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the model in this paper. Either way, from a theoretical standpoint varying the parameter

T has an important effect on the form of the field lines, especially when we consider the

low T behaviour where the novel behaviour of confining field lines was discovered. It is

important to better understand this limiting case because it may help to develop another

approach to this well known aspect of non-Abelian gauge field theories. The worldline

techniques we have used here may prove valuable in approaching this problem because of

the computational simplicity present with this approach.

Beyond the first order calculations we presented in the first few sections of this paper

we also determined the partition function for a set of particles which interact when their

worldlines intersect. We showed how the contact interaction produces propagator couplings

between the fixed endpoints of the worldlines, which is not unexpected considering that

the effect of the interaction is to modify the underlying scalar field theory to include a

quartic self-coupling. An important avenue for further investigation would be to work out

the exact relationship between the quartic field theory and the interacting worldlines, since

it may then prove possible to rephrase old questions in field theory in terms of simple

quantum mechanics on the worldlines, adding a calculational tool which readily inherits

the efficiencies present within the worldline formalism of quantum field theory.

The worldline formalism highlights an intimate connection between field theory and

the first quantised particles we have considered here. Our approach differed in that rather

than coupling the theory living on the worldline to a background gauge field (as occurs

when integrating out matter fields with the worldline approach) we coupled the worldlines

to one another directly using the δ−function interaction. We also introduced fundamental

constraints on the worldlines’ lengths (rather than integrating over T ) and worked only

with open worldlines. However, the functional methods that we used are not limited to

the calculations we have undertaken in this instance and can be directly applied to other

situations that arise in the worldline approach.

It would be interesting to consider a similar contact interaction defined on closed

worldlines since this case is encountered in the determination of one-loop effective actions

and multi-loop scattering amplitudes in the worldline approach. There are substantial

differences between the closed worldlines and the open paths that we have considered in

this paper, in part due to the difference in their topology. In particular the Green function

is related to Ψ(τ1, τ2) of (5.21), the boundary conditions requiring it to be periodic rather

than vanishing at the ends of the interval. In this case, the Green function’s coincident

limit is constant along the worldline (momentum conservation implies that, in flat space,

the numerical value of the coincident limit is not important). In this article we relied on the

functional form of the Green function to ensure that in the high T limit our integrands were

suppressed moving away from the endpoints of the worldline which would no longer hold

true if the particle’s path were closed. It would thus be necessary to improve the analytical

calculation of the integrals instead of extracting the leading order behaviour as we have in

previous sections. At higher loop orders the worldlines have extra insertions of propagators

and so we would like to generalise this work to the case of an arbitrary one dimensional

topology (the Green functions for such worldlines have been studied extensively in [38, 51]).

This would signify useful progress in the first quantised formalism.
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We have also discussed how the calculations presented here for worldlines with fixed

endpoints are related to an analogous theory of interacting strings, where the worldline

formalism allowed us to relate the string theory to products of Wilson lines in spinor

quantum electrodynamics. As in this paper, it was also necessary to take a particular

limit in order to secure that result, namely the limit of vanishing string tension. This

has the effect of making the strings macroscopically large in comparison to the worldlines

(which are their boundaries), just as the T →∞ limit discussed here makes the worldlines’

lengths very large. In contrast to this paper the tensionless limit of the string theory was

necessary to suppress divergences which would otherwise spoil the conformal invariance of

the classical theory, which presents a fundamental obstruction to investigating finite tension

corrections. In this sense, the worldline theory has an advantage over the interacting string

theory, in that we may vary T without encountering any quantum anomalies.
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A Evaluating the free particle determinants

Here we determine the normalisation constants used in section 2 using ζ-function regu-

larisation. With our gauge choice (e = >) we make a change of variables t = >τ and

define

Z ′ =
∫ ω(T )=b

ω(0)=a
Dω e−

∫ T
0

ω̇2

2
dτ (A.1)

which can be interpreted as the matrix element
〈
b
∣∣∣e−T Ĥ∣∣∣a〉 with Hamiltonian Ĥ = p̂2

2 . In

the Schödinger representation this becomes the position space representation of the heat

kernel:

〈
b

∣∣∣∣e−T ∇2

2

∣∣∣∣a〉. This is a well know expression but we find it using functional

methods in keeping with the spirit of the remainder of this article.

Generalising to arbitrary dimension D, the integral over ω gives a functional determi-

nant and a boundary term:

Z ′ = π
D
2

(
det

(
d2

dt2

))−D
2

e−
(b−a)2

2T . (A.2)

The determinant of an operator, Ô, can be defined using the ζ-function [52] as

det
(
Ô
)

= exp

(
− d

dz
ζÔ (z)

∣∣∣∣
z=0

)
; ζÔ (z) ≡

∞∑
n=1

λ−zn (A.3)
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where the λn are the eigenvalues of Ô. The formal product of eigenvalues is then regularised

via the analytic continuation of the ζ-function. With Dirichlet boundary conditions the

eigenvalues of the operator in Z are λn =
(
nπ
T

)2
so

ζ d2
dt2

(z) =
(π
T

)−2z
ζ (2z) (A.4)

which has derivative ζ ′ (0) = 2 ln
(
T
π

)
ζ (0)+2ζ ′ (0). So with this regularisation we arrive at

det

(
d2

dt2

)
= 2T (A.5)

giving

Z ′ = (2πT )−
D
2 e−

(b−a)2

2T . (A.6)

If instead we consider mixed boundary conditions ω (0) = 0, ω̇ (1) = 0 then the

eigenfunctions are

sin

(√
λ̃n t

)
(A.7)

where the eigenvalues are now given by λ̃n =
(

(2n+1)π
2T

)2
. For the ζ-function we now obtain

ζ̃ d2
dt2

(z) =

(
π

T

)−2z

ζ

(
2z,

1

2

)
(A.8)

where we’ve introduced the Hurwitz zeta function ζ (s, q). The derivative with respect to

z is then ζ̃ ′ (0) = 2 ln
(
T
π

)
ζ
(
0, 1

2

)
+ 2ζ ′

(
0, 1

2

)
. Now ζ

(
0, 1

2

)
= 0 so the first term vanishes

along with the T dependence, leaving

det

(
d2

dt2

)
= 2 (A.9)

for the case of mixed boundary conditions. The change in boundary conditions also alters

the boundary contributions from the classical action and we find that Z ′ is a constant

independent of T and a.

For fermionic fields the kinetic term is first order in derivatives and we impose anti-

periodic boundary conditions in the case of closed paths which represent traces. We may

of course calculate

ZF =

∫
ψ(T )=−ψ(0)

Dψ e−
∫ T
0 ψ̇·ψdτ =

(
det

(
d

dt

))D
2

(A.10)

using standard techniques from quantum mechanics but for completeness we continue to

apply functional methods. We need the eigenvalues λn = (2n+1)πi
T and form the determi-

nant via
∞∏

n=−∞

(2n+ 1)πi

T
. (A.11)
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The ζ-function for this operator is thus(
2πi

T

)−z
ζ

(
z,

1

2

)
, (A.12)

which has derivative ζ ′ (0) = ln
(
T

2πi

)
ζ
(
0, 1

2

)
+ ζ ′

(
0, 1

2

)
which evaluates to − ln

√
2 so

ZF = 2
D
2 (A.13)

which we note does not depend on T — indeed the change of variables to τ ∈ [0, T ] does

not change the form of the kinetic term.

The other result we need is the normalisation constant for the open path action which

includes the term
∫ 1

0 dτ
χ0

T ω̇ · ψ. We use (3.16) to calculate∫
dχ0δ (χ0 − Ξ) Dψ e−

∫ T
0 dτ 1

2
ψ̇·ψ−χ0

2T
ω̇·ψ ∝

∫
dχ0δ (χ0 − Ξ) T

(
e
∫
dτ

χ0
2
√
2T
ω̇·γ
)
. (A.14)

Integrating over χ0 picks out

1 + Ξ
(b− a) · γ

2
√

2T
(A.15)

which is to be multiplied by ZF calculated above. In the main text we impose Ξ = 0 which

vastly simplifies the remaining calculations because it decouples ω and ψ.
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