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1 Introduction

The framework for this paper is classically scale invariant quantum gravity, defined by the

Lagrangian

Sho =

∫
d4x
√
g

[
C2

2a
+
R2

3b
+ cG

]
, (1.1)

where R is the Ricci scalar, C is the Weyl tensor and G is the Gauss-Bonnet (GB) term.

There are three dimensionless coupling constants, (a, b, c). Just about the simplest imagin-

able scale invariant theory involving gravity and matter fields consists of the above, coupled

to a single scalar field with a λφ4 interaction and non-minimal gravitational coupling ξRφ2.

In a recent paper [1], we argued that even this basic theory can undergo dimensional trans-

mutation (DT) à la Coleman-Weinberg (CW) [2], leading to effective action extrema with

nonzero values of the curvature and of the scalar field.1 It is important to emphasise that,

as in the original CW treatment of massless scalar electrodynamics, we restrict ourselves

to DT that can be demonstrated perturbatively, in other words, for values of the relevant

dimensionless couplings such that higher-order quantum corrections are small.

In this paper, we revisit the results of ref. [1], while in a companion paper [6] we extend

our approach to the case when the matter sector includes gauge interactions and matter

fields with a more complicated scalar sector. Our goal in this will be to demonstrate that

the same DT process can be responsible for generating both the Planck mass (with the

associated gravitational interactions) and the breaking of a Grand Unified gauge symmetry.

1Some early work in the same spirit, but in the special case of a conformal theory, can be found in ref. [3];

see also ref. [4] and references therein. Whether the conformal version of this theory is renormalizable

remains controversial. See, e.g., ref. [5].
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In addition we seek a theory such that all dimensional couplings are asymptotically free

(AF), with the region of DT within the basin of attraction of an ultra-violet stable fixed

point (UVFP) for ratios of couplings. In the case of the minimal model treated here, this

is not the case; although a UVFP does exist, with all the dimensionless couplings AF, the

DT region is not within its catchment basin.

Before we proceed to gauge theories, however, we have to reassess our previous calcu-

lations, for the following reason. Critical to the demonstration of DT in these theories are

the results for the one-loop beta-functions, including those of the gravitational self inter-

action couplings, as well as the contributions of these couplings to the beta-functions for

the matter interactions. These were calculated some time ago [7–11] and were summarized

in ref. [11] (BOS) for a range of theories. Calculations of this type were revisited recently

by Salvio and Strumia [12] (hereafter, SS), with results differing significantly from the

earlier ones for the beta-functions for the interactions involving matter fields.2 We shall

see, however, that using the correct beta-functions does not alter the essential conclusions

of ref. [1].

While we endorse the SS form of the beta-functions in general, we differ from them in

one respect that impacts the DT calculation. They rewrite C2 as follows

C2 = G+ 2W (1.2)

where W = R2
µν − 1

3R
2, so that eq. (1.1) becomes

Sho =

∫
d4x
√
g

[
1

a
W +

R2

3b
+

(
c+

1

2a

)
G

]
= −

∫
d4x
√
g

[
1

f22

(
1

3
R2 −R2

µν

)
+
R2

6f20
−
(
c+

1

2a

)
G

]
, (1.3)

where a = f22 and b = −2f20 , and then ignore the G term throughout, on the grounds that

it can be expressed locally as a total derivative. The problem with this strategy, and one

specifically relevant to the DT paradigm, is that the theory without the G term is not

multiplicatively renormalisable [8]. In curved space but with gravity not quantised, the

beta-function associated with the renormalisation of G is the Euler anomaly coefficient;

for a recent discussion of its generalisation to the quantised gravity case considered here,

see ref. [13]. The beta-function for the coefficient of the GB term enters the equation for

DT, to be discussed in section 3.2 below.

We also differ from SS in that we conclude (as before [1]), that we require both a > 0

and b > 0, whereas they claim that there is a tachyonic mode if b > 0 (corresponding to

f20 negative in SS). We will discuss this issue further in section 3.

2 Fixed points and asymptotic freedom

One attractive property of pure renormalizable gravity is that it is asymptotically free

(AF) [7, 8], and this property can be extended to include a matter sector with an asymp-

totically free gauge theory or even a non-gauge theory. This can be seen as follows. At

2There is no change to the gravitational coupling beta-functions (see ref. [9]).
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one-loop order, a gauge coupling g2 and the couplings a and c do not mix with the other

couplings. In the general case, their beta-functions are (we suppress throughout a factor

(16π2)−1 from all one-loop beta-functions):

βg2 = −bg
(
g2
)2
, βa = −b2 a2, βc = −b1, (2.1a)

bg = 2

(
11

3
CG −

2

3
TF −

1

6
TS

)
, b2 =

133

10
+Na, b1 =

196

45
+Nc, (2.1b)

where Na = [N0 + 3NF + 12NV ] /60 and Nc =
[
N0 + 11

2 NF + 62NV

]
/360. Here N0, NF

and NV are the numbers of (real) scalar, (two-component) fermion, and (massless) vector

fields respectively. (Note that NF = 2N 1
2
, the number of fermions as defined in ref. [1] and

earlier works.) CG, TF and TS are the usual quadratic Casimirs for the pure gauge theory

and fermion and scalar representations, with the coefficients of TF and TS in eq. (2.1b)

also reflecting our choices of two component fermions and real scalars.

It is worth noting at this point that whereas g is AF for bg > 0 whether it is positive

or negative (the sign of the gauge coupling is not a physical observable), for a to be AF

we must have a > 0; a < 0 corresponds to an unphysical phase with a Landau pole in the

UV. Similarly the coupling c is asymptotically free for c > 0, since b1 > 0.

The evolution of b is more complicated, because b mixes with the couplings a, ξ;

moreover, βξ depends on the matter self-couplings. Therefore the evolution of b must

be discussed model-by-model. (Note, however, that all three purely gravitational cou-

plings (a, b, c) have beta-functions independent of the gauge couplings (if any) at one loop.)

Clearly the possibility of completely AF theories exists for non-gauge theories and for non-

abelian gauge theories, but never for an abelian gauge coupling. Thus, the models of

interest cannot have gauged U(1) factors, contrary to much of the landscape of string

theories.

In a certain sense, the evolution of the two couplings a and g2 control the behavior of

the other couplings in the theory. To see this, it is useful to rescale the other couplings by

one of these two and to express their beta-functions in terms of these ratios. In theories

without AF gauge couplings, one must choose a, as we did in our previous papers. In

gauge models, it is more convenient [11] to rescale by g2 instead, replacing the conventional

running parameter dt = d lnµ by du = g2(t)dt.

3 The Minimal Model

The Minimal Model as described in ref. [1] consists of the action

S = Sho + Sφ, (3.1)

where

Sφ =

∫
d4x
√
g

[
1

2
(∇φ)2 +

λ

4
φ4 − ξφ2

2
R

]
. (3.2)

Our analysis proceeded in two stages; determination of the fixed point structure of the RG

evolution, and demonstration of the existence of extrema determined by DT.
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3.1 The fixed points

The relevant beta-functions are βa,c from eq. (2.1), and βb,λ,ξ given by

βb ≡ −a2b3(x, ξ), b3(x, ξ) ≡
[

10

3
− 5x+

(
5

12
+

(6ξ + 1)2

24

)
x2
]
, (3.3)

where x ≡ b/a,

βλ = 18λ2 +
1

2
ξ2
(

5a2 +
1

4
(6ξ + 1)2b2

)
+ λ

(
5a− 1

2
(1 + 6ξ)2b

)
, (3.4)

and

βξ = (6ξ + 1)λ+
1

3
ξ

(
10a2

b
−
(

9ξ2 +
15

2
ξ + 1

)
b

)
. (3.5)

As described in the introduction, the results for βλ,ξ above correspond to those of SS and

differ significantly from those employed by us in ref. [1],3 based on the beta-functions in

the earlier literature [11]. For example, although there is a bξ3 term in eq. (3.5), there

is no aξ3 term; and it is easy to show by an expansion of the metric about flat space

and by consideration of the respective contributions of the a and b terms to the graviton

propagator that that no such term can arise. In a similar way it can be shown that there

can be no λaξ2 term in βλ. However, such terms appear in the expressions corresponding

to eqs. (3.4), (3.5) in BOS, which is one reason we believe them to be incorrect.

To determine the asymptotic behavior of the couplings for the above system of beta-

functions, we make a couple of redefinitions. We introduce x = b/a, (more convenient than

w = a/b employed in ref. [1], it turns out) and y = λ/a, and a running parameter u such

that du = a(t)dt.

We then obtain the reduced set of beta-functions:

dx

du
≡ βx = −10

3

[
1− 1099

200
x+

1

8
x2 +

1

80
(1 + 6ξ)2 x2

]
; (3.6a)

dξ

du
≡ βξ = (6ξ + 1) y +

ξ

6

(
20

x
− x(6ξ + 1)(3ξ + 2)

)
; (3.6b)

dy

du
≡ βy = 18y2 + y

(
1099

60
− 1

2
x(1 + 6ξ)2

)
+
ξ2

8

(
20 + (6ξ + 1)2x2

)
. (3.6c)

Now from eq. (3.6a) it is easy to show that FPs can only exist for −4.23 ≤ ξ ≤ 3.89, and

that for values of ξ in this range βx = 0 has two solutions for x, both with x > 0, with the

smaller and larger values of x being IR and UV attractive respectively.

The fixed points of this system of beta-functions (and their nature) are given in table 1.

Remarkably, one of the fixed points with y = ξ = 0 is UV stable (it is easy to see that a

FP with y = 0 must have ξ = 0). Since a is AF, this FP corresponds to AF for all the

couplings (a, b, c, ξ, λ). With regard to the IR stable FP, note that in approaching it from

any starting values of the couplings, one would eventually lose perturbative believability

since in the IR the coupling “a” approaches a Landau pole in this limit.

3In comparing with SS, one must bear in mind that they use a complex scalar singlet.
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x ξ y Nature

1. 39.78082 0 0 UV stable

2. 0.18282 0 0 IR stable

3. 0.18292 0.083150 −1.005218 saddle point

4. 36.9666 0.058999 0.787391 saddle point

5. 43.7762 −0.16404 −1.01350 saddle point

6. 43.7770 −0.16551 −0.0037756 saddle point

Table 1: Fixed Points.

We will explore later the catchment basin of the UVFP; but note that since x > 0 at

the FP, it is clear from eq. (3.6a) that no region of parameter space with x < 0 lies in this

basin. (Manifestly, for x < 0, βx < 0 as well, so x→ −∞ starting at any value of x < 0.)

Thus, since we have already concluded that a > 0, we must have b > 0 as well at any scale

from which the couplings can possibly approach the UVFP at higher energies.

3.2 Dimensional transmutation

In ref. [1] we discussed this theory in a totally symmetric gravitational background:

Rµνλρ =
R

12
(gµλgνρ − gµρgνλ) , (3.7)

when the classical action Scl can be written

Scl
V4

=
1

3b
+
c

6
+

1

4

[
λr2 − 2ξr

]
, (3.8)

where V4 is a dimensionless volume element independent of R, (we will rescale Scl to absorb

V4 henceforth) and r ≡ φ2/R. The action has an extremum for r = r0 = ξ/λ, which is a

local minimum if λ > 0, where it takes the value

Sos =
1

6

[
2

b
+ c− 3ξ2

2λ

]
. (3.9)

We showed how the effect of radiative corrections on the action could be analysed by

considering the expansion

Γ(λi, r, ρ/µ) = Scl(λi, r) +B(λi, r) log(ρ/µ) +
C(λi, r)

2
log2(ρ/µ) + . . . , (3.10)

where ρ =
√
R, and the collection of dimensionless coupling constants {a, b, c, ξ, λ} has

been denoted by λi. The value of the effective action for ρ = µ is simply the classical

action.

In ref. [1], we showed that the condition for an extremum corresponding to DT in this

model (and others of this general form) is (to leading order)

B
(os)
1 =

∑
i

βλi
∂Sos
∂λi

= 0, (3.11)
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where B
(os)
1 is the “on-shell” one loop contribution to B, with “on-shell” corresponding to

r = r0. Such an extremum corresponds to a minimum if λ > 0 and

$2 =
1

2

[
C2 −

(
B′1
)2
/S

′′
cl

] ∣∣∣
r=r0

> 0, (3.12)

where C2 is the on-shell leading (two-loop) contribution to C, and

B′1 =
∂

∂r
B1(λi, r). (3.13)

Moreover, we used the RG to show that

$2 =
1

2

[(
β
(1)
λi

∂

∂λi

)2
Scl −

1

S
′′
cl

(
β
(1)
λi

∂

∂λi
S′cl(λi, r)

)2] ∣∣∣
r=r0

. (3.14)

We find

B
(os)
1 =

1

240x2y2
(
1620x4ξ6 + 540x4ξ5 + 45x4ξ4 − 4320x3ξ4y

− 360x3ξ3y + 60x3ξ2y + 900x2ξ4 + 2880x2ξ2y2 + 1800x2ξ2y

− 480x2ξy2 − 826x2y2 − 2400xξ2y − 2400xy2 + 1600y2
)
.

(3.15)

For ξ = 0, B
(os)
1 is independent of y:

B
(os)
1 = −413x2 + 1200x− 800

120x2
, (3.16)

and B
(os)
1 = 0 then has solutions x = −3.465, x = 0.5591.

We can write B
(os)
1 in terms of z, where z ≡ 3xξ2/(4y):

B
(os)
1 =

(
20

3x2
+ 12ξ2

)
(z − 1)2 + 2

(
5

x
+ ξ(2z + 1)

)
(z − 1) +

1

3
z(z + 1)− 413

120
, (3.17)

or in terms of z′ = z − 1, ξ′ = ξ + 1/6:

B
(os)
1 = z

′2

(
12ξ

′2 +
20

3x2

)
+ z′

(
6ξ′ +

10

x

)
− 111

40
(3.18)

or

B
(os)
1 = 12

(
X +

1

4

)2

+
20

3

(
Y +

3

4

)2

− 291

40
, (3.19)

where X = ξ
′
z′ and Y = z′/x. We thereby express B

(os)
1 in terms of two variables only, in

terms of which the solutions to B
(os)
1 = 0 lie on an ellipse, depicted in figure 1, enclosing

the region

− 1.0286 < X < 0.5286, −1.7946 < Y < 0.2946. (3.20)

However, in order to obtain the correct sign for the Einstein term consequent to 〈φ〉 6= 0

(and also by examination of the conformal scalar modes [1]), we must require that ξ > 0

at the DT scale, corresponding to the constraint

X

xY
>

1

6
. (3.21)
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X

-1.5

-1.0

-0.5

Y

Figure 1: The B1 = 0 ellipse.

(a) ξ > 0. (b) ξ,$2 > 0.

Figure 2: B1 = 0 with constraints.

Since we have already concluded that x > 0 for all points in the UVFP catchment basin,

X and Y must have the same signs. Thus, depending on the value of x, only portions of

the first and third quadrants in figure 1 correspond to regions where ξ > 0. The allowed

range is depicted in figure 2a.
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Similarly, $2 may be expressed in terms of x, ξ and z :

$2 = − a
(
10368x4ξ4z4 − 23328x4ξ4z3 + 6912x4ξ3z4

+ 7776x4ξ4z2 − 6048x4ξ3z3 + 1728x4ξ2z4 + 12960x4ξ4z

− 9288x4ξ3z2 + 1152x4ξ2z3 + 192x4ξz4 − 7776x4ξ4 + 9072x4ξ3z

− 3636x4ξ2z2 + 456x4ξz3 + 8x4z4 + 4320x3ξ2z3 + 11520x2ξ2z4

− 648x4ξ3 + 648x4ξ2z − 222x4ξz2 + 34x4z3 − 8640x3ξ2z2

+ 1440x3ξz3 − 34560x2ξ2z3 + 3840x2ξz4 + 108x4ξ2 − 84x4ξz

+ 15x4z2 + 4320x3ξ2z − 720x3ξz2 + 120x3z3 + 34560x2ξ2z2 − 6240x2ξz3

+ 320x2z4 − 720x3ξz + 120x3z2 − 11520x2ξ2z + 960x2ξz2 − 80x2z3

+ 330x3z + 1440x2ξz + 13388x2z2 + 19984xz3 + 3200z4 − 13628x2z

− 39968xz2 − 9600z3 + 19984xz + 9600z2 − 3200z
)
/(576x3z),

(3.22)

or in terms of (x,X, Y ):

$2 = − a
(

1296X4
(
7 + 4xY

)
+ 108X3

(
65 + 44xY

)
+ 144X2

(
13 + (15 + 11x)Y + (40 + 15x+ x2)Y 2 + 40xY 3

)
+ 3X

(
57 + 60(6 + x)Y + 4(220 + 90x+ 3x2)Y 2 + 880xY 3

)
+ Y (1 + xY )

(
285 + 7094Y + 9992Y 2 + 1600Y 3

))
/
(
288Y (1 + xY )

)
.

(3.23)

Recall that, in order to have local stability (i.e., a positive dilaton mass2,) we must have

$2 > 0. Clearly, from eq. (3.23), if X and Y are both positive, $2 < 0, so the first

quadrant in figure 1 is ruled out. Therefore, since x > 0, ξ > 0, we must have both X

and Y negative. In figure 2b, that portion of figure 2a having $2 > 0 has been inscribed

with a mesh. This is the region of parameter space corresponding to DT that is locally

stable with attractive gravity. Note that, unlike B1, which has no explicit dependence on

a, $2 is explicitly proportional to a. Further, if we were to restore the suppressed factors

of κ ≡ 1/(16π2) in eqs. (3.22), (3.23), $2 would be preceded by a factor of κ2, as is to be

expected for a two-loop correction, so that we can expect $2 � 1.

For a consistent model, it must be that the values of the coupling constants in this

regime, when run from the DT scale up to higher scales, approach the UVFP. This is a

strong constraint and, in fact, fails for this model, as will be discussed in the next section.

4 Basin of attraction of the UVFP

Although we have determined that the minimal model has a UVFP, we have not delineated

the basin of attraction of that point, i.e., the region of all values of the renormalized coupling

constants at finite scales whose UV behavior approaches the UVFP. In particular, in order

to have a complete theory, the values of the couplings where DT occurs (B1 = 0) must lie

within this catchment basin.

In our earlier paper [1], we showed rather easily that DT occurs in a phase of the

theory distinct from the UV catchment basin. With the SS beta-functions, we found a

– 8 –
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very different value for the UVFP and a different equation for DT. Nevertheless, by means

of a hopefully exhaustive exploration of numerical solutions of these equations, we find

that, even though there are regions of the B1 = 0, ξ > 0 surface that are locally stable

($2 > 0) it apparently remains true that these regions of DT stability lie outside the UVFP

catchment basin. However, we should remark that the DT scale generally lies well outside

the neighborhood of the UVFP where a linear approximation suffices, and we have not

found a convincing analytical argument in this nonlinear regime.

There is a further limitation to this conclusion associated with the fact that we have

neglected fermions and possible Yukawa couplings with our scalar. We shall discuss the

inclusion of “sterile” fermions in the next section, while remarking on the potential impact

of Yukawa interactions here. In the absence of gauge and gravitational couplings, Yukawa

couplings are never AF. With the addition of renormalizable gravity alone, Yukawa cou-

plings hi are AF for small enough values at the “starting” scale.4 In fact, they vanish even

faster than the gravitational coupling a. However, as we proceed to lower scales, seeking

a value where DT occurs, it is not clear that they remain negligible. Our discussion will

continue to assume that they can be ignored, but this ought to be explored further since

fermions do affect the RG flow of all the couplings and the additional equations involving

the Yukawa couplings make the determination of the RG-flows that much more challenging.

Returning to the question of the RG flow, recall that the UVFP is at (x = x0 ≈
39.8, ξ = 0, y = 0). In terms of the variables in figure 2, this corresponds to x ≈ 39.8,

X ≈ −0.167, and Y ≈ −0.025. The value of x lies in the upper region shown in figure 2,

with Y near 0, and X not far from its value at the center of the XY-cylinder (X = −1/4).

This point lies far from the crosshatched regions shown in figure 2b, where locally stable

DT occurs. The question is whether, starting near this UVFP and running down to lower

scales, the couplings intersect those regions.

First of all, one may not start just anywhere in a neighborhood of the UVFP. We argued

in ref. [1] that the EPI converges only if a, x, ξ, y are all positive in the UV. Moreover, we

have shown above that at the DT scale, we require ξ > 0 in order to generate Einstein-

Hilbert gravity, and a, x > 0 in order to lie in the catchment basin of the UVFP. The sign

of a cannot change in perturbation theory, and it is positive and monotonically increasing

as one runs to lower scales. Since x0 ≈ 39.8 > 0, any value of x near there will do. One

can see from eq. (3.6c) that only the term linear in y is important near the UVFP, and

its coefficient is negative, as required for AF. Thus, starting from an initial value y0 > 0,

y always increases as u decreases (i.e., as a increases.) Stated otherwise, in flowing to

lower scales, y is always repelled from 0. That is about all that can be said with certainty.

The ratio x can increase or decrease, depending on whether it starts at a point greater

or less than x0. To first order, ξ may also increase or decrease depending on the sign of

(y− ξ(x0− 10/x0)/3). Thus, even in linear approximation, the behavior is complicated. In

the nonlinear regime relevant to DT, the interplay of the different couplings is even harder

to discern, and numerical studies bear out that a variety of complicated trajectories can

4For a review, see BOS, section 9.5–9.6. With the inclusion of gauge couplings, the situation becomes

more complicated; see ref. [6].
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(a)x = 38.03, ξ = 0.0362, y = 0.458 (b)x = 39.27, ξ = 0.0106, y = 0.126

Figure 3: Running couplings down from near the UVFP.

emerge. We have also explored various plots running toward larger u (smaller a) starting

from points on the B
(os)
1 = 0 surface, where $2 > 0. We have found none that lead to

the UVFP.

We illustrate two varieties of behaviors of the running couplings in figure 3, both

starting near the UVFP and running down toward the IR. The starting values for each

curve are given in their figure caption. In figure 3a, x, y, ξ all decrease toward the IRFP

given in the second row of table 1. In figure 3b, x increases above x0, and, if we continued

following y, we would see that it approaches a singularity at negative y, where perturbation

theory breaks down. In both cases, after initially increasing, y peaks and then decreases

to negative values of y.

Our numerical explorations suggest the following conclusions. In order to have B
(os)
1 =

0 in a range where $2 > 0, we must have y & 1.3. However, starting near the UVFP, it

appears that y increases initially but reaches a maximum value at some value of y . 0.8.

That is not hard to believe, since the first and third terms of eq. (3.6c) are positive for all

values of the couplings and beyond the linear regime, we tend to have βy > 0. Even though

βy < 0 in the linear regime, it can change sign rather quickly as u decreases. Another way

to see the challenge is to rewrite βy as

βy = 18y2 +
1099

60
y +

5

2
ξ2 + x(6ξ + 1)2

(
x
ξ2

8
− 1

2
y

)
. (4.1)
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The only negative term is the last, so one can see the difficulties sustaining βy < 0 beyond

linear approximation, but exactly how large it can get depends on the starting values of x

and ξ and their running. In figure 3, we chose examples where the increase of y is relative

large, but it turns around long before it approaches y ≈ 1.3.

We conclude that the catchment basin of the UVFP describes a phase of the theory

demarcated from regions where locally stable DT occurs. However, there are regions of

parameter space with a, b, ξ, y all positive, where DT occurs at a scale which we may

associate with the Planck mass via M2
P ∼ ξ 〈φ〉

2. The effective field theory below this scale

is Einstein Gravity with a massive dilaton.

5 Including fermions

In view of the negative conclusion of the previous section it is worthwhile considering

modifying the minimal model by including additional matter fields. The simplest possible

such generalisation would involve the inclusion of such fields without additional dimensional

couplings. This could clearly be done in a natural way by invoking a global symmetry with

respect to which the scalar φ transformed as a singlet, and adding a fermion multiplet

without a quadratic invariant with respect to this symmetry. Under these conditions,

there can be no Yukawa couplings, so that the only changes to our calculations would be

to alter b1 and b2 (see eq. (2.1b)).

For general b1, b2, the reduced beta-function eq. (3.6a)–eq. (3.6c) become

dx

du
≡ βx = −10

3
+ (5 + b2)x−

1

24
x2
(
10 + (1 + 6ξ)2

)
; (5.1a)

dξ

du
≡ βξ = (6ξ + 1) y +

ξ

6

(
20

x
− x(6ξ + 1)(3ξ + 2)

)
; (5.1b)

dy

du
≡ βy = 18y2 + y

(
5 + b2 −

1

2
x(1 + 6ξ)2

)
+
ξ2

8
(20 + (6ξ + 1)2x2). (5.1c)

where with the addition of a fermion multiplet we now have

Na =
1

60
(1 + 3NF ) and Nc =

1

360

(
1 +

11

2
NF

)
. (5.2)

Note that eq. (5.1b) is unchanged.

It is possible to find the resulting FPs for general NF , but the resulting expressions are

unwieldy. However, the FP corresponding to the UVFP in table 1 becomes (for general b1,2):

xFP =
1

11

(
60 + 12b2 + 4

√
9b22 + 90b2 + 170

)
, ξ = y = 0 (5.3)

or for case of the fermion multiplet:

xFP =
1

55

(
1099 + 3NF +

√
1185801 + 6594NF + 9N2

F

)
, ξ = y = 0. (5.4)

It is straightforward to show that this FP is UV attractive for arbitrary NF ≥ 0, or indeed

arbitrary b2 > 133/10.

– 11 –



J
H
E
P
0
1
(
2
0
1
6
)
0
1
9

The result for B
(os)
1 (eq. (3.19)) becomes

B
(os)
1 = 12

(
X +

1

4

)2

+
20

3

(
Y +

3

4

)2

− 35

12
− b1

= 12

(
X +

1

4

)2

+
20

3

(
Y +

3

4

)2

− 291

40
− 11

720
NF . (5.5)

Note that B
(os)
1 depends on b1, that is on the beta-function for the coefficient of the Gauss-

Bonnet term; so as we remarked in section 2, ignoring this term is not correct, even for

NF = 0. eq. (3.19) is replaced by eq. (5.5) and we see that ignoring b1 would make a

significant numerical difference.

However the formulae for $2, eqs. (3.22), (3.23), do not change if we keep b1 general,

but they do depend on b2:

$2 = − a

288Y (1 + xY )

(
1296X4

(
7 + 4xY

)
+ 108X3

(
65 + 44xY

)
+144X2

(
13 + (15 + 11x)Y +

(
40 + 15x+ x2

)
Y 2 + 40xY 3

)
+3X

(
57 + 60(6 + x)Y + 4(220 + 90x+ 3x2)Y 2 + 880xY 3

)
+5Y (1 + xY )

(
57 + 4(18b2 + 115)Y + 48(2b2 + 15 )Y 2 + 320Y 3

))
. (5.6)

We see that the property that local stability requires both X and Y negative is sustained

by this generalisation.

6 Conclusions

We have shown that the theory consisting of renormalisable R2 quantum gravity coupled

to a single scalar field in a scale-invariant way undergoes dimensional transmutation in a

manner which can be credibly described by perturbation theory. Below the DT scale, the

theory describes Einstein gravity coupled to a scalar dilaton which obtains a mass through

spontaneous breaking of scale invariance. We also found that the theory possesses an Ultra-

Violet Fixed Point for coupling ratios, such that all the couplings tend to zero as this FP

is approached, with the ratio x = b/a → 39.8. Since a > 0 is required for Asymptotic

Freedom, it follows that b > 0 in the neighbourhood of the FP. In fact in ref. [1] we argued

that both a, b > 0 (and λ > 0) are required for convergence of the EPI, so the theory is

well behaved in the UV for couplings in the FP catchment basin. It should be noted that

here we appear to differ from SS, who in our notation seem to require a > 0 but b < 0.

However, although the region of parameter space for the dimensionless couplings where

DT occurs includes a region with x, y > 0 and also ξ > 0, which we require to generate

Einstein gravity, it turns out that the theory becomes strongly coupled at higher scales,

with couplings approaching Landau poles. Thus this particular theory is not an ultraviolet

(UV) complete theory of Einstein gravity. This is a disappointing outcome since there are

regions of parameter space where all the couplings are asymptotically free, with coupling

constant ratios approaching the UV Fixed Point.
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Although we have adopted the beta-functions of SS, we wish to emphasize that our

results differ from theirs in significant ways. Their determination of the analog of our

function B1 would omit any contribution from the Gauss-Bonnet term. Moreover, their

criteria for determination of the DT scale involves an approximation that differs signifi-

cantly from ours.

Further, we determined the two-loop value of the dilaton mass2 in order to ascertain

whether the DT extrema are locally stable. Finally, we explored the basin of attraction of

the UVFP, showing via the renormalization group that there are apparently no paths in this

catchment that, at lower scales, undergo DT in a manner that satisfies the physical con-

straints. We therefore regard their applications of these sorts of classically scale-invariant

models somewhat skeptically.

In a subsequent paper [6] we will extend our formalism to Grand Unified Theories,

where we show that once again it is possible to construct completely Asymptotically Free

models, with coupling constant ratios approaching fixed points. It transpires that to achieve

this it is necessary to add enough matter fields to make the one loop gauge beta-function

coefficient as numerically small as possible (while, obviously, remaining negative). This was

demonstrated long ago in flat space [14] and remains true in the presence of gravitational

corrections [15, 16].

It is also possible to exhibit GUT models which undergo Dimensional Transmutation

in the same manner as we have described here. Moreover, by appropriate choice of scalar

representation it is possible to arrange that the same scalar vacuum expectation value

generated by DT both produces Einstein gravity and breaks the Grand Unified symmetry.

The crucial question (which had a disappointing answer in the model of this paper) is

whether there are DT regions of parameter space in the catchment basin of a UVFP.

We will answer this question in ref. [6], where we construct a model based on the gauge

group SO(10) with an adjoint scalar representation. This scalar acquires a vev via DT,

breaking the SO(10) symmetry so as to leave unbroken the maximal subgroup SU(5)⊗U(1).

Moreover, we have shown that there is a region of parameter space where DT occurs that

satisfies all our requirements (such as generation of a “right-sign” Einstein term) and is in

the catchment of a UV fixed point such that all the couplings are asymptotically free. We

thus have the basis for a UV complete extension of the Standard Model.

Of course problems remain to be solved, not least of which being the origin of the

electroweak scale. There is also the issue of the (doubtful) unitarity of R2 gravity, in both

the minimal model considered here and in the gauge theory extensions. We discussed this

problem briefly in ref. [1] and will do so again ref. [6]; suffice to say for now that we believe

it is possible that the combination of AF (at high energies) with DT as we run towards

the IR (so that if DT did not occur the theory would become strongly coupled) leads to

its solution.
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