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1 Introduction

Chemical potentials are ubiquitous in physics (and chemistry) ever since their introduction

by Gibbs. In gauge theories chemical potentials µ are usually introduced by giving the

0-component of the gauge connection a vacuum expectation value (see e.g. [1]).

A0 → A0 + µ (1.1)

In the present work we are interested in flat space higher spin gravity with chemical

potentials. We start by summarizing briefly selected recent developments that provide the

motivation for our work. This is not meant to be a comprehensive review, but merely

serves to put our motivation in the context of the current research directions.

Higher spin gravity in Anti-de Sitter (AdS) has led to numerous holographic studies,

many of which were inspired by the seminal work by Klebanov and Polyakov [2–4] who con-

jectured a holographic correspondence between the O(N) vector model in three dimensions

and Fradkin-Vasiliev higher spin gravity on AdS4 [5–7] (see [8–10] for reviews and [11–15]

for some key developments). One of the attractive features of higher spin holography for the

purpose of checking the holographic principle is that it is a weak/weak correspondence, i.e.,

relates higher spin gravity theories to very simple conformal field theories (CFTs) [16, 17].

By contrast, the usual AdS/CFT correspondence [18–20] is a weak/strong correspondence,

which makes it useful for applications, but harder to check in detail, since calculations are

often feasible only on one side of the correspondence.

We pause now briefly our mini-history to reconsider our goal of introducing chemical

potentials in flat space higher spin gravity. It may not be immediately clear how to do

this technically. However, when the theory allows a (classically) equivalent reformulation

as gauge theory one can again use a prescription like (1.1).

Gravity, including higher spin gravity, in three dimensions does allow for such a re-

formulation, namely as Chern-Simons theory [21–23]. Indeed, exploiting this formulation

chemical potentials were introduced in spin-3 AdS gravity in the past few years, first in the

form of new black hole solutions with spin-3 fields by Gutperle and Kraus [24] (see also [25]),

next perturbatively in the spin-3 chemical potential [26], then to all orders by Compère,

Jottar and Song [27] and independently by Henneaux, Perez, Tempo and Troncoso [28].

A comprehensive recent discussion of higher spin black holes with chemical potentials is

provided in [29]. The discussion so far was focused mostly on AdS and holographic aspects

thereof [30], see [31–34] for reviews.

As advocated in [36], higher spin gravity has turned out to be a fertile ground for non-

AdS holography, without the necessity for additional exotic matter degrees of freedom,

including Lobachevsky holography [37, 38], Lifshitz holography [39, 40], de Sitter hologra-

phy [35] and flat space holography [41, 42]. This is not only of interest in its own right, but

particularly for verifying the generality of the holographic principle [43, 44], which should

apply beyond AdS/CFT if it is a true aspect of Nature.

Three-dimensional flat space higher spin gravity is especially remarkable, since in

higher dimensions massless interacting higher spin theories in flat space are forbidden

by various no-go results [45–47] (see [48] for a nice summary). It is therefore interesting

that in three dimensions such theories exist [41, 42], though unitarity again poses strong
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constraints on the theory and rules out the simplest realizations of unitary flat space higher

spin gravity [49].

The numerous recent advances in (three-dimensional) higher spin gravity are matched

by exciting developments in (three-dimensional) flat space holography. Starting from the

Barnich-Compère boundary conditions [50], some key developments were the BMS/CFT

or BMS/GCA correspondences1 [54, 55], the flat space chiral gravity proposal [56], the

counting of flat space cosmology microstates [57, 58], the existence of phase transitions

between flat space cosmologies and hot flat space [59] and numerous other aspects of flat

space holography [60–72].

In AdS3/CFT2 it is rewarding to study Bañados-Teitelboim-Zanelli (BTZ) black

holes [73, 74]. The flat space analogue of these objects are flat space cosmologies [75, 76].

Much like it is possible to consider BTZ black holes or their higher spin versions with

chemical potentials switched on, it is plausible that there should be a flat space counter-

part thereof, both in flat space gravity and in flat space higher spin gravity.

Flat space higher spin gravity in three dimensions combines all these research avenues

and may serve to gain a better and deeper understanding of higher spin gravity, flat space

holography, microscopic aspects of flat space cosmologies, string theory in the tensionless

limit and, more broadly, quantum gravity and the holographic principle itself.

In the present work we consider specifically spin-3 gravity in flat space. Our main

goal is to introduce chemical potentials for the spin-2 and spin-3 field in flat space, and

to address some of their consequences, in particular the entropy and free energy of flat

space cosmologies with spin-3 charges. Technically, we do this by working in the Chern-

Simons formulation of spin-3 gravity and introducing chemical potentials as in (1.1), i.e.,

by deforming the zero-component of the gauge connection, analog to [29].

One of the most surprising results that we find is that the “physical” branch that

connects continuously to spin-2 physics becomes thermodynamically unstable at large tem-

perature or large spin-3 chemical potential. The phase transition can be of first or zeroth

order, which differs qualitatively from the situation in AdS, where the corresponding phase

transitions discovered so far were of zeroth order [77–79].

This paper is organized as follows. In section 2 we review aspects of flat space spin-

2 and spin-3 gravity. In section 3 we include chemical potentials and present the main

results. In section 4 we display our results applied to flat space Einstein gravity with

chemical potentials. In section 5 we discuss some applications to flat space cosmologies,

calculate their entropy and free energy, discover novel types of phase transitions, remark on

flat space orbifold singularity resolution in spin-3 gravity and mention further developments

and open issues.

2 Flat space higher spin gravity

In this section we review results of flat space higher spin gravity and present them in a

way that is considerably simpler than in the original publications. In section 2.1 we recall

1BMS stands for Bondi-van der Burg-Metzner-Sachs [51, 52], the asymptotic symmetry algebra of flat

spacetimes at null infinity, and GCA for Galilean conformal algebra [53].
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the Chern-Simons formulation in terms of an isl(3) connection. In section 2.2 we display a

recent representation of this connection reminiscent of similar representations in the AdS

case. In section 2.3 we present the canonical charges and their algebra. In section 2.4 we

provide simple formulas for metric and spin-3 field by means of a twisted trace.

2.1 Chern-Simons formulation

Like in the AdS case, it is very convenient to use the Chern-Simons formulation of the

theory. The Chern-Simons action

I[A] =
k

4π

∫
〈CS(A)〉 (2.1)

contains a coupling constant k (the Chern-Simons level; k = 1/(4GN ), where GN is New-

ton’s constant) and the Chern-Simons 3-form

CS(A) = A ∧ dA+
2

3
A ∧A ∧A . (2.2)

The bilinear form 〈· , ·〉 will be specified below. In the present work the connection will

always be isl(3), i.e., it can be decomposed into a linear combination of isl(3) generators

Gn as

A =

16∑
n=1

AnGn =

1∑
n=−1

(
AnLLn +AnMMn

)
+

2∑
n=−2

(
AnUUn +AnV Vn

)
(2.3)

with the generators Ln,Mn, Un, Vn obeying the isl(3) algebra.

[Ln, Lm] = (n−m)Ln+m (2.4a)

[Ln, Mm] = (n−m)Mn+m (2.4b)

[Ln, Um] = (2n−m)Un+m (2.4c)

[Ln, Vm] = (2n−m)Vn+m = [Mn, Um] (2.4d)

[Un, Um] = σ (n−m)(2n2 + 2m2 − nm− 8)Ln+m (2.4e)

[Un, Vm] = σ (n−m)(2n2 + 2m2 − nm− 8)Mn+m (2.4f)

The Ln generate (Lorentz-)rotations, Mn generate translations, and Un, Vn generate as-

sociated spin-3 transformations. The factor σ fixes the overall normalization of the spin-3

generators Un and Vn. In the present work we choose2

σ = −1

3
. (2.5)

It is also noteworthy that one can equip the algebra (2.4) naturally with a Z2 grading

so that the generators Ln, Un are even and Mn, Vn are odd. Then even with even gives

even, even with odd gives odd and odd with odd vanishes. If one constructs isl(3) as an

İnönü-Wigner contraction from so(2, 2) it is possible to do so introducing a Grassmann

2The minus sign in (2.5) guarantees that the generators Ln and Un form an sl(3,R) subalgebra, corre-

sponding to the maximally non-compact real form of A2.
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parameter ε, and the contraction then consists in dropping all expressions quadratic in ε;

the ε-independent generators are then the even generators and the generators linear in ε

are the odd generators [66].

We exploit this Grassmann trick in appendix A.1 to define the generators. Moreover,

we use it to define a (twisted) trace over a product of k isl(3) generators Gni (with i =

1 . . . k) that is useful to construct the spin-2 and spin-3 fields from the isl(3) connection.

t̃r

(
k∏
i=1

Gni

)
:=

1

2
tr

(
k∏
i=1

(
d

dε
Gni × γ∗

))
(2.6)

The right hand side contains the usual matrix trace and involves the matrix (A.4). Here

are some relevant properties of the twisted trace:

• Oddness. The twisted trace vanishes identically if at least one of the generators Gni is

even, i.e., one of the generators Ln or Un. Therefore, the only non-vanishing twisted

traces involve exclusively the odd generators Mn and Vn.

• Relation to matrix trace. If k is even, then all factors of γ∗ cancel and the twisted trace

is equivalent to the ordinary trace, upon taking into account the oddness property

and up to a factor 1
2 . If k is odd, then one factor of γ∗ remains, which ensures that

the twisted trace does not vanish identically for all odd numbers of odd generators

(the ordinary trace, however, does vanish for all odd numbers of odd generators,

essentially due to the vanishing trace of the Pauli matrix σ3).

• Relation to sl(3) trace. If we consider just the sl(3) block of the generators then

the twisted trace is equivalently defined as the matrix trace over the products of the

corresponding sl(3) blocks, again upon taking into account the oddness property. For

the sake of this property we introduced the factor 1
2 in the definition (2.6).

We shall employ the twisted trace (2.6) to define the spin-2 and spin-3 fields.

With respect to the above generators the (degenerate) bilinear form is given by

〈Lm, Mn〉 = −2ηmn 〈Um, Vn〉 =
2

3
Kmn . (2.7)

Here ηmn given by η = antidiag (1, −1
2 , 1) is proportional to the sl(2) Killing form and the

sl(3) part is given by K = antidiag (12, −3, 2, −3, 12), both of which have non-zero entries

only on the anti-diagonal. The bilinear form can be represented as a trace as follows [again

using the matrix (A.4)]:

〈Gn1Gn2〉 = t̂r
(
Gn1Gn2

)
:=

d

dε

1

4
tr
(
Gn1Gn2γ

∗)∣∣
ε=0

(2.8)

We shall refer to this trace as “hatted trace” to discriminate it from the twisted trace (2.6)

and the ordinary matrix trace.
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2.2 Spin-3 flat space connection

Explicit expressions for isl(3) connections that obey asymptotically flat boundary condi-

tions were established independently in [41] and [42] (see also [80]). However, we shall

not use either of these expressions, but use instead the one introduced in [70] since it is

considerably simpler. Namely, we represent the connection A as gauge transformation of

another connection a with very simple properties and simple gauge group element b:

A = b−1
(

d+a
)
b (2.9)

with

b = exp
(r

2
M−1

)
(2.10)

and

a = au(u, ϕ) du+ aϕ(u, ϕ) dϕ (2.11)

The form (2.9) is reminiscent of the similarly useful form of the AdS connection in spin-2

gravity (see e.g. [81, 82]) and higher spin gravity [83, 84].

We use coordinates u, r and ϕ ∼ ϕ+2π adapted to flat space in (outgoing) Eddington-

Finkelstein coordinates. As we shall see below, the background line-element in the absence

of chemical potentials is then given by

ds2 = −du2 − 2 dr du+ r2 dϕ2 . (2.12)

The manifold is topologically a filled cylinder. The asymptotic boundary cylinder (corre-

sponding to null infinity) is reached in the limit where the radial coordinate r tends to

infinity.

The boundary conditions of [41, 42] simplify to conditions on au(u, ϕ) and aϕ(u, ϕ).

au = M+ −
M
4
M− +

V
2
V−2 (2.13a)

aϕ = L+ −
M
4
L− +

V
2
U−2 −

N
2
M− + Z V−2 (2.13b)

Note that any connection A with the properties (2.9)–(2.13) automatically solves the Chern-

Simons field equations

F = dA+ [A, A] = 0 (2.14)

provided the state-dependent functions in (2.13) are constrained as follows.

Ṁ = V̇ = 0 Ṅ =
1

2
M′ Ż =

1

2
V ′ (2.15)

Dots (primes) denote derivatives with respect to retarded time u (angular coordinate ϕ).

The constraints (2.15) are solved in terms of four arbitrary functions of the angular coor-

dinate ϕ, all of which appear in the canonical charges [41].

M =M(ϕ) V = V(ϕ) N = L(ϕ) +
u

2
M′(ϕ) Z = U(ϕ) +

u

2
V ′(ϕ) (2.16)
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2.3 Canonical charges and their algebra

The canonical charges of Brown-Henneaux type [85] are constructed in the usual way [83,

84]. We use here the notation of [37].

The first step is to identify all gauge transformations that preserve the flat space

boundary conditions. This was done already in [41, 42]. We rephrase now these results in

terms of the new representation of the connection (2.9)–(2.11). To this end, we similarly

define the gauge parameter as

ε = b−1 ε(0) b (2.17)

with the same group element (2.10) as before. The results of [41, 42] for the boundary

condition preserving gauge transformations then translate into the following expression:3

ε(0) = ε L+ − ε′ L0 +
1

2

(
ε′′ − 1

2
Mε− 8Vχ

)
L−

+ τ M+ − τ ′M0 +
1

2

(
τ ′′ − 1

2
Mτ −N ε− 8Vκ− 16Zχ

)
M−

+ χU2 − χ′ U1 +
1

2

(
χ′′ −Mχ

)
U0 −

1

6

(
χ′′′ − 5

2
Mχ′ −M′χ

)
U−1

+
1

24

(
χ′′′′ − 4Mχ′′ − 7

2
M′χ′ −M′′χ+

3

2
M2χ+ 12Vε

)
U−2

+ κV2 − κ′ V1 +
1

2

(
κ′′ −Mκ− 2Nχ

)
V0

− 1

6

(
κ′′′ − 5

2
Mκ′ −M′κ− 5Nχ′ − 2N ′χ

)
V−1 +

1

24

(
κ′′′′ − 4Mκ′′ − 7

2
M′κ′

−M′′κ+
3

2
M2κ− 8Nχ′′ − 7N ′χ′ − 2N ′′χ+ 6MNχ+ 12Vτ + 24Zε

)
V−2 (2.18)

The functions ε, σ, χ and ρ depend on ϕ only, and we have the relations τ = σ + uε′ and

κ = ρ+uχ′. When acting with such a gauge transformation on an isl(3) connection A with

the properties (2.9)–(2.16)

δεA = dε+ [A, ε] (2.19)

the gauge transformed connection Â = A + δεA also has the properties (2.9)–(2.16), in

general with some shifted values for the state dependent functions, M̂ = M + δεM, and

similarly for N , V and Z.

The canonical charges also follow the general prescription of (non-)AdS holography

summarized in [37]. Their field variation, also known as the canonical currents, is given by

δQ[ε] =
k

2π

∮
dϕ t̂r

(
ε(0)δaϕ

)
(2.20)

Note the appearance of the hatted trace (2.8).

3There are three differences to the results in [41], whose conventions we use: 1. due to the convenient

representation (2.17) with (2.10) we do not have any r-dependent terms, which are automatically generated

through the Baker-Campbell-Hausdorff formula, 2. we have corrected three numerical coefficients, which

all differ by factor of −3 from the expressions given in [41], namely the coefficients of the V- and Z-terms

in the components L− and M−, and 3. we have rescaled τ by a factor of 2 to make the results look more

symmetric. We note finally that we use ε in two ways in this paper, as Grassmann parameter and as function

in the boundary condition preserving gauge transformations (2.18), but we believe that the meaning should

always be clear from the context.
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Inserting the expressions (2.13) and (2.18) into the canonical currents (2.20) yields

δQ[ε] =
k

2π

∮
dϕ

(
ε δL+

1

2
σ δM+ 8χ δU + 4ρ δV

)
(2.21)

It is now evident that the canonical currents can be integrated in field space to canonical

boundary charges

Q[ε, τ, χ, κ] =
k

2π

∮
dϕ

(
εL+

1

2
σM+ 8χU + 4ρV

)
. (2.22)

The canonical charges are integrable, finite and conserved in (retarded) time, ∂uQ = 0.

The algebra of the canonical charges was derived classically [41, 42] and quantum-

mechanically [41] starting from the Poisson-bracket algebra of the canonical charges (2.22)

and then expanding in Fourier modes, e.g.

L(ϕ) ∝
∑
n∈Z
Lne−inϕ (2.23)

and similarly for the other three state-dependent functions appearing in (2.22). After

a suitable shift of the zero mode M0 → M0 + k
2 and converting Poisson-brackets into

commutators one obtains finally the asymptotic symmetry algebra as a commutator algebra

of the modes Ln, Mn, Un and Vn. It is an İnönü-Wigner contraction of two copies of the

W3 algebra, with the following non-vanishing commutators.

[Ln, Lm] = (n−m)Ln+m (2.24a)

[Ln, Mm] = (n−m)Mn+m + k
(
n3 − n

)
δn+m, 0 (2.24b)

[Ln, Um] = (2n−m)Un+m (2.24c)

[Ln, Vm] = (2n−m)Vn+m (2.24d)

[Mn, Um] = (2n−m)Vn+m (2.24e)

[Un, Um] = − 1

3
(n−m)

(
2n2 + 2m2 − nm− 8

)
Ln+m

− 16

3k
(n−m)Λn+m +

88

45k2
(n−m)Θn+m (2.24f)

[Un, Vm] = − 1

3
(n−m)

(
2n2 + 2m2 − nm− 8

)
Mn+m

− 8

3k
(n−m)Θn+m −

k

3
n
(
n2 − 1

)(
n2 − 4

)
δn+m, 0 (2.24g)

We used the definitions of bi-linears in the generators

Θm =
∑
p

MpMm−p Λm =
∑
p

:LpMm−p : − 3

10
(m+ 2)(m+ 3)Mm (2.24h)

where normal ordering is defined by :LnMm : = LnMm if n < −1 and :LnMm : = Mm Ln
otherwise. It is interesting to note that the algebra (2.24), with some standard assumptions,

does not have unitary highest weight representations for non-vanishing k [49].
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2.4 Metric and spin-3 field

The metric in AdS higher spin gravity is usually defined as trace over the zuvielbein [83, 84].

In flat space higher spin gravity the line-element takes the form

ds2 = gµν dxµ dxν = ηmnA
m
MA

n
M +KmnAmV AnV (2.25)

which for the connection (2.9)–(2.16) simplifies to

gµν dxµ dxν =Mdu2 − 2 dudr + 2N du dϕ+ r2 dϕ2 . (2.26)

This is the same result as in Einstein gravity [60]. Exploiting the Grassmann-structure there

is a neat way to define the metric again as a trace. Namely, take the matrix representation of

the generators Ln, Mn, Un and Vn (see appendix A.1) and the twisted trace definition (2.6).

Then the metric is equivalently defined by

gµν =
1

2
t̃r
(
AµAν

)
. (2.27)

Only bilinear expressions in the odd generators contribute to the line-element, which is

precisely the statement of (2.25) or (2.27).

The spin-3 field is similarly defined from the cubic sl(3)-Casimir or, equivalently, by

using again the twisted trace

Φµνλ =
1

6
t̃r
(
AµAνAλ

)
(2.28)

which for the connection (2.9)–(2.16) simplifies to

Φµνλ dxµ dxν dxλ = 2V du3 + 4Z du2 dϕ . (2.29)

Only expressions trilinear in the odd generators contribute to the spin-3 field.

3 Flat space higher spin gravity with chemical potentials

In this section we generalize the discussion to flat space spin-3 gravity with chemical po-

tentials µM, µL, µV, µU for the spin-2 and spin-3 fields. We start by stating our main result

in section 3.1 and perform consistency checks in section 3.2. In section 3.3 we discuss the

canonical charges and variational principle in the presence of chemical potentials. Finally,

we display results for the metric and the spin-3 field in section 3.4.

3.1 Statement of the main result

To include chemical potentials we solve the equations of motion (2.14) assuming the rep-

resentation of the connection as in (2.9)–(2.11). Following the procedure of [29] we also

assume that the form of aϕ remains unchanged by chemical potentials, in order to maintain

the structure of the canonical charges. We obtain

au = a(0)u + a(µM)
u + a(µL)u + a(µV)

u + a(µU)
u aϕ = a(0)ϕ (3.1)

– 9 –
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with a
(0)
u , a

(0)
ϕ being the connection (2.13) in the absence of chemical potentials and

a(µM)
u = µMM+ − µ′MM0 +

1

2

(
µ′′M −

1

2
MµM

)
M− +

1

2
V µM V−2 (3.2a)

a(µL)u = a(µM)
u

∣∣
M→L −

1

2
N µLM− + Z µL V−2 (3.2b)

a(µV)
u = µV V2 − µ′V V1 +

1

2

(
µ′′V −MµV

)
V0 +

1

6

(
−µ′′′V +M′µV +

5

2
Mµ′V

)
V−1

+
1

24

(
µ′′′′V − 4Mµ′′V −

7

2
M′µ′V +

3

2
M2µV −M′′µV

)
V−2 − 4V µVM− (3.2c)

a(µU)
u = a(µV)

u

∣∣
M→L − 8Z µUM− −N µU V0 +

(
5

6
Nµ′U +

1

3
N ′µU

)
V−1

+

(
−1

3
Nµ′′U −

7

24
N ′µ′U −

1

12
N ′′µU +

1

4
MNµU

)
V−2 (3.2d)

where the subscript M → L denotes that in the corresponding quantity all odd generators

and chemical potentials are replaced by corresponding even ones, Mn → Ln, Vn → Un,

µM → µL and µV → µU, i.e.

a(µM)
u

∣∣
M→L = µL L+ − µ′L L0 +

1

2

(
µ′′L −

1

2
MµL

)
L− +

1

2
V µL U−2 (3.2e)

a(µV)
u

∣∣
M→L = µU U2 − µ′U U1 +

1

2

(
µ′′U −MµU

)
U0 +

1

6

(
−µ′′′U +M′µU +

5

2
Mµ′U

)
U−1

+
1

24

(
µ′′′′U − 4Mµ′′U −

7

2
M′µ′U +

3

2
M2µU −M′′µU

)
U−2 − 4VµUL− (3.2f)

As before, dots (primes) denote derivatives with respect to retarded time u (angular coor-

dinate ϕ).

The equations of motion (2.14) impose the conditions

Ṁ = − 2µ′′′L + 2Mµ′L +M′µL + 24Vµ′U + 16V ′µU (3.3a)

Ṅ =
1

2
Ṁ
∣∣
L→M + 2Nµ′L +N ′µL + 24Zµ′U + 16Z ′µU (3.3b)

V̇ =
1

12
µ′′′′′U − 5

12
Mµ′′′U −

5

8
M′µ′′U −

3

8
M′′µ′U +

1

3
M2µ′U

− 1

12
M′′′µU +

1

3
MM′µU + 3Vµ′L + V ′µL (3.3c)

Ż =
1

2
V̇
∣∣
L→M −

5

12
Nµ′′′U −

5

8
N ′µ′′U −

3

8
N ′′µ′U +

2

3
MNµ′U

− 1

12
N ′′′µU +

1

3
(MN )′µU + 3Zµ′L + Z ′µL (3.3d)

with the inverse substitution rules to above, viz.

1

2
Ṁ
∣∣
L→M = − µ′′′M +Mµ′M +

1

2
M′µM + 12Vµ′V + 8V ′µV (3.3e)

1

2
V̇
∣∣
L→M =

1

24
µ′′′′′V − 5

24
Mµ′′′V −

5

16
M′µ′′V −

3

16
M′′µ′V +

1

6
M2µ′V

− 1

24
M′′′µV +

1

6
MM′µV +

3

2
Vµ′M +

1

2
V ′µM (3.3f)
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The chemical potentials µM, µL, µV and µU are arbitrary functions of the angular coordinate

ϕ and the retarded time u. In many applications they are constant so that many formulas

simplify.

In the next subsection we provide several checks on the correctness of the results

presented above and discuss in a bit more detail how we obtained them.

3.2 Checks

Note first that in the absence of chemical potentials, µM = µL = µV = µU = 0, corre-

sponding results from section 2 are recovered. In particular, the on-shell conditions (3.3)

simplify to (2.15). In the presence of chemical potentials the on-shell conditions (3.3)

contain information about the asymptotic symmetry algebra (2.24). For example, the

µL-terms in (3.3a) are an infinitesimal Schwarzian derivative, while the µU-terms exhibit

transformation behavior of a spin-3 field. Since any solution to the field equations must be

locally pure gauge, and any solution that obeys our boundary conditions can be generated

by the boundary condition preserving gauge transformations (2.18), it should be possible

to obtain (3.2) directly from a gauge transformation. Indeed, comparing the expressions

for (2.18) with the expressions in (3.2) we see that they coincide upon identifying ε→ µL,

τ → µM, κ → µV and χ → µU. This comparison provides an independent check on the

correctness of our results.

It is possible to derive the results of section 3.1 in various ways. For instance, one can

start from equation (3.7)-(3.12) in [29] and use the Grassmann-approach of [66] to derive

the flat space connection with chemical potentials, dropping in the end all terms quadratic

in the Grassmann-parameter. This is the procedure we have used. The map that leads

from (3.7)-(3.12) in [29] (left hand side) to the results presented in section 3.1 (right hand

side) is given by

coordinates: x± = ε u± ϕ (3.4a)

connection 1-form: 2a±
(
x+, x−

)
= au(u, ϕ)/ε± aϕ(u, ϕ) (3.4b)

spin-2 generators: 2L±n = Ln ±Mn/ε (3.4c)

spin-3 generators: 2W±n = Un ± Vn/ε (3.4d)

state-dependent spin-2 functions:
24

c±
L±
(
x±
)

=M(u, ϕ)± 2εN (u, ϕ) (3.4e)

state-dependent spin-3 functions: − 3

c±
W±

(
x±
)

= V(u, ϕ)± 2εZ(u, ϕ) (3.4f)

spin-2 chemical potentials
1

4
ξ±
(
x+, x−

)
= 1 + µM(u, ϕ)± µL(u, ϕ)/ε (3.4g)

spin-3 chemical potentials
1

4
η±
(
x+, x−

)
= µV(u, ϕ)± µU(u, ϕ)/ε (3.4h)

After using the map (3.4) one is supposed to drop all terms quadratic (or higher power)

in the Grassmann parameter ε. Note that no inverse powers of ε appear anywhere in the

connection, despite of their appearance in various expressions above.

Equivalently, one can do a straightforward İnönü-Wigner contraction, sending the AdS

radius to infinity. Alternatively, one could directly solve the flat space field equations (2.14)

– 11 –
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with the condition that aϕ remains unchanged as given in (2.13) and only au obtains

contributions from chemical potentials. All these procedures lead to the same results

displayed above in section 3.1.

3.3 Canonical charges with chemical potentials

Since the canonical currents (2.20) only depend on aϕ, which has not changed by intro-

ducing chemical potentials, the results for the canonical charges remain unchanged and all

expressions displayed in section 2.3 also apply to the case of non-vanishing µM, µL, µV and

µU. In fact, this property was the very reason why we allowed only a deformation of au.

In particular, from (2.22) we have the following four zero-mode charges.

QM =
k

2
M QL = kL QV = 4k V QU = 8k U (3.5)

They can be interpreted, respectively, as mass, angular momentum, odd and even spin-3

charges.

The canonical charges will be important for our later discussion of entropy in sec-

tion 5.1 below. They also feature prominently in the variational principle. To determine

the boundary term required for a well-defined variational principle we vary first the bulk

action (2.1).

δI[A] = bulk +
k

4π

∫
〈A ∧ δA〉 (3.6)

Evaluating the boundary term explicitly yields (' denotes equality up to total ϕ-derivative

terms, which vanish upon integration over the ϕ-cycle)

〈AϕδAu −AuδAϕ〉 ' MδµM + 2N δµL + 12VδµV + 24ZδµU + 4µVδV + 8µUδZ . (3.7)

This confirms the result [41] that the bulk action (2.1) has a well-defined variational prin-

ciple in the absence of spin-3 chemical potentials. In their presence, however, the last two

terms are incompatible with a well-defined variational principle. Therefore, we subtract a

boundary counterterm to restore a well-defined variational principle for this case,

Γ[A] = I[A]− Ib[A] with Ib[A] =
k

4π

∫
dudϕ 〈ĀuAϕ〉 (3.8)

where Āu = b−1āub with the same group element b as before [see eq. (2.10)] and

āu = au − 2(1 + µM)M+ − 2µL L+ − 2µV V2 − 2µU U2 . (3.9)

In total we get (QN is QL with L replaced by N , and similarly for QZ with QU )

δΓ
∣∣
EOM

=
k

4π

∫
dudϕ

(
〈AϕδAu −AuδAϕ〉 − δ〈ĀuAϕ〉

)
=

∫
du
(
QM δµM +QN δµL +QV δµV +QZ δµU

)
. (3.10)

In conclusion, the action (3.8) has a well-defined variational principle, in the sense that

the first variation of the full action vanishes on-shell for arbitrary (but fixed) chemical

potentials. As expected, the response functions (3.10) are determined by the canonical

charges, and the chemical potentials act as sources.
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3.4 Metric and spin-3 field in presence of chemical potentials

Plugging the results for the connection with chemical potentials, (3.1)–(3.3) with (2.9)–

(2.11), into the definitions for the metric (2.27) yields

gµν dxµ dxν = guu du2 + guϕ 2 dudϕ− (1 + µM) 2 dr du+ r2 dϕ2 (3.11)

with

guu = r2
(
µ2L − 4µ′′UµU + 3µ′ 2U + 4Mµ2U

)
+ r g(r)uu + g(0)uu + g(0

′)
uu (3.12a)

guϕ = r2µL − rµ′M +N (1 + µM) + 8ZµV (3.12b)

where

g(0)uu =M(1 + µM)2 + 2(1 + µM)
(
NµL + 12VµV + 16ZµU

)
+ 16ZµLµV +

4

3

(
M2µ2V + 4MNµUµV +N 2µ2U

)
(3.12c)

and the contributions g
(r)
uu and g

(0′)
uu are presented in (B.1) in appendix B.

Similarly, we obtain from the definition of the spin-3 field (2.29)

Φµνλ dxµ dxν dxλ = Φuuu du3+Φruu dr du2+Φuuϕ du2 dϕ−
(
2µUr

2−rµ′V+2NµV

)
dr dudϕ

+µV dr2 du−
(
µ′Ur

3− 1

3
r2
(
µ′′V −MµV+4NµU

)
+rNµ′V−N 2µV

)
dudϕ2

(3.13)

with

Φuuu = r2
[
2(1 + µM)µU(MµL − 4VµU)− 1

3
µ2L(MµV − 4NµU)

+16µLµU(VµV + ZµU)− 4

3
Mµ2U(MµV + 2NµU)

]
+ 2V(1 + µM)3 +

2

3
(1 + µM)2

(
6ZµL +M2µV + 2MNµU

)
+

2

3
(1 + µM)

(
(NµL + 16ZµU)(2MµV +NµU) + 12MVµ2V

)
+N 2µ2LµV

+ 16µLµ
2
V

(
NV − 1

3
MZ) +

64

3
ZµUµV(NµL + 12VµV + 12ZµU

)
+ 64V2µ3V

− 8

27

(
M3µ3V −N 3µ3U

)
− 4

9
MNµUµV(4MµV + 5NµU)

+ r3 Φ(r3)
uuu + r2 Φ(r2)

uuu + rΦ(r)
uuu + Φ(0)

uuu (3.14a)

Φruu = − 2r2µLµU −
2

3
(1 + µM)(2MµV +NµU)− 2NµLµV

− 16µV(VµV + 2ZµU) + rΦ(r)
ruu + Φ(0)

ruu (3.14b)

Φuuϕ = r2
[
2M(1 + µM)µU −

2

3
µL(MµV − 4NµU) + 16µU(VµV + ZµU)

]
+ 4Z(1+µM)2 +

2

3
N (1+µM)(2MµV +NµU) + 2NµV

(
NµL +

32

3
ZµU

)
− 16

3
(MZ − 3VN )µ2V + r3 Φ(r3)

uuϕ + r2 Φ(r2)
uuϕ + rΦ(r)

uuϕ + Φ(0)
uuϕ (3.14c)
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where the contributions Φ
(r3)
uuu, Φ

(r2)
uuu, Φ

(r)
uuu, Φ

(0)
uuu, Φ

(r)
ruu, Φ

(0)
ruu, Φ

(r3)
uuϕ, Φ

(r2)
uuϕ, Φ

(r)
uuϕ and Φ

(0)
uuϕ

are collected in appendix B.

Note that for zero-mode solutions with constant chemical potentials,M′ = N ′ = µ′M =

µ′L = µ′V = µ′U = 0, all the expressions in appendix B vanish and thus the spin-2 and spin-3

fields simplify considerably in this case (see also appendix C).

4 Flat space Einstein gravity with chemical potentials

If we set to zero the spin-3 charges and spin-3 chemical potentials, V = Z = µV = µU = 0,

we recover flat space Einstein gravity with chemical potentials µM and µL. While this is

merely a special case of the more general results of section 3, it seems convenient for future

applications to collect these results separately and to elaborate on them. This is what we

do in this section.

In section 4.1 we present the general solution for the isl(2) gauge connection and the

metric with arbitrary spin-2 chemical potentials. In section 4.2 we focus on zero mode

solutions with constant chemical potentials and provide a canonical interpretation of the

latter. In section 4.3 we linearize the solutions in the chemical potentials, which is useful

for some applications, like the holographic dictionary, which we address in section 4.4.

4.1 General solution

The connection is given by (2.9), (2.10), (2.11) with

au = (1 + µM)M+ − µ′MM0 +
1

2

(
µ′′M −

1

2
M(1 + µM)−N µL

)
M−

+ µL L+ − µ′L L0 +
1

2

(
µ′′L −

1

2
MµL

)
L− (4.1a)

aϕ = L+ −
M
4
L− −

N
2
M− . (4.1b)

The corresponding line-element reads

gµν dxµ dxν =
[
r2µ2L+2r

(
µ′L(1+µM)−µLµ

′
M

)
+M(1+µM)2+2(1 + µM)(NµL−µ′′M)+µ′ 2M

]
du2

+
(
r2µL−rµ′M+N (1 + µM)

)
2 dudϕ−(1 + µM)2 dr du+r2 dϕ2 (4.2)

with the on-shell conditions

Ṁ = −2µ′′′L + 2Mµ′L +M′µL (4.3a)

Ṅ = −µ′′′M +Mµ′M +
1

2
M′µM + 2Nµ′L +N ′µL . (4.3b)

4.2 Zero mode solutions with constant chemical potentials

We consider now zero mode solutions, M′ = N ′ = 0, with constant spin-2 chemical

potential, µ′M = µ′L = 0. Then the results above simplify further. The line-element reads

gµν dxµ dxν =
[
r2µ2L +M(1 + µM)2 + 2N (1 + µM)µL

]
du2

+
(
r2µL +N (1 + µM)

)
2 dudϕ− (1 + µM) 2 dr du+ r2 dϕ2 (4.4)

with the on-shell conditions Ṁ = Ṅ = 0.
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If we set to zero the even chemical potential, µL = 0, then the line-element (4.4)

simplifies to the vacuum solution (2.12), but with u replaced by ũ = (1 +µM)u. Therefore,

a constant odd chemical potential µM effectively rescales the retarded time coordinate.

In canonical general relativity language the odd chemical potential µM rescales the lapse

function.

If instead we set to zero the odd chemical potential, µM = 0, then the line-element (4.4)

simplifies to

gµν dxµ dxν =

(
M− N

r2

)
du2 − 2 dr du+ r2

(
dϕ+

N
r2

du+ µL du

)2

. (4.5)

Comparing this result with the vacuum solution (2.12) in ADM-like form,

gµν dxµ dxν =

(
M− N

r2

)
du2 − 2 dr du+ r2

(
dϕ+

N
r2

du

)2

(4.6)

we see that the even chemical potential µL changes only the last term. In canonical general

relativity language the even chemical potential µL shifts the shift vector.

4.3 Perturbative solutions linearized in chemical potentials

A different kind of simplification arises when linearizing in the chemical potentials. Ex-

panding the metric (3.11) in the chemical potentials,

gµν = ḡµν + hµν +O
(
µ2M, µ

2
L, µMµL

)
(4.7)

with the background line-element ḡµν dxµ dxν given by the right hand side of (2.26), yields

for the linear terms

hµν dxµ dxν = 2
(
MµM +N µL

)
du2 +

(
r2 µL +N µM

)
2 dudϕ− 2µM dr du

+ 2
(
r µ′L − µ′′M

)
du2 − 2r µ′M du dϕ . (4.8)

The terms in the second line vanish for constant chemical potentials.

4.4 Comparison with holographic dictionary

From a holographic perspective, the first two terms in the linearized solution (4.8) show

the typical coupling between sources (chemical potentials) and vacuum expectation values

(canonical charges). The r2µL dudϕ term and the µM dr du term correspond to the essential

terms in the two towers of non-normalizable4 solutions to the linearized equations of motion.

In the holographic dictionary, these non-normalizable contributions should correspond

to sources of the corresponding operators in the dual field theory. Indeed, this is what hap-

pens as shown in [68]. Note, however, that [68] worked in Euclidean signature, restricted

to zero mode solutions and imposed axial gauge for the non-normalizable solutions to the

linearized Einstein equations on a flat space background, so a direct comparison is not

4Here and in what follows the attribute “non-normalizable” always means “breaking the Barnich-

Compère boundary conditions” [50] or the corresponding spin-3 version [41, 42].
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straightforward. Exploiting our interpretation of constant chemical potentials as modifi-

cations of lapse and shift (see section 4.2) we can interpret the results of [68] as follows

(see their section 3.4): their quantity δξJ corresponds precisely to the (linearized) even

chemical potential δξJ ∼ µL, and their quantity δξM corresponds to twice the (linearized)

odd chemical potential, δξM ∼ 2µM. This identification is perfectly consistent with the

holographic interpretation summarized above.

5 Applications

In this section we address some applications, without claiming to be exhaustive.

In section 5.1 we calculate the entropy of flat space cosmologies with spin-3 charges by

solving all holonomy conditions. In section 5.2 we determine the free energy and discover

novel types of phase transitions. In section 5.3 we conclude with some remarks on the

recent spin-3 singularity resolution of flat space orbifolds. In section 5.4 we provide an

outlook to some further possible applications.

As supplements, in appendix C we discuss zero-mode solutions with constant spin-

3 and vanishing spin-2 chemical potentials and in appendix D we consider more general

solutions to the field equations, dubbed “chemically odd”, by restricting to odd chemical

potentials only and by allowing specific deformations of aϕ.

5.1 Entropy

To discuss thermodynamical aspects we restrict ourselves to zero mode solutions with

constant chemical potentials. The main quantity of interest is the entropy of solutions like

flat space cosmologies with spin-3 charges switched on. As we shall demonstrate by solving

holonomy conditions, entropy is given by a hatted trace,

S = 2kβL t̂r
(
auaϕ

)∣∣∣
EOM

= βL
(
2(1 + µM)QM + 2µLQL + 3µVQV + 3µUQU

)
. (5.1)

The quantity βL is not necessarily the inverse temperature, but rather the length of the

relevant cycle appearing in the holonomy condition below. The zero mode charges Qi are

displayed in (3.5).

We start by proposing the holonomy condition that we want to solve.

exp
(
iβLau

)
= 1l (5.2)

This condition is completely analogous to corresponding holonomy conditions for higher

spin black holes in AdS [24]. To solve the holonomy condition (5.2) we exploit the repre-

sentation summarized in appendix A.2 in terms of 9 × 9 matrices. By a similarity trans-

formation we can diagonalize the ad-part of a generic matrix of the form (A.5).(
A−18×8 O8×1
O1×8 1

)(
ad8×8 odd8×1
O1×8 0

)(
A8×8 O8×1
O1×8 1

)
=

((
A−1adA

)
8×8

(
A−1odd

)
8×1

O1×8 0

)
(5.3)
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A matrix of this form is easily exponentiated. Assuming that ad has zero as eigenvalue

with geometric and algebraic multiplicity n and denoting v = A−1odd yields

exp

((
A−1adA

)
8×8

(
A−1odd

)
8×1

O1×8 0

)
=



1 v1
. . .

...

1 vn

eλ1 vn+1
eλ1−1
λ1

. . .
...

eλ8−n v8
eλ8−n−1
λ8−n

1


. (5.4)

In our case n = 2 [= rank sl(3)] and the holonomy condition (5.2) is then solved by the

relations

λk = 0 mod
2π

βL
, k = 1..6 ; vm = 0 , m = 1..2 . (5.5)

The first set of relations (5.5) is precisely the same as in AdS spin-3 gravity for one

chiral half. Therefore, we must be able to represent these conditions in the same way as

it was done in AdS. In fact, a plausible guess for the two holonomy conditions that follow

from the first set of relations (5.5) is given by (compare with corresponding conditions in

the AdS case, particularly eqs. (3.32) and (3.33) in [29])

1

4
tr
(
auau

)∣∣∣
ε=0

=Mµ2L + 24VµLµU +
4

3
M2µ2U =

4π2

β2L
(5.6)

1

4

√
det au

∣∣∣
ε=0

=

∣∣∣∣Vµ3L +
1

3
M2µ2LµU + 4MVµLµ

2
U −

4

27
M3µ3U + 32V2µ3U

∣∣∣∣ = 0 (5.7)

We prove now that this is indeed the correct result. Since the matrix A−1adA is diagonal, it

must lie in the Cartan subalgebra of sl(3); diagonalizing simultaneously L0 and U0 we find

A−1adA = diag
(
0, 0, fL + 2fU , fL − 2fU ,−fL + 2fU ,−fL − 2fU , 2fL,−2fL

)
(5.8)

with some functions fL, fU of the charges and chemical potentials that can be determined by

explicitly calculating the characteristic polynomial of the matrix iβLau for the eigenvalues

λ as derived from the solution (3.2) (with constant charges and chemical potentials) and

comparing it with the characteristic polynomial that follows from (5.8). The first set of

relations (5.5) yields the conditions

fL =
mπ

βL
fU =

(n− m
2 )π

βL
n,m ∈ Z . (5.9)

Thus, the first half of the holonomy conditions leads to a discrete family of solutions

parametrized by two integers n and m. For the choice m = 2 and n = 1 these conditions

reproduce precisely the guess (5.6) and (5.7). This choice is unique by requiring that in the

absence of spin-3 chemical potentials and spin-3 charges the holonomy conditions reduce

to the ones for flat space cosmologies. We will therefore always make this choice in the

present work.
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So far we have obtained and solved only half of the holonomy conditions. The other

half emerges from imposing the second set of relations (5.5). After a straightforward

calculation5 we find that one of these conditions is linear in the charges and chemical

potentials, while the other is quadratic in the charges and linear in the chemical potentials

M(1 + µM) + LµL + 12VµV + 16UµU = 0 (5.10)

9V(1 + µM) + 6UµL +M2µV + 2LMµU = 0 . (5.11)

These results are considerably simpler than the corresponding holonomy conditions in AdS,

which are at least quadratic in chemical potentials and charges.

The linear holonomy condition (5.10) simplifies entropy (5.1) to

S = βL
(
µLQL + µUQU

)
. (5.12)

For the special case µU = 0 entropy (5.12) depends only on spin-2 charges and chem-

ical potentials (see appendices C and D). Moreover, the solution to the four holonomy

conditions (5.6), (5.7), (5.10), (5.11) becomes elementary.

M =
4π2

β2Lµ
2
L

L = −M1 + µM

µL

V = 0 U = −M2 µV

6µL

(5.13)

For that case entropy is given by the Bekenstein-Hawking area law (k = 1/(4GN ), where

GN is Newton’s constant)

S
∣∣
µU=0

= kβL |µLL| = k
2π|L|√
M

= k areahorizon . (5.14)

We included absolute values to ensure that entropy is positive regardless of the sign of the

charge L. Inverse temperature

β = − ∂S

∂QM

∣∣∣
QL

= − 2∂S

k∂M

∣∣∣
L

= 2π
|L|
M3/2

(5.15)

then coincides with the spin-2 result (see e.g. [59]; note that in their conventions M = r2+
and |L| = |r0r+|).

T =
1

2π

M3/2

|L|
. (5.16)

5There are numerous different ways to obtain these results, but it is not always easy to extract the

simple conditions (5.10) and (5.11). For instance, one can contract the AdS holonomy conditions using the

map (3.4), but this leads naturally to non-linear relations between charges and chemical potentials. Two

combinations of these relations immediately provide the holonomy conditions (5.6) and (5.7), but it takes

a bit of work to extract the other two conditions in their simplest form. Alternatively, one can explicitly

construct the matrix A in (5.3) that diagonalizes the sl(3) part of the generators and then determine the

two eigenvectors associated with the two zero eigenvalues. This approach makes it clear from the start that

the remaining two holonomy conditions must be linear in the chemical potentials. The procedure we used

is a simpler version thereof that avoids complete diagonalization, but merely puts the generators into block

form with a 2×2 block of zeros, since the remaining two holonomy conditions are restricted to the subspace

associated with the zero eigenvalues.
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The minus sign in the definition (5.15) is reminiscent of the inner horizon first law of black

hole mechanics [86–90] as explained in [59]. From the corresponding first law

− dQM = T dS + Ω dQL (5.17)

we deduce the angular potential

Ω = −T ∂S

∂QL

∣∣∣
QM

= −T ∂S

k∂L

∣∣∣
M

=
M
L

(5.18)

which again coincides with the spin-2 result [59].

In the general case µU 6= 0 not all holonomy conditions are linear. Instead, we have to

solve one quadratic and one cubic equation, similar to the AdS case. Defining µ = µLµU

and η = µL/µU + 1
9M

2/V the holonomy conditions (5.6), (5.7) simplify to

η3 + η

(
4M− M

4

27V2

)
+ 32V − 16M3

27V
+

2M6

729V3
= 0 (5.19)

µ =
4π2

β2L

(
µL

µU

M+ 24V +
4µU

3µL

M2

)−1
. (5.20)

Solving the cubic equation (5.19) yields a result for the ratio µL/µU, which can then be

plugged into the linear equation (5.20) to determine the product of the chemical potentials.

The sign of the discriminant D of the cubic equation (5.19) is given by

signD = sign
(
M3 − 108V2

)
. (5.21)

If D is negative there is exactly one real solution; this happens only if the spin-3 charge V
is sufficiently large or if the mass M is negative. For a critical tuning of the charges,

criticality: 108V2 =M3 (5.22)

the discriminant vanishes, D = 0, and there is a unique real solution η = 0. However, the

linear equation (5.21) has no finite solution for µ in this case. Therefore, starting from

finite and positive M it is not possible to smoothly increase the spin-3 charge V beyond

the critical value (5.22).

Heneceforth, we shall always assume the inequality

M >
(
108V2

)1/3 ≥ 0 . (5.23)

In other words, we consider from now on exclusively the case of positive discriminant,

D > 0. In this case there are three real solutions for η. The resulting entropy is real for

all three branches. However, only one branch recovers the same entropy (5.12) as for the

spin-2 case in the limit V → 0. Therefore, we take that branch.

On this particular branch, there is a neat way to express all results in terms of the

charges M,L,U and a new parameter R that depends on the ratio of spin-3 and spin-2

charges V2/M3, just like in the AdS case [24]:

R− 1

4R3/2
=
|V|
M3/2

R > 3 (5.24)
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The restriction to R > 3 guarantees that we sit on the correct branch. The chemical

potentials then read

1 + µM = − 2π|L|
M
√
MβL

·
4R(2R2 + 6R− 9)− 24P

√
R
(
10R2 − 15R+ 9

)
(R− 3)3(4− 3/R)3/2

(5.25)

µL =
2π signL√
MβL

· 2R− 3

(R− 3)
√

4− 3/R
(5.26)

µU = −3π signL
MβL

·
√
R

(R− 3)
√

4− 3/R
(5.27)

µV =
3π|L|
M2βL

·
2
√
R
(
10R2 − 15R+ 9

)
− 16PR

(
2R2 + 6R− 9

)
(R− 3)3(4− 3/R)3/2

(5.28)

while entropy is given by

S(M,L,R,P) = 2πk
|L|√
M
· 2R− 3− 12P

√
R

(R− 3)
√

4− 3/R
. (5.29)

with the dimensionless ratio

P =
U√
ML

. (5.30)

The expression for entropy (5.29) is the main result of this section. The pre-factor contain-

ing the spin-2 charges M,L coincides with the spin-2 result (5.14). The spin-3 correction

depends non-linearly on one of the combinations of spin-3 charges, R, and linearly on the

other, P.

For some purposes it can be useful to have a simpler perturbative result for entropy

in the limit of small spin-3 charge V (large R), which we present below.

S(M,L,V,U) = 2πk
|L|√
M

(
1 +

15V2

8M3
− 6U|V|
M2L

)
+O(V3) (5.31)

We close the entropy discussion by addressing sign issues. We have assumed that the

mass is positive, M > 0, motivated by the necessity of this condition in the spin-2 case.

The sign of L does not matter, which is why we included absolute values in the final result

for entropy (5.29). Here is our argument. Suppose that L > 0 (L < 0). Then we exploit

the sign ambiguity in the definitions of µL, µU by choosing µL > 0 (µL < 0) so that the

first term in (5.12) is always positive and thus entropy is positive in the limit of vanishing

spin-3 fields. The sign of V is taken care of by the definition (5.24), which ensures positive

R regardless of the sign of V. Thus, the only remaining signs of potential relevance are

the signs of the spin-3 charge U and the corresponding chemical potential µU. The latter

is fixed through the sign choice of µL explained above, but the former is free to change,

and this change is physically relevant. This implies that the quantity P defined in (5.30)

can have either sign, so that the last term in the entropy (5.29) can have either sign.

Demanding positivity of entropy then establishes an upper bound on U .
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5.2 Grand canonical free energy and phase transitions

In the previous section we found that there are three branches of solutions of all the

holonomy conditions, and we simply took the branch that connects continuously to the

spin-2 results in the limit of vanishing spin-3 charges. However, it is not guaranteed that

this procedure picks out the correct branch from a thermodynamical perspective in the

whole parameter space. What we should do is to compare the free energies of all branches

for given values of the chemical potentials and check which of the branches leads to the

lowest free energy. This is precisely the aim of this subsection.

We start by writing the general result for the (grand canonical) free energy, regardless

of the specific branch (we set k = 1 in this subsection). We already have a thermodynamic

potential, namely entropy in terms of extensive quantities (charges), so all we need to do

is to Legendre transform with respect to all pairs charge/chemical potential.6

F (T, Ω, ΩV, ΩU) = −QM − TS − ΩQL − ΩVQV − ΩUQU (5.32)

The zero mode charges are given by (3.5) and the intensive quantities by the chemical

potentials.

T−1 = β = − ∂S

∂QM

∣∣∣
L,V,U

= −βL (1 + µM) (5.33)

β Ω = − ∂S

∂QL

∣∣∣
M,V,U

= −βL µL (5.34)

β ΩV = − ∂S

∂QV

∣∣∣
M,L,U

= −βL µV (5.35)

β ΩU = − ∂S

∂QU

∣∣∣
M,L,V

= −βL µU (5.36)

In order to express free energy in terms of intensive variables we have to invert the

holonomy conditions and solve for the charges in terms of chemical potentials. Before doing

so, it is instructive to consider free energy expressed in terms of charges in certain limits.

In the large R limit (weak contribution from spin-3 charges) we recover the spin-2 result

Fweak = −M
2

+O(P/
√
R) +O(1/R) . (5.37)

In the R → 3 limit (strong contribution from spin-3 charges) we obtain

Fstrong = −M
6

+O(R− 3)2 . (5.38)

Thus, we have a universal ratio
Fweak

Fstrong

= 3 . (5.39)

The results (5.37)–(5.39) are valid on all branches and show that the free energy approaches

the correct spin-2 value.

6Alternatively, one could use the on-shell action method by Bañados, Canto and Theisen [91].
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Performing the Legendre transformation (5.32) with the entropy (5.12) yields

F = −QM + TβL µVQV = −M
2
− 4ΩVV . (5.40)

In order to obtain free energy as function of intensive variable we have to solve the non-

linear holonomy conditions (5.6), (5.7) for the charges in terms of the chemical potentials.

Solving (5.6) for V allows us to express free energy in terms of the massM and of chemical

potentials.

F = −M
2

+
MΩΩV

6ΩU

+
2M2ΩUΩV

9Ω
− 2π2T 2ΩV

3ΩΩU

(5.41)

Plugging the solution for the spin-3 charge V in terms of the mass M into the other

holonomy condition (5.7) establishes a quartic equation for the mass M, which leads to

four branches of solutions for free energy. The discriminant of that equation is positive,

provided the spin-3 chemical potential obeys the bound

Ω2
U <

9
(
2
√

3− 3
)

64

Ω4

4π2T 2
≈ 0.065

Ω4

4π2T 2
. (5.42)

Another way to read the inequality (5.42) is that it provides an upper bound on the

temperature for given spin-3 chemical potential ΩU. The maximal temperature is given by

Tmax =
3
√

2
√

3− 3

8

Ω2

2π|ΩU|
. (5.43)

In the limit of small ΩU it turns out that only one of the branches has finite free

energy. This is the branch that continuously connects with spin-2 results, on which free

energy yields

F = −2π2T 2

Ω2

(
1− 32π2T 2ΩVΩU

3Ω3
+

80π2T 2Ω2
U

3Ω4
+O(Ω3

U)

)
. (5.44)

The term before the parentheses reproduces the spin-2 result for free energy. The term in

the parentheses depends only on two linear combinations of the chemical potentials [on t

and v introduced in (5.46) below]. As in the spin-2 case [59] there will be a phase transition

between flat space cosmologies and hot flat space at some critical temperature.

A novel feature of the spin-3 case is that there are additional phase transitions between

the various flat space cosmology branches. To see this we consider the difference between

the free energies of two branches.

∆F12 =
2ΩUΩV

9Ω

(
M1 −M2

)(
M1 +M2 +

3Ω(ΩΩV − 3ΩU)

4Ω2
UΩV

)
(5.45)

There are two zeros in the difference (5.45), an obvious one when the masses of the two

branches coincide, M1 = M2, and a non-obvious one when the expression in the last

parentheses in (5.45) vanishes. We focus in the following on the difference between the

branch that continuously connects to spin-2 results (branch 1) and the other branch that

ceases to exist if the bound (5.42) is violated (branch 2). The other two branches are then

branch 3 and 4; they will play only minor roles.
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To reduce clutter we assume from now on that temperature and the chemical poten-

tials are non-negative. Moreover, we introduce dimensionless combinations of chemical

potentials

t = 2πT
ΩU

Ω2
v = ΩV

Ω

ΩU

. (5.46)

The quantity t is a dimensionless temperature, while v is essentially a ratio of odd over even

spin-3 chemical potential. Expressing the difference of free energies (5.45) between branches

1 and 2 as function of these two combinations, up to a non-negative overall constant, yields

∆F12 ∝ 15v− 18− v

√
64t2 + 9 +

8t
(
64t2 + 27

)
N(t)

+ 8tN(t) . (5.47)

with

N(t) =
(

512t3 + 648t + 9
√

4096t4 + 3456t2 − 243
)1/3

. (5.48)

The positive real zero of the term under the square-root in (5.48) corresponds precisely

to the critical temperature (5.43). For each value of dimensionless temperature t there

is a simple zero in ∆F12 since it depends linearly on v. We call the corresponding value

of v ‘critical’ and denote it by subscript ‘c’. For vanishing temperature we find from

equating (5.47) to zero

vc|t=0 =
3

2
(5.49)

while at the critical temperature (5.43) we find similarly

vc|
t=tc=

3
8

√
2
√
3−3

= 2 . (5.50)

The corresponding free energy differences near these temperatures read, respectively

∆F12 ∝ 12v− 18− 12tv +
8

3
t2v +O(t3) (5.51)

∆F12 ∝ 9v− 18− 8

√
1 +

2√
3

(t− tc)v−
16

27
(t− tc)

2 v +O(t− tc)
3 . (5.52)

We arrive therefore at the following picture, depending on the value of the parameter v:7

• 0 < v < 3
2 : branch 1 is thermodynamically unstable for all temperatures.

• v = 3
2 : branch 1 degenerates with branch 2 at vanishing temperature and is thermo-

dynamically unstable for all positive temperatures.

• 3
2 < v < 2: branch 1 degenerates with branch 2 at some positive temperature. Below

that temperature branch 1 is thermodynamically unstable. At that temperature there

is a phase transition from branch 2 to branch 1. Above that temperature branch 1

is stable (modulo the phase transition to hot flat space [59]).

7Positivity of entropy imposes additional constraints on the existence of branches; we checked that

the existence of the first order phase transition between branches 1 and 2 that we describe below is not

influenced by such constraints.
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Figure 1: Plots of free energy as function of temperature. In all plots Ω = 1, ΩU = 0.1.

Upper Left: ΩV = 0.4. Upper Middle: ΩV = 0.2. Upper Right: ΩV = 0.18. Lower Left:

ΩV = 0.15. Lower Middle: ΩV = 0.12. Lower Right: ΩV = 0.01. The branch with smooth

spin-2 limit is displayed as thick line, the second branch as dashed line, the other two

branches as dotted lines (in the upper plots these lines are at positive F ). For a movie of

these plots see http://quark.itp.tuwien.ac.at/∼grumil/mp3/free energy fs3.avi.

• v = 2: branch 1 degenerates with branch 2 at the maximal temperature (5.43) and

is thermodynamically stable for all temperatures (again modulo the phase transition

to hot flat space).

• v > 2: branch 1 is thermodynamically stable for all temperatures (with the same

caveat as above).

To illustrate the results above we show an example in figure 1. In all six graphs the

thick line depicts free energy for branch 1 and the dashed line for branch 2 (the other

two branches are not essential for this discussion; if visible they are plotted as dotted

lines). The three upper plots show explicitly the phase transition between branches 1

and 2, depending on the choice of v. The three lower plots show that there are further

phase transitions involving the branches 3 and 4, if branch 1 is unstable for all values

of temperature. In addition to all these new phase transitions there is the ‘usual’ phase

transition to hot flat space [59], which in the present case can be of zeroth, first or second

order. Since there are several phase transitions possible there exist also multi-critical points

where three or four phases co-exist.

The most striking difference between the AdS results by David, Ferlaino and Ku-

mar [77] and our flat space results is that we observe the possibility of first order phase

transitions between various branches (see the right upper and middle lower plot in figure 1).

By contrast, in AdS the only phase transitions (other than Hawking-Page like) arise be-

cause two of the branches end, at which point the free energy jumps (we also recover these

zeroth order phase transitions in flat space, see e.g. the left lower plot in figure 1).
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5.3 Remarks on flat space singularity resolutions

String theory is believed to resolve (some of) the singularities that arise in classical gravity,

see e.g. [92] and references therein. If this is true and if higher spin gravity can be thought

of as emerging from string theory in the tensionsless limit, then it is suggestive that also

higher spin gravity could resolve (some of) the singularities that arise in Einstein gravity.

Regardless of how plausible this line of reasoning appears, it is certainly of interest to

investigate the issue of singularity resolution in (three-dimensional) higher spin gravity.

Indeed, Castro et al. discovered corresponding singularity resolutions for black

holes [93] and conical surpluses [94] in three-dimensional AdS higher spin gravity. More

recently, Krishnan et al. considered the singularity resolutions of the Milne universe [65]

and the null orbifold [95] in three-dimensional flat space higher spin gravity. We discuss

now some of their findings from the perspective developed in the present work, starting

with the second example, the null orbifold singularity resolution.

In our conventions the null orbifold is a configuration with M = N = V = Z = µM =

µL = µV = µU = 0, i.e.

au = M+ aϕ = L+ . (5.53)

This configuration leads to the null orbifold line-element

ds2 = −2 dr du+ r2 dϕ2 (5.54)

with vanishing spin-3 field. The null orbifold exhibits a singularity at r = 0, see e.g. [96–99].

One of the claims of [95] is that there is a spin-3 gauge transformation that resolves

this singularity. In the language of the present work, this resolution involves the following

connection

au = M+ aϕ = L+ +
9

2
p V0 (5.55)

which leads to the line-element

gµν dxµ dxν = −2 dr du+
(
r2 + 27p2

)
dϕ2 (5.56)

and spin-3 field

Φµνλ dxµ dxν dxλ = 3p
(

dr dudϕ+
(
r2 − 9p2

)
dϕ3

)
. (5.57)

Up to a different choice of coordinates and overall normalization of the spin-3 field, the

results (5.56) and (5.57) coincide precisely with eq. (3.16) in [95].

Comparing the original null orbifold configuration (5.53) with the resolved one (5.55)

we see that the difference is in the aϕ component, not the au component. Therefore, we

cannot interpret the additional terms proportional to p as coming from a chemical potential

as introduced in section 3.

We check now whether the (spin-3) transformation that maps (5.53) to (5.55) is a small

gauge transformation. If p is a state-dependent function then the term proportional to p

in (5.55) leads to a contribution to the canonical currents of the form (see appendix D)

δQ ∼
∮

dϕ
(
χ′′ −Mχ

)
δp (5.58)
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which is finite and conserved, but not integrable in field space unless p = p(M). However,

if p is not a state-dependent parameter but merely some (gauge-)parameter then its field-

variation vanishes, δp = 0, and the canonical charges remain unchanged.

Therefore, we conclude that the spin-3 singularity resolution discussed in [95] is based

on a small gauge transformation, i.e., it neither changes the canonical charges nor the

chemical potentials. Our results thus support their conclusions.

The same remarks apply to the spin-3 singularity resolution of the Milne universe [65],

which manifestly uses a gauge transformation of the type discussed in appendix D, with

state-independent constant gauge parameters v0 6= 0 6= v2.

5.4 Further applications, developments and generalizations

Above we have presented some applications of flat space (spin-3) gravity with chemical

potentials. Below we mention several other possible applications and generalizations that

we leave for future work.

• Flat space higher spin Cardy formula. The usual Cardy formula [100, 101] was gen-

eralized in (at least) two ways: 1. by including higher spin fields [102–104] and 2. by

taking the flat space limit [57, 58, 71, 72]. It seems both natural and interesting to

combine these two generalizations and to derive a Cardy-like formula for the entropy

of spin-3 flat space cosmologies that (hopefully) matches our result (5.1).

• Flat space family of solutions beyond flat space cosmologies. It could be rewarding

to study in detail solutions of the holonomy conditions (5.9) for integers m 6= 2 and

n 6= 1. The ensuing family of solutions could play an analogous role for flat space

(higher spin) gravity as the SL(2,Z) family of Euclidean saddlepoints in AdS spin-2

gravity.

• Flat space spin-3 holographic dictionary. Following our discussion in section 4 it

would be interesting to continue the flat space holographic dictionary, in particular

by identifying the sources (or non-normalizable modes) for the spin-3 field. To this

end we linearize the result (3.13) in µV and µU.

Φµνλ dxµ dxν dxλ = Φ̄µνλ dxµ dxν dxλ + Ψµνλ dxµ dxν dxλ +O(µ2V, µ
2
U, µVµU) (5.59)

For simplicity, we set to zero the spin-2 chemical potentials and charges, as well as

the spin-3 charges, and assume that all the spin-3 chemical potentials are constant.

The background solution Φ̄µνλ dxµ dxν dxλ is given by the right hand side of (2.29).

With these assumptions, the linear piece in the chemical potentials yields

Ψµνλ dxµ dxν dxλ = −2r2 µU dr dudϕ+ µV dr2 du . (5.60)

By analogy to the discussion after (4.8), we conjecture that the two terms in (5.60)

should correspond to the essential pieces in the two towers of non-normalizable solu-

tions to the linearized spin-3 equations of motion.
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• isl(N). Everything we have done in the present work should generalize straightfor-

wardly to higher spin gravity theories based on an isl(N) connection, with N > 3. In

fact, for the principal embedding we expect that all our conclusions remain essentially

unchanged. All flat space results should be obtainable from a suitable İnönü-Wigner

contraction of corresponding AdS results based on an sl(N)⊕ sl(N) connection. Sim-

ilar generalizations in AdS were considered in [78, 79, 105].

• Non-principal embeddings. Whenever the corresponding AdS results are known, again

we expect that all flat space results should be obtainable from a suitable İnönü-Wigner

contraction. There could be interesting surprises for non-principal embeddings in the

flat space limit, however, as the discussion in [49] shows.

• Gravitational anomalies. It is of interest to generalize the result (5.29) for entropy

to theories which are obtained as flat space İnönü-Wigner contractions from AdS

theories with gravitational anomalies so that cL = c−c̄ 6= 0. In [71] such an expression

was found, which correctly reproduces (5.29) (up to a different choice of normalization

of L and U). Moreover, it also gives a prediction for the thermal entropy of flat space

cosmology solutions in the presence of gravitational anomalies. This result can be

obtained using the methods presented in section 5.1 upon replacing the hatted trace

with (one quarter of the) trace and the level k with cL/24.

• First order phase transitions in AdS higher spin gravity. Some of our results resem-

ble corresponding AdS results. For instance, the branch that continuously connects

to spin-2 gravity also becomes unstable beyond a critical temperature in AdS [77].

Moreover, this temperature agrees quantitatively with our result (5.43), upon re-

placing our ratio Ω2/|ΩU| by their µ−1. However, the first order phase transitions

discovered in section 5.2 do not arise in AdS, despite of the fact that the main in-

gredient we used was to solve the non-linear holonomy conditions (5.6), (5.7) for the

charges in terms of chemical potentials, and these holonomy conditions are identical

to the ones in AdS higher spin gravity [29]. It could be interesting to make a scan

through all possibilities in AdS higher spin gravity to see if some novel first order

phase transitions can arise, and if not, to understand better why AdS and flat space

behave so differently in this regard.

• Holographic entanglement entropy. Entanglement entropy of Galilean CFTs, the

dual field theories that arise in flat space spin-2 gravity, was derived recently [106].

It would be very interesting to generalize the discussion to the spin-3 case (or even

higher spins), both on the field theory and the higher spin gravity sides, along the

lines of [107, 108] or by suitably contracting the results of [109].
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A Matrix representations of isl(3) generators

A.1 6 × 6 representation

In most of our work we use the following matrix representation of isl(3) generators in terms

of 6× 6 block-diagonal matrices. It is convenient to write them as a 3× 3 block tensored

by a simple diagonal 2× 2 matrix. The block structure is a remnant of the decomposition

of the AdS algebra so(2, 2) ∼ so(2, 1)⊕ so(2, 1) before the İnönü-Wigner contraction.

Even spin-2 generators:

L+ =

0 0 0

1 0 0

0 1 0

⊗ 1l2×2 L0 =

1 0 0

0 0 0

0 0 −1

⊗ 1l2×2 L− =

0 −2 0

0 0 −2

0 0 0

⊗ 1l2×2 (A.1)

Even spin-3 generators:

U2 =

0 0 0

0 0 0

2 0 0

⊗ 1l2×2 U1 =

0 0 0

1 0 0

0 −1 0

⊗ 1l2×2 U0 =

2
3 0 0

0 −4
3 0

0 0 2
3

⊗ 1l2×2

U−1 =

0 −2 0

0 0 2

0 0 0

⊗ 1l2×2 U−2 =

0 0 8

0 0 0

0 0 0

⊗ 1l2×2 (A.2)

All odd generators can be written as a product of corresponding even generators times a

γ∗-matrix,

Mn = ε Ln × γ∗ Vn = ε Un × γ∗ (A.3)

with ε a Grassmann-parameter, ε2 = 0, and

γ∗ =

(
1l3×3 O3×3
O3×3 −1l3×3

)
. (A.4)

Equivalently, one can replace in the formulas (A.1), (A.2) everywhere the factor 1l2×2 by

the diagonal Pauli matrix σ3 = diag(1, −1) times the Grassmann parameter ε in order to

obtain the odd generators from the corresponding even ones.

A.2 8 + 1 representation

For deriving entropy and holonomy conditions we use the following matrix representation

of isl(3) generators in terms of 8 + 1-dimensional matrices with a “tensor”- and a “vector”-

block. Generic generators G are written in the form

G =

(
ad8×8 odd8×1
O1×8 0

)
(A.5)
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where ad8×8 is an 8×8 matrix that is an element of sl(3) in the adjoint representation and

odd8×1 is an 8× 1 column vector. The even generators Ln and Un have ad 6= O, odd = O;

the odd generators Mn and Vn have ad = O, odd 6= O. In fact, we can (and will) use the

odd generators as unit basis vectors,

oddMn = En+2 oddVn = En+6 (A.6)

with

Ei = (0, . . . , 0︸ ︷︷ ︸
i−1

, 1, 0, . . . , 0︸ ︷︷ ︸
8−i

)T i = 1..8 . (A.7)

The ad-parts of the even generators compatible with the algebra (2.4) are then given by
the following 8× 8 matrices.

adL−1 = −



0 1 0 0 0 0 0 0

0 0 2 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 3 0

0 0 0 0 0 0 0 4

0 0 0 0 0 0 0 0


adL0 =



1 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0

0 0 0 2 0 0 0 0

0 0 0 0 1 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −1 0

0 0 0 0 0 0 0 −2


adL1 =



0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 4 0 0 0 0

0 0 0 0 3 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 1 0



adU−2 =



0 0 0 0 0 0 4 0

0 0 0 0 0 0 0 16

0 0 0 0 0 0 0 0

0 −2 0 0 0 0 0 0

0 0 −4 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


adU−1 =



0 0 0 0 0 −2 0 0

0 0 0 0 0 0 −2 0

0 0 0 0 0 0 0 4

1 0 0 0 0 0 0 0

0 −1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0


adU0 =



0 0 0 0 2 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 −2 0

0 0 0 0 0 0 0 0

2 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 −2 0 0 0 0 0

0 0 0 0 0 0 0 0



adU1 =



0 0 0 −4 0 0 0 0

0 0 0 0 2 0 0 0

0 0 0 0 0 2 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

3 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0

0 0 −1 0 0 0 0 0


adU2 =



0 0 0 0 0 0 0 0

0 0 0 −16 0 0 0 0

0 0 0 0 −4 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0

4 0 0 0 0 0 0 0

0 2 0 0 0 0 0 0



B Non-constant contributions to spin-2 and spin-3 fields

In this appendix we collect contributions that vanish identically for zero mode solutions

with constant chemical potentials, M′ = N ′ = µ′M = µ′L = µ′V = µ′U = 0. We start with

expressions for the metric appearing in (3.12a).

g(r)uu =
16

3
M
(
µ′UµV − µUµ

′
V

)
− 8

3
Nµ′UµU −

8

3
N ′µ2U

+ 2
(
µ′L(1 + µM)− µLµ

′
M

)
− 4

3

(
µ′′′U µV − µUµ

′′′
V

)
+ 2

(
µ′′Uµ

′
V − µ′Uµ′′V

)
(B.1a)
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g(0
′)

uu = − 2

3
M′′µ2V −

4

3
N ′′µUµV −

5

3
M′µ′VµV +

4

3
N ′
(
µUµ

′
V −

7

2
µ′UµV

)
− 5

3
M
(
2µVµ

′′
V − µ′ 2V

)
− 4

3
N
(
µUµ

′′
V−

5

2
µ′Uµ

′
V+4µ′′UµV

)
− 2(1+µM)µ′′M + µ′ 2M +

2

3
(µVµ

′′′′
V −µ′Vµ′′′V ) +

1

3
µ′′ 2V .

(B.1b)

We continue with the spin-3 field. The four coefficient-functions in Φuuu contained

in (3.14a) read explicitly

Φ(r3)
uuu = − 4

3
M′µ3U −

4

3
Mµ2Uµ

′
U − µ2Lµ′U + 2µLµ

′
LµU +

4

3
µ2Uµ

′′′
U − 2µUµ

′
Uµ
′′
U + µ′ 3U (B.2a)

Φ(r2)
uuu = Φ(r2,Q′′)

uuu + Φ(r2,Q′)
uuu + Φ(r2,Q)

uuu + Φ(r2,rest)
uuu (B.2b)

Φ(r)
uuu = Φ(r,Q2)

uuu + Φ(r,Q·Q′)
uuu + Φ(r,Q′′)

uuu + Φ(r,Q′)
uuu +MΦ(r,M)

uuu +NΦ(r,N )
uuu

+ VΦ(r,V)
uuu + ZΦ(r,Z)

uuu + Φ(r,rest)
uuu (B.2c)

Φ(0)
uuu = Φ(Q2)

uuu + Φ(Q·Q)
uuu +M′′Φ(M′′)

uuu +N ′′Φ(N ′′)
uuu +M′Φ(M′)

uuu +N ′Φ(N ′)
uuu

+MΦ(M)
uuu +NΦ(N )

uuu + VΦ(V)
uuu + ZΦ(Z)

uuu + Φ(rest)
uuu (B.2d)

with the quadratic part

Φ(r2,Q′′)
uuu =

2

3
M′′µ2UµV +

4

3
N ′′µ3U (B.3a)

Φ(r2,Q′)
uuu =M′µU

(
11

3
µUµ

′
V − 2µ′UµV

)
+

10

3
N ′µ2Uµ′U (B.3b)

Φ(r2,Q)
uuu =M

(
µ2Uµ

′′
V +

4

3
µUµ

′′
UµV +

2

3
µUµ

′
Uµ
′
V −

7

3
µ′ 2U µV

)
+ 4N

(
µ2Uµ

′′
U−

1

3
µUµ

′ 2
U

)
(B.3c)

Φ(r2,rest)
uuu = (1 + µM)

(
µ′Lµ

′
U − µLµ

′′
U

)
+ 2µ′M

(
µLµ

′
U − µ′LµU

)
− 2µ′′MµLµU

+ µ′L
(
µ′LµV − µLµ

′
V

)
+

1

3
µ2Lµ

′′
V −

2

3
µ2Uµ

′′′′
V −

4

3
µUµ

′′′
U µ
′
V +

2

3
µUµ

′′
Uµ
′′
V

+
2

3
µUµ

′
Uµ
′ 3
V − µ′ 2U µ′′V − µ′′ 2U µV + µ′′Uµ

′
Uµ
′
V +

4

3
µ′′′U µ

′
UµV (B.3d)

the linear part

Φ(r,Q2)
uuu =

16

9
M2µV

(
µUµ

′
V − µ′UµV

)
+

20

9
MNµ2Uµ′V −

8

3
MNµUµ

′
UµV −

8

9
N 2µ2Uµ

′
U (B.4a)

Φ(r,Q·Q′)
uuu = − 4

3
M′Nµ2UµV +

8

9
MN ′µ2UµV −

8

9
NN ′µ3U (B.4b)

Φ(r,Q′′)
uuu =

2

3
M′′µV

(
µ′UµV − µUµ

′
V

)
+

4

3
N ′′µU

(
µ′UµV − µUµ

′
V

)
(B.4c)

Φ(r,Q′)
uuu =

1

3
M′
(

(1+µM)2µU − (1+µM)µLµV + 2µV(µUµ
′′
V−µ′′UµV) + 8µ′V(µ′UµV−µUµ

′
V)
)

− 2

3
N ′
(

(1 + µM)µLµU − 7µ′ 2U µV + 2µUµ
′′
UµV −

2

3
µ2Uµ

′′
V + 6µUµ

′
Uµ
′
V

)
(B.4d)

Φ(r,M)
uuu =

4

3
(1 + µM)2µ′U − 2(1 + µM)

(
µ′MµU +

2

3
(µLµ

′
V − µ′LµV)

)
+

2

3
µLµ

′
MµV

+
28

9
µ′UµVµ

′′
V −

16

9
µUµ

′′
Vµ
′
V −

4

3
µ′′UµVµ

′
V −

4

9
µUµVµ

′′′
V +

4

9
µ′′′U µ

2
V (B.4e)
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Φ(r,N )
uuu =

2

3
(1 + µM)

(
µ′LµU − µLµ

′
U

)
− 2

3
µLµ

′
MµU + 2µLµ

′
LµV − µ2Lµ′V +

8

9
µUµ

′′′
U µV

− 14

3
µUµ

′′
Uµ
′
V + 2µ′′Uµ

′
UµV +

4

9
µ2Uµ

′′′
V +

5

3
µ′ 2U µ

′
V −

2

9
µUµ

′
Uµ
′′
V (B.4f)

Φ(r,V)
uuu = 8(1 + µM)µUµ

′
V − 8µLµVµ

′
V − 16µ′MµUµV + 16µ′Lµ

2
V (B.4g)

Φ(r,Z)
uuu = 16(1 + µM)µUµ

′
U − 16µLµVµ

′
U − 32µ′Mµ

2
U + 32µ′LµUµV (B.4h)

Φ(r,rest)
uuu = − 1

3
(1 + µM)2µ′′′U + (1 + µM)

(
µ′Mµ

′′
U − µ′′Mµ′U

)
+

1

3
(1 + µM)

(
µLµ

′′′
V − µ′Lµ′′V

)
− µ′ 2Mµ′U + 2µ′′Mµ

′
MµU − 2µ′Lµ

′′
MµV −

2

3
µLµ

′
Mµ
′′
V + µLµ

′′
Mµ
′
V + µ′Lµ

′
Mµ
′
V

+
2

3
µ′′UµVµ

′′′
V −

2

3
µ′UµVµ

′′′′
V −

4

9
µ′′′U µVµ

′′
V −

2

9
µUµ

′′′
V µ
′′
V +

1

3
µ′Uµ

′′ 2
V

− 1

3
µ′Uµ

′′′
V µ
′
V +

2

3
µUµ

′′′′
V µ′V −

1

3
µ′′Uµ

′′
Vµ
′
V +

1

3
µ′′′U µ

′ 2
V (B.4i)

and the constant part

Φ(Q2)
uuu =

2

3
M2

(
5

3
µ2Vµ

′′
V−µVµ

′ 2
V

)
− 4

9
N 2

(
µ2Uµ

′′
V−

5

2
µUµ

′
Uµ
′
V− 8µUµ

′′
UµV+

25

4
µ′ 2U µV

)
(B.5a)

Φ(Q·Q)
uuu =

4

9
MN

(
6µUµVµ

′′
V − µUµ

′ 2
V − 5µ′UµVµ

′
V + 4µ′′Uµ

2
V

)
(B.5b)

Φ(M′′)
uuu =

2

9
Mµ3V +

4

9
NµUµ

2
V −

1

6
(1 + µM)2µV −

2

9
µ2Vµ

′′
V +

1

6
µVµ

′ 2
V (B.5c)

Φ(N ′′)
uuu =

4

9
MµUµ

2
V +

8

9
Nµ2UµV −

1

3
(1 + µM)2µU −

4

9
µUµVµ

′′
V +

1

3
µUµ

′ 2
V (B.5d)

Φ(M′)
uuu = − 1

9
M′µ3V −

4

9
N ′µUµ

2
V +

1

3
Mµ2Vµ

′
V +

16

9
NµUµVµ

′
V −

10

9
Nµ′Uµ2V

− 7

12
(1 + µM)2µ′V +

1

3
(1 + µM)µ′MµV +

2

9
µ2Vµ

′′′
V −

8

9
µVµ

′′
Vµ
′
V +

7

12
µ′ 3V (B.5e)

Φ(N ′)
uuu = − 4

9
N ′µ2UµV+

8

9
MµV

(
7

4
µ′UµV−µUµ

′
V

)
+

8

9
NµU

(
2µ′UµV+µUµ

′
V

)
− 7

6
(1+µM)2µ′U

+
2

3
(1 + µM)µ′MµU +

4

9
µUµVµ

′′′
V −

2

9
µUµ

′
Vµ
′′
V −

14

9
µ′UµVµ

′′
V +

7

6
µ′Uµ

′ 2
V (B.5f)

Φ(M)
uuu = − 5

6
(1 + µM)2µ′′V +

4

3
(1 + µM)µ′Mµ

′
V −

4

3
(1 + µM)µ′′MµV −

1

3
µ′ 2MµV

− 2

9
µ2Vµ

′′′′
V +

4

9
µVµ

′
Vµ
′′′
V −

7

9
µVµ

′′ 2
V +

7

18
µ′ 2V µ

′′
V (B.5g)

Φ(N )
uuu = − 4

3
(1 + µM)2µ′′U +

5

3
(1 + µM)µ′Mµ

′
U −

2

3
(1 + µM)µ′′MµU −

1

3
(1 + µM)µLµ

′′
V

− 2

3
µ′ 2MµU + µ′MµLµ

′
V − 2µ′′MµLµV −

2

9
µU

(
2µVµ

′′′′
V + µ′Vµ

′′′
V − µ′′ 2V

)
+

10

9
µ′UµVµ

′′′
V −

5

9
µ′Uµ

′
Vµ
′′
V −

16

9
µ′′UµVµ

′′
V +

4

3
µ′′Uµ

′ 2
V (B.5h)

Φ(V)
uuu = − 2(1 + µM)µ′ 2V + 8µ′MµVµ

′
V − 16µ′′Mµ

2
V (B.5i)

Φ(Z)
uuu = − 16

3
(1 + µM)µUµ

′′
V + 16µ′MµUµ

′
V − 32µ′′MµUµV +

16

3
µLµVµ

′′
V − 4µLµ

′ 2
V (B.5j)

Φ(rest)
uuu =

1

6
(1 + µM)2µ′′′′V −

1

3
(1 + µM)µ′Mµ

′′′
V +

1

3
(1 + µM)µ′′Mµ

′′
V +

1

3
µ′ 2Mµ

′′
V − µ′Mµ′′Mµ′V

+ µ′′M
2µV +

2

9
µVµ

′′
Vµ
′′′′
V −

1

9
µVµ

′′′
V

2 +
1

9
µ′Vµ

′′
Vµ
′′′
V −

1

6
µ′

2

V µ
′′′′
V −

1

27
µ′′ 3V . (B.5k)
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The remaining non-constant contributions appearing in (3.14) are given by

Φ(r)
ruu = −(1 + µM)µ′U + 2µ′MµU + µLµ

′
V − 2µ′LµV (B.6a)

Φ(0)
ruu =

1

3
(1 + µM)µ′′V − µ′Mµ′V + 2µ′′MµV (B.6b)

and

Φ(r3)
uuϕ = −2

(
µLµ

′
U − µ′LµU

)
(B.7a)

Φ(r2)
uuϕ = −(1 + µM)µ′′U + 2µ′Mµ

′
U − 2µ′′MµU +

2

3
µLµ

′′
V − µ′Lµ′V (B.7b)

Φ(r)
uuϕ = −4

3
M(1 + µM)µ′V −

1

3
M′(1 + µM)µV +

2

3
Mµ′MµV − 2N (µLµ

′
V − µ′LµV)

− 2

3

(
N (1 + µM)µU

)′ − 8VµVµ
′
V − 16Zµ′UµV +

1

3
(1 + µM)µ′′′V −

2

3
µ′Mµ

′′
V + µ′′Mµ

′
V

(B.7c)

Φ(0)
uuϕ = N

(
−1

3
(1 + µM)µ′′V + µ′Mµ

′
V − 2µ′′MµV

)
+ 8Z

(
2

3
µVµ

′′
V −

1

2
µ′ 2V

)
. (B.7d)

C Flat space cosmologies with spin-3 chemical potential

The general result for spin-2 and spin-3 fields, (3.11)–(3.14) together with the formulas

from appendix B, is fairly lengthy. It is therefore useful to consider a simple non-trivial

class of configurations for applications. In this appendix we achieve this by studying zero

mode solutions with most (but not all) chemical potentials switched off. This analysis

provides flat space cosmology solutions with spin-3 hair, which can be considered as the

flat space analogue of BTZ black holes with spin-3 hair [31, 33].

We consider now zero mode solutions, M′ = N ′ = V ′ = Z ′ = 0, with vanishing spin-2

chemical potentials, µM = µL = 0, and constant spin-3 chemical potentials, µ′V = µ′U = 0.

If we have µU 6= 0 then guu acquires a contribution quadratic in the radial coordinate r,

see (3.12a). Since we want to consider solutions that in the spin-2 sector look like flat space

cosmologies [75, 76] we must not have such a contribution. Therefore, we switch off the

even spin-3 chemical potential as well, µU = 0. In this case entropy (5.29) simplifies to the

spin-2 result (5.14).

The metric (3.11) simplifies to

gµν dxµ dxν =

(
M+24VµV+

4

3
M2µ2V

)
du2−2 dr du+

(
L+8UµV

)
2 dudϕ+r2 dϕ2 (C.1)

and the spin-3 field (3.13) simplifies to

Φµνλ dxµ dxν dxλ =

(
2V + 64V2µ3V + 8MVµ2V +

2

3
M2µV −

8

27
M3µ3V

)
du3

−
(

16Vµ2V+
4

3
MµV

)
dr du2+

(
4U− 16

3
(MU−3VL)µ2V+

4

3
MLµV

)
du2 dϕ

+ µV dr2 du− 2LµV dr dudϕ+
1

3

(
− r2MµV + 3L2µV

)
dudϕ2 .

(C.2)
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The metric thus receives a contribution from the spin-3 charges V and U , by contrast

to what happens in the absence of a spin-3 chemical potential [41, 42]. Switching on a

spin-3 chemical potential therefore leads to deformed geometries, some of which can be

interpreted as flat space cosmologies with spin-3 hair.

More specifically, flat space cosmologies with mass parameter m and angular momen-

tum parameter j,

ds2 = m du2 − 2 dr du+ 2j dudϕ+ r2 dϕ2 (C.3)

are obtained for the choices

V =
3(m−M)− 4M2µ2V

72µV

U =
j − L
8µV

. (C.4)

Note, however, that these solutions are singular in general, because the holonomy conditions

in sections 5.1 require V = 0, which uniquely determines the mass parameter m for regular

solutions as

m =M+
4

3
M2 µ2V . (C.5)

Similarly, the last equation (5.13) together with (C.4) determines the angular momentum

parameter j for regular solutions as

j = L − 4

3
M2 µ

2
V

µL

. (C.6)

D Chemically odd configurations

If we keep only the odd chemical potentials, µM 6= 0 6= µV, and switch off the even ones,

µL = 0 = µU, then the connection (3.1) simplifies considerably. In particular, the compo-

nent au now only contains odd generators. This feature permits us to consider a simple

generalization where aϕ is deformed.

Namely, we replace the connection components (3.1) by

au = a(0)u + a(µM)
u + a(µV)

u aϕ = a(0)ϕ + a(ν)ϕ (D.1)

with the same expressions (3.2), (3.3) as before and with the additional term

a(ν)ϕ =

1∑
n=−1

mn(ϕ)Mn +

2∑
n=−2

vn(ϕ)Vn . (D.2)

The additional term a
(ν)
ϕ commutes with the group element b as defined in (2.10) and

with all contributions to au, since all commutators involve exclusively two odd generators.

Moreover, the expression da(ν) vanishes since a(ν) has only a ϕ-component and all the func-

tions therein depend on ϕ only. Therefore, the additional term (D.2) does not contribute

to gauge curvature and the full connection (2.9)–(2.11) with (D.1), (2.13), (3.2), (3.3)

and (D.2) solves the Chern-Simons field equations (2.14).

The asymptotic behavior of the metric and spin-3 field remain essentially unchanged,

so that it may be tempting to consider these generalized flat space solutions of the equations
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of motion as legitimate field configurations. However, as we now show the canonical charges

are in general not well-defined, unless there are some further restrictions on the functions

mn and vn in (D.2).

The boundary condition preserving gauge transformations do acquire additional terms,

ε(0) + ∆ε(0), as compared to (2.18).

∆ε(0) =

(
v1Mχ+

1

3
v2(5Mχ′ + 2M′χ)

)
M0 + ∆εM−1 M−1

+

(
1

2
m1Mχ− 8v2Vχ+

1

2
v2Mε

)
V0 + ∆εV−1 V−1 + ∆εV−2 V−2 (D.3)

with

∆εM−1 =
1

4
m1(Mε+ 16Vχ) +

(
1

2
v2M2 − 1

2
v′2M−

1

3
v′2M′ −

2

3
v2M′′

)
χ

−
(

5

6
v′2M+

7

3
v2M′

)
χ′ − 13

6
v2Mχ′′ + 4v2Vε−

2

3
v1M′χ−

11

12
v1Mχ′ (D.4)

∆εV−1 = − 7

12
m1Mχ′ − 2m1M′χ−

1

6
m′1Mχ+ 4v1Vχ+

1

4
v1Mε

− 32(v2V)′)χ− 16v2V ′χ−
1

6
v2Mε′ − v2M′ε−

1

6
v′2Mε (D.5)

∆εV−2 =
1

48

(
− 2m0M′χ− 5m0Mχ′ − 6m1M2χ+ 6m1M′′χ+ 15m1Mχ′′

+ 18m1M′χ′ − 24m1Vε+ 6v0(16Vχ+Mε)− 48v1V ′χ− 48v1Vχ′ − 3v1M′ε
− 3v1Mε′ − 12m−1Mχ+ v2

(
32V ′′χ+ 32Vχ′′ + 64V ′χ′ − 3M2ε+ 2M′′ε+ 4M′ε′

+ 2M(−24Vχ+ ε′′)
)

+ 2m′′1Mχ+ 6m′1M′χ+ 9m′1Mχ′ − 48v′1Vχ− 3v′1Mε

+ 32v′′2Vχ+ 2v′′2Mε+ 64v′2V ′χ+ 64v′2Vχ′ + 4v′2M′ε+ 4v′2Mε′
)

(D.6)

Insertion of ε(0) + ∆ε(0) into the general result for the canonical currents (2.20) then yields

δQ̂[ε] = δQ[ε] +
k

4π

∮
dϕ

(
2Mδm1ε+ 16Vδv2ε− 8δm−1ε− 4δm0ε

′ − 4δm1ε
′′

− 8

3
Mδv0χ−

10

3
Mδv1χ

′ − 4

3
M′δv1χ−

16

3
Mδv2χ

′′ − 14

3
M′δv2χ′ −

4

3
M′′δv2χ

+ 2M2δv2χ+ 32Vδm1χ+ 32δv−2χ+ 8δv−1χ
′ +

8

3
δv0χ

′′ +
4

3
δv1χ

′′′ +
4

3
δv2χ

′′′′
)

(D.7)

where δQ[ε] is the previous contribution (2.21). The first two new terms, the whole second

line and the first term in the last line are not integrable in general, which means that the

canonical charges are not well-defined.

The simplest way to obtain integrable canonical charges is to demand

δm1 = δv2 = δv1 = δv0 = 0 . (D.8)

With the conditions (D.8) the canonical charges then read

Q̂[ε] = Q[ε] +
k

π

∮
dϕ
(
− 2δm−1ε− δm0ε

′ + 8δv−2χ+ 2δv−1χ
′) . (D.9)
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Note that the canonical charges change if we allow any of the quantities mn or vn to be

state-dependent functions. The quantities m0 and m−1 can be absorbed by redefinitions of

the state-dependent functions and suitable diffeomorphisms. This can be seen as follows.

For simplicity, let us assume V = Z = µV = 0. Switching on m0(ϕ) and m−1(ϕ) in

the deformation of aϕ (D.2) leads to the line-element

gµν dxµ dxν =
(
M(1 + µM)2 − 2(1 + µM)µ′′M + (µ′M)2

)
du2 −

(
1 + µM

)
2 dr du

+
(
(N − 2m−1)(1 + µM)− (r +m0)µ

′
M

)
2 dudϕ+ (r +m0)

2 dϕ2 . (D.10)

The associated canonical charges are given by

Q̂[ε, τ ] =
k

π

∮
dϕ
(
(L − 2m−1 +m′0)ε+Mτ

)
. (D.11)

The coordinate transformation r + m0 → r together with the redefinition of the function

L + m′0 → L allows to eliminate the function m0 from the line-element (D.10) and the

canonical charges (D.11). A redefinition of the function L − 2m−1 → L eliminates the

function m−1 from the line-element (D.10) and the canonical charges (D.11). Therefore,

the functions m0 and m−1 play no physical role. We expect that essentially the same is true

for the quantities v−1 and v−2, replacing diffeomorphisms by spin-3 gauge transformations.

Note, however, that there are more complicated ways to obtain integrable charges

than demanding (D.8). We do not study this issue exhaustively here, but just provide one

non-trivial example. Choosing

m1 = ν(ϕ)M v0 = −12ν(ϕ)V + f(M) δv±2 = δv±1 = δm0 = δm−1 = 0 (D.12)

we obtain integrable canonical charges

Q̂[ε] = Q[ε] +
k

π

∮
dϕν(ϕ)

(
1

4
M2 ε−Mε′′ + 8MV χ− 8Vχ′′

)
+Qf [ε] (D.13)

with

Qf [ε] =
2k

3π

∮
dϕ

(
f(M)χ′′ −

∫ M
dmm

df(m)

dm
χ

)
. (D.14)
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