
J
H
E
P
0
1
(
2
0
1
5
)
1
4
4

Published for SISSA by Springer

Received: July 21, 2014

Revised: November 25, 2014

Accepted: December 17, 2014

Published: January 28, 2015

Cosmological phase transitions and their properties in

the NMSSM

Jonathan Kozaczuk,a Stefano Profumo,b,c Laurel Stephenson Haskinsb,c

and Carroll L. Wainwrightb,c

aTRIUMF,

4004 Wesbrook Mall, Vancouver, BC V6T 2A3, Canada
bDepartment of Physics, University of California,

1156 High St., Santa Cruz, CA 95064, U.S.A.
cSanta Cruz Institute for Particle Physics,

Santa Cruz, CA 95064, U.S.A.

E-mail: jkozaczuk@triumf.ca, profumo@ucsc.edu, laurelesh@gmail.com,

cwainwri@ucsc.edu

Abstract: We study cosmological phase transitions in the Next-to-Minimal Supersym-

metric Standard Model (NMSSM) in light of the Higgs discovery. We use an effective

field theory approach to calculate the finite temperature effective potential, focusing on

regions with significant tree-level contributions to the Higgs mass, a viable neutralino dark

matter candidate, 1–2 TeV stops, and with the remaining particle spectrum compatible

with current LHC searches and results. The phase transition structure in viable regions of

parameter space exhibits a rich phenomenology, potentially giving rise to one- or two-step

first-order phase transitions in the singlet and/or SU(2) directions. We compute several

parameters pertaining to the bubble wall profile, including the bubble wall width and ∆β

(the variation of the ratio in Higgs vacuum expectation values across the wall). These quan-

tities can vary significantly across small regions of parameter space and can be promising

for successful electroweak baryogenesis. We estimate the wall velocity microphysically,

taking into account the various sources of friction acting on the expanding bubble wall.

Ultra-relativistic solutions to the bubble wall equations of motion typically exist when

the electroweak phase transition features substantial supercooling. For somewhat weaker

transitions, the bubble wall instead tends to be sub-luminal and, in fact, likely sub-sonic,

suggesting that successful electroweak baryogenesis may indeed occur in regions of the

NMSSM compatible with the Higgs discovery.
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1 Introduction

The origin of the matter-antimatter asymmetry in the Universe remains one of the key open

problems at the interface of cosmology and particle physics. While a primordial asymmetry

is not observationally ruled out, the relatively small size of the observed asymmetry —

roughly one part in 10 billion — combined with the success of the inflationary paradigm

in diluting away primordial relics, suggest a dynamic origin of the asymmetry. Many such
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baryogenesis mechanisms have been proposed, occurring at widely differing points in the

history of the Universe, and involving correspondingly different physical scales [1–3].

Among baryogenesis scenarios, those invoking physics at the electroweak phase tran-

sition (electroweak baryogenesis, or EWB) have attracted much interest. This is because

such models generically require new physics at scales that are within the reaches of current-

generation colliders, intensity-frontier precision measurements, and, potentially, planned

gravitational wave detectors at the cosmic frontier (for a recent review of electroweak

baryogenesis see e.g. [4]). One framework which, in principal, contains all of the ingre-

dients necessary for successful electroweak baryogenesis is the minimal supersymmetric

extension of the Standard Model, or MSSM [5].

The discovery of a Higgs particle at the Large Hadron Collider (LHC), and the lack

of any signals for supersymmetric particles, have started to put significant pressure on the

corner of MSSM parameter space compatible with EWB [6]. In particular, it was shown

in a recent analysis [6] that requiring both a strongly first-order phase transition and a

Higgs mass around 125 GeV forces one of the two stop squark masses to be in the 106 TeV

range, with the other one around 120 GeV. This in turn requires a light neutralino, with

a mass lower than 60 GeV, contributing to the invisible decay width of the Higgs and

thereby reducing the enhancement in gluon-gluon fusion Higgs production from the light

stop [7]. Additionally, searches for stop squarks at the LHC have all but ruled out the

light stop scenario in the MSSM directly [8, 9], albeit with some possible loopholes. Apart

from the requirement of a strongly first order phase transition, the CP-violating sources

in the MSSM are also highly constrained by current limits from electric dipole moment

experiments [10–12]. In light of these recent developments, MSSM EWB appears quite

unnatural at best, if not plainly contrived.

An alternative supersymmetric framework for electroweak baryogenesis is one in which

the MSSM Higgs sector (consisting of two Higgs doublets) is enlarged to include an addi-

tional singlet superfield — a setup known as the next-to-minimal supersymmetric extension

to the Standard Model, or NMSSM. It has long been appreciated [13, 14] that tree-level

cubic terms in the Higgs potential might provide a strongly first-order electroweak phase

transition, relaxing the model-building challenges one faces in the MSSM. Nevertheless,

relatively little is known about the details of how the phase transition proceeds in this

case. Many previous studies of the NMSSM and related non-minimal SUSY models have

exclusively considered one-step electroweak phase transitions [13–23], while others have

considered the possibility of a more complicated pattern of symmetry breaking [24], albeit

prior to the Higgs discovery and with several assumptions about the spectrum that are no

longer justified. Also lacking are detailed predictions for the quantities pertaining to the

bubble wall profile and which enter the calculation of the baryon asymmetry in the context

of EWB. To the best of our knowledge, amongst the previously mentioned studies only

ref. [15] attempts this task. However, they considered a slightly different scenario, and,

more critically, did not have knowledge of the Standard Model Higgs discovery. A major

aim of our study is to bridge this gap.

The baryon asymmetry produced during electroweak baryogenesis often depends cru-

cially on the SU(2) and singlet wall thickness between the broken and unbroken electroweak
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phase (Lw and Ls), the relative variation of the neutral SU(2) Higgs fields across the wall

(a quantity dubbed ∆β), and the velocity of the wall relative to the plasma (vw). Although

there are some notable exceptions [26, 27], in many cases the resulting baryon asymmetry

is directly proportional to ∆β and inversely proportional to Lw [25, 28]. The dependence

on the wall velocity is more complicated [25, 28]: if vw is too small, the baryon asym-

metry will be diluted by interactions with the plasma in front of the bubble wall, while

for quickly moving walls, the SU(2) sphalerons do not have sufficient time to act on the

diffusing chiral current, leading again to a suppression of the asymmetry. In the litera-

ture, typical ranges for Lw and ∆β have been given for the case of the MSSM [29] and

the general (non-scale-invariant) NMSSM [15], but no detailed studies exist taking into

account the crucial requirement of a 125 GeV SM-like Higgs. Little has been discussed in

the literature about what drives these quantities and how sensitive their values are to the

underlying input parameters of the theory. On the other hand, the wall velocity and the

related issue of runaway bubble walls (i.e. bubbles which accelerate indefinitely) have not

yet been rigorously addressed in the NMSSM.

The present study also addresses a few technical aspects of the calculation of the elec-

troweak phase transition that had previously been glossed over in the NMSSM. Most impor-

tantly, to deal with potentially large logarithms arising in the one-loop effective potential,

we integrate out both stop squarks (which we assume are heavy) and work in an effective

field theory with two Higgs doublets, a singlet, neutralinos/charginos, and the remaining

SM spectrum. We have implemented this setup in the widely-used CosmoTransitions

software package [30] and detail our set-up for use in future studies.

Our approach will be to focus on a well-defined corner of the NMSSM parameter space

which is both phenomenologically viable and demonstrative of a broad variety of outcomes

for the patterns of electroweak symmetry breaking. By “viable” we mean that every one

of the points we consider features a Higgs sector entirely compatible with results from the

LHC, a sparticle spectrum compatible with LHC searches, a lightest neutralino with a

thermal relic abundance matching the observed dark matter density, and with direct and

indirect detection rates in accordance with current limits.

Focusing on a specific region of the NMSSM parameter space, we produced a set of

points exhibiting several different patterns of electroweak symmetry breaking. For each

point, we calculated the various phase transition properties, including the relevant friction

coefficients needed for a detailed estimate of the bubble wall velocity, as well as the predicted

spectrum of gravitational waves from bubble collisions in the early universe. One of our

key findings is that even this small region of parameter space can exhibit a broad variety

of outcomes for the quantities relevant for EWB. Parameters pertaining to the bubble wall

profile and expansion, which are critical inputs for computing the baryon asymmetry in

EWB, can vary by up to an order of magnitude, even across the small slice of parameter

space near our benchmarks, and take on favorable values for successful EWB. For example,

the SU(2) wall width varies in the broad range 1 . LwT . 20; the parameter ∆β also spans

a large range of values, 0.01 . ∆β . 0.5; the bubble wall velocity is found to be roughly

∼ O(0.01–0.1) for sub-sonic bubbles. We do not find any detectable level of gravitational

wave emission for any of the points considered.
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The rest of this manuscript is organized as follows. Section 2 introduces the model un-

der consideration (the scale-invariant NMSSM), the associated effective potential, and our

computational strategy. In particular, we explain how we deal with large logarithms, and

detail how we implement the effective potential in CosmoTransitions. Section 3 presents

the parameter space we consider, focusing on the phenomenology of the relevant particle

sectors (neutralinos/charginos, sfermions, Higgses). Subsequently, section 4 describes how

we study the electroweak phase transition and its associated properties, and presents our

key findings. The computation of the wall velocity is then given in section 5, including

details about the setup used to solve the wall’s equation of motion, the relevant microphys-

ical sources of friction, and their computation. Our summary and conclusions are given

in section 6, just before two appendices: one (appendix A) lists the relevant renormal-

ization group equations for the parameters entering the effective potential, and the other

(appendix B) provides the matrix elements used to estimate the various friction coefficients

governing the expansion of the bubble wall in the plasma.

2 The scale-invariant NMSSM and effective field theory

2.1 Overview of the strategy

Before delving into the details of our analysis, we outline the key steps comprising our

strategy for studying phase transitions in the NMSSM:

1. Begin by choosing NMSSM parameters at Mt̃, the scale set by the stop squark masses.

These can be fed into a spectrum calculator (we use NMSSMTools [31, 32], as dis-

cussed further below) for a precise determination of the spectrum to check against

phenomenological constraints.

2. Integrate out the stop squarks from the spectrum, since they are assumed to be

heavy. The resulting theory contains two complex Higgs doublets, Higgsinos, winos,

a complex singlet, singlino, and a bino, along with the rest of the Standard Model

spectrum. This results in a (non-supersymmetric) two Higgs doublet plus singlet

(2HD+S) potential for the scalar fields.

3. Match the NMSSM parameters at Mt̃ onto the parameters of the 2HD+S potential,

including the relevant threshold corrections.

4. Solve the renormalization group equations (RGEs) for the various quartic and di-

mensionful parameters in the potential to evolve them from Mt̃ to mt. We will do so

approximately using a fixed order approximation, but this can also be done exactly.

5. Include the 1-loop zero temperature contributions to the potential. Impose countert-

erms to minimize the dependence of the effective potential on the renormalization

scale Λ.

6. Add the finite temperature contribution to the potential. The full 1-loop effective

potential can then be fed into CosmoTransitions [30] to compute the phase transition

properties, as discussed in more detail in section 4.1.
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Readers not concerned with the details of the above procedure should proceed directly

to our discussion of the particle spectra in section 3. The remainder of this section is

devoted to elucidating the aforementioned steps of our analysis.

2.2 The model

Our starting point is the so-called scale-invariant NMSSM. In this incarnation, a Z3 sym-

metry forbids dimensionful parameters in the superpotential W , which is here given by

W = WMSSM|µ=0 + λŜĤu · Ĥd +
κ

3
Ŝ3. (2.1)

The hatted quantities above represent the chiral SU(2) superfields Ĥu =
(
Ĥ+
u , Ĥ

0
u

)
, Ĥd =(

Ĥ0
d , Ĥ

−
d

)
, while Ŝ is a gauge singlet chiral superfield. The dot represents the usual anti-

symmetric SU(2) product. Supersymmetry is softly broken, with

∆Vsoft = m2
Hu |Hu|2 +m2

Hd
|Hd|2 +m2

S |S|2 + λAλHu ·HdS +
1

3
κAκS

3. (2.2)

The tree-level potential is then given by

V =
g2

4

(
|H0

u|2 + |H+
u |2−|H0

d |2−|H−d |
2
)2

+
g22
2
|H+

u H
0∗
d +H0

uH
−∗
d |

2 + ∆Vsoft +
∑
i

|Fi|2,

(2.3)

where g2 ≡ (g21 +g22)/2, g1 and g2 denote the U(1) and SU(2) gauge couplings, respectively,

and the sum over the F -terms is over H0
u,d, S, with F ≡ ∂W/∂φi. For details regarding

the rest of the spectrum, we refer the reader to refs. [22, 31, 32], whose notation and

conventions we follow here unless otherwise stated (see also ref. [33] for a more detailed

review).

Note that, because the superpotential respects a discrete Z3 symmetry, this model

will lead to dangerous domain wall formation in the early universe. This has been long

appreciated and can be avoided e.g. by allowing for non-renormalizable operators which

break the symmetry explicitly at some high scale. These operators will have no discernable

effect on the electroweak physics we are interested in. However, in this case, one must

still ensure that the new operators do not induce unacceptably large tadpole terms for the

singlet. This can be accomplished by imposing additional discrete symmetries to forbid

the dangerous operators at tree-level. For further discussion we refer the reader to ref. [33]

and the references therein.

2.3 NMSSM effective potential

Anticipating electroweak symmetry breaking, we write the Higgs and singlet fields as

Hu =
1√
2

(
0

hu

)
; Hd =

1√
2

(
hd
0

)
; S =

1√
2
s . (2.4)
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In terms of these fields, the portion of the tree-level potential relevant for the electroweak

phase transition becomes

V0(hu, hd, s) =
1

32
(g21 + g22)(h2u − h2d)2 +

1

4
κ2s4 − 1

2
λκs2huhd +

1

4
λ2
(
h2dh

2
u + s2(h2d + h2u)

)
+

√
2

6
κAκs

3 −
√

2

2
λAλshuhd +

1

2
m2
dh

2
d +

1

2
m2
uh

2
u +

1

2
m2
ss

2. (2.5)

The vacuum expectation values (VEVs) of the scalar fields are assumed to be real at all

temperatures. We ensure that the potential is meta-stable in the charged and imaginary

directions (that is, its Hessian matrix has only positive eigenvalues), but we do not check

for the existence of or tunneling to charged vacua. After electroweak symmetry breaking,

and at zero temperature in the physical vacuum, we define 〈hu〉 ≡ vu, 〈hd〉 ≡ vd, and

〈s〉 ≡ vs as usual. Note that the non-zero vacuum expectation value of s generates an

effective µ term in the superpotential eq. (2.1), µ ≡ λvs/
√

2.

The zero temperature potential in eq. (2.5) receives quantum corrections from all

fields which couple to hu,d and s. These corrections are given by the well-known Coleman-

Weinberg expression

V1(T =0) =
∑
i

±ni
64π2

m4
i

[
log

(
m2
i

Λ2

)
− ci

]
. (2.6)

Here m2
i are the field-dependent mass-squared values, ni are their associated number of

degrees of freedom, and Λ is the renormalization scale. The constants ci depend on the

renormalization scheme. We choose to work in the MS prescription, whereby c = 1
2 for the

transverse polarizations of gauge bosons, while c = 3
2 for their longitudinal polarizations

and for all other particles. The plus and minus signs in eq. (2.6) are for bosons and fermions,

respectively. The sum over the relevant particles i includes all Standard Model particles (we

ignore fermions lighter than the bottom quark since their Yukawa couplings are small), the

physical Higgs and other scalar particles, their associated Goldstone bosons, the neutralinos

and the charginos. We work in Landau gauge so that the ghost bosons decouple and need

not be included in the spectrum.

Note that the one-loop potential contains explicit gauge-dependence [34–37], which

cancels against the implicit gauge-dependence of the VEVs at every order in ~. As is

common practice, we do not consider the effects of the implicit gauge-dependence, and so

our results will contain gauge artifacts. However, our primary purpose in examining the

effective potential is to estimate whether or not a first-order phase transition is possible

and to infer its general properties in comparison with e.g. the MSSM, for which purpose

a calculation with gauge-dependence is acceptable. Additionally, since the transitions are

driven primarily by the singlet contributions to the potential, Landau gauge would appear

to be a reasonable choice, since the gauge-dependent contribution to the finite temperature

effective potential in this gauge is small. Defining a gauge-independent version of the one-

loop effective potential including the full bosonic thermal contribution is an open problem

and is beyond the scope of the present study.

We will be primarily interested in regions of the NMSSM with moderately heavy

(∼ 1–2 TeV) stops. The stops enter the 1-loop zero-temperature effective potential through
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eq. (2.6). The top Yukawa coupling controls both the coupling of the top quarks and stop

squarks to the Higgs fields, and since there is a large hierarchy in scale between the tops

and stops, large logarithms will inevitably arise from a naive application of eq. (2.6). This

situation is quite unacceptable for calculating the phase transition properties using the

one-loop potential, since the large differences between tree-level and one-loop expressions

signify a substantial dependence on the renormalization scale Λ and the need to go to

higher orders in the loop expansion. To avoid this issue, we employ an effective field theory

approach, which we describe below. It involves integrating out the stops and working in

the resulting model with two Higgs doublets, a singlet, neutralinos/charginos, and the rest

of the SM spectrum with a renormalization scale near the electroweak scale.

2.4 Dealing with large logarithms

In keeping with the usual convention, we will use as inputs the NMSSM parameters defined

at the stop mass scale, Mt̃. To avoid the large logarithms arising from the stops in eq. (2.6),

we will integrate the stops out at Mt̃ (see e.g. refs. [38–42]). Below this scale, the tree-level

potential can be described by the following general two Higgs doublet + singlet (2HD+S)

potential [43–45]

V0 =
1

2
λ1|Hd|4 +

1

2
λ2|Hu|4 + (λ3 + λ4)|Hd|2|Hu|2 − λ4|H†uHd|2 + λ5|S|2|Hd|2

+ λ6|S|2|Hu|2 + λ7(S
∗2Hd ·Hu + h.c.) + λ8|S|4 +m2

1|Hd|2 +m2
2|Hu|2 +m2

3|S|2

−m4(Hd ·HuS + h.c.)− 1

3
m5(S

3 + h.c.) . (2.7)

Comparing the above potential with eq. (2.5), at the scale Λ = Mt̃ one can define

λ01 = λ02 =
1

4
(g21 + g22) , λ03 =

1

4
(g22 − g21) , λ04 = λ2 − 1

2
g22

λ05 = λ06 = λ2, λ07 = −λκ , λ08 = κ2.
(2.8)

Similarly, for the mass terms, we have

m0
4 = λAλ m0

5 = −κAκ . (2.9)

Integrating out the stops results in threshold corrections to the parameters in eq. (2.8).

Keeping only renormalizable terms in the potential, the only relevant threshold correction

at Mt̃ is to the hu quartic,

∆λ2 =
3y4tA

2
t

8π2M2
t̃

(
1− A2

t

12M2
t̃

)
. (2.10)

Then, at the scale Mt̃, the parameters in eq. (2.7) are given by

λi = λ0i + ∆λi

mi = m0
i

(2.11)

and where ∆λi = 0 for i 6= 2.
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Ultimately, in analyzing the phase transition structure of the theory using the effective

potential, we would like to work at a renormalization scale Λ ∼ mt to reduce the logarithmic

contribution from the top quark in the physical minimum. To do so requires the various

parameters at the scale Λ, which can be obtained by solving the relevant renormalization

group equations. The most important contributions to the RGEs are those from the top

quarks, gauge bosons, Higgs and singlet bosons, Higgsinos, and singlinos. We do not include

the gaugino contributions, since in the benchmark points we study the wino is always rather

heavy and the bino does not significantly affect the running. We list the relevant RGEs,

along with more details about which contributions we consider, in appendix A.

A complete resummation of the large logarithms requires solving the full set RGEs.

However, for our purposes it is sufficient to consider the lowest order solutions, given by

λi(mt) ' λi(Mt̃)− βλi log
M2
t̃

m2
t

mi(mt) ' mi(Mt̃)− βmi log
M2
t̃

m2
t

.

(2.12)

The above approximation corresponds to keeping only the first term in the loop expansion.

With the parameters defined at mt, one can take derivatives of the effective potential of

eq. (2.7) and obtain the mass matrices for the various Higgs bosons. We will denote the

lightest CP-even (odd) Higgs mass eigenstate as hs (as), since it is very singlet-like for all

of our benchmarks. The second-lightest CP-even Higgs mass eigenstate is denoted by h

and will be Standard Model-like for all points considered. We use v = 246 GeV, as well

as the values of tanβ and vs (obtained from µ and λ) as input parameters at Λ = mt

instead of m1,2,3, solving for the latter by minimizing the tree-level potential. We find that

the above procedure yields good agreement with more complete calculations, the masses

and mixing matrix entries for the scalars and pseudoscalars falling within a few percent

of those calculated using NMSSMTools [31, 32]. For our purposes, this is sufficient and it

encapsulates the sizable corrections from the stop sector to the SM-like Higgs mass, as well

as the other dominant 1-loop contributions.

The one-loop effective potential given by eq. (2.6) has non-zero derivatives at the tree-

level minimum, so the one-loop and tree-level minima do not coincide. We follow the

strategy of ref. [46] and employ counterterms to cancel the one-loop effects, ensuring that

the electroweak minimum of the one-loop plus counterterm-corrected effective potential is

the same as that given by the parameters β, µ, and λ. The counterterms can be written as

Vct = δm2
1|Hd|2 + δm2

2|Hu|2 + δm2
3|S|2. (2.13)

In principle, one could also impose counterterms to ensure that the masses do not change

between the tree-level and one-loop potentials. However, we find that the masses at one-

loop do not differ drastically from their tree-level counterparts, and since it is the tree-level

masses that enter the one-loop finite temperature contribution to the effective potential,

we do not include these terms.

Finally, using the improved effective potential, we can compute the various masses for

the particles and use them to calculate the 1-loop zero-temperature effective potential via

– 8 –
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eq. (2.6). The full one-loop contribution at finite-temperature is given by

V1(T >0) = V1(T =0) +
T 2

2π2

∑
i

niJ±

(
m2
i

T 2

)
, (2.14)

where

J±(x2) ≡ ±
∫ ∞
0

dy y2 log
(

1∓ e−
√
y2+x2

)
(2.15)

and again the upper (lower) signs correspond to bosons (fermions). The sum includes

all of the same particles included in eq. (2.6). At high temperature, the validity of the

perturbative expansion of the effective potential breaks down. Quadratically divergent

contributions from non-zero Matsubara modes must be re-summed through inclusion of

thermal masses in the one-loop propagators [47, 48]. This amounts to adding thermal

masses to the longitudinal gauge boson degrees of freedom and to all of the scalars. That

is, the bosonic mass matrices M2
ij , from which the individual eigenvalues m2

i are calculated,

receive extra thermal mass contributions M2
ij → M2

ij + ΠijT
2. The thermally corrected

eigenvalues are then re-input into eq. (2.14), yielding the re-summed finite-temperature

effective potential.

The full one-loop effective potential at finite temperature is then given by

V (hu, hd, s, T ) = V0(hu, hd, s) + V1(T =0) +
T 2

2π2

∑
i

niJ±

(
m2
i

T 2

)
+ Vct (2.16)

where the masses m2
i are field-dependent (calculated from the 2HD+S potential with coun-

terterms) and include thermal mass corrections. This potential can then be used to deter-

mine the phase structure of phenomenologically viable NMSSM parameter space points.

We emphasize that the application of this approach to the NMSSM is a novel feature

of our analysis and allows for a correct treatment of the stop sector in studying phase

transitions close to the electroweak scale. For a similar strategy in the MSSM at two loops,

see ref. [41].

With our strategy laid out, we now turn to the parameter space we wish to explore.

3 The parameter space

Even in its Z3 symmetric incarnation, the NMSSM parameter space is very large. Instead

of performing numerical scans over all of the parameter space, our approach is to study

the phase transition properties in a particular region of the NMSSM motivated by Higgs

physics, SUSY searches, dark matter constraints, and naturalness arguments. As we will

see, even in the small parametric window we consider, the phase structure exhibits a rich

phenomenology.

Most recent studies [21, 23] have focused on regions with very light Higgs and neutralino

states. In light of the Higgs discovery and the non-observation of non-SM particles at the

LHC, we will instead consider parameter space which accommodates:
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• A significant tree-level contribution to the SM-like Higgs mass. This corresponds to

regions with sizable λ and low tanβ. Note that large values of λ are not necessarily

required for a strongly first order EWPT [21], but they do reduce the fine-tuning

required to obtain the correct Higgs mass [49–51].

• Very little mixing between the singlet-like and SM-like Higgses, the latter in good

agreement with LHC observations.

• Moderately heavy stops and other sfermions, in the 1–2 TeV range. This is moti-

vated by naturalness arguments [49–51] and the non-observation of superpartners at

the LHC.

• A viable neutralino dark matter candidate which saturates the observed relic abun-

dance and is compatible with direct- and indirect-detection experiments.

• Higgs and chargino/neutralino spectra compatible with current LHC limits.

Additionally, we will focus on regions with relatively small κ ∈ [0.1, 0.15]. This is appealing

from the standpoint of electroweak baryogenesis, since κ governs the quartic couplings

involving the singlet, and a smaller quartic coupling tends to strengthen the phase transition

along the corresponding field direction (this behavior is familiar from the SM case [52]).

Taken together with our other parametric choices, this results in the singlet-like CP-even

Higgs state being lighter than the SM-like Higgs for the points we consider. We will

comment further on this feature below.

Our study will be centered around several representative benchmark points in line with

the considerations outlined above. The details of the benchmarks and their associated

phenomenology are given in table 1 below. These points are in good agreement with all

relevant experimental observations, involve relatively low fine-tuning, and will be shown to

exhibit dramatically different symmetry breaking patterns in the early universe. Note that

the spectra in table 1 are quite insensitive to changes in Aκ. To a good approximation,

varying Aκ amounts simply to varying the singlet-like Higgs masses. This can be seen by

comparing the spectra of BM 1 and 2, or BM 3 and 4. Both pairs feature an identical choice

for the remaining parameters, with the individual points differing only in their values for

Aκ. To illustrate the variation of the phase transition properties around the benchmark

points, we will vary Aκ (and hence mhs) around the values listed in table 1. For this

purpose we define three sets of points, Sets I, II, III, corresponding to the parameter values

(except Aκ) for BM 1/2, BM 3/4, and BM 5. We will scan over Aκ for these three sets in

section 4.

Before moving on to our analysis of the phase transition properties, in the remain-

ing portion of this section we discuss the various phenomenological features of these

points, explaining why they are good candidates for beyond-the-Standard Model physics

and promising for electroweak baryogenesis. The spectra are computed using NMSSMTools

4.2.1 [31, 32], with the DM properties calculated by MicrOmegas 3.3 [53–55]. We addi-

tionally check the Higgs sector using the HiggsBounds 4.1 package [56–58]. We require

all of our points to pass all relevant experimental constraints implemented in NMSSMTools,
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Set I Set II Set III

BM 1 BM 2 BM 3 BM 4 BM 5

λ 0.63 0.63 0.6 0.6 0.61

κ 0.12 0.12 0.13 0.13 0.12

Aλ [GeV] 335 335 350 350 360

Aκ [GeV] −90 −129 −56 −79 −154

tanβ 1.5 1.5 1.7 1.7 1.6

µ [GeV] 180 180 180 180 190

M1 [GeV] −100.0 −100.0 −103.5 −103.5 −102.0

MQ̃3
= MŨ3

[TeV] 1.0 1.0 1.5 1.5 1.2

At [GeV] 400 400 1500 1500 1200

mh [GeV] 125.5 125.3 125.7 125.5 125.5

mhs
[GeV] 107.2 101.2 109.4 105.6 95.4

mas [GeV] 129.6 143.3 119.1 129.3 155.1

|∆max| 3.7 3.7 7.8 7.8 5.2

mχ̃0
1

[GeV] 105.4 105.4 107.8 107.8 106.7

Ωh2 0.12 0.12 0.12 0.12 0.12

σSI [10−45 cm2] 1.26 1.26 1.21 1.21 1.12

σSD [10−42 cm2] 5.12 5.12 11.61 11.61 6.80

〈σv〉 [10−29 cm3/s] 3.28 3.28 4.04 4.04 2.68

Table 1. The benchmarks considered in this study exemplifying the different phase transition

possibilities in the NMSSM. Aside from yielding various first-order phase transitions, parameters

are chosen to yield a ∼ 125 GeV Higgs with properties compatible with the resonance observed at

the LHC, a viable neutralino dark matter candidate, and with the rest of the particle spectrum

compatible with LHC searches and other constraints (see text). The wino, gluino, and other

sfermion soft breaking masses (besides Mt̃) are set to M2 = −600 GeV and M3 = Msf = 1.5 TeV

for all benchmarks. Note that the values of these masses do not significantly affect the scenarios

we consider and can be increased if so desired.

MicrOmegas, and HiggsBounds, except those arising from the muon g− 2 and from requir-

ing perturbativity up to the GUT scale. The former can be ameliorated by e.g. including

lighter sleptons and the latter by demanding that some new physics enter below the GUT

scale [59, 60]. Neither will affect any of our analysis of the phase transition or the particle

phenomenology. BM 1 and 2 have a Landau pole below MGUT as a result of the large values

of λ and small tanβ considered in these cases. We discuss the other relevant constraints

in more detail below.

3.1 Neutralino/chargino sector

One of supersymmetry’s virtues is that it can provide a viable dark matter candidate

in the lightest supersymmetric particle (provided R-parity conservation), which in many

cases is the lightest neutralino. Consequently, we require all of our benchmarks to have a

lightest neutralino LSP in agreement with both direct and indirect detection experiments
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and consistent with the observed relic density of dark matter [61, 62]

0.091 ≤ Ωh2 ≤ 0.138 , (3.1)

where h here is the local Hubble expansion parameter in units of 100 km/s/Mpc. The

interval quoted above corresponds to the 2σ limits from the WMAP 9-year data including

10% theoretical uncertainty, and it also encompasses the range suggested by PLANCK

data. A viable neutralino DM candidate is not a requisite feature of SUSY; it is possible

to instead have e.g. an axion [63] or gravitino [64] dark matter particle. Requiring the

LSP to make up 100% of the observed dark matter density is not essential to our study

and can be dropped in favor of another dark matter mechanism.1 However, one feature

that we do find to be important for EWB is relatively low values of µ . 300 GeV [22].2

This is because µ = λvs/
√

2 and vs must generally be near the electroweak scale for

the singlet to significantly impact the EWPT. For typical strongly first-order transitions

involving the singlet (in the absence of large supercooling), Tn ∼ vs(Tn), and so if vs � v,

one will typically find v(Tn)/Tn � 1 (for a one-step phase transition). Low values of µ

imply the existence of at least two relatively light neutralinos and one light chargino pair.

Higgsino-like neutralinos are not viable dark matter candidates, since they are always

under-abundant. Thus, requiring a neutralino LSP DM particle necessitates introducing

either light bino or singlino states as the LSP.

For the points we consider, the lightest neutralino is bino-like and close in mass to

the singlino-like χ0
2, with mχ0

2
− mχ0

1
approximately 200 to 2000 MeV. This allows for

efficient co-annihilation to suppress the thermal relic density, since pure bino dark matter

is systematically over-abundant. Consequently, our benchmarks all feature moderately light

neutralinos and charginos, with the exception of the wino-like particles, which we take to

have masses of 600 GeV so that their effects are largely decoupled from the standpoint

of current experimental searches. We did not attempt to choose masses consistent with

gaugino mass unification, although it may be possible to do so. Of course, there would be

much more freedom in choosing these parameters if we were to drop the requirement of a

viable neutralino dark matter candidate. Note that, since we consider µ . 300 GeV, all of

our benchmarks will feature significant mass splitting between the chargino states, which

suppresses the corresponding wino-Higgsino CP-violating sources relevant for electroweak

baryogenesis [25]. However, there are several options for CP-violation which do not depend

on the charginos. Neutralinos can effectively source the baryon asymmetry [65] (M1 can be

adjusted rather straightforwardly), and there are other potential sources in the NMSSM

involving the scalars that have not been fully explored. Thus, we believe that there is

substantial room to include the necessary CP-violating sources required for successful EWB

in the parameter space we consider. We defer a more detailed study of CP-violating sources

in the NMSSM to future study.

Since the LSP is bino-like, the cross-sections for spin-independent and spin-dependent

scattering of χ0
1 with nucleons, denoted σSI, σSD, respectively, are in agreement with

1Of course one must ensure that the LSP is not over -abundant, regardless of the dark matter candidate.
2Coincidentally, this range of µ is also favored by naturalness arguments [49–51].
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LUX [66], XENON100 [67], and with other direct detection experiments for all the bench-

mark points we consider. The zero-temperature annihilation rates for the various bench-

mark points are also compatible with limits from the Fermi large area telescope [68]. Of

course, dropping the requirement of a viable neutralino dark matter candidate, the signals

predicted for direct- and indirect-detection experiments will be significantly weakened, since

the LSP will only make up a fraction of the dark matter abundance.

This set-up is also comfortably compatible with current LHC limits on electroweak-

ino production. While the winos are heavy, the Higgsino-like charginos and neutralinos

in all of our benchmarks have masses between 200–300 GeV, and decay with almost 100%

branching ratio to final states involving χ0
2. Since the mass splitting between χ0

1 and χ0
2

is small, we have typically BR(χ0
2 → χ0

1γ) ≈ 100%. The resulting photon is very soft and

although the decay can result in a displaced vertex, the decay products will simply be

counted as missing energy, since such soft photons fall well below the trigger thresholds

in the ATLAS and CMS electromagnetic calorimeters. Thus, from the standpoint of LHC

searches, the parameter space we explore can be thought of as an effective light singlino-

Higgsino scenario, as considered in e.g. refs. [69, 70]. The most relevant LHC constraints are

those arising from ATLAS [71] and CMS [72] searches for trileptons with missing transverse

energy. A simple application of the limits from ref. [69] shows that Benchmarks 1–5 lie well

within the allowed region of parameter space, although they may be probed at the 14 TeV

LHC [70]. As a check, we have simulated events using the Madgraph [73]-Pythia [74]-

Delphes [75] pipeline, utilizing the program CheckMATE [76] to perform the cuts and check

against existing ATLAS searches. As expected, the benchmarks satisfy current constraints

from trilepton, mono-jet [77], jets + MET [78], and di-lepton [79] searches at ATLAS (the

corresponding CMS searches have not yet been validated for use with CheckMATE). While

the collider phenomenology of the regions we consider here deserves a more detailed study,

it is beyond the scope of this work. Here, we simply emphasize that the benchmark points

listed in table 1 all satisfy current LHC constraints on chargino and neutralino searches.

3.2 Sfermion sector

Heavy superpartners are not fundamentally required from the standpoint of electroweak

baryogenesis, but rather by their non-observation so far at the LHC. For mχ0
1
∼ 100 GeV,

as in our benchmarks, ATLAS and CMS currently exclude stops with masses less than

about 700 GeV [80–82], albeit with some caveats and potential loopholes. Nevertheless,

we take the stop masses to be at or above 1 TeV. All other sfermions are also assumed to

have larger masses, set to 1.5 TeV for all benchmarks. Although stop masses above a TeV

are already in some tension with naturalness [49–51], all of our benchmarks fall within the

10–30% fine-tuning range as computed in NMSSMTools 4.2.1 [31, 32, 83] and are arguably

quite natural in this sense. To quantify the amount of tuning for each of our benchmarks,

in table 1 we show the value of ∆max for each point, defined by [83]

∆max ≡ Max{∆GUT
i } , ∆GUT

i =

∣∣∣∣ ∂ log(MZ)

∂ log(pGUT
i )

∣∣∣∣ (3.2)
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where pGUT
i are the input parameters of the theory at the GUT scale. The amount of

fine-tuning is given approximately by 1/∆max. For all benchmarks, pGUT
max = m2

hu
, except

for BM 2, which features pGUT
max = Aλ.

For the sfermion mixing parameters, we choose all tri-scalar couplings to be less than

2 TeV. This, again, takes its cue from naturalness, but also avoids vacuum stability issues

that can arise for large At [84, 85]. From the standpoint of the electroweak phase transition

in this case, the precise values of the sfermion masses and mixing parameters (other than

those for the stops) are immaterial: their effects are decoupled since they are far above

the EW scale and because of their small couplings to the Higgs sector. We choose specific

values only to concretely demonstrate the phenomenology of the various benchmark points.

The gluino mass is set to 1.5 TeV for all benchmarks. This choice is again motivated

by the lack of evidence for a light gluino at the LHC [86, 87] and by naturalness consid-

erations. The precise value of the gluino mass has little impact on the phenomenology we

consider here.

3.3 Higgs sector

Of course all of our benchmarks should also be consistent with the Higgs discovery, i.e.

feature a Higgs boson in the range 124 GeV . mh,SM . 127 GeV [88, 89] with couplings

very similar to those predicted by the Standard Model [90, 91]. More precisely, we require

that all of our benchmarks predict signal strengths that match those observed by the

ATLAS and CMS collaborations in the various production and decay channels. To this

end, one usually defines the signal strength parameter µ(X,Y ) as

µ(X,Y ) ≡
σh,X · BR(h→ Y )

σhSM,X · BR(hSM → Y )
(3.3)

where σh,X is the total production cross-section of h via the process X, where X = ggF

(gluon-gluon fusion), ttH (associated production with a top quark pair), VBF (vector boson

fusion), or VH (associated production with a gauge boson). Here h is taken to be the SM-

like Higgs in the NMSSM (the second-lightest CP-even Higgs for our benchmarks), and

hSM is the Standard Model Higgs boson. BR(h → Y ) is the branching ratio of h to final

state Y where Y = γγ, V V , bb̄, or ττ , and similarly for hSM. Typically, the production

modes are grouped and analyzed together as X1 ≡ ggF+ttH and X2 ≡ VBF+VH (see

e.g. ref. [92] for further discussion). Measurements from ATLAS and CMS, together with

those from the Tevatron, can then be used to derive constant likelihood contours in the

µ(X1, Y ) − µ(X2, Y ) planes by means of a global fit. This has been done recently in

refs. [92, 93].

To check whether or not our points agree with experimental data on the Higgs signal

rates, we compute µ(X,Y ) for all relevant channels using NMSSMTools 4.2.1 [31, 32] and

verify that they lie within the 95% C.L. regions derived in ref. [92]. The results for the

various benchmarks are shown in figure 1, superposed on the likelihood contours obtained

from the χ2 in ref. [92]. The figure shows good agreement between our points and the

results from ATLAS, CMS, and the Tevatron. All benchmarks lie within the 68% C.L.

regions and are very Standard Model-like; if the enhanced h → γγ rate continues to
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Figure 1. Signal strengths for the various Higgs prodution and decay channels for our benchmark

points (labeled 1–5), compared with the global fit in ref. [92] obtained using current ATLAS, CMS,

and Tevatron data. On the left we consider the diphoton rate arising from vector boson fusion

(VBF) + associated production with a gauge boson (VH), and from gluon gluon fusion (ggF) +

associated production with a top quark pair (ttH). On the right we plot the corresponding results

for vector boson final states. The white star indicates the current best-fit point from ref. [92],

while the shaded areas correspond to 68%, 95%, and 99.7% C.L. regions from darkest to lightest,

respectively. All the benchmark points lie within the 68% C.L. regions for the observed signal

strengths. The bb̄/ττ ellipses are not shown, since all the benchmarks lie very close to the best fit

point in this plane. All of our benchmark points feature a very Standard Model-like Higgs in good

agreement with observation.

decrease in statistical significance, all points will move into even better agreement with

the data. We have also cross-checked all of our benchmarks with HiggsSignals 1.1 [94],

which takes into account the various correlations and systematics that enter the fit. This

can be important in cases when there are multiple Higgs bosons near 125 GeV, as is the

case for several of our benchmarks. We again find good agreement with current observation

for all points considered.

We must also ensure that the rest of the Higgs sector does not violate the current

constraints from LEP, the Tevatron, or the LHC. This is precisely what is checked by

HiggsBounds. In all of our benchmarks, the scalar closest in mass to the SM-like Higgs

is singlet-like, with couplings of order 10% or less of those for a SM Higgs boson with the

same mass. These suppressed couplings make it difficult to detect these states and allow

them to be even lighter than the SM-like Higgs, as will be the case for all the points we

consider. In fact, in the NMSSM, scalars and pseudoscalars can be extremely light and still

compatible with current collider and meson decay limits, provided the mixing is small [95]

(see e.g. ref. [96] for a more detailed discussion of possible strategies to search for these

additional states at the 14 TeV LHC). Additionally, for all of the points considered, tanβ

is low and the MSSM parameter mA, which sets the mass of the charged, CP-odd, and
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third neutral Higgs bosons, is between 370–410 GeV, making searches for charged Higgs

states difficult as well. For all the cases we consider, the strongest bounds on the Higgs

sector come from the couplings of the SM-like Higgs and all other Higgs constraints are

satisfied by a comfortable margin.

4 The phase transitions and their properties

With the relevant particle phenomenology in hand, we now turn to analyzing the phase

transition properties for the various benchmarks described above. First, we define and

discuss the parameters of interest from the standpoint of electroweak baryogenesis and

cosmology, and detail how we compute them. We then move on to present our results for

the various points considered in section 4.3.

4.1 Studying phase transitions in the NMSSM

The cosmological phase transitions predicted by the NMSSM are of interest primarily be-

cause they may be able to support successful electroweak baryogenesis. If a first-order

phase transition is strong enough, it can provide the out-of-equilibrium dynamics neces-

sary to quench the processes which wash out the baryon asymmetry after it is produced,

namely the SU(2) sphalerons. The requirement that the SU(2) sphaleron rate be sufficiently

suppressed inside the bubble is usually phrased in terms of the order parameter v(Tn)/Tn,

where Tn is the nucleation temperature of the bubble (defined in more detail below). Aside

from the gauge-dependence inherent in this quantity (discussed in section 2.3), the correct

baryon number preservation condition depends on how large the baryon washout can be.

This in turn depends on the strength of the CP-violating sources generating the chiral

current, as well as the details of the diffusion of the various charge densities in front of

the bubble wall [34]. For example, as a result of these uncertainties, the correct baryon

number preservation condition in the Standard Model can range from v(Tn)/Tn & 0.4–1.4,

depending on the details of the CP-violation and transport [34].

Following the usual convention, we will define a “strongly first-order phase transition”

as a first-order transition such that
∆φ

Tn
≥ 1 (4.1)

Here, we have defined the slightly more general quantity ∆φ =
√∑

(φi,n − φi,0)2, where

φi,n is the value of the field i in the low-temperature minimum, and φi,0 corresponds to the

field value in the high-temperature phase before nucleation. The sum runs over the fields of

interest. For the NMSSM case, we will be primarily interested in ∆φSU(2) (corresponding

to φi = hu,d) and ∆φs (corresponding to φi = s). Points with ∆φSU(2) ≥ 1 and hu,0 =

hd,0 = 0 may lead to successful electroweak baryogenesis. If either hu,0 6= 0 or hd,0 6= 0,

the sphalerons will already be suppressed in the space-time region outside the bubble,

and so the contribution to the baryon asymmetry from electroweak baryogenesis will be

suppressed. Still, such a situation may be of interest from the standpoint of cosmological

signatures such as gravitational radiation, or extended electroweak baryogenesis scenarios.

For the same reason, we will also consider transitions with ∆φSU(2) = 0 but ∆φs ≥ 1.
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For each of our benchmark points, we therefore calculate the high- and low-temperature

VEVs and the difference between these VEVs in both the SU(2) direction (∆φSU(2)) and the

singlet direction (∆φs). In addition to the phase transition order parameter, we will also

compute the change in energy density (∆ρ) at the transition, and the change in pressure

(∆p). Since the finite-temperature effective potential V (φ, T ) is equal to the free energy

density, the change in total energy density is given by

∆ρ =

[
V (φ0, T )− dV (φ0, T )

dT
· T
]
T=Tn

−
[
V (φn, T )− dV (φn, T )

dT
· T
]
T=Tn

(4.2)

where φ0 and φn are the (three-dimensional) field values in the false and true vacua,

respectively. Note that if there is no supercooling, ∆ρ is the same as the transition’s latent

heat. The quantity ∆ρ provides another measure of the strength of the transition, with

larger ∆ρ corresponding to more strongly first-order transitions. The pressure difference

between the phases is simply the change in the finite-temperature effective potential from

the high- to low-temperature VEV:

∆p = V (φ0, Tn)− V (φn, Tn) . (4.3)

Also of crucial importance from the standpoint of electroweak baryogenesis (and any

other microphysical calculation involving the bubble wall) are the details of the bubble

wall profile, φ(z) (here z is a spatial coordinate in the frame comoving with the bubble

wall and φ is a vector in field space). Several of the CP-violating sources which enter the

microphysical calculations of the baryon asymmetry are proportional to dβ/dt [25], and

the variation of the Higgs VEVs in the bubble wall is crucial for obtaining non-vanishing

CP-violating sources for the chiral current. In the literature, dβ/dt is typically estimated

as [25]

dβ/dt ' ∆βvw/Lw . (4.4)

Here ∆β is defined as the change in the angle β = arctan(hu/hd) from the high-temperature

VEV to the low-temperature VEV, Lw is the instanton bubble wall widths in the SU(2)

direction, and vw is the velocity of the bubble wall in the frame of the plasma far away

from the wall outside the bubble. We will thus calculate ∆β, Lw, and vw for our various

benchmark points, as well as Ls, the wall width in the singlet direction, as this quantity

will enter the CP-violating sources involving the singlet VEVs.

While much previous work relied on various ansatzë for the wall profile, we solve for

the tunneling solution numerically. We must therefore clearly define what we mean by the

parameters Lw and Ls. In practice, the widths are defined as the distance in r space over

which the relevant field φ drops from 73% to 27% of its total height ∆φ. This convention

is chosen to coincide as closely as possible to the oft-used definition of Lw as the parameter

entering the hyperbolic tangent profile φ(x) = ∆φ/2(1 + tanhx/Lw). Our definition of ∆β

corresponds to the difference in β between the spacetime points where the field value φ

comes within 5% of its value in the minima, i.e.

∆β ≡ β(xlow)− β(xhigh) (4.5)
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where xlow, xhigh are defined via

φ(xlow) = φ0 + 0.95∆φ

φ(xhigh) = φ0 + 0.05∆φ
(4.6)

and φ =
√
h2u + h2d.

Strong, singlet-driven transitions can give rise to observable gravity wave signa-

tures [98]. Thus, in addition to the bubble wall properties, we also compute the spectrum

of gravitational radiation produced by the strongest first-order transitions. For this we

require the relative change in energy density over the transition, α, and the inverse of the

duration of the transition,3 ζ. From refs. [35, 97], we have

α =
∆ρ

ρrad
, (4.7)

where ρrad = g∗π2

30 T 4
n and g∗ is the number of relativistic degrees of freedom, taken here to

be 100. Meanwhile,
ζ

H
=

[
T · d(S3/T )

dT

]
T=Tn

. (4.8)

where S3 is the Euclidean action, and H is the Hubble expansion rate during the transition.

These quantities allow us to calculate the gravity wave overall amplitude

h2Ω̃GW = 1.67× 10−5∆̃K2

(
H

ζ

)2( α

α+ 1

)2(100

g∗

)1/3
, (4.9)

and peak frequency

f̃ = 16.5× 10−3 mHz

(
f̃∗
ζ

)(
ζ

H

)(
T

100 GeV

)(
g∗

100

)1/6
(4.10)

where

∆̃(vw) =
0.11v3w

0.42 + v2w
(4.11)(

f̃∗
ζ

)
(vw) =

0.62

1.8− 0.1vw + v2w
(4.12)

and K is an efficiency factor, given4 as a function of α in e.g. ref. [97].

We employ the CosmoTransitions package [30] to study the phase structure and

thermal tunneling properties of each of the benchmark points. The full one-loop finite-

temperature effective potential (eq. (2.7)) is directly input into the program along with

the zero-temperature electroweak VEV. The minimum at the VEV is traced upwards in

temperature (the VEVs are generally temperature dependent) until it either disappears

3In most previous studies, this quantity was denoted as β.
4In ref. [97], this quantity is denoted as κ.
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or merges into a distinct high-temperature phase via a second-order transition.5 Either

way, a new minimum is found at the temperature at which the first phase ends, and the

structure of the new phase can likewise be found. In this way, the CosmoTransitions

package determines the theory’s complete temperature-dependent phase structure. In all

of our benchmarks, the low-temperature phase is just the electroweak phase determined by

the electroweak VEV, and the high-temperature phase resides at the origin of field space.

However, different benchmarks exhibit qualitatively different intermediate phases. They

can generally lie along either the singlet or hu directions, a mixture of several directions,

or be missing entirely (that is, the system can transition directly from the high-T to

electroweak phase). We detail the features of individual benchmarks in section 4.3 below.

Once the phase structure is found, it is straightforward to calculate the critical tem-

peratures Tc at which any two temperatures have degenerate minima (corresponding to

equal free energy and equal pressure). The CosmoTransitions package then finds the

nucleation temperatures Tn below Tc such that there is unit probability to nucleate one

bubble of lower-energy phase within a higher-energy background phase per horizon volume

per Hubble time. Numerically, to determine the nucleation temperature we use the rough

criteria [52] that S3(Tn)/Tn ∼ 140, where the bubble action S3 represents the energy of a

critical bubble whose surface tension exactly balances the pressure gradient across its wall.

The profile of each critical bubble is found using the CosmoTransitions pathDeforma-

tion module. First, the path that a bubble takes through field space is assigned a tentative

initial value. A one-dimensional version of the equations of motion which govern the bubble

profile is solved along the initial path using an overshoot/undershoot method. The path is

then slightly deformed to reduce the magnitude of perpendicular forces, after which the one-

dimensional equations are solved again. By iterative deformations, the pathDeformation

routines converge towards the correct bubble profile. We check our solutions by choosing

different initial paths and verifying that they produce the same result. In particular, an

initially straight path and a path that initially crosses the saddle point separating two

phases will both approach the correct solution, but from different directions.

If the critical bubble is very thick walled, then its center may be significantly displaced

from the low-temperature VEV. Once it starts growing, its center will quickly roll down to

the bottom of the minimum. Therefore, the wall profile of an expanding bubble may not

match that of the incipient critical bubble. To account for this possible discrepancy, we

calculate the quantities Lw, Ls, vw and ∆β for bubble walls moving at constant velocity

with constant friction; we dub these “late time” bubble profile parameters for this reason.

Details of this calculation are given in section 5, below.

5The CosmoTransitions package designates a transition as second-order if the associated high-

temperature and low-temperature phases have non-overlapping temperature domains, the gap between

the two domains is smaller than the resolution of phase tracing routine (typically on the order of 0.1 GeV),

and the two phases are proximate at the transition temperature. The end-point of a phase is given by the

temperature at which the Hessian matrix has an approximately zero eigenvalue. Therefore, ‘second-order’

is a numerical rather than analytic designation, and very weakly first-order transitions may get misclassi-

fied as second-order. However, from the viewpoints of electroweak baryogenesis and gravitational radiation

production, second-order and very weakly first-order transitions are functionally equivalent.
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4.2 Checking for runaway walls

Since we are interested in the possibility of electroweak baryogenesis at the various (SU(2))

phase transitions, one additional crucial criterion to check is whether or not the electroweak

bubble wall can run away, i.e. vw → 1. This can occur if the pressure differential driving

the acceleration of the wall cannot be balanced by the drag exerted on it by the plasma.

Runway walls are detrimental to electroweak baryogenesis: if vw is larger than the sound

speed of the plasma, vs ' 1/
√

3, sphaleron processes acting on the diffusing chiral currents

ahead of the wall are too inefficient to source a sizable baryon asymmetry. Successful

transport-driven electroweak baryogenesis thus fundamentally requires sub-luminal, in fact

sub-sonic, wall velocities.

An important first test for wall runaway has been suggested in ref. [99]. Physically,

there are effectively two competing forces acting on the bubble wall: the vacuum free-

energy density difference between the phases, V (φ0, T = 0)− V (φn, T = 0) ≡ ∆V (T = 0),

acting as a driving force, and the pressure exerted by the plasma particles on the scalar field

background, Fp/A (A here is the area of the wall, neglecting curvature). A necessary, but

not sufficient [100, 101], condition for a runaway wall is that Fp/A < Fvac/A = ∆V (T = 0).

The pressure exerted by the plasma in the relativistic limit is given by [99, 102]

Fp
A

=
∑
i

|ni|
(
m2
i (φ0)−m2

i (φn)
) ∫ d3p

(2π)32Ei,p(φ0)
f eqi,p(φ0) (4.13)

where ni is the number of degrees of freedom for species i, mi(φ) are the field-dependent

masses (including the thermal masses for the bosons), Ei,p(φ) =
√
p2 +m2

i (φ), and where

f eqi,p are the equilibrium distribution functions. Since the wall’s motion is assumed to be

ultra-relativistic, the passage of the wall changes the masses sharply but leaves the dis-

tribution functions as they were in the symmetric phase to leading order in 1/γ (where

γ = 1/
√

1− v2) [102].

As pointed out in ref. [99], the above expression is equivalent to the free-energy den-

sity difference between the minima in the so-called mean field T 6= 0 thermal effective

potential, ṼT [99, 102]. ṼT is simply given by a Taylor expansion of V1,T around the sym-

metric minimum in field space, truncated at quadratic order in the field-dependent masses,

i.e. [99, 102]

ṼT (φ, T 6= 0) ≡ VT (φ0, T 6= 0) +
∑
i

(
m2
i (φ)−m2

i (φ0)
)dVT (φ0, T 6= 0)

dm2
i

. (4.14)

With this definition, the condition that must be satisfied for the wall to run away can be

re-phrased as ṼT (φn, Tn) − ṼT (φ0, Tn) < V1(φ0, T = 0) − V1(φn, T = 0). Re-arranging,

and defining the full 1-loop mean field effective potential Ṽ (φ, T ) ≡ V0(φ) + V1(φ, T = 0)

+ṼT (φ, T ), the runaway condition becomes

Ṽ (φ0, Tn)− Ṽ (φn, Tn) > 0 , ↔ Runaway solution exists . (4.15)

This suggests the following criterion for determining whether the wall is safe from run-

away [99]: if tunneling to the broken minimum φn is not energetically favored in the mean
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BM 1 BM 2 BM 3 BM 4 BM 5

Direction s+h s+h s s h s+h

∆φSU(2)/Tn 1.3 2.0 0 0 0.42 2.0

∆φs/Tn 2.6 3.6 1.1 1.6 0.20 4.2

Tc (GeV) 153.4 142.0 188.7 170.9 165.4 141.2

Tn (GeV) 140.1 108.4 186.5 165.7 165.4 103.0

high-T VEV (0,0,0) (0,0,0) (0,0,0) (0,0,0) (0,0,260) (0,20,0)

low-T VEV (96,150,362) (121,183,390) (0,0,199) (0,0,258) (29,62,292) (118,191,430)

∆p (GeV4) (79.4)4 (100.4)4 (34.4)4 (46.4)4 (14.4)4 (104.9)4

∆ρ (GeV4) (151.2)4 (144.5)4 (110.2)4 (116.7)4 (100.1)4 (143.4)4

|∆β| 0.32 N/A N/A N/A 0.029 N/A

Lw Tn 4.0 N/A N/A N/A 23.7 N/A

Ls Tn 5.9 N/A 16.4 11.9 20.5 N/A

Table 2. Properties of the first-order transitions of BM 1–5. Here, “Direction” indicates the field

direction in which the transition occurs. “s” stands for the singlet direction, and “h” stands for

the SU(2) direction. ∆φSU(2) is defined as the change in field values in just the SU(2) directions:

∆φSU(2) ≡
√

∆h2u + ∆h2d, and ∆φs is the change in the singlet field value: ∆φs ≡ ∆s. The

three-dimensional field φ ≡ (hd, hu, s) transitions from the “high-T VEV” to the “low-T VEV” at

nucleation temperature Tn. ∆β is the change in β from the high-temperature VEV to the low-

temperature VEV, where β ≡ arctan(〈hu〉/〈hd〉). Note that ∆β is only defined for transitions in

the SU(2) directions, so is not listed for singlet-only transitions. The late-time bubble wall profile

parameters are only calculated for walls moving with constant velocity and friction, and so are not

listed for benchmarks with runaway solutions.

field potential, the wall cannot run away. Thus, for all of our benchmarks, it suffices to

compute both the full effective potential and the mean field potential along the tunneling

direction; if the symmetry-breaking minimum disappears or is raised above the symmetric

minimum in the mean field limit, the wall will remain sub-luminal. We will check against

this criterion for all of the points we consider.

4.3 Results

We can now move on to our main results, summarized in table 2. Consider first the case

of a one-step electroweak phase transition (EWPT). This is exemplified by BM 1, which

features a phase transition at Tn = 140.1 GeV. The field transitions from the origin to a

phase in which all three field directions have non-zero VEVs. This transition is strongly

first-order in both the SU(2) and singlet directions, and proceeds after a relatively small

amount of supercooling (Tc = 153.4 GeV). This point does not feature a runaway bubble

wall solution, and thus can potentially lead to successful electroweak baryogenesis. To see

this, we plot the mean field and full effective potential in the upper left panel of figure 5.

Clearly, the broken minimum is raised above the origin in the mean field limit, and so, by

the results of section 4.2, the bubble wall must approach a stationary state.

We show the details of the bubble wall profile and tunneling path corresponding to

this point in figures 2 and 3. The profile is characterized by Lw = 4.0/Tn, Ls = 5.9/Tn,
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Figure 2. Late time bubble wall profiles (left) and tanβ (right) for the strongly first order elec-

troweak phase transition of BM 1.

Figure 3. V plotted against s and
√
h2d + h2u with tanβ fixed. On the left, tanβ = 4.01, which is

its value just outside the bubble wall, i.e. where φ = φlow + 0.95∆φ. On the right tanβ = 1.59, its

value just inside the bubble wall (where φ = φlow + 0.05∆φ), where indeed the potential minimum

is at a nonzero value of s and
√
h2d + h2u. The black lines are the late time tunneling paths.

and |∆β| = 0.32. Note the large value of |∆β| as compared to the MSSM case [29]. This

is a very attractive feature from the standpoint of electroweak baryogenesis, since large

values can allow for smaller CP-violating phases in the sources, resulting in less stringent

bounds from electric dipole moment experiments. Although at tree-level (at high energies)

the singlet couples in the same way to hu and hd, after integrating out the stops and

evolving the parameters down to the electroweak scale, this is no longer the case. Note

that smaller values of ∆β were found previously for the general NMSSM in ref. [15] (on

the order of 10−3, close to MSSM values). However, we believe this discrepancy can be

explained by differences in our methods of calculation. For example, ref. [15] assumes a

thin-wall approximation and uses an ansatz for the profile that implicitly assumes small

∆β, rather than solving for the full tunneling solution using path deformations as we do

with CosmoTransitions. We also differ significantly from ref. [15] in our treatment of the

stops.6

To illustrate the possible range of the one-step electroweak phase transition strength,

as well as the parameters of ∆β and Lw, we perform a scan over values of Aκ and for the

three sets of points, Set I, II, III, corresponding to BM 1/2, 3/4, 5, respectively, keeping the

6It is also worth noting that ref. [15] considers a different region of parameter space than we do.
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Figure 4. Results for strongly first order one-step electroweak phase transitions at different values

of mhs for Sets I (circles), II (diamonds), and III (squares). Shown are the EWPT order parameter,

SU(2) wall width, singlet wall width, and ∆β, which are quantities relevant for investigations of

electroweak baryogenesis. The singlet-like Higgs mass is varied by varying Aκ as described in the

text with all other parameters fixed. The rest of the spectrum varies very little across the scanned

points, with the phenomenology as presented in table 1. Black points have bubble walls that are

guaranteed to be sub-luminal, while the cyan points admit a runaway solution. Note that the late-

time bubble wall profile parameBters are only calculated for walls moving with constant velocity

and friction, and so are not shown for points with runaway solutions.

rest of the parameter values fixed.7 As discussed in section 3, the rest of the spectrum does

not depend sensitively on Aκ and so this amounts to varying the singlet-like CP-even/CP-

odd masses. The ranges of Aκ considered in each case are −Aκ ∈ [81 GeV, 146 GeV],

[87 GeV, 135 GeV], [94 GeV, 146 GeV] for Set I, II, III, respectively. The results of these

scans are shown in figure 4. The circle-, diamond-, and square-shaped points correspond

to Sets I, II, III.

From the standpoint of a one-step electroweak phase transition, the effects of varying

Aκ are clear: larger |Aκ| results in a larger tree-level contribution to the barrier by the

κAκs
3 term in the effective potential. Meanwhile, larger |Aκ| results in a smaller mhs for

the rest of the parameters fixed. This also explains the differences between the three curves:

for a given singlet mass, Set I has the largest |Aκ|, while Set II has the smallest. The effect

of increasing |Aκ| on Lw is also rather straightforward to understand: a larger barrier

7Although the only benchmarks we consider with a strongly first order one-step EWPT are BM 1 and 2,

all three sets of points we considered exhibit one-step electroweak phase transitions for some range of Aκ.
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BM 2 BM 5

ζ/H 670 1400

α 0.10 0.11

f̃ (mHz) 2.8 5.5

h2Ω̃GW 2.1× 10−17 9.4× 10−18

Table 3. Gravitational radiation spectra for the benchmarks with runaway solutions. The predicted

spectra fall well below the expected sensitivity of eLISA and BBO [103, 104].

results in a thinner wall (parametrically, Lw ∝ ∆φ/
√

∆V , where ∆V represents an overall

rescaling of both the barrier height and the difference in pressure between the two VEVs).

From figure 4, ∆β is larger for lighter singlet masses/stronger phase transitions. This effect

is less simple to understand, as it ultimately results from the complicated interplay of the

various parameters in the potential. However, we find a clear correlation between ∆β and

the strength of the phase transition. The effect on the wall velocity will be discussed in

the next section.

The black points in figure 4 do not have a runaway solution for the bubble wall equa-

tions of motion, and so may be viable for electroweak baryogenesis, as is the case for BM 1.

However, as advertised in section 4.2, for very strong first order transitions, the bubble wall

might not be slowed sufficiently by the plasma and can accelerate without bound. Such is

the case for the cyan-colored points in figure 4. As an illustrative example of this runway

case, we can consider BM 2, which corresponds to Aκ = −129 GeV in Set I. The transition

again proceeds in one step to the broken phase, as with BM 1. The late-time bubble wall

parameters are not well-defined in this case, since the wall may never enter a regime with

constant velocity and friction.

The large value of |Aκ| leads to a very strongly first-order transition, and inspection

of the mean field and full effective potentials for this point in figure 5 clearly shows the

existence of a runaway solution. This suggests that BM 2 likely cannot result in successful

electroweak baryogenesis.8 Nevertheless, fast moving bubble walls can be interesting from

the standpoint of gravitational wave production. Table 3 lists the values of α and ζ/H,

and the resultant amplitude h2Ω and peak frequency f̃ of gravitational waves produced

by this strongly first-order transition, assuming that the bubble does in fact run away (see

section 4.1 for explanation of these quantities). Unfortunately, the predicted spectrum

is much too faint to be observed by Big Bang Observatory (BBO) [103] or eLISA [104].

However,the spectrum of gravity waves we consider is only that coming from collisions of

the bubbles and neglects other possibly important contributions from turbulence and other

hydrodynamic effects [105–108]. Future work is required to assess whether our conclusions

hold once these additional contributions are properly accounted for. Note that the primary

8The existence of a runaway solution does not necessarily imply that the wall will in fact run away. For

example, ref. [100] showed that there can be sources of hydrodynamic obstruction which prevent the bubble

from ever reaching the runaway regime. We have checked against the criteria outlined in ref. [100], and find

that the hydrodynamic obstruction is negligible for BM 2. This is because of the relatively large amount of

supercooling for this point (Tc = 142.0 GeV). Thus, we expect that the bubble wall will indeed run away

(although there may be other possible exceptions; see ref. [101]).
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Figure 5. Full (solid) and mean field (dashed) finite temperature 1-loop effective potential for all

benchmarks at their respective nucleation temperatures. Benchmarks 1, 3, and 4 have bubble walls

which are guaranteed to remain sub-luminal, while the walls of BM 2 and 5 can have vw → 1.

obstacle to achieving a detectable signature is the small size of α. For points close to

BM 2,5 with similar Tn, d(S3/Tn)/dT but larger αN such that K ≈ 1, the gravitational

wave signatures could potentially be detectable by BBO, though likely not by eLISA. Of

course there may also be other regions of the NMSSM parameter space predicting much

larger signals which would be interesting to explore in the future.

In addition to the one-step EWPT case, there are several other patterns of symmetry

breaking possible in the NMSSM. Although not all are promising from the standpoint of

electroweak baryogenesis, they may still yield interesting cosmological signatures. These

possibilities are illustrated by Benchmarks 3–5.
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Benchmark 3 features a strongly first-order transition in only the singlet direction.

This occurs at a nucleation temperature Tn = 186.5 GeV, while the critical temperature is

Tc = 188.7 GeV. The amount of supercooling is significantly less than in the transitions

involving the SU(2) field directions. The SU(2) transition, which occurs at Tn = 169.6 GeV,

is second-order and so is not shown in table 2. This is benchmark has the smallest value of

|Aκ|, and correspondingly a thicker wall, with Ls = 16.4/Tn. As can be seen from the third

panel of figure 5, no runaway solutions exist. We find this to be a generic feature of singlet-

only transitions in the parameter space we have investigated: singlet-only transitions tend

to have smaller total pressure difference than transitions in all three directions, since only

one field is changing its value.

Another novel possibility in the NMSSM is that the phase transition can proceed in two

steps: a first transition results in a non-zero singlet VEV, while a second transition breaks

electroweak symmetry. This is exemplified by Benchmark 4. Here, the singlet transition

occurs at Tn = 165.7 GeV, while the SU(2) transition is at a slightly lower temperature,

Tn = 165.4 GeV. For this particular benchmark, only the singlet phase transition is strongly

first-order by our definition (∆φ/Tn > 1), while the transition in the SU(2) directions is

weakly first-order (has a value of ∆φ/Tn < 1). From the discussion in section 4.1 concerning

the baryon number preservation condition, future work is required to determine whether or

not such a weak transition can lead to successful electroweak baryogenesis. Regardless, this

point serves as a proof of principle that the phase transition in the NMSSM can proceed in

two steps. Regarding the bubble profile parameters, the wall width for the first transition

is slightly thinner than that of BM 3, corresponding to the larger value of |Aκ|. The second

transition yields the thickest wall, simply because the phase transition is weak and the

barrier between the two minima relatively low. Note that ∆β is significantly smaller for this

transition, with a value in the range typical for the MSSM [29]. This is expected, since the

singlet is not participating in the transition. Note that because of the relatively low pressure

differences for each transition, neither permits runaway solutions, as shown in figure 5.

Finally, Benchmark 5 produces a one-step strongly first-order transition at Tn =

103 GeV, and is unique among the benchmarks we considered in that hu has a nonzero

high-temperature VEV. The symmetry is first broken by a second-order transition in the

hu direction, and is then further broken in the remaining two directions when the first-order

phase transition occurs at Tn = 103 GeV. Since electroweak symmetry is already partially

broken in the phase outside the bubble, sphalerons will already be suppressed in this region,

and so it is unlikely that successful electroweak baryogenesis will occur. Also, from the

sixth panel of figure 5, we see that a runaway solution exists, making this transition, like

that of BM 2, even less attractive for electroweak baryogenesis, but possibly interesting

from the standpoint of detectable gravitational radiation (once again the hydrodynamic

obstruction [100] is negligible due to the large supercooling, Tc = 141.2 GeV). Table 3

shows that, like BM 2, BM 5 produces gravity waves with a peak frequency on the order

of several mHz and an amplitude on the order of 10−17, which unfortunately lies below the

range observable by BBO and eLISA [97, 103, 104].

To summarize the results of this section, we have found that the very narrow region of

parameter space investigated features a rich phase transition phenomenology. Transitions
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can proceed in either one- or two-steps and can occur from either the origin in field space or

from a phase with a non-zero VEV prior to tunneling. Some transitions, namely those with

a large amount of supercooling, produce bubble walls that can accelerate without bound;

the gravitational radiation produced by these bubbles is however too faint to be observed

by BBO or eLISA. Most other transitions do not produce runaway bubble walls, and

thus can give rise to successful electroweak baryogenesis. The parameters governing the

wall profile, such as ∆β and Lw, typically take on values more promising for electroweak

baryogenesis than in the MSSM, making the NMSSM an even more attractive framework

for simultaneously explaining the Higgs mass, dark matter, and baryogenesis.

The only other important parameter not yet computed is the bubble wall velocity.

This is the task we turn to next.

5 Estimating the wall velocity

We have seen in the previous section that many cases with a strongly first order elec-

troweak phase transition predict bubble walls that approach a finite steady-state velocity.

However, the transport processes important for electroweak baryogenesis typically depend

quite sensitively on the precise value of vw. We would thus like to go beyond the analysis

above and obtain a quantitative estimate of the vw for the scans shown in figure 4.

Determining the wall velocity requires computing the drag force on the bubble wall,

which is in general a difficult problem. However, the situation is simplified in two limiting

cases: the ultra- and non-relativistic (or “slow-wall”) limits. The former is the simplest,

since the drag does not depend on the wall velocity or on the deviations from equilibrium

of the various species in the plasma at lowest order in 1/γ. The friction saturates and if

the driving force is greater than this value, the bubble wall runs away. We considered this

limit in our analysis of runaway solutions in section 4.2. In this section we are interested

in the opposite case: we will assume that the wall is propagating with velocity such that

γ ≈ 1. In this regime we can estimate the friction force microphysically, as has been done

for the SM [109] and MSSM [110] some time ago. This will allow us to determine the value

of a phenomenological friction parameter Γ that reproduces the approximate wall velocity,

provided vw is not too large.

We emphasize that we start with the assumption of a non-relativistic wall in our

calculation. Specifically, we assume a simple form for the friction coefficient in the bubble

wall equations of motion that does not match on to the solution in the relativistic regime.

Despite the shortcomings of this parametrization, it is nevertheless expected to provide a

good estimate for the case of non-relativistic bubble walls [101]. Consequently, we only

compute the wall velocity for points that do not have runaway bubble wall solutions.

Furthermore, our results in this limit may be useful for more in-depth future studies of

the wall velocity in the NMSSM, providing preliminary reference values to match on to

the techniques of e.g. refs. [101, 111, 112]. In particular, our computation of the various

interaction rates of the particles in the plasma is quite general and can be used in future

studies independent of the simplifying assumptions outlined above. The reader should

interpret our results with the above provisos in mind.
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In the sub-sections below we discuss our computation of the stationary-state solution

to the bubble wall equations of motion (section 5.1), as well as the microphysical friction

coefficients (sections 5.2, 5.3; see also appendix B). Readers primarily interested in the

results may proceed directly to section 5.4.

5.1 Simplified equations of motion

To find the bubble wall velocity in full generality, one must couple the field equations of

motion to the radiation, and then also couple the radiation fluid equations to the field. The

radiation will tend to slow down the bubble wall’s expansion, whereas the forward motion

of the wall will tend to heat the fluid and change its velocity. The effective potential is a

function of both the field value and the temperature, so heating the fluid will change the

free-energy (or pressure) difference between the two phases, thereby changing the bubble

wall’s acceleration. Additionally, the fluid velocity feeds back upon the wall by changing the

magnitude of the drag. The interplay between these effects leads to a rich phenomenology:

bubble walls can expand in steady detonations or deflagrations [113], as runaway events [99],

or, if reheating is large enough, the two phases can reach pressure equilibrium and there

can be an adiabatically varying period of phase coexistence [114].

Solving the full set of relativistic hydrodynamic equations is a difficult problem. How-

ever, we are primarily interested in rough estimates of the wall velocity, and are particularly

interested in how the velocity compares to that in the MSSM light stop scenario. For this

purpose, we ignore fluid velocity and temperature differentials across the bubble wall and

their associated effects upon the bubble wall, and we treat the drag upon the wall as field-

independent. Note that ignoring the shock front and temperature changes in the wall will

tend to over-estimate the wall velocity for the deflagration case relevant for EWB [109].

With these simplifying assumptions, the field equations of motion are then

∂µ∂µφi + Γuµ∂µφi = −∂φiV (φ, T ) , (5.1)

where uµ is the fluid four-velocity, and Γ is the drag coefficient. The bubble will become

thin-walled as it grows so we can approximate its motion as planar, and we assume that it

reaches a steady velocity and a steady profile. The wall is static in its rest frame, and the

equations of motion become

d2φ

dx2
− Γγvw

dφ

dx
= ∂φiV (φ, T ) . (5.2)

The velocity vw is the wall’s velocity relative to the fluid. This is the quantity we wish

to estimate. As usual, γ = 1/
√

1− v2w. If we center the bubble wall at x = 0 in its rest

frame, then the boundary conditions are φ(x = −∞) = φT (the field should be in the true

vacuum deep inside of the bubble) and φ(x = ∞) = φF (the field should be in the false

vacuum far outside of the bubble). Also, d
dxφ(x = −∞) = d

dxφ(x =∞) = 0.

As mentioned in section 4.1, we use eq. (5.2) to solve for the late-time bubble profile

parameters. Assuming a common Γ neglects the effects of the different drag forces expe-

rienced by the three fields. Improving on this simplified treatment is beyond the scope of

our study, however, we believe that this approximation can give a reasonable estimate for
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the profile parameters. The quantity ∆β will only be changed by the friction acting on the

directions perpendicular to the path in field space, which are neglected in assuming a fric-

tion term proportional to φ′(x). Differences in Γ for the three fields will only act to change

the field profiles in physical space, since they act parallel to the field space trajectory. This

would correspond to a change in the relative size of Lu,d,s. Meanwhile, Γ is calibrated to

yield the same net drag force as that resulting from the microphysical friction parameters

and thus provides a reasonable (rough) estimate of the size of the friction effects in the

direction parallel to the path. While the values of ∆β will change when the friction is

modeled more accurately, we expect this correction to be relatively small to the extent

that the perpendicular components of the friction are small. Note that this assumption

was also made in the calculation of the MSSM wall velocity found in ref. [110]. While

the changes in the wall widths may be somewhat larger, Lu,d,s do not change significantly

between their instanton and late-time values for most (thin-walled) points we consider, and

so we expect this effect to be rather small as well. Future work is required to precisely

determine how large these effects might be. Also, the precise form of the friction term used

in eq. (5.2) is not unique; including additional field-dependence, such as the φ2 term in

eq. (5.12) below, will alter the precise shape of the bubble profiles. A detailed treatment

of this effect is beyond our scope here. The reader should keep the above caveats in mind

when interpreting our results.

Equation (5.2) is very similar to the equation governing the shape of the initial critical

bubble, the only difference being that here the friction term is constant instead of inversely

proportional to the bubble’s radius. In one field dimension, we can solve for the boundary

conditions using an overshoot/undershoot method similar to the one used for the critical

bubble. When solving for the critical bubble, the friction term is fixed and the initial

position φ(r = 0) is varied to satisfy the boundary conditions (φ(r = ∞) = φF ). When

finding the velocity vw, the initial position is fixed and the overall coefficient Γγvw can be

varied to satisfy the boundary condition. If the coefficient is too low, the field will move

too quickly (|dφ/dx| will be too large) and it will overshoot the false vacuum. Conversely,

if the coefficient is too high, the field will not reach the false vacuum before x = ∞.

Instead, dφ/dx will go to zero at finite x, and the field will eventually oscillate about

the potential barrier maximum separating the two phases: an undershoot. By iterating

between overshoots and undershoots one can converge upon the correct coefficient. We

perform this iteration using CosmoTransitions, but modified to vary the drag coefficient

instead of φ(r = 0). When the potential has multiple fields, the problem changes in

exactly the same way for the critical bubble as for the drag coefficient calculation. We use

the pathDeformation module in CosmoTransitions to find the correct path through field

space.

With the above approach we can calculate the overall coefficient Γγvw for the various

points of interest. For example, Γγvw = 27.24 GeV, 9.11 GeV for benchmarks 1 and 3,

respectively. However, we would like to go beyond determining Γγvw and find the wall

velocity itself. To do this, we need to calculate Γ. We do so by matching onto a (simplified)

microphysical calculation of the friction force in the non-relativistic limit, as described

below.
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5.2 Sources of friction

Friction on the bubble wall arises from interactions of the wall with the various species

in the plasma which dissipate the wall’s energy. Consequently, to determine Γ in the

non-relativistic regime, one must know not only the bubble properties, but also the out-of-

equilibrium distributions of the various particles in the plasma that interact with the wall.

This is generally a very difficult problem, however it has been solved in several different

approximation schemes for the SM and MSSM cases in the past (see e.g. refs. [109, 110]).

In this section, we will apply the techniques laid out in refs. [109, 110] to calculate Γ for

our various benchmarks starting from the various interaction rates in the plasma with

several simplifying assumptions. Our goal is not a precise calculation of Γ, but rather a

quantitative estimate allowing us to compare the wall velocities across our benchmarks and

to determine whether the bubble is likely to be sub-sonic or not.

We begin with the equations of motion for a set of infrared (IR) scalar field condensates

in a plasma. The scalar field Lagrangian and the conservation of energy result in a set of

Klein-Gordon equations with damping terms for the fields φi. In the bubble wall frame,

ignoring the curvature of the wall, we have [109]

− d2φi
dz2

+
∂V (φi, T )

∂φi
+
∑
j

dmj(φi)

dφi

∫
d3p

(2π)32E
δfj(p, z) = 0 (5.3)

where the index j runs over all particles that couple to the scalar field φi, and δfj connotes

the deviation from the thermal equilibrium distribution of the particle species j in the

plasma, with

fj =
(
e
E+δj
T ± 1

)−1
(5.4)

in the fluid frame. In the above expression, the δj are generally spacetime-dependent

perturbations from equilibrium generated by the interactions of the particle species j with

the bubble wall. Provided that the species j satisfies the WKB condition pj � L−1w (we

will deal with soft excitations below), the distributions satisfy Boltzmann equations (semi-

classical versions of the Louville equations9), given in the fluid frame by

∂

∂t
fj + ẋ

∂

∂x
fj + ṗx

∂

∂px
fj = −C[fj ] (5.5)

where C[f ] is a collision term which depends upon the various interaction rates of j in the

plasma:

C[f ] =

∫
d3kd3p′d3k′

(2π)92Ep2Ep′2Ek′
|M|2(2π)4δ(p+ k − p′ − k′)

×fpfk(1± fp′)(1± fk′)− fp′fk′(1± fp)(1± fk) .
(5.6)

In the fluid approximation, the quantum mechanical field perturbations are assumed to

take the form of a perfect fluid,

δj = −
[
δµj +

E

T
(δTi + δTbg) + px(δvi + δvbg)

]
, (5.7)

9For a derivation of the Boltzmann equations in the Schwinger-Keldysh formalism, see the recent

ref. [115].
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where the bg subscript corresponds to the perturbations of the background fluid, assumed

to comprise the degrees of freedom with small couplings to the Higgs fields. Inserting this

form of the perturbations back into the Boltzmann equation yields

−f ′0
(
px
E

[
∂xδµj +

E

T
∂x(δTj + δTbg) + px∂x(δvj + δvbg)

]
+ ∂tδµj

+
E

T
∂t(δTj + δTbg) + px∂t(δvj + δvbg)

)
+ TC[δµj , δTj , δvj ] = −f ′0

∂tm
2(φ)

2E

(5.8)

These equations can be recast in the form [109, 110]

A
d

dx
~δ + Γ~δ = F (5.9)

where A is a matrix with entries ∼ c2,3,4vw, Γ is a matrix involving the various interaction

rates, F is the source term, and ~δ is a vector comprising the various perturbations δi.

After solving the above set of Boltzmann equations for the perturbations, the (space-time-

dependent) solutions for the perturbations in the bubble wall can then be plugged into the

Higgs equations of motion. Using δfj ' f ′0δj , the equations of motion for the background

Higgs fields become

−φ′′i +
∂V

∂φi
+
∑
j

Nj

2

dm2
j (φ)

dφi
(c1±δµj + c2±δTj + c2±Tδvj) = 0 , (5.10)

cn± ≡
∫
En−2

Tn+1
f ′0(±)

d3p

(2π)3
. (5.11)

In general, one needs to solve the coupled set of Boltzmann equations represented by

eq. (5.9) to determine the perturbations δi. However, the situation is simplified by noting

that, when the wall velocity is small and the wall is not too thin, the terms involving δ′i ∼
δi/Lw are multiplied by cjvw and can thus be significantly smaller than the terms involving

the δi (the latter are multiplied by the various rates which are typically of O(10−2 T ) or

larger). Thus, in this regime, we can approximate the perturbations as roughly constant in

the wall, δ′ = 0. Of course this approximation breaks down for faster moving, thinner walls,

but we use it here to obtain a rough estimate to compare between our benchmarks and the

MSSM. Ref. [110] compared the friction coefficients found using this approximation with

the full numerical solution for the light stop MSSM scenario and found discrepancies up

to a factor of 3 for the case of light stops. When discussing the wall velocities for each of

our benchmarks we address the implications of these possible differences and find that our

overall conclusions remain unchanged.

Under this simplifying assumption, the Boltzmann equations can be easily inverted for

the perturbations δj , resulting in ~δ = Γ−1F. Plugging in these solutions, the equations of

motion become

φ′′i −
∂V (φ, T )

∂φi
= ηivwγ

φ2i
T
φ′i (5.12)

where the φ′i arises from the ∂tm
2(φ) term on the r.h.s. of eq. (5.8). The ηi are (constant)

viscosity coefficients which characterize the friction from the plasma on the field direction
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i of the expanding bubble wall. These coefficients depend on the interactions of all species

present in the plasma with one another and with the bubble wall and their calculation is

quite difficult. We dedicate section 5.3 below to their computation.

The form of eq. (5.12) does not yet match that of the fluid equation (5.2). In particular,

the damping term in eq. (5.12) carries additional space-time dependence by virtue of the φ2

term multiplying the derivative. However, Γ and η can be easily related as follows [116]: let

us consider only one field direction for simplicity, with viscosity coefficient η in eq. (5.12)

and Γ in eq. (5.2) (the generalization to multiple field directions is given below). Multiplying

eq. (5.2) by φ′ and integrating over x results in

Γvwσ = ∆V (5.13)

where ∆V ≡ V (φ0, Tn)− V (φn, Tn) is the pressure difference between the phases and

σ ≡
∫

(φ′)2dx (5.14)

is the surface tension of the bubble wall. Performing the same integration on eq. (5.12)

after multiplying by φ′ yields

∆V =
vwη

T

∫
φ2(φ′)2dx ' 3vwφ

2
nση

10Tn
(5.15)

where φn is the field value in the broken minimum at the nucleation temperature. The last

equality follows from assuming assuming a simple shape for the bubble wall profile

φ(x) =
φn
2

(
1 + tanh

x

Lw

)
. (5.16)

Finally, combining eqs. (5.13) and (5.15) yields the desired relation between Γ and η for

one field-dimension:

Γone-dimension
WKB ' 3φ2n

10Tn
η . (5.17)

Thus, given the values of η determined microphysically from the theory, along with the

phase transition order parameter, one can determine the values of Γ that enter into eq. (5.2).

In our case, we require the generalization of eq. (5.17) to multiple fields. In solving

the simplified fluid equations analogous to eq. (5.2) we assume a common Γ for all field

directions. Of course the friction coefficients ηu,d,s are different, since each field couples to

different degrees of freedom. However, we can determine an approximate value of Γ that

should produce the same wall velocity as that found by solving eqs. (5.12). This is done

by carrying out the same procedure as for the single-field case, multiplying each equation

by φ′i, integrating over x, and adding the three equations together, noting that

∆V =
∑∫ ∞

−∞
dx ∂φiV (φi, T )φ′i . (5.18)

Here ∆V is the pressure which must be balanced out by the friction force for a steady

state bubble as before. Setting the wall velocities from both resulting equations equal to
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one another, we find

ΓWKB =

∑∫∞
−∞ ηi

φ2i (x)
Tn

φ′2(x)dx∑∫∞
−∞ φ

′2
i (x)dx

. (5.19)

If one assumes a simple hyperbolic tangent profile for the fields,

φi(x) ≈ ∆φi
2

(
1 + tanh

x

Li

)
+ φi,0 , (5.20)

eq. (5.19) can be approximated by

ΓWKB ≈
∑
ηi∆φ

2
i (5φ

2
i,n + 5φ2i,0 − 2∆φ2i )L

−1
i

10Tn
∑

∆φ2iL
−1
i

(5.21)

Here φi,0, φi,n are the field values before and after tunneling, respectively, Li are the

corresponding wall widths, and ∆φi ≡ φi,n − φi,0. For the simplified cases of a singlet- or

SU(2)-only transition from the origin, eq. (5.21) simplifies further to

ΓWKB ≈
3

10Tn

{
v2s(Tn)ηs , singlet only

v2(Tn)(ηu sin4 β + ηd cos4 β) , SU(2) only
(5.22)

where β here is understood to be defined at the T = Tn minimum, and we have assumed

Lu = Ld for the second case. To obtain the above result we have assumed that tanβ

is constant along the tunneling path (i.e. ignored ∆β), while in general it is space-time-

dependent. For our calculations of the wall velocity, we use the full late-time wall profile

(via eq. (5.19)) as computed by CosmoTransitions. Comparing these results with the sim-

ple hyperbolic tangent approximation via eq. (5.21), we find that the hyperbolic tangent

approximation tends to underestimate the full result by a few percent but otherwise is in

rather good agreement with the results obtained by using the full profile. This approxima-

tion can thus be useful in future studies should the full profile not be computed.

In addition to the damping from particles with p � L−1w described above, infrared

bosons will also contribute to the friction [117]. At low momenta, the gauge fields can

be treated by classical field theory and be shown to undergo over-damped evolution [118]

(scalar fields are not over-damped and so their contribution is numerically much smaller; we

ignore these contributions). This gives rise to a viscosity coefficient that can be comparable

to those obtained from the WKB contribution above.10 The relevant Γ terms have simple

analytic expressions for the case of one field dimension [118],

Γone-dimension
IR ≈ 3Tn

16π
g2

(
mD(Tn)

Tn

)2
log
[
mW (φn)Lw

]
. (5.23)

where mD is the Debye mass of the SU(2) gauge bosons. Note that this expression is valid

at leading log order, and hence there is an undetermined O(1) constant that will be added

10In fact, in the SM, this contribution can be shown to dominate. However, the contribution from

infrared gauge bosons scales as log[mW (φ)Lw] with Lw decreasing for heavier Higgses. Therefore, while

the dominant contribution to the SM case, infrared bosons lead to a friction coefficient that is numerically

smaller than that from the tops and non-IR bosons in our case. Nevertheless, we include this contribution

in what follows.
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to the log (all such non-logarithmic terms are dropped in this approximation). In keeping

with previous work, we neglect this constant term. Eq. 5.23 generalizes easily to the case

of three field directions as before:

ΓIR =

3m2
DTn

32π

∫∞
x?

[hu(x)h′u(x)+hd(x)h
′
d(x)]

2

[hu(x)2+hd(x)2]2dx∫∞
−∞[h′2u (x) + h′2d (x)]dx

(5.24)

where x? solves LwmW (x?) = 1 (this cuts off the logarithmic divergence in the numerator

of eq. (5.24) and corresponds to the breakdown of the kinetic theory [118]). Assuming a

simplified hyperbolic tangent profile and neglecting ∆β, eq. (5.24) simplifies to

ΓIR ≈
9m2

D(Tn)Tn
16π

1

v2(Tn)
log

[
g2
2
v(Tn)Lw

]
(sin4 β + cos4 β) (5.25)

Here again tanβ is the ratio of SU(2) Higgs VEVs at Tn. Note that we did not have to solve

any Boltzmann equations to determine ΓIR and so it is free of the uncertainty associated

with our δ′ = 0 approximation. In what follows, we take the total friction coefficients Γ to

be sums of the ΓWKB and ΓIR,

Γtot = ΓWKB + ΓIR (5.26)

which should be correct up to O(αw) [113, 117].

Armed with expressions (5.17), (5.25), and (5.26), it remains to determine the friction

coefficients ηu, ηd, ηs for the fields hu, hd, and s, respectively. This is the task we turn

to next.

5.3 The friction coefficients

We would like to evaluate the rates for various particle interactions in the plasma. In

particular, the fields most relevant for the drag on the bubble wall are those with large

couplings to the scalar fields. In the Standard Model, the fields with the largest couplings

to the Higgs are the top quarks, Higgs and SU(2) gauge bosons. In the NMSSM, the

couplings of the neutralinos and charginos to the Higgses are also significant. All fields

with sizable couplings to hu,d,s can contribute substantially to the friction on the bubble

wall. To compute the friction precisely involves evaluating a large number of interaction

rates which are, in general, space-time dependent, due to the changing VEVs. This results

in a complicated network of coupled Boltzmann equations represented schematically by

eq. (5.9). A full analysis of the drag force on the wall is beyond the scope of this paper; recall

that we are already making several simplifications in the treatment outlined above. Thus, in

what follows we will make several additional simplifying assumptions and approximations

that will allow us to estimate the friction force.

For the SU(2) Higgs fields hu,d we will retain the simplification employed in previous

calculations [109, 110] and neglect the friction exerted by Higgs bosons. This was justified

for the SM case because there there is only one Higgs degree of freedom (not counting the

Goldstones) and for the EWPT to be strong required a Higgs lighter than the W mass.

While neither is true in the NMSSM, including the Higgs contribution will only increase

the friction. Since we are mostly concerned with the bubble wall moving too quickly for
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efficient electroweak baryogenesis, ignoring the Higgs bosons in the friction for the hu,d
fields will yield a conservative estimate of the drag, which is sufficient for our purposes.

Similarly, we will also ignore the neutralino and chargino contributions to the friction in

the SU(2) directions. These approximations are not necessary but simplify our calculations

significantly.

We will take the friction on hu,d as arising from the top quarks and SU(2) gauge bosons,

neglecting the U(1) contribution. All other species are treated as a common background

(see ref. [109] for details). The SU(2) gauge bosons are treated as one species W with com-

mon chemical potential, as in ref. [109], with the masses, couplings, and rates averaged over

the three physical fields. Similarly, the left- and right-handed components of the tops, as

well as anti-tops of both helicities, are considered as one species. This corresponds simply to

adding the relevant Boltzmann equations together, averaging, and multiplying by the num-

ber of degrees of freedom. Thus, the rates simply add to one another. Our set-up is precisely

that of refs. [109, 110] to which we refer the reader for further clarification and discussion.

A novel feature of phase transitions in the NMSSM is that the singlet field s is typ-

ically involved. Thus, we need to compute the drag on this field direction as well. Since

s is a singlet under all SM gauge groups, its only interactions are with the Higgs bosons,

Higgsinos, and singlinos. Once again, a proper calculation would involve many interac-

tions with complicated matrix elements. However, we can once again neglect the Higgs

contribution and analyze only those coming from the Higgsino/singlino sector. This will

result in a conservative estimate of the friction (within our approximation scheme), since

the drag provided by the Higgs bosons will add to that from the Higgsinos and singlinos.

The field-dependent masses for the Higgsinos/singlinos (in the gauge eigenstate basis) are

given by

m2
H̃

(s) ' 1

2
(λ2s2)

m2
S̃

(s) ' 1

2
(κ2s2)

(5.27)

The contribution of these fields to the friction on s is proportional to dm2
i (s)/ds and so the

contribution of the singlet and singlino to the friction will be suppressed by κ2/λ2, which

is small for our benchmarks. Therefore we can drop these contributions and consider only

friction arising from the Higgsinos.

We need to calculate the various interaction rates for the tops, gauge bosons, and

Higgsinos which enter the matrix Γ discussed in the previous subsection. The precise

definition of Γ in terms of the various interaction rates is given in ref. [110]. The quantities

we need for each species i are given by integrals of the collision term in eq. (5.6):∫
d3p

(2π)3T 2
C[f ] = δµiΓµ1,i + δTiΓT1,i∫

d3p

(2π)3T 3
EiC[f ] = δµiΓµ2,i + δTiΓT2,i∫

d3p

(2π)3T 4
px,iC[f ] = δviΓv1,i

(5.28)

Thus, we require the various matrix elements for the processes contributing to C[f ].
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The relevant processes include contributions from diagrams with the t-channel ex-

change of a potentially soft gauge boson. At finite temperature, the contributions from

soft bosonic degrees of freedom must be treated with some care, since, naively, they result in

infrared divergences in the massless limit. In reality, the divergence is cut off by the thermal

self-energy in the propagator, which results instead in a finite, large logarithm ∼ log 1/α.

Consequently, the first analysis [117] of the Standard Model case utilized a “leading loga-

rithmic expansion” of the interaction rates, in which only t-channel processes are kept and

the external particles were treated as massless. Additionally, ref. [117] replaced the full ther-

mal self-energies of all massless exchanged particles with the corresponding thermal/Debye

masses. The phase space integrals of eq. (5.6) were then performed analytically. In

ref. [110], a similar approximation was made, with the additional improvement that the inte-

grals were performed numerically. Subsequent analyses in different contexts [119–121] have

improved upon these methods, and we draw on these analyses in our treatment of the rates.

Specifically, we consider all leading log order contributions to the various interaction

rates, systematically dropping terms of order m/T , as in refs. [110, 117]. However, in

the case of the Higgsinos, there are also important s-channel contributions which are e.g.

enhanced by Nf , the number of fermions or by the top Yukawa coupling and Nc. These

contributions, although formally higher in the logarithmic expansion, will contribute com-

parably to the t-channel pieces (see appendix B). We therefore include these contributions

as well. Following the results of refs. [119–121], the matrix elements entering the colli-

sion integral are computed in terms of Mandelstam variables at zero temperature, and

subsequently ‘translated’ into the appropriate form for the finite temperature results, i.e.

including the thermal self energies in the propagators, using the dictionary provided in

refs. [119–121]. The relevant vacuum matrix elements are given in appendix B. For the

evaluation of the phase space integrals in eq. (5.6), we use the hard thermal loop approxima-

tion for the full thermal self-energies for all exchanged particles. These are again detailed

e.g. in ref. [120]. We evaluate the phase space integrals numerically using the Cuba Monte

Carlo integration package [122]. The evaluation of these integrals is straightforward and is

detailed in refs. [119–121], along with the relevant expressions for the thermal self-energies.

Further details can be found in appendix B.

For points of interest we typically find ηu ∼ 6, ηd ∼ 0.3, ηs ∼ 3. The u and d values are

similar to those found in ref. [110] for a plasma with Standard Model particle content. The

difference is due to the full inclusion of the hard thermal loop self-energies in the t-channel

propagators, which ref. [110] neglects. The large values of ηs are due to the smallness of

the Higgsino interaction rates, which are suppressed due to the lack of colored interactions

and, in the absence of light sfermions, the lack of leading log processes enhanced by Nf ,

the number of SU(2) doublet Standard Model fermions.

5.4 Approximate results for vw

With the interaction rates evaluated, we can now compute the wall velocities for all points

in the scans shown in figure 4, given our assumptions. We only consider points without

runaway solutions. The results are shown in figure 6. The curves of figure 6 demonstrate

the expected parametric behavior: stronger transitions occur for smaller values of mhs ,
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Figure 6. Estimated wall velocities for the non-runaway points in Sets I, II, III (circles, diamonds,

squares). Care should be taken in interpreting these results in light of the approximations and

simplifications we have made (detailed in the text), namely utilizing a simple form for the friction

coefficient in the bubble wall equations of motion, and neglecting the spatial variation of the per-

turbations in the bubble wall. A likely increase in vw of factor of a few relative to the values shown

should be kept in mind for all cases. However, even with this modification, all points considered

appear to be sub-sonic, as required for successful transport-driven baryogenesis.

which therefore tend to have larger pressure and hence larger wall velocities. The difference

between the three sets of points is due to variations in the quantity Γγvw, which is related

to the pressure difference driving the wall expansion (see eq. (5.13)). For a given mhs ,

Set III has the smallest Γγvw and hence the smallest wall velocity (the drag coefficients

ηu,d,s are similar for the three sets considered).

We emphasize that the velocities we have computed are estimates that likely substan-

tially underestimate the full result, given by including the δ′ term in eq. (5.9). This was

pointed out in ref. [110] for the case of the MSSM, in which case the δ′ = 0 approximation

underestimated the wall velocity by a factor of 3 for the case of light stops. Indeed, the

results shown in figure 6 do not match on to the velocities in the relativistic regime. It is

thus likely that some of the points with smaller mhs feature significantly higher velocities,

since they should match on to the points with runaway bubble walls. Dropping the deriva-

tive term in eq. (5.9) is an even more crude approximation for the Higgsinos than for the

(s)tops, since the typical Higgsino interaction rates in the plasma are small (there are no

interactions involving color charges or enhanced by Nf at leading log order). However, we

have checked that even completely neglecting the friction from the Higgsinos the computed

wall velocity is subsonic for most points, which is encouraging. Still, a full treatment of

the Boltzmann and wall equations is necessary to accurately determine vw, and we hope

to address this in future work.

Keeping the above remarks in mind, our rough estimates preliminarily suggest that the

effect of friction in the NMSSM might be large enough to cause the bubble walls to move

sub-sonically (in the non-runaway cases). More work is needed to verify this conclusion,

however, if it were true, it would indicate that successful transport-driven electroweak

baryogenesis could occur in the NMSSM parameter space considered. Even an order of

magnitude increase in the wall velocities shown in figure 6 would not change this conclusion.
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6 Summary and conclusions

In this paper we analyzed the nature and properties of the electroweak phase transition

in the next-to-minimal supersymmetric Standard Model in light of the Higgs discovery

at the LHC. We honed in on a region of parameter space featuring significant tree-level

contributions to the Higgs mass, a viable dark matter candidate in the lightest supersym-

metric particle (the lightest neutralino), stops in the TeV range, and the rest of the particle

spectrum compatible with LHC searches. We employed an effective field theory approach

to carefully compute the finite temperature effective potential, which was then fed to the

CosmoTransitions software package to study the details of symmetry breaking and com-

pute the values of several parameters crucial for the calculation of the baryon asymmetry

of the universe.

We showed that the phase transition structure, for phenomenologically viable param-

eter space points, is very rich. There can be one-step electroweak phase transitions from

the origin in field space or from some non-zero VEV prior to tunneling, one-step singlet-

only transitions (which might give rise to observable gravitational radiation in some other

regions of parameter space), as well as two-step phase transitions. Although some of these

possibilities seem not to lead to successful electroweak baryogenesis, such a major event

in the history of the universe is certainly interesting cosmologically. We believe it would

be worthwhile to study the potential observational probes of such scenarios in the hopes

of disentangling the NMSSM (or other theories with additional gauge singlets) from more

minimal models.

In addition to computing the patterns of symmetry breaking, a major aim of our study

was investigating the microphysical parameters that enter into any realistic calculation of

the baryon asymmetry via electroweak baryogenesis. To this end, we studied the bubble

wall profile, and in particular the quantities Lw, Ls, and ∆β. These parameters can vary

to up to an order of magnitude even across the narrow slices of parameter space around

our benchmarks. Notably, we found that these parameters tend to take on values more

promising for electroweak baryogenesis than in the MSSM, further suggesting the viability

of NMSSM electroweak baryogenesis.

A crucial part of our study comprised our analysis of the bubble wall velocity for

realistic parameter space points. We found that ultra-relativistic solutions to the bubble

wall equations of motion exist typically when the phase transition is very strong (when

there is substantial supercooling). For weaker transitions the bubble wall velocity tends to

be sub-luminal, and thus potentially compatible with successful electroweak baryogenesis.

We provided an approximate estimate of the bubble wall velocity in the non-runaway

case, hinging upon a microscopic treatment of the various sources of friction acting on

the expanding bubble wall. Although this estimate is rather rough in many respects, our

results suggest typical values for the wall velocity are in the O(0.01–0.1) range, comparable

to that of the MSSM light stop scenario. Future work is required to improve this estimate.

However, we stress that our computation of the various interaction rates of the particles

in the plasma was quite thorough, and can be used in future studies beyond the simple

framework we have employed here.
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We believe this study can serve as a jumping off point for more detailed investiga-

tions of NMSSM electroweak baryogenesis, especially as the LHC, dark matter searches,

and intensity frontier experiments continue to clarify what physics might exist beyond the

Standard Model. Overall, our results suggest that the NMSSM might not only explain

the observed Higgs mass, the nature of dark matter, and alleviate the hierarchy prob-

lem, but also explain the origin of the baryon asymmetry of the universe via electroweak

baryogenesis.
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Note added. While the final stages of this work were being completed, ref. [123] ap-

peared, which investigates phase transitions in a similar region of the NMSSM. They reach

conclusions similar to ours in terms of the possible patterns of symmetry breaking. Their

study differs substantially from our investigation in several respects. In particular, they

include the stops as dynamic degrees of freedom in the one-loop zero-temperature effective

potential, while we integrate them out and work in an effective field theory below the stop

mass scale. Also, they analyze the effective potential analytically to determine the con-

ditions necessary for two of the vacua to be degenerate at non-zero temperature, as well

as scan over the parameter space to find regions satisfying this condition, while our study

is much more focused on the precise details of the phase transition with respect to the

tunneling solution, bubble wall profile, and dynamics of the bubble wall expansion, which

they do not attempt to address. In this sense, their study is largely complementary to

ours, but quite disjoint.

A Renormalization group equations

In this appendix we list the one-loop renormalization group equations for the couplings

that enter the effective 2HD+S potential. The RGEs are valid below the stop mass scale

and above the top mass scale. We include the effects of the top quark, gauge bosons,

Higgs/singlet bosons, Higgsinos, and singlinos. The gaugino contributions are not included,

since we take M2 to be rather large and the bino contribution is numerically small.

The beta functions are defined as

βpi =
∂

∂ log Λ2
pi (A.1)
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where pi is the parameter of interest. The RGEs for the various quartic couplings are:

16π2βλ1 = 6λ21 + 2λ23 + 2λ3λ4 + λ24 + λ25 −
1

2
λ1(3g

2
1 + 9g22) +

3

8
g41 +

9

8
g42 +

3

4
g21g

2
2

− 2λ̃4 + 2λ̃2λ1

16π2βλ2 = 6λ22 + 2λ23 + 2λ3λ4 + λ24 + λ26 −
1

2
λ2(3g

2
1 + 9g22) +

3

8
g41 +

9

8
g42 +

3

4
g21g

2
2

+ 6y2t λ2 − 6y4t − 2λ̃4 + 2λ̃2λ2

16π2βλ3 = (λ1 + λ2)(3λ3 + λ4) + 2λ23 + λ24 + λ5λ6 −
1

2
λ3(3g

2
1 + 9g22) +

3

8
g41 +

9

8
g42

− 3

4
g21g

2
2 + 3y2t λ3 − 2λ̃4 + 4λ̃2λ4 + 4λ̃2λ3

16π2βλ4 = λ4(λ1 + λ2 + 4λ3 + 2λ4) + 2λ27 −
1

2
λ4(3g

2
1 + 9g22) +

3

2
g21g

2
2

+ 3y2t λ4 + 2λ̃4 − 2λ̃2λ4

16π2βλ5 = λ5(3λ1 + 2λ5 + 4λ8) + λ6(2λ3 + λ4) + 4λ27 −
1

4
λ5(3g

2
1 + 9g22)

− 8κ̃2λ̃2 − 2λ̃4 + 2κ̃2λ5 + 3λ̃2λ6

16π2βλ6 = λ5(2λ3 + λ4) + λ6(3λ2 + 2λ6 + 4λ8) + 4λ27 −
1

4
λ6(3g

2
1 + 9g22)

+ 3y2t λ6 − 8κ̃2λ̃2 − 2λ̃4 + 2κ̃2λ6 + 3λ̃2λ6

16π2βλ7 = λ7(λ3 + 2λ4 + 2λ5 + 2λ6 + 2λ8)−
1

4
λ7(3g

2
1 + 9g22)

+
3

2
y2t λ7 + 4κ̃λ̃3 + 2κ̃2λ7 + 3λ̃2λ7

16π2βλ8 = λ25 + λ26 + 2λ27 + 10λ28 + (4κ̃2 + 4λ̃2)λ8 − 8κ̃2 − 2λ̃4.

(A.2)

The RGEs for the dimensionful parameters m4 and m5 are given by

16π2βm4 = (λ3 + 2λ4 + λ5 + λ6 + 2λ̃2 + κ̃2 − 9

4
g22 −

3

4
g21 +

3

2
y2t )m4 + 2λ7m5

16π2βm5 = (6λ8 + 3λ̃2 + 3κ̃2)m5 + 6λ7m4 .
(A.3)

In the above equations, λ̃ and κ̃ are the parameters appearing in the neutrlalino/

chargino mass matrices. We do not include their running, since they enter only in the one-

loop contributions to the effective potential, and thus their running is formally a higher-

order effect. The same reasoning holds for the Yukawa and gauge couplings. It should

also be noted that the NMSSM parameters we match onto at the stop scale are technically

DR running parameters (appropriate for a supersymmetric theory), while the parameters

we use in the effective theory are defined in the MS scheme. Converting between the two

schemes results in a small threshold correction to several of the quartic couplings. However,

this only affects the quartics at the O(1%) level, and so we neglect these corrections in our

calculations.

In practice, to match onto the spectrum calculated by NMSSMTools, when computing

the corrections to the 2HD+S potential parameters we consider only the top, gauge boson,
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Higgsino, and singlino contributions, since NMSSMTools does not include Higgs boson cor-

rections to the lightest CP-even state [31, 32]. We have modified NMSSMTools accordingly

so that our spectra exhibit good agreement.

B Vacuum matrix elements for annihilation and scattering rates

In this appendix we list the vacuum squared matrix elements, |M|2ij→kl, relevant for com-

puting the friction coefficients for the fields hu,d,s. We sum over colors, spins, polarizations,

and particle-antiparticle of all four states, then divide through by the number of degrees of

freedom for the relevant incoming particle. This convention matches that appearing in pre-

vious calculations of the matrix elements for the SM [109] and MSSM [110] friction cases,

although here we also include the largest contributions beyond the leading-log approxima-

tions of ref. [109]. Processes which do not contribute at LLO are marked with an asterisk,

corresponding to the Nf -enhanced s-channel Higgsino pair annihilation contribution and

Higgsino-singlino co-annihilation, which enters with large coupling λ2y2t .

B.1 Friction on s

For the CP-even singlet field, the relevant interactions are those that involve Higgsino

(co-)annihilation and scattering. The dominant contributions that we take into account

(discussed in section 5.3) are

Higgsino annihilation:

H̃H̃ →WW :
9

8
g42

(
u

t
+
t

u

)
(B.1)

(∗) H̃H̃ → ff̄ : 18g42
u2 + t2

s2
(B.2)

(∗) H̃S̃ → tt̄ : 3λ2y2t (B.3)

Higgsino scattering :

H̃f → H̃f : 18g42
s2 + u2

t2
(B.4)

H̃W → H̃W : 6g42
s2 + u2

t2
(B.5)

Although we do not utilize them in this work, we also list the relevant Higgs interaction

matrix elements for use in future studies:

Higgs annihilation:

Hg → tt̄ : 8g23y
2
t

u

t
(B.6)

Ht→ tg : 8g23y
2
t

u

t
(B.7)

HH → tt̄ : 9y4t
u

t
(B.8)
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Higgs scattering :

Hf → Hf : 18g42
su

t2
(B.9)

Ht→ tH : 9y4t
s

t
(B.10)

HW → HW :
15

4
g42 + 3g42

s2 − st
t2

. (B.11)

The above squared matrix elements are those relevant in the unbroken SU(2) phase.

Once the exchanged particles obtain a non-zero mass term in the Lagrangian, new channels

are opened which involve a mass insertion on the internal propagator, as well as several

interference terms which vanish in the massless limit. Additional contributions to the scat-

tering rates tend to lower the viscosity, as they damp the perturbations of the equilibrium

distribution functions. However, these contributions are typically suppressed by powers of

m/T and should only change the scattering rates significantly relatively far into the bubble

wall. Furthermore, we are only interested in a rather rough estimate of the wall velocity

in each case. We thus only consider the rates relevant for massless particles, noting that a

full calculation should go beyond this approximation. We do not expect these additional

processes to significantly alter our results. Note that this treatment is in keeping with that

of refs. [109, 110].

B.2 Friction on hu,d

The relevant processes we consider in this case are annihilation and scattering of top quarks

and SU(2) gauge bosons. These are the interactions treated in ref. [109] for the SM case.

As discussed in section 5.3, we neglect the contribution of the Higgses, Higgsinos, and

gauginos on the SU(2) field-directions, noting that they will decrease the wall velocity

when included. Our treatment is thus conservative from the standpoint of electroweak

baryogenesis, which requires sub-sonic wall velocities.

We include only those processes contributing large logs to the interaction rates. How-

ever, different from refs. [109, 110], we employ a full leading-order treatment in evaluating

these contributions, instead of making the analytic approximations found in ref. [109] or

using only the numerical phase space integration of ref. [110]. The resulting squared matrix

elements (again summing over all degrees of freedom and then dividing out by the degrees

of freedom of the incoming particle), are

Top quark annihilation:

tt̄→ gg :
32

9
g43

(
u

t
+
t

u

)
(B.12)

Top quark scattering :

tq → tq :
80

3
g43
s2 + u2

t2
(B.13)

tg → tg : 16g43
s2 + u2

t2
(B.14)

tg → gt : − 64

9
g43
s

u
(B.15)
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SU(2) gauge boson annihilation:

Wg → qq̄ : 24g23g
2
2

u

t
(B.16)

Wq → qg : 24g23g
2
2

u

t
(B.17)

WW → ff̄ :
9

2
g42

(
u

t
+
t

u

)
(B.18)

SU(2) gauge boson scattering :

Wf →Wf : 60g42
s2 + u2

t2
(B.19)

Wf → fW : − 9g42
s

u
. (B.20)

It should be noted that some of the amplitudes listed above do not simplify to those

found in ref. [109]. This is due to some errors in the treatment of ref. [109] as was sub-

sequently pointed out in ref. [119]. We have taken these into account and checked that

our results for the squared matrix elements do match up to those listed in refs. [120, 124],

where applicable.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.
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