
J
H
E
P
0
1
(
2
0
1
5
)
1
3
1

Published for SISSA by Springer

Received: December 1, 2014

Accepted: December 26, 2014

Published: January 26, 2015

Consistent Kaluza-Klein truncations via exceptional

field theory

Olaf Hohma and Henning Samtlebenb

aCenter for Theoretical Physics, Massachusetts Institute of Technology,

Cambridge, MA 02139, U.S.A.
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1 Introduction

The consistent Kaluza-Klein truncation of higher-dimensional supergravity to lower-

dimensional theories is an important and in general surprisingly difficult problem. Here

consistent truncation means that any solution of the lower-dimensional theory can be em-

bedded into a solution of the original, higher-dimensional theory. This requires that

all coordinate dependence of the internal space is consistently factored out. Due to the

non-linearity of the supergravity equations of motion this is a highly non-trivial and often

impossible challenge for compactifications on curved backgrounds. Only very few exam-

ples are known in which such consistency cannot be attributed to an underlying symmetry

argument. The simplest class of consistent truncations are the Tn toroidal compactifica-

tions in which the internal coordinate dependence is completely dropped, extrapolating the

original ideas of Kaluza and Klein [1, 2] to higher dimensions. Consistency simply follows
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from the fact that all retained massless fields are singlets under the resulting U(1)n gauge

group. In the context of eleven-dimensional supergravity [3] such reductions give rise to

the maximal ungauged (thus abelian) supergravities in lower dimensions [4].

More involved examples are sphere compactifications, the prime example being the

compactification of eleven-dimensional supergravity on AdS4 × S7, leading to maximal

SO(8) gauged supergravity in four dimensions [5]. The required consistency conditions are

so non-trivial that in the early days of Kaluza-Klein supergravity this shed serious doubt

on the possible consistency of sphere compactifications. For AdS4×S7 this consistency was,

however, established in [6], with recent improvements in [7–10], employing an SU(8) invari-

ant reformulation of the original eleven-dimensional theory [11]. Other consistent sphere

reductions have been constructed in [12–14], including the compactification on AdS7 × S4.

An important generalization of the usual compactification scheme was put forward by

Scherk and Schwarz [15], relating the internal dimensions to the manifold of a Lie group.

More recently, the advances in the understanding of the duality symmetries underlying

string and M-theory have nourished the idea to identify generalized geometric (and pos-

sibly non-geometric) compactifications as generalized Scherk-Schwarz reductions in some

extended geometry [16–21]. In the framework of double field theory [22–27], which makes

the O(d, d) T-duality of string theory manifest, generalized Scherk-Schwarz-type compact-

ifications of an extended spacetime have been discussed in [28–31], see also [32, 33] for

reductions to deformations of double field theory. In the M-theory case, analogous ideas

have been investigated in [34–39] in the duality covariant formulation of the internal sector

of D = 11 supergravity [40–43].

In this paper, we realize this scenario in full exceptional field theory (EFT) [44–48],

which is the manifestly U-duality covariant formulation of the untruncated ten- and eleven-

dimensional supergravities. The theory is formulated on a generalized spacetime coordina-

tized by (xµ, YM ), where we refer to xµ as ‘external’ spacetime coordinates, while the YM

describe some generalized ‘internal’ space with M,N labeling the fundamental represen-

tation of the Lie groups in the exceptional series Ed(d), 2 ≤ d ≤ 8. The fields generically

include an external metric gµν , an internal (generalized) metricMMN and various higher p-

forms, in particular Kaluza-Klein-like vectors AµM in the fundamental representation and

possibly 2-forms and higher forms. With respect to the internal space, all fields are subject

to covariant section constraints on the extended derivatives ∂M which imply that fields

depend only on a subset of coordinates. There are at least two inequivalent solutions to

these constraints: for one the theory is on-shell equivalent to 11-dimensional supergravity,

for the other to type IIB, in analogy to type II double field theory [49].

The recent ideas of realizing non-trivial (and possibly non-geometric) compactifications

as generalized Scherk-Schwarz compactifications are based on an ansatz for the generalized

metric of the form

MMN (x, Y ) = UM
K(Y )UN

L(Y )MKL(x) , (1.1)

in terms of group-valued twist matrices UM
N which capture the Y -dependence of the

fields. With this ansatz, the Y -dependence in the corresponding part of the field equations
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consistently factors out, provided the twist matrices satisfy a particular set of first order

differential equations which in full generality take the form[
(U−1)M

P (U−1)N
L ∂PUL

K
]
(P)

!
= ρΘM

α (tα)N
K ,

∂N (U−1)M
N − (D − 1) ρ−1∂Nρ (U−1)M

N !
= ρ (D − 2)ϑM . (1.2)

Here, ρ is a Y -dependent scale factor, D is the number of external space-time dimensions,

ϑM and ΘM
α are constant so-called embedding tensors that encode the gauging of super-

gravity, and [·](P) denotes projection onto a particular subrepresentation. With this ansatz,

the scalar action forMMN (x, Y ) reproduces the scalar potential of gauged supergravity for

MKL(x), with the twist matrix U encoding the embedding tensor ΘM
α which parametrizes

the lower-dimensional theory [34–36].

In this paper, we extend this scheme to the full exceptional field theory with the

following main results

(1) We extend the ansatz (1.1) to the field content of the full exceptional field theory, i.e.

to the external metric, vector and p-forms. In particular, we find that consistency

of the reduction ansatz requires a particular form of the ‘covariantly constrained’

compensating gauge fields, which are novel fields required in exceptional field the-

ory for a proper description of the degrees of freedom dual to those of the higher-

dimensional metric. E.g. in E7(7) exceptional field theory, most of the remaining fields

reduce covariantly,

gµν(x, Y ) = ρ−2(Y ) gµν(x) ,

AµM (x, Y ) = ρ−1(Y )Aµ
N (x)(U−1)N

M (Y ) ,

Bµνα(x, Y ) = ρ−2(Y )Uα
β(Y )Bµν β(x) , (1.3)

with the twist matrix U in the corresponding E7(7) representation and the scale

factor ρ taking care of the weight under generalized diffeomorphisms. In contrast,

the constrained compensator field which in the E7(7) case corresponds to a 2-form

Bµν M in the fundamental representation is subject to a non-standard Scherk-Schwarz

ansatz that reads

Bµν M (x, Y ) = − 2 ρ−2(Y ) (U−1)S
P (Y ) ∂MUP

R(Y )(tα)R
S Bµνα(x) , (1.4)

relating this field to the 2-forms Bµνα present in gauged supergravity. The

ansatz (1.3) for Aµ
M (x, Y ) encodes the embedding of all four-dimensional vector

fields and their magnetic duals. As such, it includes the recent results of [10] for

the SO(8) sphere compactification, but remains valid for a much larger class of com-

pactifications, in particular, for the hyperboloids which we explicitly construct in

this paper. The reduction ansatz for the fermionic fields in the formulation of [48]

is remarkably simple, their Y -dependence is entirely captured by a suitable power of

the scale factor ρ .
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We show that with the ansatz (1.1)–(1.4), the field equations of exceptional field

theory precisely reduce to the field equations of the lower-dimensional gauged su-

pergravity. Via (1.2), the twist matrix U encodes the embedding tensor ΘM
α, ϑM

which specifies the field equations of the lower-dimensional gauged supergravity [50–

52]. In case ϑM 6= 0, the lower-dimensional field equations include a gauging of the

trombone scaling symmetry which in particular acts as a conformal rescaling on the

metric [52]. These equations do not admit a lower-dimensional action. Yet, also in

this case the generalized Scherk-Schwarz ansatz defines a consistent truncation and

we reproduce in particular the exact scalar contributions to the lower-dimensional

field equations. For ϑM = 0, the reduction is also consistent on the level of the action

and we reproduce the full action of gauged supergravity defined by an embedding

tensor ΘM
α .

(2) The consistency of the generalized Scherk-Schwarz ansatz being guaranteed by the

differential equations (1.2), it remains an equally important task to actually solve

these equations. For conventional Scherk-Schwarz compactifications the existence

of proper twist matrices is guaranteed by Lie’s second theorem, but to our knowl-

edge there is no corresponding theorem in this generalized context. In certain cases,

the existence of solutions can be inferred from additional structures on the internal

manifold, such as the Killing spinors underlying the original construction of [6] and

then [9], or the generalized parallelizability underlying certain coset spaces, such as

the round spheres [38]. In this paper, we explicitly construct a family of twist matri-

ces as solutions of (1.2), that via the generalized Scherk-Schwarz ansatz give rise to

gauged supergravities with gauge groups SO(p, q) and CSO(p, q, r). Geometrically,

they describe compactifications on internal spaces given by (warped) hyperboloides

Hp,q (as first conjectured in [53]), thus extending the applicability of generalized

Scherk-Schwarz reductions beyond homogeneous spaces. Our construction is based

on the embedding of the linear group SL(n) into the EFTgroup Ed(d) with the internal

coordinates YM decomposing according to

YM −→
{
Y [AB], . . .

}
, with A,B = 0, . . . , n− 1 , (1.5)

i.e. carrying the antisymmetric representation Y [AB]. We then construct a family

of SL(n)-valued twist matrices, parametrized by non-negative integers (p, q, r) with

p+ q + r = n, satisfying the SL(n) version of the consistency conditions (1.2). They

depend on a subset of n − 1 coordinates yi, embedded into (1.5) as yi ≡ Y [0i],

such that the section constraint of exceptional field theory is identically satisfied.

Upon embedding into Ed(d), these twist matrices turn out to solve the full version of

consistency conditions (1.2), provided the number of external dimensions D is related

to n as

1

2
(D − 1) =

n− 2

n− 4
. (1.6)

With the three principal integer solutions (D,n) = (7, 5), (5, 6), (4, 8), we thus obtain

solutions of the consistency conditions (1.2) within SL(5), E6(6), and E7(7) EFT.
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Their coordinate dependence is such that the reduction ansatz explicitly satisfies the

EFTsection constraints.

Combining these explicit solutions to the consistency equations (1.2) with the gener-

alized Scherk-Schwark ansatz (1.1)–(1.4), we thus define consistent truncations of the full

exceptional field theory to lower-dimensional supergravities with gauge groups SO(p, q)

and CSO(p, q, r). Together with the dictionary that relates exceptional field theory to

D = 11 and IIB supergravity, respectively, (which is independent of the particular choice

of the twist matrix U), the construction thus gives rise to an entire family of consistent

truncations in the original theories, including spheres of various dimensions and warped

hyperboloids.1 Specifically, we compute the internal metric induced by our twist matrices

via the Scherk-Schwarz ansatz (1.1), and find

ds2 = (1 + u− v)−2/(p+q+r−2)

(
dyzdyz + dyadyb

(
δab +

ηacηbdy
cyd

1− v

))
, (1.7)

with the further split of coordinates yi = {ya, yz}, a = 1, . . . , p+q−1, and z = p+q, . . . , r ,

and the combinations u ≡ yaya, v ≡ yaηaby
b . This space is conformally equivalent to the

direct product of r flat directions and the hyperboloid Hp,q . The three integer solutions

to (1.6) in particular capture the compactifications around the three maximally supersym-

metric solutions AdS7×S4, AdS5×S5, AdS4×S7. We stress that in the general case however

the metric (1.7) will not be part of a solution of the higher-dimensional field equations.

This is equivalent to the fact that the lower-dimensional supergravities in general do not

have a critical point at the origin of the scalar potential, as explicitly verified in [53] for

the SO(p, 8 − p) supergravities. Nevertheless, in all cases the generalized Scherk-Schwarz

ansatz continues to describe the consistent truncation of the higher-dimensional supergrav-

ity to the field content and the dynamics of a lower-dimensional maximally supersymmetric

supergravity. The construction thus enriches the class of known consistent truncations not

only by the long-standing AdS5 × S5, but also by various hyperboloid compactifications

giving rise to non-compact and non-semisimple gauge groups.

Let us stress that throughout this paper we impose the strong version of the section

constraint, which implies that locally the fields (i.e. the twist matrix U and scale factor ρ)

depend only on the coordinates of the usual supergravities.1 This is indispensable in order

to deduce that the consistent truncations from exceptional field theory induce a consistent

truncation of the original supergravities. On the other hand, it puts additional constraints

on the solutions of (1.2), which makes the actual construction of such solutions a more

difficult task. Although naively, one might have thought that for a given embedding tensor

ΘM
α a simple exponentiation of YMΘM

αtα provides a candidate for a proper twist matrix,

the failure of Jacobi identities of the ‘structure constants’ ΘM
α(tα)N

K , and the non-

trivial projection in (1.2) put a first obstacle to the naive extrapolation of the Lie algebra

1It depends on the embedding (1.5) of SL(n), if the coordinate dependence of the twist matrix falls into

the class of eleven-dimensional (IIA) or IIB solutions of the exceptional field theory. This defines in which

higher-dimensional theory the construction gives rise to consistent truncations. Unsurprisingly, this is IIA

for D = 4, 7, and IIB for D = 5 .
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structures underlying the standard Scherk-Schwarz ansatz. On top of this, an object like

YMΘM
αtα in general violates the section constraint, since ΘM

α in general will have a rank

higher than is permitted by the six/seven coordinates among the YM that are consistent

with the section constraint. From this point of view, the standard sphere compactifications

take a highly ‘non-geometric’ form. While we do not expect to encode in this construction

genuinely non-geometric compactifications (unless global issues of the type addressed in

double field theory in [54] become important), we expect that a proper understanding of

highly non-trivial compatifications like for spheres and hyperboloides will be a first step in

developing a proper conceptual framework for non-geometric compatifications, which so far

are out of reach. It should be evident that the advantage even of the strongly constrained

exceptional field theory formulations is a dramatic technical simplification of, for instance,

the issues related to consistency proofs, allowing to resolve old and new open questions.

In fact, with the full EFTs at hand we can potentially provide a long list of examples

of consistent truncations that were previously considered unlikely, such as hyperboloides,

warped spheres, compactifications with massive multiplets, etc. Of course, eventually one

would like to also include in a consistent framework truly non-geometric compactifications,

pointing to a possible relaxation of the strong form of the section constraint.

The rest of this paper is organized as follows. In section 2, we give a brief review of

the E7(7) EFT. Although in this paper most detailed technical discussions will be presented

for the E7(7) EFT the analogous constructions go through for all other EFTs. In section 3

we describe the generalized Scherk-Schwarz ansatz for the full field content of the theory.

We show that it defines a consistent truncation of the EFT which reduces to the complete

set of field equations of lower-dimensional gauged supergravity with embedding tensor

ΘM
α, ϑM , even in presence of a trombone gauging ϑM 6= 0 . For ϑM = 0, the reduction

is also consistent on the level of the action. In section 4, we construct twist matrices

U as explicit solutions of the consistency conditions (1.2). We define a family of SL(n)

twist matrices and show that upon proper embedding into the exceptional groups they

solve equations (1.2). The lower-dimensional theories have gauge groups SO(p, q) and

CSO(p, q, r), respectively. The construction provides the consistent reduction ansaetze for

compactifications around spheres Sn−1 and (warped) hyperboloides Hp,q . Discussion and

outlook are given in section 5.

2 E7(7) exceptional field theory

We start by giving a brief review of the E7(7)-covariant exceptional field theory, constructed

in refs. [44, 46, 48] (to which we refer for details) . All fields in this theory depend on the

four external variables xµ, µ = 0, 1, . . . , 3, and the 56 internal variables YM , M = 1, . . . , 56,

transforming in the fundamental representation of E7(7), however the latter dependence is

strongly restricted by the section condition [40, 42, 55]

(tα)MN ∂M ⊗ ∂N ≡ 0 , ΩMN ∂M ⊗ ∂N ≡ 0 , (2.1)

where the notation ⊗ should indicate that both derivative operators may act on different

fields. Here, ΩMN is the symplectic invariant matrix which we use for lowering and raising
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of fundamental indices according to XM = ΩMNXN , XN = XMΩMN . The tensor (tα)M
N

is the representation matrix of E7(7) in the fundamental representation, α = 1, . . . , 133.

These constraints admit (at least) two inequivalent solutions, in which the fields depend on

a subset of seven or six of the internal variables. The resulting theories are the full D = 11

supergravity and the type IIB theory, respectively.

2.1 Bosonic field equations

The bosonic field content of the E7(7)-covariant exceptional field theory is given by{
eµ
α , MMN , AµM , Bµνα , Bµν M

}
. (2.2)

The field eµ
α is the vierbein, from which the external (four-dimensional) metric is ob-

tained as gµν = eµ
αeνα. The scalar fields are described by the symmetric matrix MMN

constructed as MMN = (VVT )MN from an E7(7) valued 56-bein, parametrizing the coset

space E7(7)/SU(8). Vectors AµM and 2-forms Bµνα transform in the fundamental and

adjoint representation of E7(7), respectively. The 2-forms Bµν N in the fundamental rep-

resentation describe a covariantly constrained tensor field, i.e. satisfy algebraic equations

analogous to (2.1)

(tα)MN BM ⊗ BN = 0 , (tα)MN BM ⊗ ∂N = 0 ,

ΩMN BM ⊗ BN = 0 , ΩMN BM ⊗ ∂N = 0 .
(2.3)

Their presence is necessary for consistency of the hierarchy of non-abelian gauge transfor-

mations and can be inferred directly from the properties of the Jacobiator of generalized

diffeomorphisms [46]. In turn, after solving the section constraint these fields ensure the

correct and duality covariant description of those degrees of freedom that are on-shell dual

to the higher-dimensional gravitational degrees of freedom.

The bosonic exceptional field theory is invariant under generalized diffeomorphisms in

the internal coordinates, acting via [42]

LΛ ≡ ΛK∂K + 12 ∂KΛL (tα)L
K tα + λ∂PΛP , (2.4)

on arbitrary E7(7) tensors of weight λ. The weights of the various bosonic fields of the

theory are given by

eµ
α MMN AµM Bµνα Bµν M

λ : 1
2 0 1

2 1 1
2

. (2.5)

The generalized diffeomorphisms give rise to the definition of covariant derivatives

Dµ = ∂µ − LAµ , (2.6)

covariantizing the theory under x-dependent transformations (2.4). Their commutator

closes into the non-abelian field strengths FµνM defined by

FµνM ≡ 2∂[µAν]
M − 2A[µ

N∂NAν]
M − 1

2

(
24 (tα)MN (tα)KL − ΩMNΩKL

)
A[µ

K ∂NAν]
L

− 12 (tα)MN ∂NBµνα −
1

2
ΩMN Bµν N . (2.7)

– 7 –
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The two-forms Bµνα, Bµν N drop out from the commutator [Dµ,Dν ] but are required for

FµνM to transform covariantly under generalized diffeomorphisms.

The equations of motion of the bosonic theory are most compactly described by

a Lagrangian

LEFT = e R̂+
1

48
e gµν DµMMN DνMMN −

1

8
eMMN FµνMFµνN

+ Ltop − e V (MMN , gµν) . (2.8)

Let us review the different terms. The modified Einstein Hilbert term carries the Ricci

scalar R̂ obtained from contracting the modified Riemann tensor

R̂µν
αβ ≡ Rµν

αβ[ω] + FµνMeαρ∂Meρβ , (2.9)

with the spin connection ωµ
αβ obtained from the covariantized vanishing torsion condi-

tion D[µeν]
α ≡ 0 . Scalar and vector kinetic terms are defined in terms of the covariant

derivatives (2.6) and field strengths (2.7). The Lagrangian (2.8) is to be understood as a

“pseudo-Lagrangian” in the sense of a democratic action [56], with the vector fields further

subject to the first order duality equations

FµνM =
1

2
i eεµνρσ ΩMNMNK FρσK , (2.10)

to be imposed after varying the second-order Lagrangian. The topological term in (2.8) is

most compactly given as the boundary contribution of a five-dimensional bulk integral∫
∂Σ5

d4x

∫
d56Y Ltop =

i

24

∫
Σ5

d5x

∫
d56Y εµνρστ FµνM DρFστM . (2.11)

Finally, the last term in (2.8) is given by

V (MMN , gµν) = − 1

48
MMN∂MMKL ∂NMKL +

1

2
MMN∂MMKL∂LMNK (2.12)

− 1

2
g−1∂Mg ∂NMMN − 1

4
MMNg−1∂Mg g

−1∂Ng

−1

4
MMN∂Mg

µν∂Ngµν ,

in terms of the internal and external metric.

The full bosonic theory is invariant under vector and tensor gauge symmetries with

parameters ΛM , Ξµα, ΞµM (the latter constrained according to (2.3)), as well as under gen-

eralized diffeomorphisms in the external coordinates. Together, these symmetries uniquely

fix all field equations.

2.2 SU(8) × E7(7) geometry and fermions

In this subsection we review some aspects of the SU(8)× E7(7) covariant geometry, which

will be instrumental below, and introduce the fermions of the supersymmetric theory. The

geometry, which closely follows that of double field theory [22, 27], was developed for the

– 8 –
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fields truncated to the internal sector in [36, 42, 43, 57] and recently completed in [48] for

the full E7(7) exceptional field theory constructed in [46].

We start by introducing a frame formalism, in which the generalized metric is expressed

in terms of an E7(7) valued vielbein V,

MMN = VMA VNB δAB ≡ VMijVNij + VMijVNij , (2.13)

with flat SU(8) indices A,B, . . . = 1, . . . , 56 that split according to the embedding 56 =

28 + 28 as A = ( [ij] ,
[ij]), i, j = 1, . . . , 8. Formulated in terms of V, the theory exhibits a

local SU(8) ‘tangent space’ symmetry. Consequently, one can introduce connections QM
for this symmetry that can be expressed as

QMA
B = QMij

kl = QM [i
[kδj]

l] (2.14)

in terms of SU(8) connections QMi
j with fundamental indices. We may also introduce

a Christoffel-type connection ΓMN
K and (internal) spin connections ωM

αβ that render

derivatives covariant under generalized diffeomorphisms and local SO(1, 3) transformations,

respectively. On a generalized vector VMi transforming in the fundamental of E7(7) and

SU(8) and as a spinor under SO(1, 3) (whose spinor index we suppress) the covariant

derivative is given by

∇MVNi ≡ ∂MVNi +
1

4
ωM

αβγαβVNi +
1

2
QMi

jVNj

− ΓMN
KVKi −

2

3
λ(V )ΓKM

KVNi ,

(2.15)

where λ is the density weight of V . The internal SO(1, 3) spin connection is given by

ωM
αβ = eµ[α∂Meµ

β] . (2.16)

Sometimes it is convenient to work with the combination

ω̂M
αβ ≡ ωM

αβ − 1

4
MMNFµνNeµαeνβ , (2.17)

which naturally enters the supersymmetry variations to be given momentarily.

Next, the remaining connections in (2.15) can be determined (in part) in terms of

the physical fields by imposing further constraints. While this does not determine all

connections uniquely, the undetermined connection components drop out of all relevant

expressions. The first constraint is the generalized torsion constraint, setting to zero a

generalized torsion tensor TMN
K . In order to state this constraint, note that the Christoffel

connection, in its last two indices, takes values in the 133-dimensional Lie algebra of E7(7),

and therefore these connections live in the representation

ΓMN
K : 56⊗ 133 = 56⊕ 912⊕ 6480 . (2.18)

The torsion constraint simply sets the 912 sub-representation to zero,

TMN
K = 0 ⇐⇒ ΓMN

K
∣∣∣
912

= 0 , (2.19)
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which may be verified to be a gauge covariant condition. Next, demanding that the covari-

ant derivative is compatible with the vierbein density e = det eµ
α fixes

∇Me = 0 ⇐⇒ ΓKM
K =

3

4
e−1∂Me , (2.20)

allowing for integration by parts with covariant derivatives. This determines the 56 part

of Γ. It implies, for instance, that the covariant derivative of an E7(7) singlet with density

weight λ in the fundamental of SU(8) can be written as

∇MVi = e
λ
2 ∂M

(
e−

λ
2 Vi

)
+

1

2
QMi

jVj . (2.21)

The final constraint is the ‘vielbein postulate’ stating that the frame field is covariantly

constant w.r.t. the combined action of the Christoffel and SU(8) connection,

∇MVNA ≡ ∂MVNA −QMB
AVNB − ΓMN

KVKA = 0 , (2.22)

or, in terms of fundamental SU(8) indices,

∇MVNij ≡ ∂MVNij +QMk
[iVNj]k − ΓMN

KVKij = 0 , (2.23)

and similarly for its complex conjugate with lower indices.

Let us now give explicit expressions for the determined parts of the spin connections

that we will use below. We first note that the vielbein postulate relates the Christoffel

connection to the SU(8) connection as

ΓAB
C ≡ (V−1)A

M (V−1)B
NΓMN

KVKC = (V−1)A
M (V−1)B

N∂MVNC −QAB C , (2.24)

where the indices on Γ are ‘flattened’ by means of the frame field V. Projecting both sides

of this equation onto the 912, the generalized torsion constraint (2.19) implies that[
QAB C

]
912

=
[
(V−1)A

M (V−1)B
N∂MVNC

]
912

. (2.25)

Thus, while the 912 projection of the Christoffel connection is set to zero by the torsion

constraint, the 912 projection of the SU(8) connection is precisely the part determined by

the torsion constraint. Similarly, one obtains an expression for the trace part of Q. Taking

the trace of (2.22) yields

ΓMN
M = VNA

(
− ∂MVAM +QBAB

)
. (2.26)

Inserting (2.20) this implies

QBAB = ∂MVAM +
3

4
e−1VAM∂Me . (2.27)

eqs. (2.25) and (2.27) give the full part of the SU(8) connection that is determined by the

above constraints.

We close the discussion of the geometry by giving a definition of the generalized

scalar curvature R that enters the potential. It can be defined through a particular com-

bination of second-order terms in covariant derivatives acting on an SO(1, 3) spinor in
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the fundamental of SU(8) with density weight 1
4 (that below will be identified with the

supersymmetry parameter),

6∇ik∇kjεj + 2∇kj∇ikεj +∇kl∇klεi =
1

16
Rεi −

1

4
γµνgρσ∇ikgµρ∇kjgνσεj . (2.28)

Here covariant derivative with flattened index are defined as

∇ij ≡ (V−1)ij M ∇M . (2.29)

In (2.28) all undetermined connections drop out. Thus, the R defined by this equation is

a gauge scalar, which enters the potential (2.12) as

V = −R − 1

4
MMN∇Mgµν ∇Ngµν . (2.30)

Let us finally turn to the fermions, which are scalar densities under internal gener-

alized diffeomorphisms but transform in non-trivial representations of the tangent space

symmetries SO(1, 3) and SU(8). The gravitino reads ψµ
i, and it has the same weight as

the supersymmetry parameter ε:

λ(ψµ
i) = λ(ε) =

1

4
. (2.31)

The 56 ‘spin-1
2 ’ fermions are given by χijk, totally antisymmetric in their SU(8) indices,

with density weight

λ(χijk) = −1

4
. (2.32)

The supersymmetry variations take the manifestly covariant form written in terms of the

above covariant derivatives

δεψµ
i = 2Dµεi − 4 ∇̂ij

(
γµεj

)
,

δεχ
ijk = −2

√
2Pµijklγµεl − 12

√
2 ∇̂[ij εk] .

(2.33)

Here Pµ is the non-compact part of the covariantized Lie algebra valued current V−1DµV,

whose precise form is not important for our purposes in this paper (see [48] for the defi-

nition). The projections or contractions of covariant derivatives in these supersymmetry

variations are again such that the undetermined connections drop out.

2.3 Solutions of the section condition

Even though the fields of (2.8) formally depend on 4 + 56 coordinates, their dependence

on the internal coordinates is severely restricted by the section constraints (2.1). These

constraints admit (at least) two inequivalent solutions, in which the fields depend on a

subset of seven or six of the internal variables, respectively, according to the decompositions

of the fundamental representation of E7(7) with respect to the maximal subgroups GL(7)

and GL(6)× SL(2), respectively

56 −→ 7+3 + 21′+1 + 21−1 + 7′−3 ,

56 −→ (6, 1)+2 + (6′, 2)+1 + (20, 1)0 + (6, 2)−1 + (6′, 1)−2 . (2.34)
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Upon imposing this restricted coordinate dependence on all fields, the Lagrangian (2.8)

(upon proper dualizations and field redefinitions) exactly reproduces the full field equations

of D = 11 supergravity and the type IIB theory, respectively.

The various fields of higher-dimensional supergravity are recovered by splitting the

fields (2.2) according to the decompositions (2.34). Their higher-dimensional origin is

then most conveniently identified via the GL(1) grading that is captured by the subscripts

in (2.34). E.g. the scalar matrix is parametrized as (2.13) in terms of the group-valued

vielbein V, parametrized in triangular gauge associated with the GL(1) grading [58] ac-

cording to

VIIA ≡ exp
[
φ tIIA(0)

]
V7 exp

[
ckmn t

kmn
(+2)

]
exp

[
εklmnpqrcklmnpq t(+4) r

]
, (2.35)

VIIB ≡ exp
[
φ tIIB(0)

]
V6 V2 exp

[
cmna t

mna
(+1)

]
exp

[
εklmnpq cklmn t(+2) pq

]
exp

[
ca t

a
(+3)

]
,

see [46] for details. The dictionary further requires redefinitions of all the form fields

originating from the higher-dimensional p-forms in the usual Kaluza-Klein manner, i.e.,

flattening the world indices with the elfbein and then ‘un-flattening’ with the vierbein eµ
a,

as well as subsequent further non-linear field redefinitions and appropriate dualization of

some field components, c.f. [45, 46].

3 Reduction ansatz

In this section we first review the generalized Scherk-Schwarz ansatz of [16, 29, 30, 32, 34,

36]. We then extend it to the full field content of the exceptional field theory (2.8) and find

in particular, that it requires a non-trivial ansatz for the constrained compensator gauge

field Bµν M of (2.3). Together, this defines a consistent truncation of the field equations

derived from (2.8).

3.1 Generalized Scherk-Schwarz ansatz

The reduction ansatz for the matrix of scalar fields is given by the matrix product

MMN (x, Y ) = UM
K(Y )UN

L(Y )MKL(x) , (3.1)

with an E7(7)-valued twist matrix UM
N satisfying the first order differential equations [36][

(U−1)M
P (U−1)N

Q ∂PUQ
K
]
(912)

!
=

1

7
ρΘM

α (tα)N
K ,

∂N (U−1)M
N − 3 ρ−1∂Nρ (U−1)M

N !
= 2 ρ ϑM , (3.2)

with a Y -dependent factor ρ(Y ) and constant tensors ΘM
α and ϑM .2 The latter can be

identified with the embedding tensor of the gauged supergravity to which the theory reduces

2With respect to the general form (1.2) of these equations we have introduced a different explicit nor-

malization factor 1/7 (which could be absorbed into ΘM
α) to achieve later agreement with the D = 4

formulas. Moreover, for matching the conventions of gauged supergravity [51, 52] we are obliged to perform

a rescaling of vector and tensor gauge fields
√

2Aµ
M
[1103.2785] = Aµ

M
[here], B

[1103.2785]
µν α = −B[here]

µν α , and accord-

ingly of the embedding tensor ΘM
α
[1103.2785] =

√
2 ΘM

α
[here], ϑ

[1103.2785]
M =

√
2ϑ

[here]
M . This is most easily seen

by comparing the supersymmetry transformation rules from [51, 52] to [48].
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after the generalized Scherk-Schwarz ansatz. The notation [·](912) refers to projection onto

the irreducible 912 representation of E7(7). The density factor ρ(Y ) has no analogue in the

standard Scherk-Schwarz reduction [15] but ensures that the consistency equations (3.2)

transform covariantly under internal generalized diffeomorphisms despite the non-trivial

weight carried by the internal derivatives. As can be verified by a direct computation

analogous to that proving the covariance of the torsion constraint, the consistency equations

are covariant if UM
N is treated as a generalized vector indicated by the index M while

the index N refers to the global (x and Y independent) E7(7) that is preserved by the

Scherk-Schwarz reduction ansatz. This is the global E7(7) that is a covariance of the

embedding tensor formulation of gauged supergravity (and that, for fixed embedding tensor

components ΘM
α and ϑM , is broken to the gauge group). In the following we will not

indicate the difference between bare and underlined E7(7) indices since the nature of indices

can always be inferred from their position in U and U−1.

This Scherk-Schwarz reducution ansatz (3.1) is made such that the action of generalized

diffeomorphisms (2.4) with parameter

ΛM (x, Y ) = ρ−1(Y ) (U−1)P
M (Y ) ΛP (x) , (3.3)

on (3.1) is compatible with the reduction ansatz and induces an action

δΛMMN (x) = 2 ΛL(x)
(
ΘL

α + 8ϑR (tα)L
R
)

(tα)(M
P MN)P (x) , (3.4)

on the Y -independent MMN which is precisely the action of gauge transformations in D = 4

maximal supergravity with the constant embedding tensor ΘM
α, ϑM . The second term

in (3.4) captures the gauging of the trombone scaling symmetry [59]. The consistency

conditions (3.2) together with the section condition (2.1) for the twist matrix imply that

ΘM
α, ϑM automatically satisfy the quadratic constraints [51, 52] that ensure closure of

the gauge algebra.

Throughout, we will impose compatibility of the reduction ansatz with the section

constraints (2.1). This translates into further conditions on the twist matrix UM
N . In

the conclusions we comment on the possible relaxation of these constraints. In order to

describe the consistent truncation of the full exceptional field theory (2.8), the generalized

Scherk-Schwarz ansatz (3.1) has to be extended to the remaining fields of the theory which

is straightforward for the vierbein, vector and tensor fields as

eµ
α(x, Y ) = ρ−1(Y ) eµ

α(x) ,

AµM (x, Y ) = Aµ
N (x)(U−1)N

M (Y ) ρ−1(Y ) ,

Bµνα(x, Y ) = ρ−2(Y )Uα
β(Y )Bµν β(x) , (3.5)

with Uα
β denoting the E7(7) twist matrix evaluated in the adjoint representation. All fields

thus transform with the twist matrix U acting on their E7(7) indices and the power of ρ−2λ

corresponding to their weight λ under generalized diffeomorphisms (2.4). E.g. the ansatz

for the vierbein (which transforms as a scalar of weight λ = 1
2 under (2.4)) ensures that

under reduction the action of internal generalized diffeomorphisms consistently reduces to
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the action of the trombone scaling symmetry in D = 4 supergravity

δΛeµ
α(x, Y ) = ΛM (x)

(
∂M (ρ−1) + λ∂M

(
ρ−1(U−1)N

M
))
eµ
α(x)

= ΛM (x)λ ρ−1
(
∂M (U−1)N

M − (1 + λ−1) ρ−1∂Mρ
)
eµ
α(x)

= ΛM (x)ϑM eµ
α(x) . (3.6)

This confirms that a non-vanishing ϑM induces a gauging of the rigid scale invariance

(trombone) of the supergravity equations that scales metric and matter fields with proper

weights according to (2.5) [59]. The reduction ansatz for the vector field follows (3.3) and

ensures that covariant derivatives (2.6) reduce properly:

Dµeνα(x, Y ) = ρ−1
(
∂µ −AµNϑN

)
eν
α , (3.7)

DµMMN (x, Y ) = UM
PUN

Q
(
∂µMPQ − 2ALµ

(
ΘL

α + 8ϑR (tα)L
R
)

(tα)(M
PMN)P

)
.

On the other hand, a consistent reduction of its non-abelian field strength (2.7) requires a

non-trivial ansatz for the constrained compensator field Bµν M according to

Bµν M = − 2 ρ−2 (U−1)S
P∂MUP

R(tα)R
S Bµνα , (3.8)

which is manifestly compatible with the constraints (2.3) this field has to satisfy. With

this ansatz, it follows that the field strength (2.7) takes the form

FµνM (x, Y ) = ρ−1 (U−1)N
M

{
2 ∂[µAν]

N + ΘK
α (tα)L

N A[µ
KAν]

L

− 1

3

(
ΩNPΩKL + 4 δNPKL

)
ϑP A[µ

K Aν]
L

+
(
ΘNα − 16 (tα)NKϑK

)
Bµνα

}
≡ ρ−1 (U−1)N

M FµνN (x) , (3.9)

with the Y -independent FµνN (x) precisely reproducing the field strength of general gauged

supergravity with embedding tensor ΘM
α and ϑM [51, 52] (upon the rescaling of foot-

note 2).

Let us finally note that the consistency equations (3.2) for the twist matrix U are easily

generalized to other dimensions as[
(U−1)M

P (U−1)N
L ∂PUL

K
]
(P)

!
= ρΘM

α (tα)N
K ,

∂N (U−1)M
N − (D − 1) ρ−1∂Nρ (U−1)M

N !
= ρ (D − 2)ϑM , (3.10)

up to possible normalization factors that can be absorbed into ΘM
α and ϑM . Here, D

denotes the number of external space-time dimensions, and [·](P) denotes the projection

onto the representation of the corresponding embedding tensor in theD-dimensional gauged

supergravity, c.f. [50]. The coefficients in the second equation can be extracted from (3.6)
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taking into account that the generic weight of the vielbein is λ = 1
D−2 . Yet another way

of presenting the consistency equations (3.10) is

[XMα](P)
!

= ρΘM
α , (3.11)

XKMK !
= (1−D) ρ−1∂Nρ (U−1)M

N + ρ (2−D)ϑM ,

with

XMN
K ≡ (U−1)M

P (U−1)N
L ∂PUL

K ≡ XMα (tα)N
K . (3.12)

The reduction ansatz generalises accordingly: all fields whose gauge parameters trans-

form as tensors under internal generalized diffeomorphisms reduce analogous to (3.5) with

the action of the twist matrix U in the corresponding group representation and the factor

ρ−(D−2)λ taking care of the weight under generalized diffeomorphisms. The additional con-

strained compensator fields reduce with an ansatz analogous to (3.8). These fields appear

among the (D − 2)-forms of the theory, i.e. among the two-forms in D = 4, E7(7) EFT,

c.f. (2.3), and among the vector fields in D = 3, E8(8) EFT. For D > 4 these fields do not

enter the Lagrangian, although they can be defined on-shell through their duality equations.

3.2 Consistent truncation, fermion shifts and scalar potential

In the previous subsection we have shown that (external) covariant derivatives and field

strengths reduce ‘covariantly’ under the generalized Scherk-Schwarz reduction, by which

we mean that all E7(7) indices are simply ‘rotated’ by the twist matrices, up to an overall

scaling by ρ(Y ) that is determined by the density weight of the object considered. For this

to happen it was crucial to include the covariantly constrained compensator 2-form field

with its non-standard Scherk-Schwarz ansatz (3.8). From these results it follows that in

the action, equations of motion and symmetry variations all Y -dependence consistently fac-

tors out for all contributions built from external covariant derivatives Dµ. The remaining

equations reproduce those of D-dimensional gauged supergravity. It remains to establish

the same for contributions defined in terms of the internal covariant derivatives ∇M re-

viewed in section 2.2. These include the scalar potential (2.12) and the corresponding

terms in the supersymmetry variations of the fermions (2.33). In the following we verify

that all these terms reduce ‘covariantly’ as well and show that the reduction precisely re-

produces the known scalar potential and fermion shifts in the supersymmetry variations of

gauged supergravity.

Before proceeding, let us discuss in a little more detail the consistency of the Scherk-

Schwarz reduction at the level of the action. In fact, the previous argument only shows

that the reduction is consistent at the level of the equations of motion. Consistency at the

level of the action requires in addition that the embedding tensor ϑM in (3.10) inducing

the trombone gauging vanishes. This is in precise agreement with the fact that for lower-

dimensional trombone gauged supergravity there is no action principle.

In order to illustrate this point, let us consider the covariant divergence of a generic

vector WM of weight λ which using (2.20) takes the form

∇MWM = ∂MW
M + 3

4

(
1− 2

3λ
)
e−1∂MeW

M . (3.13)
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Next we compute the Scherk-Schwarz reduction of this divergence. Here and in the fol-

lowing it will be convenient to use the bracket notation 〈 〉 to indicate that an object is

subjected to the Scherk-Schwarz reduction. Recalling 〈e〉 = ρ−4e, we compute〈
∇MWM

〉
= ∂M

(
ρ−2λ(U−1)N

M
)
WN + 3

4

(
1− 2

3λ
)
ρ4∂Mρ

−4 ρ−2λ(U−1)N
MWN

= ρ−2λ
[
∂M (U−1)N

M − 3ρ−1∂Mρ (U−1)N
M
]
WN

= 2ρ1−2λ ϑMW
M ,

(3.14)

using (3.2) to identify the trombone embedding tensor ϑM . On the other hand, calculating

the equations of motion from the Lagrangian requires partial integration with general

currents JM of weight −1/2 ∫
∂M (e JM ) =

∫
e∇MJM , (3.15)

whose boundary contribution is neglected, in obvious contradiction with (3.14) unless ϑM =

0. For non-vanishing trombone parameter ϑM , the Scherk-Schwarz ansatz thus continues

to define a consistent truncation on the level of the equations of motion, however the lower-

dimensional equations of motion do not allow for an action principle due to the ambiguities

arising from (3.15). The resulting structure corresponds to the trombone gaugings of [52,

59]. This is the analogue of the unimodularity condition fMN
M = 0 to be imposed in

standard Scherk-Schwarz reductions [15] for invariance of the measure, c.f. (3.11). Also

in that case a non-vanishing fMN
M ≡ ϑN does in fact not spoil the consistency of the

reduction ansatz but just the existence of a lower-dimensional action.

Let us now return to the more general discussion of the Scherk-Schwarz reduction of the

internal covariant derivatives ∇M . We begin by applying the generalized Scherk-Schwarz

compactification to the SU(8) connections. Applied to the projection (2.25) of the SU(8)

connection we obtain〈 [
QAB C

]
912

〉
= (V−1)A

M (V−1)B
NVKC

[
(U−1)M

M (U−1)N
N∂MUN

K
]

912

=
1

7
ρ (V−1)A

M (V−1)B
NVKC ΘM

α tαN
K ,

(3.16)

upon using (3.2). This expression features the flattened version of the embedding tensor,

also known as the ‘T-tensor’ [5] in gauged supergravity. Similarly, from (2.27) one finds

that the determined (trace) part in the 56 reduces as,〈
QBAB

〉
= (V−1)A

N
(
∂M (U−1)N

M − 3 ρ−1(U−1)N
M∂Mρ

)
= 2 ρ (V−1)A

N ϑN , (3.17)

identifying it with the T-tensor corresponding to the trombone embedding tensor. Thus,

the parts of the SU(8) connection that are determined geometrically by generalized torsion

and metricity constraints, upon Scherk-Schwarz reduction naturally identify with the T-

tensor. Comparing with the definitions of [51, 52], the relation is explicitly given by〈 [
QAB C

]
912

〉
=

2

7
ρ TAB

C ,
〈
QBAB

〉
= − 2 ρ TA . (3.18)
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These relations makes the following comparison with gauged supergravity straightforward.

In order to perform that comparison in detail we note that the 912 representation of

the T-tensor decomposes under SU(8) as

TAB
C : 912 → 420 + 36 + c.c. , (3.19)

which implies, for instance, that the component T ijkl
pq of TAB

C can be parametrized as

T ijkl
pq =

2

3
δ[k

[p Tl]
q]ij , (3.20)

in terms of a tensor Ti
jkl, which in turn can be decomposed as

Ti
jkl = −3

4
A2i

jkl − 3

2
A1

j[k δl]i . (3.21)

Here A1
ij is symmetric and hence lives in the 36, and A2 satisfies A2i

jkl = A2i
[jkl], A2i

ikl =

0, and hence lives in the 420. The tensors A1 and A2 thus defined contribute to the fermion

shifts in the supersymmetry variations and the scalar potential of gauged supergravity.

Similarly, the trombone T-tensor, i.e., the flattening of ϑM , decomposes as

TA ≡ (V−1)A
MϑM =

(
Tij , T

ij ) ≡
(
Bij , B

ij ) , (3.22)

in terms of an antisymmetric tensor Bij (and its complex conjugate). Via eqs. (3.21)

and (3.22) and the relations (3.18) for the Scherk-Schwarz reduction of the connections we

can express the latter in terms of the gauged supergravity tensors. There is the following

subtlety, however: The components of the SU(8) connection entering, say, the fermionic

supersymmetry variations are the QMi
j from (2.14), while the 912 projection in (3.18)

shuffles its components around. A slightly technical group-theoretical analysis, whose de-

tails we defer to the appendix, shows that the net effect is a rescaling of the A2 contribution

in the T-tensor by 7
3 (see (A.10) in the appendix), while A1 is untouched. We then find

〈 [
Qijkmln

] 〉
=

2

7
ρ

(
−1

2
· 7

3
δ[k

[lA2m]
n]ij − δkm[i[lA1

n]j]

)
− 16

27
ρ δkm

[i[lBn]j] − 2

27
ρ δkm

lnBij , (3.23)

where the square bracket indicates projection onto the determined part of the connections.

In particular, we obtain 〈
Qijjk

〉
= −ρ

(
A1

ik − 2Bik
)
,〈

Q[ij
k
l]
〉

= −1

3
ρ
(
A2k

lij + 2 δk
[iBjl]

)
, (3.24)

for the trace and the total antisymmetrization of QA i
j from (2.14).

With this, we can turn to the Scherk-Schwarz reduction of the fermionic sector.

The Scherk-Schwarz ansatz for the fermions is simply governed by their respective den-

sity weights,

ψµ
i(x, Y ) = ρ−

1
2 (Y )ψµ

i(x) , χijk(x, Y ) = ρ
1
2 (Y )χijk(x) , (3.25)
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in accordance with their behavior under generalized diffeomorphisms.3 Indeed, we will

confirm in the following that this ansatz reproduces precisely the supersymmetry variations

of gauged supergravity. Consider first the gravitino variation in (2.33),〈
δεψµ

i
〉

=
〈
2Dµεi

〉
− 4

〈
∇̂ij
(
γµεj

) 〉
. (3.26)

By the results of the previous section the first term reduces to the correct gauge covari-

antized external derivative Dµεi of gauged supergravity. For the second term using that

γµεj has weight 3
4 the covariant derivative above reads

∇̂ij
(
γµεj

)
= (V−1)M ij

(
e

3
8∂M

(
e−

3
8γµεj

)
+

1

4
eµα∂Meµ

β γαβγµεj

)
+

1

2
Qijj

kγµεk

− 1

16
Fνρij γνργµ εj , (3.27)

with the flattened field strength from (2.7). Upon inserting the Scherk-Schwarz ansatz the

terms in the first parenthesis are actually Y -independent, so this derivative vanishes. Also

the second term is zero because under Scherk-Schwarz reduction the first factor is propor-

tional to ηαβ, which vanishes upon contraction with γαβ. Together, we find with (3.24)〈
δεψµ

i
〉

= ρ−1/2

(
2Dµεi +

1

4
Fνρij γνργµ εj + 2 (A1

ij − 2Bij) γµεj

)
. (3.28)

These are precisely the gravitino variations of gauged supergravity including trombone

gaugings, as given in [52] (taking into account the change of normalization explained in

footnote 2). In complete analogy, we obtain with the second relation from (3.24)

〈
δεχ

ijk
〉

= ρ1/2

(
−2
√

2Pµijklγµεl +
3
√

2

4
Fµν [ijγµνεk] − 2

√
2A2 l

ijkεl − 4
√

2B[ijεk]

)
.

(3.29)

Again, this is precisely the expected result for the fermion supersymmetry variation in

gauged supergravity including trombone gauging.

Finally, we turn to the Scherk-Schwarz reduction of the scalar potential given in (2.30),

with the generalized scalar curvature defined implicitly by (2.28). Upon Scherk-Schwarz

reduction the latter equation reads

1

16

〈
Rεi
〉

= 6
〈
∇ik∇kjεj

〉
+ 3

〈
∇kj∇[ikεj]

〉
, (3.30)

since 〈∇Mgµν〉 = 0. It is then straightforward to determine the Scherk-Schwarz reduction

of the various terms in the potential by successive action of (3.23). For instance, the first

term reads〈
∇ik∇kjεj

〉
=
〈
e−

1
8∂ik

(
e

1
8∇kjεj

)
− 1

2
Qik l

k∇ljεj
〉

= −1

2

〈
Qik l

k
〉〈
∇ljεj

〉
, (3.31)

3We note, in particular, that the ansatz does not carry the Killing spinors of the internal manifold as one

might have expected in analogy to standard Kaluza-Klein compactifications. This appears natural, since

for the general class of reductions to be discussed the internal space may not even possess sufficiently many

Killing spinors. With respect to the supersymmetric reduction ansatz of [6] for the S7 case this corresponds

to a different SU(8) gauge choice.
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where the vanishing of the first term in here follows from ∇ε having weight −1
4 , for which

all Y -dependence cancels. Similarly, working out the inner covariant derivative we find

〈
∇ik∇kjεj

〉
= −1

4

〈
Qik l

k
〉〈
Qljj

k
〉〈
εk
〉
, (3.32)

which by use of (3.24) can be expressed in terms of the gauged supergravity quantities

A1, A2 and B. Performing the same computation for the final two terms in (3.30) we

obtain eventually

1

16

〈
Rεi
〉

= ρ3/2

(
3

2
AimA

jm − 1

12
Ai

kmnAjkmn + 3AimB
jm − 3BimA

jm

− 1

6
Ai

jmnAmn +
5

6
Aj imnB

mn − 64

9
BimB

jm +
5

9
BmnB

mnδji

)
εj

= ρ3/2

(
3

16
AmnA

mn − 1

96
Al

kmnAlkmn −
1

3
BmnB

mn

)
εi , (3.33)

where we have used in the last equation the quadratic constraints satisfied by the embedding

tensor, c.f. (5.3)–(5.5) of [52].4 This gives precisely the correct scalar potential of gauged

supergravity (or, more precisely, the correct contribution to the Einstein field equations

in the presence of trombone gauging Bij 6= 0). An equivalent calculation for the scalar

potential has been done in [36] via the generalized Ricci tensor of [42] with the full match

to gauged supergravity in absence of the trombone parameter.

To summarize, we have shown that the generalized Scherk-Schwarz ansatz is consistent

in the full exceptional field theory and exactly reproduces all field equations and transfor-

mation rules of the lower-dimensional gauged supergravity, provided the twist matrices

satisfy (3.2) and the section condition (2.1).

4 Sphere and hyperboloid compactifications

In this section we construct explicit solutions to the twist equations (3.10) within the SL(5),

E6(6), and E7(7) exceptional field theories. The twist matrices live within a maximal SL(n)

subgroup (for n = 5, n = 6, and n = 8, respectively), and describe consistent truncations

to lower-dimensional theories with gauge group CSO(p, q, r) for p+ q + r = n. For r = 0,

the corresponding internal spaces are warped hyperboloids and spheres, for r > 0 they also

include factors of warped tori.

4.1 SL(n) twist equations

To begin with, let us study the case of the D = 7, SL(5) theory. As it turns out, this

case already exhibits all the structures relevant for the general sphere and hyperboloid

compactifications. Although the full SL(5) EFT(including D = 7 metric, vector, and p-

form fields) has not yet been constructed, the internal (scalar) sector has been studied in

4We recall that these constraints are automatically satisfied as a consequence of the section con-

straints (2.1).
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some detail [34, 40, 42, 60]. In this case, the underlying group is SL(5) and vector fields

AµAB and internal coordinates Y AB transform in the antisymmetric 10 representation, i.e.

AµAB = Aµ[AB] , Y AB = Y [AB] , A,B = 0, . . . , n− 1 , (4.1)

with n = 5. In order to prepare the ground for the general case, we will in the following

keep n arbitrary and only in the final formulas specify to n = 5.5 The section conditions

in this case take the SL(n) covariant form

∂[AB ⊗ ∂CD] ≡ 0 . (4.2)

The reduction ansatz for the vector field is given by (3.5)

AµAB(x, Y ) = ρ−1 (U−1)CD
AB Aµ

CD(x) = ρ−1 (U−1)C
A(U−1)D

B Aµ
CD(x) , (4.3)

in terms of an SL(n)-valued n × n twist matrix UA
B. For D = 7 maximal supergravity,

the embedding tensor resides in the [2, 0, 0, 0]⊕ [0, 0, 1, 1] representation [61]

ΘAB,C
D = δD[A ηB]C + ZABC

D , (4.4)

with ηAB = η(AB) , ZABC
D = Z[ABC]

D , ZABC
C = 0 .

Accordingly, the twist equations (3.10) take the form[
XAB,CD

]
(P)

!
= ρ

(
δD[A ηB]C + ZABC

D
)
,

∂CD(U−1)AB
CD − (D − 1) ρ−1∂CDρ (U−1)AB

CD !
= ρ (D − 2)ϑAB , (4.5)

with D = 7, which for the purpose of later generalisations we also keep arbitrary for the

moment and only specify in the final formulas. Here, XAB,CD denotes the SL(n) version

of (3.12)

XAB,CD ≡ (U−1)AB
GH(U−1)C

E ∂GHUE
D , (4.6)

and the projection [·](P) refers to the projection onto the representations of ηAB and ZABC
D

from (4.4). We can thus write the first equation of (4.5) more explicitly as

∂CD(U−1)(A
C(U−1)B)

D !
=

1

2
(1− n) ρ ηAB ,

(U−1)ABC
GHE ∂GHUE

D − 1

(n− 2)
∂GH(U−1)[AB

GH δC]
D !

= ρZABC
D . (4.7)

For later use, let us record that in terms of irreducible SL(n) representations (for general

value of n) the consistency equations (4.5), (4.7) constrain the

[0, 1, 0, . . . , 0] ⊕ [2, 0, 0, . . . , 0] ⊕ [0, 0, 1, . . . , 0, 1] , (4.8)

5It is in this ‘SL(n) generalized geometry’ that the generalized parallelizability of spheres has been

discussed in [38].
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part of the XAB,CD, but leave its

[1, 1, 0, . . . , 0, 1] , (4.9)

part unconstrained. For the present case n = 5, this translates into a constrained part

10⊕ 15⊕ 40′ and an unconstrained 175.

In the following we will construct the twist matrices corresponding to sphere and

hyperboloid compactifications. These satisfy the additional conditions

ZABC
D = 0 , ϑAB = 0 . (4.10)

This is consistent with the fact that the resulting gauged supergravities are described by

an embedding tensor ηAB and no trombone symmetry is excited in these compactifications.

The consistency equations (4.5), (4.7) thus take the stronger form

∂CD(U−1)(A
C(U−1)B)

D !
=

1

2
(1− n) ρ ηAB , (4.11a)

∂CD

[
ρ1−D (U−1)AB

CD
]

!
= 0 , (4.11b)

(U−1)ABC
GHE ∂GHUE

D !
=
D − 1

n− 2
(U−1)[AB

GH δC]
D ρ−1∂GHρ . (4.11c)

In the following, we will construct solutions to these equations for arbitrary constant ηAB.

Let us note that the SL(n) covariance of these consistency equations allows to bring ηAB
into diagonal form

ηAB = diag ( 1, . . . ,︸ ︷︷ ︸
p

−1, . . . ,︸ ︷︷ ︸
q

0, . . .︸ ︷︷ ︸
r

) , with p+ q + r = n , (4.12)

upon conjugation of U and constant SL(n) rotation of the internal coordinates. The re-

sulting reduced theories are gauged supergravities with gauge group CSO(p, q, r), defined

as the SL(n) subgroup preserving (4.12). For r = 0, this is the non-compact semisimple

group SO(p, q), for r > 0 it corresponds to the non-semisimple group with algebra spanned

by matrices TAB:

(TAB)C
D ≡ ηC[A δB]

D . (4.13)

4.2 Sphere and hyperboloid solutions

Recall that the twist matrices UA
B are not only subject to the consistency condi-

tions (4.11a)–(4.11c), but also to the section conditions (4.2). In order to solve the latter,

we make the following ansatz

∂ijUA
B = 0 , for i, j = 1, . . . , n− 1 , (4.14)

i.e. we restrict the coordinate dependence of UA
B to the (n− 1) coordinates yi ≡ Y 0i. For

the SL(5) theory this corresponds to restricting the internal part of the exceptional space-

time from 10 to the 4 coordinates that extend the D = 7 theory to eleven-dimensional
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supergravity [40]. After this reduction, the first of the twist equations (4.11a) splits into

the pair of equations

∂i(U
−1)0

0(U−1)m
i − ∂i(U−1)m

i(U−1)0
0

= ∂i(U
−1)0

i(U−1)m
0 − ∂i(U−1)m

0(U−1)0
i , (4.15)

∂i(U
−1)(m

0(U−1)n)
i − ∂i(U−1)(m

i(U−1)n)
0

=
(
∂i(U

−1)0
0(U−1)0

i − ∂i(U−1)0
i(U−1)0

0
)
ηmn ,

while the density factor ρ is obtained from the (AB) = (00) component as

ρ =
1− n

2

(
∂i(U

−1)0
0(U−1)0

i − ∂i(U−1)0
i(U−1)0

0
)
. (4.16)

Here ηmn is the reduction of ηAB (4.12) to the last n−1 coordinates, i.e. the diagonal matrix

ηmn = diag ( 1, . . . ,︸ ︷︷ ︸
p−1

−1, . . . ,︸ ︷︷ ︸
q

0, . . .︸ ︷︷ ︸
r

) . (4.17)

We will first treat the case r = 0 of non-degenerate ηmn and subsequently extend the

discussion to the general case.

4.2.1 The case SO(p, q)

For ηmn given by (4.17) with r = 0, equations (4.15) can be solved by the following explicit

SL(n) ansatz

(U−1)0
0 ≡ (1− v)(n−1)/n ,

(U−1)0
i ≡ ηijy

j (1− v)(n−2)/(2n)K(u, v) ,

(U−1)i
0 ≡ ηijy

j (1− v)(n−2)/(2n) ,

(U−1)i
j ≡ (1− v)−1/n

(
δij + ηikηjl y

kylK(u, v)
)
, (4.18)

with n = p + q and the combinations u ≡ yiyi, v ≡ yiηijy
j . Upon inserting this ansatz

into (4.15), these equations reduce to a single differential equation for the function K(u, v),

given by

2(1− v) (u ∂vK + v ∂uK) = ((1 + q − p)(1− v)− u)K − 1 . (4.19)

This equation takes a slightly simpler form upon change of variables

u ≡ r2 coshϕ , v ≡ r2 sinhϕ , (4.20)

after which it becomes an ordinary differential equation in ϕ

2
(
1− r2 sinhϕ

)
∂ϕK =

(
(1 + q − p)(1− r2 sinhϕ)− r2 coshϕ

)
K − 1 . (4.21)

This can be solved analytically for any pair of integers (p, q). We have to treat separately

the cases q = 0 and p = 1 (corresponding to SO(p) and SO(1, q) gaugings, respectively) for
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which u = ±v and the change of variables (4.20) does not make sense. In the former case

u = v, and equation (4.19) reduces to

2u (1− u)K ′ = (1− p+ pu− 2u)K − 1 , (4.22)

with the particular solution

K = −2F1[1, (p− 2)/2; 1/2; 1− u] , (4.23)

in terms of the hypergeometric function 2F1. Similarly, for p = 1, we have u = −v, and

equation (4.19) reduces to

−2u (1 + u)K ′ = (q + qu− u)K − 1 , (4.24)

with particular solution

K = q−1(1 + u(1− q) 2F1[1, (1 + q)/2; 1/2; 1 + u]) . (4.25)

Finally, the density factor ρ can be read off from (4.16) as

ρ = ρp,q ≡ (1− v)(n−4)/(2n) . (4.26)

We have thus fully determined the twist matrix U and the density factor ρ and entirely

solved the first of the twist equations (4.11a). It remains to verify the other two equations.

With the twist matrix given by (4.18) and using the differential equation (4.19) for the

function K, it is straightforward to verify that

∂i
[
(U−1)[A

0(U−1)B]
i
]

=
n− 2

n

2 ηijy
j

1− v
(U−1)[A

0(U−1)B]
i . (4.27)

Together with the form of the density factor ρ from (4.26), we thus find, that the second

equation (4.11b) is identically satisfied provided we have the relation

1

2
(D − 1) =

n− 2

n− 4
, (4.28)

relating the number of external space-time dimensions to the size of the group SL(n).

Fortunately, this relation holds precisely in the case D = 7, n = 5 that we are interested

in. We have thus shown that also the second twist equation (4.11b) holds for our choice of

twist matrix and density factor. Let us note that integer solutions of equation (4.28) are

very rare and essentially restrict to

(D,n) = (7, 5) , (D,n) = (5, 6) , (D,n) = (4, 8) , (4.29)

in which we recover the dimensions of the known sphere compactifications AdSD×Sn−1 of

eleven-dimensional and type IIB supergravity. We will come back to this in section 4.3. As a

last consistency check, one verifies by direct computation that the last twist equation (4.11c)

is also identically satisfied for (4.18) with (4.19). This essentially follows from the fact

that no object fully antisymmetric in three indices [ABC] can be constructed from the

explicit ηijy
j .

To summarize, we have shown that the SL(n) twist matrix U given by (4.18)

with (4.19), together with the density factor (4.26) satisfies the consistency equa-

tions (4.11a)–(4.11c), provided the integer relation (4.28) holds. In the next section, we

will generalize this solution to include the case r > 0.
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4.2.2 The case CSO(p, q, r)

The solution of equations equations (4.11a)–(4.11c) derived in the previous section can be

generalized to the case r > 0, in which the reduced theory comes with the gauge group

CSO(p, q, r). A natural ansatz for the SL(p+ q + r) twist matrix in this case is given by

(U−1)A
B =

 β−r U−1
(p,q) 0

0 βp+q Ir

 , (4.30)

where U−1
(p,q) denotes the SO(p, q) solution from (4.18), (4.19), and Ir is the r × r identity

matrix. The factor β = β(v) is a function of v ≡ yiηijyj and put such that the determinant

of the twist matrix remains equal to one. Note that the twist matrix only depends on

coordinates yi, i = 1, . . . , p+ q − 1.

Let us now work out equations (4.11a)–(4.11c) for the ansatz (4.30). The first equa-

tion (4.11a) is solved identically by this ansatz without any assumption on the function

β, as a mere consequence of the fact that U(p,q) solves the corresponding equations for

SO(p, q). Indeed, all components of this equation in which one of the free indices (AB)

takes values beyond p + q − 1, hold trivially due to the block-diagonal structure of the

twist matrix (4.30) and the fact that the matrix does not depend on the last r coordinates.

The constraint equations then simply reduce to their SO(p, q) analogues. The presence of

the factor β−r does not spoil the validity of the equation, but contributes to the density

factor ρ as

ρ = ρp,q,r ≡ β−2r ρp,q , (4.31)

with ρp,q from (4.26). We continue with the second equation (4.11b) which now takes

the form

∂CD

[
ρ1−D
p,q β2r (D−2) (U−1

(p,q))AB
CD
]

!
= 0 , (4.32)

and thus reduces to the identity (4.27) provided we choose β such that

ρ1−D
p,q β2r (D−2) = (1− v)−(p+q−2)/(p+q) . (4.33)

With (4.26), this reduces to

βr = (1− v)(D−3)/(4(D−2))−1/(p+q) . (4.34)

Even though the CSO(p, q, r) case seems to admit more freedom in that we are not bound

by a relation (4.28) to fix the size of the external space-time, we will for the moment restrict

to the three principal cases (4.29), i.e. keep the additional relation (4.28)

1

2
(D − 1) =

p+ q + r − 2

p+ q + r − 4
, (4.35)

and describe reductions to four, five and seven dimensions, respectively. Then, the form of

the scale factor β from (4.34) simplifies to

β = (1− v)−1/((p+q)(p+q+r)) . (4.36)

– 24 –



J
H
E
P
0
1
(
2
0
1
5
)
1
3
1

Together with (4.30) this fully defines the twist matrix that solves the consistency equa-

tions (4.11a)–(4.11c) for ηAB from (4.12). As above, the last equation (4.11c) is verified by

explicit calculation.

To summarize, we have shown that the SL(p + q + r) twist matrix UM
N given

by (4.18), (4.30), (4.36), together with the density factor (4.31), satisfies the consistency

equations (4.11a)–(4.11c) for the general ηAB of (4.12), provided the integer relation (4.35)

holds. By the above discussion, this applies in particular to the case D = 7, G = SL(5),

and implies that the resulting twist ansatz describes a consistent truncation of the corre-

sponding EFT. Since this twist matrix also falls into the class (4.14) of solutions to the

section conditions, this generalized Scherk-Schwarz ansatz describes consistent truncations

of the full D = 11 supergravity down to seven-dimensional supergravities with gauge groups

CSO(p, q, r), (p+ q+ r = 5). We will work out in section 4.4 the internal background met-

rics induced by these twist matrices, in order to get the geometrical perspective for these

compactifications.

4.3 E6(6) and E7(7) twist equations

In this section, we show that the SL(n) twist matrices found in the previous section can also

be used for the construction of solutions to the consistency equations (3.10) in the excep-

tional field theories with groups E6(6) and E7(7). The structure underlying this construction

is the embedding of the SL(n) twist matrices via

SL(6) ⊂ E6(6) , SL(8) ⊂ E7(7) , (4.37)

respectively, inducing a decomposition of the En(n) coordinates according to

YM −→
{
Y [AB], . . .

}
−→

{
yi, . . .

}
, with yi ≡ Y [0i] ,

A,B = 0, . . . , n− 1 , i = 1, . . . , n− 1 . (4.38)

Together with a solution of the section constraint achieved by restricting the coordinate

dependence of all fields according to

Φ(YM ) −→ Φ(yi) , (4.39)

and the fact that both cases (4.37) correspond to a solution of the integer relation (4.28)

(with (D,n) = (5, 6) and (D,n) = (4, 8), respectively), this structure turns out to be suf-

ficient to ensure that the SL(n) twist matrices constructed above also define solutions to

the consistency equations (3.10) of these larger exceptional field theories. The correspond-

ing Scherk-Schwarz ansatz then defines lower-dimensional theories with embedding tensor

describing the gauge groups CSO(p, q, r), (p+ q + r = n).

4.3.1 E6(6)

For details about the E6(6) exceptional field theory, we refer to [45]. It is formulated on an

internal space of 27 coordinates YM in the fundamental representation of E6(6), with the
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section condition given by the 27 equations dKMN∂M ⊗ ∂N ≡ 0, with the cubic invariant

dKMN . In this case, the subgroup SL(6) is embedded into E6(6) via

SL(6) ⊂ SL(6)× SL(2) ⊂ E6(6) (4.40)

with the internal coordinates decomposing as

2̄7 −→ (15, 1) + (6′, 2) . (4.41)

The ten-dimensional IIB theory is recovered from E6(6) exceptional field theory upon solv-

ing the associated section condition by restricting the coordinate dependence of all fields

to 5 coordinates within the (15, 1) (transforming as a vector under the maximal GL(5)

subgroup). Specifically, with (4.41), we decompose coordinates as

YM −→
{
Y [AB], YAα

}
, with A = 0, . . . , 5 , α = 1, 2 , (4.42)

and impose

∂ijΦ = 0 , ∂0αΦ = 0 , ∂iαΦ = 0 , (4.43)

for i = 1, . . . , 5. Comparing to (4.2), we observe that the SL(6) twist matrix con-

structed above is compatible with this solution of the section condition. Upon the em-

bedding (4.40), (4.41), it gives rise to an E6(6) twist matrix UM
N

UM
N =

 U[AB]
[CD] 0

0 δαγ (U−1)C
A

 , (4.44)

satisfying (4.43). As a consequence, the generalized Scherk-Schwarz ansatz (3.5) for the

full EFT

eµ
α(x, Y ) = ρ−1(Y ) eµ

α(x) ,

MMN (x, Y ) = UM
P (Y )UN

Q(Y )MPQ(x) ,

AµM (x, Y ) = Aµ
N (x)(U−1)N

M (Y ) ρ−1(Y ) ,

Bµν M (x, Y ) = ρ−2(Y )UM
P (Y )Bµν P (x) , (4.45)

describes consistent truncations from IIB supergravity to D = 5 theories, provided the

twist matrix (4.44) solves the full set of consistency conditions (3.10).

Let us thus consider the matrix (4.44) built from the SL(6) matrix UA
B

from (4.30), (4.36), which in turn solves equations (4.11a)–(4.11c) for general ηAB charac-

terised by three integers p+ q + r = 6. The first consistency equation (3.11) for the E6(6)

twist matrix (4.44) reads

ρ−1 [XMα](351)
!

= const , (4.46)

with XMα defined in (3.12). It follows from the form of the matrix (4.44) together

with (4.43) that the only non-vanishing components of XMα from (3.12) are its com-

ponents X[AB]
α when α takes values in the SL(6) subgroup of E6(6). These are nothing
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but the XAB,CD defined directly in terms of UA
B in (4.6) above, and moreover singlets

under the SL(2) of (4.40). For equation (4.46) this means that under decomposition

w.r.t. SL(6) its only non-vanishing components are the SL(2) singlets in the branching

of 351 −→ (21, 1) + (105, 1) + . . . , reducing to

ρ−1 [XMα](21)
!

= const , ρ−1 [XMα](105)
!

= const . (4.47)

Comparing to the general discussion around (4.8), (4.9), these equations are precisely en-

sured by the properties of the SL(6) twist matrix UA
B constructed above, as a consequence

of (4.5). Specifically, we find that

ρ−1 [XMα](AB) = ηAB , ρ−1 [XMα](105) = 0 , (4.48)

and conclude that the first consistency equation in (3.10) is solved by (4.44) with the density

factor ρ given by (4.31) above. It remains to study the second equation from (3.10). Again,

the structure of the matrix (4.44) and its coordinate dependence (4.43) imply that the l.h.s.

of this equation reduces to

∂CD(U−1)AB
CD − (D − 1) ρ−1∂CDρ (U−1)AB

CD , (4.49)

which vanishes for the SL(6) twist matrix UA
B due to its property (4.11b), by virtue of

the integer relation (4.28), which holds for the present case (D,n) = (5, 6).

We conclude, that the twist matrix (4.44) with UA
B given by (4.30), (4.36) above,

together with the density factor ρp,q,r from (4.31) satisfies both the section constraints

(as a subclass of the general IIB solution (4.43)), and the consistency equations (3.10).

Via (4.48) it corresponds to an embedding tensor in the 21 of SL(6) parametrized by the

diagonal matrix ηAB from (4.12). The generalized Scherk-Schwarz ansatz thus describes

the consistent truncation from D = 10 IIB supergravity to a maximal D = 5 gauged

supergravity with gauge group CSO(p, q, r).

4.3.2 E7(7)

This case works in complete analogy to E6(6). We have reviewed the E7(7) exceptional field

theory in section 2 above. The relevant subgroup is SL(8) embedded into E7(7) such that

the 56 internal coordinates decompose as

56 −→ 28 + 28′ , YM −→
{
Y [AB], Y[AB]

}
. (4.50)

The full D = 11 theory is recovered from E7(7) exceptional field theory upon solving the

associated section condition by restricting the coordinate dependence of all fields as

∂ijΦ = 0 , ∂ABΦ = 0 , (4.51)

for i = 1, . . . , 7, A = 0, . . . , 7. Comparing to (4.2), we observe that the SL(8) twist matrix

constructed above is compatible with this solution of the section condition. Upon the

embedding (4.50), it gives rise to an E7(7) twist matrix UM
N

UM
N =

 U[AB]
[CD] 0

0 (U−1)[CD]
[AB]

 , (4.52)
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satisfying (4.51). As a consequence, the generalized Scherk-Schwarz ansatz (3.5) for the

full EFTdescribes consistent truncations from D = 11 supergravity to D = 4 theories,

provided the twist matrix (4.52) solves the full set of consistency conditions (3.2).

The first of these equations written in the form (3.11) reads

ρ−1 [XMα](912)
!

= const , (4.53)

with XMα defined in (3.12). It follows from the form of the matrix (4.52) together

with (4.51) that the only non-vanishing components of XMα from (3.12) are its com-

ponents X[AB]
α when α takes values in the SL(8) subgroup of E7(7). As for the E6(6) case,

these are nothing but the XAB,CD defined directly in terms of UA
B in (4.6) above. For

equation (4.46) this means that under decomposition w.r.t. SL(8) its only non-vanishing

components are given by

ρ−1 [XMα](36)
!

= const , ρ−1 [XMα](420)
!

= const . (4.54)

Comparing to the general discussion around (4.8), (4.9), these equations are precisely en-

sured by the properties of the SL(8) twist matrix UA
B constructed above, as a consequence

of (4.5). Specifically, we find that

ρ−1 [XMα](AB) = ηAB , ρ−1 [XMα](420) = 0 , (4.55)

and conclude that the first consistency equation in (3.2) is solved by (4.44) with the density

factor ρ given by (4.31) above. It remains to study the second equation. Again, the

structure of the matrix (4.52) and its coordinate dependence (4.51) imply that the l.h.s. of

this equation reduces to

∂CD(U−1)AB
CD − 3 ρ−1∂CDρ (U−1)AB

CD , (4.56)

which vanishes for the SL(8) twist matrix UA
B due to its property (4.11b), by virtue of

the integer relation (4.28), which holds for the present case (D,n) = (4, 8). In full analogy

to the E6(6) case we find that with the ansatz (4.52) for the E7(7) matrix UM
N , all non-

vanishing parts of the consistency equations (3.10) precisely reduce to the corresponding

equations (4.5) for the SL(n) matrix UA
B.

We conclude, that the twist matrix (4.52) with UA
B given by (4.30), (4.36) above,

together with the density factor ρp,q,r from (4.31) satisfies both the section constraints (as

a subclass of the general D = 11 solution (4.51)), and the consistency equations (3.2).

Via (4.55) it corresponds to an embedding tensor in the 36 of SL(8) parametrized by the

diagonal matrix ηAB from (4.12). The generalized Scherk-Schwarz ansatz thus describes the

consistent truncation from D = 11 supergravity to a maximal D = 4 gauged supergravity

with gauge group CSO(p, q, r).

4.4 The induced space-time metric

In the above, we have constructed twist matrices as solutions of the consistency equa-

tions (3.10) which define consistent truncations of the higher-dimensional D = 11 and
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IIB supergravity down to D = 4, 5, 7 maximal supergravity with gauge group CSO(p, q, r).

While consistency of the truncation follows from the general structure of the ansatz and the

covariant formulation of exceptional field theory, for physical applications one will typically

be interested in the explicit embedding of the lower-dimensional fields into D = 11 and IIB

supergravity in their original form. The translation of the very compact ansatz (3.5) into

the original fields of higher-dimensional supergravity thus requires the explicit dictionary

between the fields of the exceptional field theory and the original supergravities [45, 46].

As an example, let us work out the form of the internal background metric to which the

above compactifications correspond. The internal components of the higher-dimensional

metric sit among the components of the scalar matrix MMN = (VVT )MN , built from a

group-valued vielbein V that carries the higher-dimensional components according to the

decomposition of the Lie algebra w.r.t. to a proper grading, c.f. (2.35). See [58] for the

general structure of these parametrizations, and [41] for some explicit matrices.

As a general feature of the theories with SL(n) embedding according to (4.38), (4.39),

the generalized metric MMN decomposes into blocks

MMN =


M0i,0j M0i,jk · · ·

Mij,0k Mij,kl · · ·
...

...
. . .

 , (4.57)

and the higher-dimensional internal metric gij can be read off from the upper left block as

Mi0,j0 = g(4−n)/n gij . (4.58)

The power of g on the r.h.s. is fixed by the fact that generalized diffeomorphisms onMMN

translate into standard diffeomorphisms for gij .6 For the moment, we are just interested in

the higher-dimensional metric at the ‘origin’ of the truncation, i.e. at the point where all

lower-dimensional scalar fields vanish. According to (3.1), at this point, MMN is given by

MMN = (U−1)P
M (U−1)P

N , (4.59)

in terms of the twist matrix U . Since U is embedded in the subgroup SL(n),

c.f. (4.44), (4.52), the relevant block (4.58) of M can simply be expressed as

Mi0,j0 =
1

2

(
mijm00 −mi0mj0

)
, (4.60)

for mAB ≡ (U−1)C
A (U−1)C

B. With the explicit form (4.30) of the twist matrices con-

structed in section 4.2 for gauge group CSO(p, q, r), we can thus work out the internal

metric, and find after some calculation

ds2 = gij dy
i dyj

= (1 + u− v)−2/(p+q+r−2)

(
dyzdyz + dyadyb

(
δab +

ηacηbdy
cyd

1− v

))
, (4.61)

6A short calculation shows compatibility with the explicit result (5.25) of [45] for E6(6).
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Figure 1. Sphere, hyperboloid and the warped hyperboloid (4.61) in a 2d projection, i.e. for

(p, q, r) = (2, 1, 0).

with the split of coordinates yi = {ya, yu}, a = 1, . . . , p+ q − 1, and z = p+ q, . . . , r , and

the combinations u ≡ yaya, v ≡ yaηabyb. This space is conform to the direct product

Hp,q × Rr , (4.62)

of r flat directions and the hyperboloid Hp,q. The latter is defined by the embedding

surface

yA ηAB y
B = 1 , A = 0, . . . , p+ q − 1 , (4.63)

with ηAB from (4.12), within a (p + q) dimensional Euclidean space. For r = q = 0, the

metric (4.61) is the round sphere (the pre-factor becomes constant: 1 + u − v → 1). For

p+q+r = 8, this is precisely the metric proposed by Hull and Warner in [53] with the warp

factor deforming the hyperboloid geometry, see figure 1. This is the higher-dimensional

background inducing the CSO(p, q, r) gauged supergravities in D = 4 dimensions. Along

the very same lines, the higher-dimensional metric can be computed for arbitrary values

of the lower-dimensional scalar fields, i.e. for arbitrary values of the matrix MPQ(x), in

which case (4.59) is replaced by the full Scherk-Schwarz ansatz (3.1). The uplift of all

the D-dimensional fields, i.e. all the non-linear reduction ansätze follow straightforwardly

(although by somewhat lengthy calculation) from combining this ansatz with the dictionary

of the full exceptional field theory to higher-dimensional supergravity, which is independent

of the particular form of the twist matrix.

We stress once more, that the metric (4.61) is in general not part of a solution of

the higher-dimensional field equations. This simply translates into the fact that the cor-

responding lower-dimensional supergravity in general does not possess a solution with all

scalar fields vanishing. Indeed, it was shown in [53] for the SO(p, 8− p) supergravities that

the metric (4.61) is compatible with a generalized Freund-Rubin ansatz only for the values

(p, q) = (8, 0), (p, q) = (4, 4), and (p, q) = (5, 3), which precisely correspond to the gauged

supergravities admitting critical points at the origin of the scalar potential. Independently

of this property concerning the ground state, in all cases the generalized Scherk-Schwarz

ansatz (3.1), (3.5), continues to describe the consistent truncation of the higher-dimensional

supergravity to the field content and the dynamics of a lower-dimensional maximally su-

persymmetric supergravity.
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5 Conclusions

In this paper we have shown how the consistency of a large class of Kaluza-Klein truncations

can be proved using exceptional field theory. The Kaluza-Klein ansaetze are given in terms

of twist matrices UM
N taking values in the duality group Ed(d) subject to the consistency

equations (3.10). The resulting effective gauged supergravities emerge naturally in the

embedding tensor formalism, upon identifying the embedding tensor with a particular

projection of U−1∂U . Such generalized Scherk-Schwarz reductions have been considered

before in various studies for truncations of the full exceptional field theory. Here, we

have given the Scherk-Schwarz ansatz for the full field content of exceptional field theory,

including fermions, p-forms, and the constrained compensating tensor gauge fields. We have

then shown that the ansatz reproduces the complete field equations of the lower-dimensional

gauged supergravity. This is necessary in order to relate to the full untruncated D = 11 or

type IIB supergravity. Secondly, we explicitly constructed the twist matrices for various

compactifications, including sphere compactifications such as AdS5×S5, and new examples

such as hyperboloids Hp,q. In contrast to ordinary Scherk-Schwarz compactifications where

the existence of consistent twist matrices is guaranteed by the underlying Lie algebraic

structure of the deformation parameters, to our knowledge there is no analogue of such an

existence proof for solutions of the generalized consistency equations (3.10) with general

embedding tensor ΘM
α. In this regard, the construction of explicit examples is a crucial

step towards a more systematic understanding of the underlying structures.

Given the explicit form of the twist matrices, any solution of gauged supergravity

is embedded into the higher-dimensional exceptional field theory via the relations (1.1)–

(1.4), and thereby further into D = 11 or type IIB supergravity. The explicit embedding

formulas into the original D = 11 or type IIB supergravity require the dictionary relating

the exceptional field theory fields to the original formulation of these theories. It should be

stressed that this dictionary is completely independent of the particular compactification

or twist matrix and can be fixed, for instance, by matching the gauge symmetries on both

sides. Together this allows in particular to lift the known AdS solutions [62] of SO(8)

gauged supergravity to eleven dimensions, but also the large class of dS and domain wall

solutions found in the non compact and non-semisimple four-dimensional gaugings [63–65].

It will be interesting to explore the possible generalizations of the presented construc-

tion. Our construction of twist matrices was based on the maximal embedding (4.37), (4.38)

of an SL(n) group into the corresponding exceptional group. For the SO(p, q) case, as a

consequence of the second equation in (3.10), this led to the severe constraint (4.28), re-

stricting the construction to the three principal cases (D,n) = (7, 5), (5, 6), (4, 8). In the

CSO(p, q, r) case on the other hand, the structure of the twist matrix (4.30) suggests that

there is more freedom due to the possible introduction of the factor β, preserving the

CSO(p, q, r) structure. As a result, the construction will still go through without being

constrained to (4.35), i.e. in particular for other values of D, as given in (4.34). This will

be interesting to explore. Similarly, the construction should allow for more solutions, when

the embedding (4.38) of SL(n) is not maximal but leaves additional abelian factors. This

is the case for the D = 6, G = SO(5, 5) EFTwith SL(5) embedded via the intermediate

GL(5). The additional GL(1) factor allows for an additional parameter in the twist matrix,
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that can be tuned such as to solve the second equation in (3.10) without reverting to (4.28).

This case should thus include the consistent S4 reduction of IIA supergravity [66].

A different class of twist matrices should correspond to solutions of (4.5) in which (4.10)

is relaxed to non-vanishing ZABC
D. E.g. D = 7 maximal supergravity possesses a gauging

with ηAB = 0 and compact SO(4) gauge group [61] which is conjectured to correspond to

a consistent sphere truncation of IIB supergravity. It would be interesting to work out

the corresponding twist matrix and to explore its generalization to arbitrary values of n.

It should of course also be possible to find twist matrices that generate a non-vanishing

trombone parameter ϑM . More generally, one may try to generalize the above construction

by replacing (4.38) to an embedding of coordinates via other classes of subgroups. The

method should also extend to non-maximal theories such as the AdS3×S3 reduction from

six dimensions [67, 68].

Another extension of our results that may eventually become feasible is the inclusion

of higher-derivative α′ or M-theory corrections. Indeed, in double field theory there was

progress recently of how to include α′ corrections [69–72], see also [73–75]. In particular,

the results of [69] provide an exactly O(d, d) invariant description of a subsector of heterotic

string theory to all orders in α′. If a generalization to exceptional field theory exists one

may hope for consistent Kaluza-Klein embeddings that not only lead to exact solutions of

the higher-dimensional field equations but also to solutions that are exact in α′.

Finally, let us stress that throughout this paper we assumed the strong form of the

section constraints (2.1). Thereby the twist matrices we construct as solutions of (3.10)

describe consistent truncations within the original D = 11 and IIB supergravity. It is

intriguing, however, that the match with lower-dimensional gauged supergravity, upon

reduction by the Scherk-Schwarz ansatz, does not explicitly use the section constraint

(provided the initial scalar potential is written in an appropriate form), as observed in [34,

36] for the internal sector and shown here for the full theory. Formally this allows to

reproduce all gauged supergravities, and it is intriguing to speculate about their higher-

dimensional embedding upon possible relaxation of the section constraints that would define

a genuine extension of the original supergravity theories. For the moment it is probably

fair to say that our understanding of a consistent extension of the framework is still limited.

In this context it would be interesting to obtain explicit examples of twist matrices that

satisfy all consistency conditions (3.10), but violate the section constraints (2.1) which

may give a hint as to how to consistently relax these constraints in exceptional field theory.

We hope that our treatment of sphere and hyperboloid compactifications may help clarify

these matters.
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A Projection of the spin connection

Consider a general tensor WMN
K = WM

α (tα)N
K , living in the full tensor product

56⊗ 133 = 56⊕ 912⊕ 6480 . (A.1)

In flattened SU(8) indices, it takes the matrix form

Wij =

−2
3δ[k

[pW q]
l]ij

1
24εklrstuvwW

tuvw
ij

Wmnpq
ij

2
3δ[r

[mWn]
s]ij

 , (A.2)

and complex conjugate. The diagonal and off-diagonal blocks are parametrized by W i
j[kl],

W [tuvw]
ij with W i

ikl = 0. In general, the diagonal and off-diagonal blocks carry the SU(8)

representations

W i
jkl : 28⊕ 36⊕ 420⊕ 1280 ,

W tuvw
ij : 28⊕ 420⊕ 1512 . (A.3)

Together with their complex conjugates they fill the three irreducible E7(7) representa-

tion (A.1). The 36 ⊕ 36 sit in the 912, on the other hand there are two copies of the

420 ⊕ 420 sitting in the 912 and the 6480, respectively. In order to disentangle the dif-

ferent representations, it is useful to recollect the transformation of Wi
jkl, W ijkl

mn under

the 70 E7(7)/SU(8) generators, which mix these fields as follows [51]

δWi
jkl = 2 ΣjmnpWimnp

kl − 1

4
δi
j ΣmnpqWmnpq

kl + ΣklmnW j
imn ,

δWijkl
mn = − 4

3
Σp[ijkWl]

pmn − 1

24
εijklpqrs ΣmntuW pqrs

tu . (A.4)

Iterating this transformation, we can compute the action of the E7(7)/SU(8) Casimir

∆ ≡ δijklδijkl

∆Wi
jkl =

35

6
Wi

jkl − 5

12
Wm

mklδi
j − 1

2
T klmnmn δi

j − 2 δi
[kW l]jmn

mn + 2W jklm
im ,

∆W klmn
ij =

11

6
W klmn

ij +
4

3
W[i

[klmδj]
n] − 4

3
δij

[mnWp
kl]p − 1

3
Wp

p[kl δij
mn] , (A.5)

whose different eigenvalues allow to identify the E7(7) origin of the various SU(8) blocks.

E.g. parametrizing the two 420 representations as

Wi
jkl = Ai

jkl + · · · , W klmn
ij = δ[i

[k Bj]
lmn] + · · · , (A.6)

with traceless Ai
[jkl], Bi

[jkl], the action (A.5) diagonalises on the combinations

4Ai
jkl = −3Bi

jkl , with eigenvalue
9

2
,

Ai
jkl = Bi

jkl , with eigenvalue
41

6
. (A.7)
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The first option corresponds to the 420 from the 912, cf. (3.28) of [51], the other one thus

is the 420 from the 6480. We conclude, that the projection of (A.6) onto the 420 from

the 912 is given by

3

7

(
Ai

jkl −Bijkl
)
, (A.8)

such that consistently the second combination of (A.7) is projected to zero, and the first

one is projected to itself.

Putting everything together, we learn that taking the original spin connection QAB
C

living in the SU(8) of the form (schematically)

Qij =

(
A420 + . . . 0

0 A420 + . . .

)
, (A.9)

i.e. with Bi
jkl = 0, its projection onto the 912 maps this into a matrix of the form

[Qij ](912) =

 3
7A420 + . . . 3

7A420 + . . .

3
7A420 + . . . 3

7A420 + . . .

 . (A.10)

This is the form of the matrix which via (3.18) we identify with the T -tensor of gauged

supergravity [51], parametrized by A1, A2 as in (3.21) . Comparing (A.9), (A.10) we see

that upon projection, a relative factor of 3
7 has to be taken into account in the 420 part

A2 i
jkl, while the 36 part Aij1 (which is unique in (A.3)) remains unchanged.
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