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Abstract: We propose that inflation is driven by a (complex) neutral Higgs of the MSSM

extension of the SM, in a chaotic-like inflation setting. The SUSY breaking soft term

masses are of order 1012− 1013 GeV, which is identified with the inflaton mass scale and is

just enough to stabilise the SM Higgs potential. The fine-tuned SM Higgs has then a mass

around 126 GeV, in agreement with LHC results. We point out that the required large

field excursions of chaotic inflation may be realised in string theory with the (complex)

inflaton/Higgs identified with a continuous Wilson line or D-brane position. We show

specific examples and study in detail a IIB orientifold with D7-branes at singularities, with

SM gauge group and MSSM Higgs sector. In this case the inflaton/Higgs fields correspond

to D7-brane positions along a two-torus transverse to them. Masses and monodromy are

induced by closed string G3 fluxes, and the inflaton potential can be computed directly from

the DBI+CS action. We show how this action sums over Planck suppressed corrections,

which amount to a field dependent rescaling of the inflaton fields, leading to a linear

potential in the large field regime. We study the evolution of the two components of the

Higgs/inflaton and compute the slow-roll parameters for purely adiabatic perturbations.

For large regions of initial conditions slow roll inflation occurs and 50-60 efolds are obtained

with r > 0.07, testable in forthcoming experiments. Our scheme is economical in the sense

that both EWSB and inflation originate in the same sector of the theory, all inflaton

couplings are known and reheating occurs efficiently.
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1 Introduction

The discovery [1, 2] at LHC of a scalar particle with the properties of the Standard Model

(SM) Higgs boson has completed the minimum set of particles required for a consistent un-

derstanding of the properties of the SM. Still, it has also triggered new questions and made

more evident the existence of a hierarchy problem of the fundamental scales of physics. One

of the issues raised is the stability of the Higgs potential [3–5]. The Higgs mass, around

mh ' 126 GeV, corresponds to a value of the Higgs self coupling λ such that, when extrap-

olated to higher energies, implies a metastable second minimum at a scale 1011−1013 GeV.

Although such a metastable vacuum may not be necessarily problematic, it may lead to

some difficulties in the cosmological evolution of the universe.

One elegant way to avoid any vacuum instability is to consider a SUSY extension of the

SM like the MSSM. The scalar potential is then always positive definite in the ultraviolet

and no instabilities appear. In fact the usual MSSM with low scale SUSY breaking soft

terms predict a Higgs mass mh ≤ 130 GeV, in agreement with observations. So in principle

one could say that a Higgs mass around 126 GeV could be good news for SUSY. However

this value is a bit high, and implies squarks and gluino masses into the multi-TeV region,

very likely out of reach of the LHC. Furthermore, a fine-tuning in the range 1%− 0.1% in

the SUSY parameters is required. Although this is consistent with the fact that no trace of

SUSY particles has been observed as yet at LHC, this high level of fine-tuning casts some

doubts on the presence of SUSY at low scales ' 1 TeV.

The theoretical motivations for supersymmetry go beyond the solution of the hierarchy

problem in terms of low-energy SUSY. Admitting the possible presence of Higgs mass fine-

tuning, one can consider leaving the scale of soft masses MSS as a free parameter and ask

for consistency with the measured Higgs mass [6–9] (see also [10–13]). It was remarked in

ref. [8] that if the MSSM SUSY-breaking scale MSS ' 109 − 1013 GeV, and a fine-tuned

SM Higgs survives below that scale, then necessarily one obtains mh ' 126 GeV, consistent

with LHC data. This is true if one assumes a unification boundary condition for the two

MSSM doublets mHu = mHd . One could then perhaps interpret the observed Higgs mass

as a hint for large scale SUSY breaking in a unification scheme.

It is natural to discuss a possible fine-tuning of a light SM Higgs in the context of the

string landscape. In the latter an enormous set of string solutions allow for some of them

which are selected on anthropic grounds, allowing for a sufficiently light SM Higgs. On the

other hand SUSY is a fundament symmetry of string theory and guarantees the absence

of tachyons in string compactifications. Since string theory is at present our only complete

candidate as a unified theory, one could consider a scenario in which SUSY could be still

present at a higher scale but not be relevant for the understanding of the hierarchy problem.

In a different direction, evidence is mounting in favour of the existence of a second fun-

damental scalar in the theory, the inflaton. Simple models of inflation are able to reproduce

more and more qualitative and quantitative cosmological data (for reviews in the context

of string theory see e.g. [14–18]). The description of the CMB anisotropies in terms of pri-

mordial perturbations induced by an inflaton is outstanding. One of the simplest inflation

models is chaotic inflation [19], which features a simple polynomial potential in which the
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slow roll regime is achieved due to trans-Planckian excursions of the inflaton. An inter-

esting property of these models is that they generically predict large tensor perturbations

at a level detectable in future measurements. If the BICEP2 hints [20] for large tensor

perturbations were confirmed, chaotic inflation would be a favoured class of models. On

the theoretical side, the requirement of trans-Planckian inflaton excursions requires good

control of Planck scale physics, i.e., a theory of quantum gravity like string theory. In fact

in the last decade a framework to embed large trans-Planckian excursions into string theory

has been worked out in terms of the so-called monodromy inflation [21, 22], see [17, 18] for

reviews and further references.

Given these two inputs, an obvious question has been around for some time: Can the

Higgs boson be identified with the inflaton?. Before we knew the value of the Higgs boson

mass this possibility looked unlikely, since the Higgs potential is quartic with no obvious

region which could lead to slow roll inflation (see e.g. [23] for a review). However, as we

said, for a Higgs mass value around 126 GeV the Higgs self coupling λ evolves down to zero

at a scale 1011− 1013 GeV. In fact, if one takes a 2σ uncertainty for the measured value of

the top-quark mass and αstrong, it could still be possible that we have λ ' 0 close the the

Planck scale Mp. It has been proposed that this could be the signal of some new conformally

invariant physics [24–28]. In this case inflation could also appear with the inflaton identified

with the SM Higgs if non-minimal gravitational couplings of type
∫
α|h|2R are assumed.

While it has been debated whether this scheme has problems with unitarity (see e.g. [29]

and references therein), for appropriate values of the parameters one may still obtain a

Starobinsky-like inflation with negligible tensor perturbations. See also [30] for a SUSY

Higgs inflation with small field leading also to small tensor perturbations.

In ref. [31] two of the present authors suggested that the Higgs sector of the MSSM can

in fact lead to a variety of chaotic inflation. The idea is to consider a MSSM structure with

a large SUSY breaking scale, with soft terms in the region MSS ' 1011− 1013 GeV. As we

said, such large values are consistent with a measured Higgs mass around 126 GeV and, on

the other hand, guarantee the stability of the SM Higgs potential. The idea was to identify

also such large scale with that of the inflaton mass mI ' MSS [32] (see also [30, 33]).

The SUSY breaking soft terms, induced by string fluxes, give a quadratic potential to the

inflaton/Higgs boson, leading to a variation of chaotic quadratic inflation. Since chaotic

inflation requires large trans-Planckian inflaton excursions, the proposal was to embed the

MSSM Higgs system into string theory with the Higgs/inflaton identified with the position

of a D-brane in a IIB orientifold model. Such a model could in principle give rise to large

tensor perturbations, as indicated in the early reports by the BICEP2 collaboration.

In the present paper we complete and extend this proposal in several ways. We show

specific string heterotic and type IIB constructions in which the Higgs bosons of the MSSM

are identified with either Wilson lines or D-brane positions. We study a particular local toy

model constructed from D7-branes at singularities in which the Higgs/inflaton corresponds

to the motion of a D7 brane in a torus. Closed string G3 fluxes induce SUSY breaking and,

at the same time, a potential for the inflaton which we obtain from the Dirac-Born-Infeld

and Chern-Simmons (DBI+CS) action of the D7. Both the DBI and CS contribute equal

pieces to the scalar potential. The potential is initially quadratic along the D-flat direction
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with a structure akin to that of double chaotic inflation. However once the kinetic terms

are normalised, the potential at large fields tends to a linear behaviour. One can also

describe the system in terms of an N = 1 supergravity potential, under the assumption

of SUSY breaking induced by the auxiliary field of the overall Kähler modulus. The

potential obtained is analogous to the one obtained from the DBI+CS actions, but it fails

to capture the higher order terms in α′ given by the latter, terms which are responsible for

the linear flattening.

One of the issues of large field inflation models is the stability of the inflaton potential

against Planck suppressed corrections of the form ' (φ4+2n/M2n
p ), n > 0. In the present

case the DBI+CS action sums all such corrections in a controlled manner and shows how

they give rise to a flattening of the potential. We also show how the stability of the po-

tential may be understood in terms of a Kaloper-Sorbo description of the effective action.

Alternatively, in terms of the N = 1 supergravity action the absence of additional correc-

tions can be understood in terms of the modular symmetry of the torus. We also show

how the setting does not induce RR D3-brane tadpoles, which are often a nuisance in other

monodromy inflation models.

The model is a 2-field inflaton model since the D7-brane position lives on T2 and

is therefore parametrised by a complex field. This matches with the fact that along the

|Hu| = |Hd| D-flat direction of the MSSM only a complex neutral scalar remains massless

before SUSY breaking. We study the cosmological evolution of this complex inflaton and in

a first simplified analysis concentrate on the induced adiabatic perturbations. We compute

the spectral index and tensor to scalar ratio for a set of initial boundary conditions and

its dependence also on the closed string fluxes. Interestingly, known Higgs physics have an

influence on the shape of the potential. Indeed, the fluxes inducing soft terms must be re-

stricted so that a fine-tuned massless SM Higgs survives below the SUSY-breaking/inflaton

scale MSS ' 1011 − 1013 GeV. We then find that slow roll inflation is obtained for wide

ranges of inflaton/Higgs initial values. A number of e-folds Ne = 50− 60 is obtained with

sizeable tensor perturbations r > 0.07 depending on the initial values. Such large tensor

perturbations should be soon tested by forthcoming data.

This paper has the following structure. In the next section we discuss the MSSM Higgs

system and how the fine-tuning of a light SM Higgs can be described. There we identify the

neutral complex field whose dynamics will induce inflation in subsequent sections. After

giving a brief review of some aspects of chaotic inflation and the structure of scales in

section 3, we show in section 4 how a minimal MSSM Higgs sector may be obtained in

string compactifications. We first describe a specific heterotic orbifold model and then a

type IIB orientifold local model with D7-branes at singularities. In the latter we show

how the Higgs vevs are described in terms of the motion of a D7-brane in a two-torus. In

section 5 we describe how ISD G3 fluxes induce soft terms on the Higgs/inflaton fields. We

obtain the induced inflaton scalar potential starting from the DBI+CS action and also show

its corresponding N = 1 supergravity description. We compute the slow roll parameters for

the cases in which the inflaton field redefinition is neglected. The final results including the

flattening effect are presented in section 6. Some issues regarding the stability of the Higgs

potential, back-reaction and D3-brane RR tadpole cancellation are described in section 7.
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In section 8 further comments on issues like reheating and isocurvature perturbations are

given, while final comments and conclusions are presented in section 9. Details of the

computation of the scalar potential from the DBI+CS action are given in appendix A.

2 The Higgs mass and high scale SUSY-breaking

As we mentioned above, admitting the possible presence of Higgs mass fine-tuning, one can

consider leaving the scale of soft masses MSS as a free parameter and ask for consistency

with the measured Higgs mass. It was remarked in ref. [8] that if the MSSM SUSY-breaking

scale is MSS ' 109 − 1013 GeV, and a fine-tuned SM Higgs survives below that scale, then

one necessarily gets mh = 126 ± 3 GeV, in agreement with LHC data. Imposing gauge

coupling unification and flux-induced isotropic SUSY breaking further points to a Higgs

with a mass around 126 GeV [8]. This is true if one assumes the unification boundary

condition for the two MSSM doublets mHu = mHd , but no other further input. One could

then interpret the observed Higgs mass as indirect evidence for large scale SUSY breaking

in a unification scheme. The fine-tuned light SM Higgs is obtained from the general MSSM

Higgs mass matrix (
Hu, H

∗
d

)(m2
Hu

m3

m∗3 m2
Hd

)(
H∗u
Hd

)
. (2.1)

If one fine-tunes |m3|2 = m2
Hu
m2
Hd

, there are massless (HL) and massive (HM ) eigenstates

HL = sinβ eiγ/2Hu − cosβ e−iγ/2H∗d , HM = cosβ eiγ/2Hu + sinβ e−iγ/2H∗d , (2.2)

with

tanβ =
|mHd |
|mHu |

(2.3)

and γ = Argm3. All these quantities must be evaluated at the soft mass scale MSS '
1010−1013, below which all the SUSY spectrum decouples and just the SM survives. Note in

particular that at some unification scaleMc > MSS one might expectmHu(Mc) = mHd(Mc)

(i.e. tanβ = 1), and that then the running from Mc down to MSS will make |tanβ(MSS)|
slightly larger than one. Moreover at such scale Mc both scalars HL, HM will be massive,

although one will still have mHM � mHL due to the short running in between Mc and

MSS . In figure 1 we plot the running of the Higgs mass parameters from Mc down to MSS .

In the left plot we see the running of |m3| and mHumHd . When both curves intersect the

fine-tuning condition is satisfied and we have a massless eigenvalue at the SUSY breaking

scale MSS . This is also depicted in the right plot, in which although both mass eigenstates

are massive at Mc, one of them (HL) becomes massless after the running from Mc down to

MSS . To correctly interpret these figures recall that the running stops at the point MSS

in which all SUSY-particles become massive and one is left just with the SM at energies

below that given value of MSS .
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Figure 1. Running from Mc down to MSS of the parameters of the Higgs mass matrix (left) and

of the mass eigenvalues mHM
and mHL

(right).

In addition to the mass terms there is the SU(2) × U(1) D-term contribution to the

scalar potential given by

VSU(2) =
g2

2

8

(
|Hu|4 + |Hd|4 + 2|Hu|2|Hd|2 − 4|HuHd|2

)
(2.4)

VU(1) =
g2

1

8

(
|Hu|4 + |Hd|4 − 2|Hu|2|Hd|2

)
(2.5)

where we have

Hu =

(
H+
u

H0
u

)
, Hd =

(
H0
d

H−d

)
(2.6)

all four fields being complex. Note that here HuHd = (H+
u H

−
d − H

0
uH

0
d), so in general

|HuHd|2 6= |Hu|2|Hd|2. The SU(2) piece of the potential is however minimised if the

charged fields have no vev, in which case |HuHd|2 = |Hu|2|Hd|2, so that the complete

potential is then given by (with now only neutral components included)

V = m2
HM
|HM |2 +m2

HL
|HL|2 +

g2
1 + g2

2

8

(
|Hu|2 − |Hd|2

)2
(2.7)

= m2
HM
|HM |2 +m2

HL
|HL|2 +

g2
1 + g2

2

8

(
cos2β(|HM |2 − |HL|2) + 2sin2βRe(HLH

∗
M )
)2

with mHL(MSS) ' 0. At this level the HL eigenvalue is (approximately) massless and HM

decouples below MSS , leading to the following SM quartic potential at MSS

V =
g2

1 + g2
2

8
cos22β|HL|4. (2.8)

For tanβ(MSS) ' 1, as implied by the mHu(Mc) = mHd(Mc) boundary condition, one has

cos2β ' 0, explaining why the SM Higgs self-coupling seems to vanish at the MSS scale.

This in turn explains, after running the Higgs self coupling down to the EW scale, why

mHL ' 126 GeV.
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Note that the D-term potential has a general neutral flat direction given by

σ = |Hu| = |Hd| Hu = eiθH∗d (2.9)

with σ ∈ R+ and θ the relative phase of Hu and H∗d . Denoting Hu = |Hu|eiθu and

Hd = |Hd|eiθd then θ = θu + θd. Since at MSS one has tanβ ' 1, it is useful to define the

doublet linear combinations

h =
eiγ/2Hu − e−iγ/2H∗d√

2
, H =

eiγ/2Hu + e−iγ/2H∗d√
2

. (2.10)

Then at MSS the SM doublet is approximately given by h ' HL whereas H ' HM is

massive. Note that for the neutral components of h and H one has

H =
√

2σcos

(
θ + γ

2

)
ei(θu−θd)/2 , h = i

√
2σsin

(
θ + γ

2

)
ei(θu−θd)/2 , (2.11)

where θ = θu + θd, and the universal phase on both fields may be rotated away through a

hypercharge rotation. Then

|H| + i|h| =
√

2σei
θ+γ
2 . (2.12)

Along the above mentioned flat direction the potential is reduced to quadratic terms. This

suggests to consider these neutral Higgs fields |h|, |H| (or σ, θ) as candidates to give rise

to inflation in the manner prescribed by chaotic inflation, as we will describe below.

3 Large field inflation, string theory and the Higgs

The fact that large quadratic terms appear for the Higgs fields above MSS suggests to study

whether such fields can indeed lead to some form of chaotic inflation. If that were the case,

the inflaton would have a large mass of order MSS ' 1010 − 1013 GeV. This question is

interesting in itself, but would become particularly relevant if the indications of BICEP2

of large tensor perturbations [20] were confirmed. A straightforward interpretation of this

experiment is consistent with chaotic large field inflation. The inflation scale would be

V 1/4 ' 1016 GeV and the inflaton mass mI ' 1013 GeV. It was proposed in ref. [32] to

identify the large SUSY breaking scale suggested by the measured Higgs mass with the

inflaton mass suggested by the BICEP2 data. This indeed would be very attractive and

economical, connecting two apparently totally independent physical phenomena, the Higgs

mass with possible cosmological tensor perturbations.

Before trying to answer the above questions let us for completeness briefly review the

main ingredients in large single field chaotic inflation. One has a polynomial potential of

the form

V (φ) = µ4−pφp . (3.1)

The standard slow-roll parameters for one-field inflation are

ε =
M2
p

2

(
V ′

V

)2

� 1 , η = M2
p

|V ′′|
V
� 1 , (3.2)
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with Mp the reduced Planck scale, and the spectral index and tensor to scalar ratio are

ns − 1 = 2η − 6ε , r = 16ε. (3.3)

The number of e-folds is given by

Nefolds =
1

Mp

∫ φ∗

φend

dφ√
2ε
, (3.4)

with φ∗ the pivot inflaton value and φend the inflaton value at the end of inflation. With

these definitions one obtains the standard chaotic inflation results

ns − 1 = − (2 + p)

2Nefolds
, r =

4p

Nefolds
, (3.5)

with a number of e-folds given by

Nefolds '
1

2p

(
φ∗
Mp

)2

. (3.6)

Obtaining of order 50-60 e-folds requires large inflaton values of order ' 10 − 15 Mp,

implying, as is well known, large inflaton excursions. For p = 2(1) one obtains large tensor

perturbations with r = 0.15(0.1). If as hinted by BICEP2 such large tensor perturbations

were indeed produced, they would suggest a large scale of inflation

V 1/4 '
( r

0.01

)1/4
× 1016 GeV ' 1016 GeV , HI '

( r

0.20

)1/2
× 1014 GeV , (3.7)

with an inflaton mass mI ' 1013 GeV.

The scheme of chaotic inflation is simple and attractive, but requires an implementa-

tion in which trans-Planckian inflation excursions make sense,1 which in turn requires a

consistent theory of quantum gravity. Our most firm candidate for such a theory is string

theory, and indeed string models with large field inflation have been constructed in the last

decade, see [17, 18] for reviews. Natural candidates for large field inflatons in string theory

are axion-like fields, which are abundant in string compactifications. Typical examples of

such axions are the imaginary part of Kähler T i or complex structure Ua moduli in type II

orientifold vacua. Such axions live in a periodic moduli space, which can be nevertheless be

unfolded due to extra ingredients like space-time filling branes, allowing for the required

large field excursions. They moreover feature shift symmetries which also keep under

control the appearance of Planck suppressed terms in the potential, i.e. Vp ' M
(4−p)
p φp,

p > 4 that may otherwise easily spoil inflation. This class of models go under the name

of axion monodromy inflation because the corresponding potential grows as the axionic

inflaton completes a cycle [21, 35]. Some of the first such axion models [22, 36] made use

of non-SUSY configurations of NS-brane-antibrane pairs in type IIB theory (see [37] for a

related F-theory construction). This structure was required in order to cancel unwanted

D3 tadpoles and makes the stability of these models difficult to handle.

1For a review with suggestions to avoid trans-Planckian excursions see [34].
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More recently it has been realised that the same idea can be implemented in SUSY

configurations if the monodromy is induced by an F-term potential for the axion [38].

Typical examples of this framework, dubbed F-term axion monodromy inflation, involve

closed string axions whose potential is created by the presence of closed string background

fluxes, see [38–43] for concrete realisations. A further novelty of this framework is that

one can also implement the monodromy idea in models identifying the inflaton with either

continuous Wilson lines or their T-dual, D-brane position moduli, see [31, 38, 44–46]. In

the latter case large inflaton excursions correspond to a D-brane position going around

some cycle in the internal compact space. Since in type II models Higgs fields arise from

open string degrees of freedom, this is the path that we will follow in order to identify the

inflaton with Higgs field within string theory. Namely, Higgs vevs will appear either as

continuous Wilson lines or D-brane position moduli.

Another advantage of F-term axion monodromy is that it allows to connect with the

4d axion monodromy framework developed in [47–49]. Indeed, it was found in [38] that

upon dimensional reduction one obtains an effective Lagrangian of the form

− 1

2

∫
d4x

[
(∂φ)2 + |F4|2 − µφ ∗4 F4

]
(3.8)

where φ is the inflationary axion and F4 is a non-dynamical four-form whose presence cre-

ates a quadratic potential for it. As discussed in [47–49] (see also [50–53]) this Lagrangian

is protected against dangerous corrections to the slow-roll potential that arise upon UV

completion of the theory. Up to now, the Lagrangian (3.8) has been obtained from F-term

axion monodromy constructions involving either closed string axions or open string axions

arising from massive Wilson lines [38] (see also [54]). As part of our analysis we will see

that (3.8) can also be reproduced from models where the inflaton is a D-brane position

modulus, which is one specific realisation of our scenario.

Before considering specific embeddings of our scheme let us briefly discuss the scale

structure of a large field inflation string model, see figure 2. The fundamental scale is the

string scale which is in the region Ms ' 1016 − 1018 GeV. The (reduced) Planck scale is

Mp ' 1018 GeV and the inflaton initial value Φ∗ is typically of order 10-15 Mp to obtain the

appropriate number of e-folds. Using field theory and a scalar potential makes sense only

at energies below the compactification/unification scale Mc, which should be sufficiently

below Ms so that the 10d action we start with makes sense. The Hubble scale at inflation

is HI ' 1014 GeV and the inflaton mass is mI ' 1013 GeV. In the Higgs-otic scenario the

latter is also of the order of the SUSY breaking scale MSS .

4 String theory embeddings of an inflaton-Higgs

In order to allow for consistent large field inflaton/Higgs, we will search for string con-

structions in which a MSSM Higgs sector of doublets Hu, Hd appear. We want the neutral

components of these doublets to be associated with either continuous Wilson lines or po-

sition D-brane moduli. In this section we will provide examples of both possibilities. The

first example is a compact Z4 toroidal heterotic orbifold in which Higgs fields are identified
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SM Higgs region Higgs-otic region

HL ~ h |h|, |H|

Figure 2. Energy scales in the Higgs-otic Inflation scenario. Below 1013 GeV the light degrees of

freedom in the Higgs sector are given by the SU(2) doublet HL. Above this scale SU(2) is broken

and they lie within the neutral components of h and H.

with certain scalars in the untwisted sector. In the second example we will identify the

Higgs scalars with the position moduli of a D7-brane in a IIB orientifold with Z4 singu-

larities. The subsequent analysis will focus on this second possibility since the addition of

ingredients that give rise to monodromy is better understood.

4.1 The MSSM Higgs system in heterotic orbifolds

As a first example we will consider a Heterotic compactification in which a MSSM-like Higgs

sector appears. We start with the Spin(32) heterotic string compactified on a T2×T2×T2

torus, with each 2-torus defined in terms of an SO(4) lattice. The model is subject to a

twist in the compact dimensions defined by a Z4 shift v = 1/4(1, 1,−2) acting on the

lattices as π/2 rotations in the first two tori and a reflection z3 → −z3 in the third torus.

The embedding of this twist in the Spin(32) weight lattice is given by the 16-dimensional

shift (see e.g. [55] for notation and examples)

V =
1

4
(1, 1, 1, 2, 2, 0 ; 1, 1, 3, 0, 0, 0, 0, 0, 0, 0) , (4.1)

where the SM group SU(3)×SU(2) lives in the first five entries. In addition we add discrete

order-4 Wilson lines a1 and a2 around the first and second torus respectively, with

a1 =
1

4
(1, 1, 1, 1, 1,−1 ; 0, 0,−1, 1, 0, 0, 0, 0, 0, 0) (4.2)

a2 =
1

4
(−1,−1,−1,−1,−1, 1 ; 0, 0,−1, 1, 2, 0, 0, 0, 0, 0) . (4.3)

As required both 4V and 4a1,4a2 belong to the Spin(32) weight lattice. The shift and

Wilson lines verify the modular invariance constraints (see e.g. [55])

4×
(
(V ± a1 ± a2)2 − v2

)
= 2s, s ∈ Z , (4.4)

which automatically guarantee anomaly cancellation. The projections P.V = n, P.a1 = m,

P.a2 = q, with PI ∈ ΛSpin(32) and n,m, q ∈ Z, give us the invariant gauge group which is

SU(3)× SU(2)×U(1)× (SO(10)× SU(2)′ ×U(1)6) . (4.5)
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The chiral matter fields in the untwisted sector are obtained from PI verifying P.V = −1/4

(mod integer) but P.ai ∈ Z for the first two complex planes and P.V = 1/2 mod integer

for the third. One gets

2(3, 2) + 2(3̄, 1) + (1, 2) + (1, 2̄) + hidden (4.6)

under the SM gauge group SU(3) × SU(2). By hidden we denote matter fields not trans-

forming with respect to this SM group. Note there is a minimal set of Higgs fields, which is

vector like, and can be identified with the Hu, Hd scalars of the MSSM. They are associated

to the third complex plane. In addition the untwisted sector contains two generations of

left- and right-handed quarks, associated to the first two complex planes. In addition to

the above matter fields, there will be additional ones from the θ, θ2 and θ3 twisted sectors.

They will provide for the rest of the two MSSM generations plus additional stuff, cancelling

all anomalies. We will not display those since they are not relevant for our purposes.

As discussed in refs. [56–60] the vevs of untwisted fields in an orbifold along D-flat

directions correspond to switching on continuous Wilson lines in the underlying torus,

in this case along the third torus. So this is an example of a consistent global string

construction in which MSSM-like Higgs vevs are parametrised by continuous Wilson lines.

The inflation potential is however flat so far. In order to obtain a potential (and

hence a mass) for the Higgs/inflaton system we would need some source of monodromy.

A natural source could be the presence of some sort of fluxes, like those geometric fluxes

present in the definition of massive Wilson lines given in [38]. However our understanding

of fluxes in heterotic compactifications is still quite incomplete compared to that in type

IIB compactifications. This is why in the next section we turn to the description of the

Higgs/inflaton system in type IIB orientifolds.

Before turning to the IIB case let us recall what is the structure of the Kähler potential

involving untwisted matter and moduli fields in Z2N orbifolds in which one complex plane

(i.e., the third) suffers only a twist of order 2. In this case the untwisted matter fields

associated to the third complex plane are vector like, i.e., chiral matter multiplets A,B

with opposite gauge quantum numbers, like is the case for Hu, Hd in the MSSM. This is

what happens in the Z4,Z
′
6,Z

′
8 and Z′12 heterotic orbifolds, (see e.g. [55]). Then the Kähler

potential has a contribution of the form

K = −log

[
(T3 + T ∗3 )(U3 + U∗3 )− α′

2
(A+B∗)(A∗ +B)

]
, (4.7)

where T3 and U3 are the Kähler and complex structure modulus of the T2 in the third

complex direction. In the above Z4 example we will have that A + B∗ = Hu + H∗d . The

consequences of this structure, which is also present in the type IIB orientifold model of

next subsection, will be discussed in sections 5.5 and 7.1.

4.2 The MSSM Higgs system in type IIB orientifolds

In this second example we will concentrate on type IIB compactifications with O3/O7

orientifold planes, in which the addition of RR and NS 3-form fluxes is at present best
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understood. The addition of these fluxes will give rise to the desired monodromy for the

inflaton/Higgs. This is so for the position moduli of D7-branes which are directly sensitive

to the presence of ISD closed string 3-fluxes.2 In what follows we will thus concentrate on

the case in which one identifies the Higgs/inflaton field with a D7 position modulus in a

IIB orientifold

In particular, we will consider a type IIB O3/O7 orientifold with a stack of D7-branes

sitting on a Z4 singularity, with a local geometry of the form (X ×T2)/Z4, with X some

complex two-fold. The D7-branes are transverse to the T2 and are initially located at its

origin, on top of the singularity. The D7-branes wrap the compact 4-cycle X which may

be taken to be T4 for simplicity, but whose structure will not be crucial for the relevant

Higgs sector. We will consider this setting as a local model and do not care much about

global RR tadpoles.

Examples of D-brane models in the case where X = T4 have been given in [31, 61, 62].

Such orbifold has a geometric action of the form

θ : (z1, z2, z3) 7→ (e−2πi/4z1, e
−2πi/4z2, e

2πi/2z3) = (−iz1,−iz2,−z3) (4.8)

encoded in the shift vector v = 1
4(1, 1,−2), as in the previous heterotic example. We then

consider a stack of N D7-branes extended over the first two complex coordinates, and such

that the action of the orbifold generator θ on the Chan-Paton degrees of freedom is

γθ,7 = diag (In0 , iIn1 ,−In2 ,−iIn3) (4.9)

with
∑4

i=1 ni = N . Implementing the standard procedure (see e.g. [55]) one obtains the

following spectrum for open strings in the 77 sector:

Vector Multiplets
∏4
i=1 U(ni)

Chiral Multiplets
∑3

r=1

∑4
i=1(ni, n̄i+4vr)

(4.10)

where the index i is to be understood mod 4.

Let us now follow [31] and consider the case where n0 = 1, n1 = 3, n2 = 2, n3 = 0.

The spectrum in the 77 sector is then given by a gauge group U(3) × U(2) × U(1) and

matter spectrum

2× (3̄, 1)+1 + 2× (3, 2̄)0 + (1, 2̄)+1 + (1, 2)−1 (4.11)

where the subscript stands for the charge under the U(1) of the 0th node.

What is more relevant for us is how these representations arise in terms of the original

stack of D7-branes and its fields, which correspond to three adjoints (A1̄, A2̄,Φ) of U(6).

After performing the orbifold projection we obtain that these matrices get projected down

to off-diagonal entries that contain the above matter fields. More precisely

Aī =

 03 QiL
02

U iR 0

 Φ =

 03

02 Hu

Hd 0

 (4.12)

where we used standard notation to label the matter fields.3 In particular the hypercharge

2The case of D3-branes (or rather anti-D3-branes) would be more subtle since they may feel the presence

of ISD fluxes only through the back-reaction of the geometry, see [64].
3In (4.12) we have made a change of basis so that (4.9) reads γθ,7 = diag (iI3,−I2, 1).
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generator is given by the non-anomalous U(1) combination

QY = −Q3

3
− Q2

2
−Q1 (4.13)

where Qn is the generator for U(1) ⊂ U(n). This justifies the following notation for the

Higgs sector

Hu = (1, 2)−1 Hd = (1, 2̄)1 . (4.14)

The other two U(1)’s within the local model are anomalous and become massive through

the GS mechanism. From (4.12) one can compute the Yukawa couplings of this system by

using the D7-brane superpotential formula

W = tr ([A1̄, A2̄]Φ) → Q2
LHuU

1
R −Q1

LHuU
2
R (4.15)

or simply orbifold CFT techniques. Here superindices denote generations. Notice that the

representation Hd does not enter in the superpotential, which is to be expected because the

representation DR will only appear when we include fractional D3-branes that cancel the

twisted tadpoles of the model. One can also compute the D-term potential of this model

from VD ∼ trDD† with D = [A1̄, A1]+[A2̄, A2]+[Φ, Φ̄]. From here one obtains the D-term

quartic potential described in section 2.

The twisted tadpole cancellation conditions allow for sets of D7-branes with traceless

contribution to quit the singularity and to travel to the bulk. In particular if one of the

two U(2) branes combines with the U(1) brane, they do not give net contribution to the

tadpole and can travel through the bulk, in particular they can travel over through T2 in

the z3 direction. They should do that in a way consistent with the Z4 symmetry, which

acts on z3 through a the reflection z3 → −z3, and so the two wandering D7-branes should

travel at mirror locations z3 and −z3 respectively. When that happens, the 4 D7-branes

remaining on the singularity have gauge group U(3)×U(1) whereas the wandering couple

carries a single U(1). Taking into account that the GS mechanism gave masses to two

U(1)’s, a single U(1)em remains unbroken, corresponding to electromagnetism. All in all

there is a symmetry breaking process

U(3)×U(2)×U(1)→ SU(3)× SU(2)×U(1)Y → SU(3)×U(1)em , (4.16)

whereas the first symmetry breaking is due to the GS mechanism, and the last one is due

to the Higgs mechanism induced by the wandering pair of branes.

The fact that the wandering D7’s can travel freely through T 2 corresponds to the

existence of a flat direction |〈(1, 2)〉| = |〈(1, 2)〉|, i.e., |Hu| = |H∗d |. The position of the

D7-brane as it moves in the third T2 is parametrised by the vevs (σ, θ). In particular one

has for this coordinate4

z2
3 = (2πα′)2σ2eiθ = (2πα′)2HuHd = (2πα′)2 (|H|+ i|h|)2

2
e−iγ . (4.17)

4Note that it is z23 , which is invariant under the Z2 reflection, which is well defined in the orbifold

quotient space, rather than z3 itself.
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Figure 3. A possible trajectory of the inflaton/Higgs D7-brane cycling around the T2 before fluxes

are turned on.

Thus 2πα′σ corresponds to the distance of the wandering D7-branes to the branes remain-

ing at the Z4 singularity. This separation corresponds to spontaneous gauge symmetry

breaking. A possible trajectory of the wandering-D7/Higgs/inflaton branes over T2 is il-

lustrated in figure 3, where we assume γ = 0. The open strings going from the D7 to

the singularity will give rise to massive W±, Z0 gauge bosons and their SUSY partners.

In particular, consider a D7-brane at the point z3 = x + iU3y, where iU3 is the complex

structure of the third T2. Then the mass formula for the open string states between the

singularity and the D7-brane is given by

M2 =
1

(2πα′)2
|z3 − (w1 + iU3w2)2πR|2 , (4.18)

where w1,2 are the winding numbers around the two cycles of the transverse T2, whose

radius along x is given by R. We thus obtain M2 = σ2 for w = 0 and small x, so that the

mass is controlled by 〈σ〉.5

The massive states include not only W±, Z0, but also three massive scalars H±, h0,

which are the scalars included in the N = 1 SUSY massive vector multiplets. The counting

of degrees of freedoms is as follows: We start with 8 real scalars from Hu, Hd. Three of

them become goldstone bosons, whereas other three (H±, h0), complete a massive vector

multiplet. The two remaining scalars are massless at this level, and correspond to the

two neutral scalars from σ, θ, which parametrise the position of the D7 wandering branes

through the third T2. In the model the 2 families of quarks become also massive due to

the Yukawa couplings in eq. (4.15).

Note that the Higgs vev σ may be arbitrarily large, even larger than the Planck scale.

This however does not lead to new states with masses larger than Mp. In particular this

applies to the massive W±, Z0 boson and their partners, which can never get masses larger

than the KK scale of the T2. Indeed, as shown in eq. (4.18), for |z3| > πR, the lightest

5The familiar factor proportional to the square of the gauge coupling appears upon normalising the fields

canonically.
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states to be identified with these bosons correspond to winding numbers w1,2 6= 0, and no

longer to the initial states with w1,2 = 0. In this sense the effect of the inflaton/Higgs vev

in this string context is very mild, not deforming the structure of the KK/string spectra

in a substantial manner. This is to be contrasted to a purely 4d field theory model of the

MSSM in which the gauge boson masses are proportional to the vev of the scalar and

hence would produce masses larger than Mp, with physics difficult to control, if at all.

Note that an interesting property of the wandering D7-branes is that, as the position

varies and the inflaton vev decreases, the masses of W±, Z0 etc. decrease in an oscillating

manner, since the distance of the brane to the singularity also oscillates. In some particular

limits in which the brane travel along one of the axis or the diagonal, these fields become

periodically massless as the vev of the inflaton decreases. This is however not generically

the case, and it will not be the case in the relevant Higgs-otic model.

5 Fluxes and the Higgs/inflaton potential

In the previous section we have discussed how a vev within the MSSM Higgs sector may

be understood in terms of the motion of a D7-brane on a T2. However, up to now the full

scalar potential is flat along such D-term flat direction. We will now induce mass terms

for the inflaton/Higgs as required in oder to obtain a chaotic-like potential. To do that we

will consider the case in which there are imaginary self-dual (ISD) 3-form fluxes G3 acting

as a background. As is well known, such classes of ISD fluxes are solutions of the type

IIB 10d equations of motion in warped Calabi-Yau backgrounds [63]. In such type IIB

compactifications there are two types of ISD fluxes, with tensor structure G(0,3) and G(2,1)

respectively. The first class breaks SUSY and induces SUSY-breaking soft-terms: scalar

and gaugino masses. The second class preserves SUSY and may induce supersymmetric

F-term masses to the chiral multiplets. These flux-induced terms were analysed in [61, 64–

68]. In our discussion below we will consider the generic case in which both classes of fluxes

are turned on simultaneously. More precisely, we will consider the following closed string

background

ds2 = Z(xm)−1/2ηµνdx̂
µdx̂ν + Z(xm)1/2ds2

CY (5.1)

τ = τ(xm)

G3 =
1

3!
Glmndx

l ∧ dxm ∧ dxn

χ4 = χ(xm)dx̂0 ∧ dx̂1 ∧ dx̂2 ∧ dx̂3

F5 = dχ4 + ∗10dχ4

with τ = C0 + ie−φ the 10d axio-dilaton, Z a warp factor that depends on the internal

coordinates xm, and ds2
CY the Ricci-flat metric of the internal covering space, namely

T4 × T2. Finally, G3 = F3 − τH3 is the complexified three-form flux, with F3 and H3

the RR and NSNS fluxes respectively. As mentioned before we take this flux to be of the

form G3 = G(0,3) + G(2,1), and in particular we choose G(0,3) = G1̄2̄3̄ dz̄1 ∧ dz̄2 ∧ dz̄3 and

G(2,1) = G1̄2̄3 dz1 ∧ dz2 ∧ dz̄3, as these are the two fluxes that are invariant under the Z4
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action (4.8). Since we are considering only ISD 3-form fluxes, the background dilaton τ

must be holomorphic in order to satisfy the IIB supergravity equations of motion. For

simplicity we will consider τ to be constant, although our results can easily be generalised

for a non-constant profile.

The potential for the fields living in the D7-brane worldvolume can be obtained by

evaluating the D7-brane DBI+CS action in the above background, as we now describe.

5.1 Flux induced scalar potential from DBI+CS

We will consider again the toroidal setting and compute the effect of the G3 fluxes on the

U(6) adjoint complex scalar existing in the model in the previous section before orbifolding.

This adjoint contains off-diagonal components containing the Hu,d fields of interest, which

we will display at the end.

The effective action for the microscopic fields of a system of D7-branes in the 10d

Einstein frame is given by the Dirac-Born-Infeld (DBI) + Chern-Simons (CS) actions

SDBI = −µ7g
−1
s STr

(∫
d8ξ
√
−det(P [EMN ] + σFMN )det(Qmn)

)
(5.2)

SCS = µ7gsSTr

(∫
d8ξP [−C6 ∧B2 + C8]

)
(5.3)

where

EMN = g1/2
s GMN −BMN Qmn = δmn + iσ[φm, φρ]Eρn µ7 = (2π)−3σ−4g−1

s (5.4)

and σ = 2πα′. Here M,N are D7-brane worldvolume indices and P [·] denotes the pullback

of the 10d background onto such worldvolume, while m,n are indices transverse to the

D7-brane. Finally, ‘STr’ stands for the symmetrised trace over gauge indices.6

The D7 world volume spectrum compactified to 4d contains before orbifolding two

adjoints A1,2 which come from 8d vectors and an adjoint Φ which parametrises the D7-

position and that will be the subject of our interest. The determinant in the DBI action can

be factorised between Minkowski and the internal space (labelled by µ, ν and a, b indices

respectively) and after some calculations we obtain

det(P [EMN ] + σFMN ) = −g4
sf(B)2

[
1 + 2Zσ2DµΦDµΦ̄ +

1

2gs
σ2ZFµνF

µν

]
(5.5)

and

det(Qmn) = 1− Zgsσ
2

2
[Φm,Φn]2 (5.6)

where

f(B)2 = 1 +
1

2
Z−1g−1

s BabB
ab − g−2

s

4
Z−2BabB

bcBcdB
da +

g−2
s

8
Z−2

[
BabB

ab
]2
. (5.7)

The details of the computation can be found in appendix A. Recall that Z is a possible warp

factor which we will often set to unity when doing explicit computations. Nevertheless, a

6The parameter σ in here should not be confused with the inflaton field σ defined in eq. (2.9).
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non-constant warp factor might have interesting phenomenological consequences, as we will

briefly discuss later on. The contribution coming from (5.6) will give rise to the usual D-

term potential. Since this term does not change formally when including the α′ corrections,

we will skip it in the computation below and restore it only at the end of the section, to

avoid clutter.

For simplicity we are not considering neither Wilson lines nor magnetic fluxes on the

branes worldvolume, that is, we are setting 〈Aa〉 = 0. In our configuration only the adjoint

field Φ will take a non-zero vacuum expectation value, which will parametrise the position

of the D7-branes in their transverse space z3 via the equation

det
(
〈Φ〉 − σ−1z3I

)
= 0 . (5.8)

For this reason, in (5.5) we have already neglected all the terms that are not relevant for the

scalar potential (like BF , FF and [A,Φ] couplings), since they vanish for 〈F 〉 = 〈A〉 = 0.

Notice however that we have kept all those depending only on B to all orders. The reason

is that, in the presence of a background three-form flux H3, changing the vev of Φ induces

a B-field on the D7-brane worldvolume. Hence, since our model of inflation the vev 〈Φ〉
is going to take large values, we cannot neglect the dependence on B to any order in the

DBI expansion.

Let us for now ignore the contribution coming from det(Qmn), which gives the D-term

scalar potential. Then, plugging (5.5) into the DBI action (5.2) we obtain

SDBI = −µ7gsSTr

∫
d8ξ

√
f(B)2

[
1 + 2Zσ2DµΦDµΦ̄ +

1

2
Zg−1

s σ2FµνFµν
]

(5.9)

with f(B) the same as in (5.7). One can check that whenever the B-field is a (2, 0)+(0, 2)-

form on the D7-brane internal worldvolume f(B) can be written as

f(B) = 1 +
1

2
Z−1g−1

s B2 (5.10)

where we have denoted B2 ≡ BabB
ab/2 and used that 4BabB

bcBcdB
da =

[
BabB

ab
]2

. This

implies that all corrections in α′, which appear as powers of the B-field in f(B)2, can

be completed into a perfect square. The reason is the underlying supersymmetry of the

system, which imposes that for a worldvolume flux F which is a self-dual two-form on the

D7-brane internal dimensions the D7-brane gauge kinetic function must be holomorphic

on the axio-dilaton τ , while for an anti-self-dual two-form it must be anti-holomorphic.

In both cases (ours being the second) no square roots should appear multiplying FµνF
µν ,

because there are none multiplying FµνF̃
µν . We refer to appendix A for further details.

Even if Φ is supposed to take large vacuum expectation values their derivatives must

remain small, since we are interested in slow-roll dynamics. We can then expand the square

root neglecting higher orders in ∂µΦ, obtaining

SDBI = −µ7gsSTr

∫
d8ξf(B)

[
1 + Zσ2DµΦDµΦ̄ +

1

4
Zg−1

s σ2FµνF
µν +O(∂4)

]
(5.11)

where we have taken the same approximation for Aµ and its derivatives.
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In order to proceed further we have to express the B-field in terms of the fluctuations

of the 8d field Φ. Recalling that G3 = F3− τH3 (with F3(H3) being the RR(NSNS) 3-form

flux), we can integrate

dB2 =
ImG3

Imτ
(5.12)

to obtain the B-field induced on the brane due to the presence of a constant G3 background

flux. The result for the B-field components is given by

B12 =
gsσ

2i
(G∗(0,3)Φ−G(2,1)Φ̄) ; B1̄2̄ = −gsσ

2i
(G(0,3)Φ̄−G∗(2,1)Φ) (5.13)

where recall that, in tensorial notation the (0,3)-form flux corresponds to components G1̄2̄3̄

while the (2,1)-form flux to G1̄2̄3. From now on we will denote the fluxes as G ≡ G1̄2̄3̄

and S ≡ ε3jkG3j̄k̄ for simplicity in the notation. Plugging this in (5.10) we get that

f(B) becomes

f(Φ) = 1 +
Z−1gsσ

2

4
|G∗Φ− SΦ̄|2 . (5.14)

Let us now consider the Chern-Simons piece. From the equations of motion of type

IIB supergravity one can derive the following relations between the RR fields and the

3-form fluxes

dC6 = H3 ∧
(
C4 +

1

2
B2 ∧ C2

)
− ∗ReG3 (5.15)

dC8 = H3 ∧ C6 − ∗Re dτ . (5.16)

Integrating these equations and using that the background for the dilaton is constant, we

obtain the following RR 6-form and 8-form potentials

(C6)12 = −Z
−1σ

2i
(G∗Φ− SΦ̄) (5.17)

(C8)11̄22̄ =
Z−1gsσ

2

4

(
(|G|2 + |S|2)|Φ|2 − 4G∗S∗Φ2 + c.c.

)
. (5.18)

Plugging these expressions in the Chern-Simons action of the D7-branes we get

SCS = µ7gsSTr

∫
d8ξ

(
−Z

−1gsσ
2

4
|G∗Φ− SΦ̄|2

)
(5.19)

which combined with the DBI part results in the following 8d action

S8d = −µ7gsSTr

∫
d8ξ

(
f(Φ)

(
Zσ2DµΦDµΦ̄ +

1

4
Zg−1

s σ2FµνF
µν

)
− Ṽ (Φ)

)
(5.20)

where the scalar potential is given by

Ṽ (Φ) = 2(f(Φ)− 1) =
Z−1gsσ

2

2
|G∗Φ− SΦ̄|2 . (5.21)

In this last step we have also subtracted the D7-brane tension (which is cancelled by the

contribution of the orientifold planes). Notice that once done so the DBI and the CS parts
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of the action contribute the same amount to the scalar potential, so we cannot neglect the

contribution from the CS action, as is oftentimes done in the literature.

Finally, integrating over the internal T4 wrapped by the D7-branes (using that the

internal profile of the wavefunctions for Φ is constant, see [69]) and rescaling the fields

such that

Φ→ Φ(V4µ7gsZσ
2)−1/2 ; Aµ → Aµ(V4µ7Z

−1σ2)−1/2 (5.22)

we obtain the following 4d effective Lagrangian

L4d = STr

(
f(Φ)DµΦDµΦ̄ +

1

4g2
YM

FµνF
µν − V (Φ)− 1

2
g2
YM [Φ, Φ̄]2

)
(5.23)

where we have restored the D-term. Notice that all the dependence of the D-term on the

higher order corrections is absorbed in g−2
YM = V4µ7Z

−1σ2f(Φ), with V4 being the volume

of the internal T4. The rescaled scalar (F-term) potential and f(Φ) become

V (Φ) =
Z−2gs

2
|G∗Φ− SΦ̄|2 , (5.24)

f(Φ) = 1 +
Z−2(V4µ7)−1

4
|G∗Φ− SΦ̄|2 . (5.25)

As expected, this potential looks like a quadratic potential for the adjoint scalars.

However, one has to take into account the field redefinition required to have canonical

kinetic terms in eq. (5.23), which becomes important for large values of 〈Φ〉. As we will

describe in section 6, this redefinition modifies the large Φ behaviour of the system, which

turns close to a linear potential. Note that this flattening effect is similar to that obtained

in previous examples of monodromy inflation models [22, 35, 70]. It is however important

to realise that in the present case the flattening effect is purely due to the field redefinition,

and not to the square root of the DBI action. In fact notice that the CS piece suffers the

same flattening effect with no square root involved whatsoever.

5.2 Kaloper-Sorbo Lagrangian

While it may not be obvious from the above discussion, the system of D7-branes described

above is an example of F-term axion-monodromy inflation model [38], in the sense that for

small values of 〈Φ〉 the scalar potential can be understood as a standard F-term potential.

This has already been shown for the case of D7-branes in smooth Calabi-Yau geometries,

see for instance [61, 71, 72]. For the orbifold model of interest to this paper the connection

with N = 1 supergravity turns out to be more involved, but as we will show in section 5.5

a similar result applies. Hence, we can also consider this model as an example of F-term

monodromy inflation.

Now, as pointed out in [38], in general models based on F-term axion monodromy have

a direct connection with the 4d effective framework developed in [47–49], which features

a Lagrangian of the form (3.8). Following [38], it is for instance straightforward to obtain

the Kaloper-Sorbo Lagrangian from a heterotic or type I model where the inflaton is a

massive Wilson line in a twisted torus, this being the most direct way to give a mass to
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the Higgs system of the model of section 4.1. Nevertheless, a similar derivation for F-term

monodromy models where the inflaton is a D-brane position has so far not been worked out.

In order to see how to derive the 4d Lagrangian (3.8) from a model of wandering

D7-branes, let us consider a single D7-brane transverse to z3 and in the presence of the

ISD three-form fluxes G ∼ G1̄2̄3̄ and S ∼ G123̄. Now, looking at the DBI action in the

Yang-Mills approximation we have that

µ7

∫
1

2
(σF2 +B2) ∧ ∗8(σF2 +B2) = µ7

∫
1

2
σ2F6 ∧ ∗8F6 + σB2 ∧ F6 + . . . (5.26)

where we have only kept terms that depend on F6 = dA5, the magnetic dual of F = dA. If

we assume that the D7-brane has a position modulus φ, then it means that the four-cycle

S4 wrapped by the D7-brane contains a (2,0)-form ω2 [73], in which we can expand the

magnetic potential A5 as

A5 = iC3 ∧ ω̄2 − iC̄3 ∧ ω2 (5.27)

where C3 is a complex three-form in 4d. For instance, if S4 = T4 such (2,0)-form will be

given by ω = dz1 ∧ dz2. Plugging this decomposition into the kinetic term for A5 in (5.26)

and performing dimensional reduction we obtain

µ7σ
2 1

2

∫
IR1,3×S4

F6 ∧ ∗8F6 → ρ

∫
IR1,3
d4x |dC3|2 , ρ = µ7σ

2

∫
S2

ω2 ∧ ∗4ω̄2 (5.28)

which is nothing but the complex generalisation of the term
∫
|F4|2 in (3.8), in the sense

that F4 = dC3 is now a complex four-form in 4d.

Let us now dimensionally reduce the second term in the r.h.s. of (5.26). By taking into

account that

B2 =
gsσ

2i
(G∗φ− Sφ̄)ω2 + c.c. (5.29)

as derived in the previous section we obtain

µ7σ

∫
IR1,3×S4

B2 ∧ F6 → −gsρ
∫

IR1,3
φ(G∗dC3 − S∗dC̄3) + c.c. (5.30)

where we have used that ∗4ω2 = −ω2. Again, we obtain a generalisation of the axion-four-

form term
∫
φF4 in (3.8), where a complex scalar φ couples to the four-form F4 = dC3

and its complex conjugate via the presence of fluxes. Notice that a similar expression was

found in [54] for the coupling of a complex scalar to a complex four-form. In our case we

find a more general expression, in the sense that φ can couple to both F̄4 and F4 due to

the respective presence of supersymmetric (S) and non-supersymmetric (G) background

fluxes respectively.

From this Lagrangian and following the general philosophy of [47–49] one finds that

after integrating out F4 the potential generated for the scalar field φ is given by

V (φ) =
gs
2
|G∗φ− Sφ∗|2 (5.31)

just as found in the previous section when setting Z = 1, as we have done here. Of

course this will only be the potential in the small field regime, receiving corrections for
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large values of 〈φ〉. Nevertheless, due to the symmetry properties of the Kaloper-Sorbo

Lagrangian such corrections can only arise in powers of the initial scalar potential V (φ)

and not of the field φ itself, see [47–49] and also [51–53]. In our analysis of the previous

section we have seen that this is the case, occurring in the form of a redefinition for the

kinetic term of φ, and giving rise to flattening effect for the potential. In section 7.1 we

will discuss from an independent, string theoretical viewpoint why the Planck suppressed

corrections to the inflaton potential should be of this form.

Finally, in this section we have only discussed the appearance of the Kaloper-Sorbo

Lagrangian for the case of a single D7-brane with an Abelian gauge group. This is indeed

the case of interest in our Higgs-otic D7-brane model, since away from the orbifold singu-

larity we have a single wandering D7-brane. We nevertheless expect that a similar result

applies to the non-Abelian case, given that the results of the previous section involving the

large field corrections, flattening etc. are valid for any U(N) gauge group or even orbifolds

thereof. Such non-Abelian analysis is however beyond the scope of this paper and we hope

to return to this problem in the near future.

5.3 Estimation of the scales of the model

The coefficient of the quadratic term in the inflation potential, and hence the inflaton mass,

is determined by the size of the fluxes. We can try to estimate the size of the fluxes in terms

of the energy scales in the theory, assuming an approximate isotropic compactification.

Since the 3-form fluxes have to be quantised over the internal 3-cycles γj that they

wrap, they are expected to scale as

1

2πα′

∫
γj

G3 = 2πnj → G3 '
4π2α′n

V
1/2

6

(5.32)

where V6 is the volume of the internal dimensions and n are integer quanta. Using the

following identities from type IIB compactifications for the Planck mass and the compact-

ification/unification scale [55]

m2
p = (8π)M2

p =
8M8

s V6

(2π)6gs
, Mc = Ms

(
2αG
gs

)1/4

, (5.33)

where we have defined the compactification/unification scale as Mc = 1/Rc with V4 =

(2πRc)
4, we find

G3 =
n

π

M2
c

α
1/2
G mp

. (5.34)

One can then estimate the scale of SUSY breaking which is given by

MSS =
Z−1g

1/2
s√

2
G3 =

Z−1n

π

M2
s

g
1/2
s mp

. (5.35)

For n ∼ O(1) one gets MSS ∼ 1012 − 1013 GeV if Ms ' 1016 GeV. Thus the above simple

dimensional argument implies a SUSY breaking scale of the required order so that the SM

Higgs potential is saved from its instability, see [7] for further details.
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We have seen that the effect of considering higher order corrections on Φ is the presence

of a function f(Φ) multiplying the kinetic terms given by

f(Φ) = 1 +
Z−2(V4µ7)−1

4
|G∗Φ− SΦ̄|2 . (5.36)

For small field this function is approximately 1 and we recover canonically normalised

kinetic terms. To estimate how important is the effect for large field we define the parameter

Ĝ ≡ Z−1V
−1/2

4 µ
−1/2
7 G3 and using (5.34) we get

[Ĝ] = [Z−1V
−1/2

4 µ
−1/2
7 G3] ' 0.3Z−1g−1/2

s n
1

Mp
. (5.37)

For n ∼ O(1) one obtains Ĝ ∼ 0.3 1
Mp

, so this effect becomes appreciable approximately for

〈Φ〉 > 7Mp. We can also write the SUSY breaking scale in terms of Ĝ such that

M2
SS = V4µ7gs|Ĝ|2 ∼ 0.05M4

s |Ĝ|2 (5.38)

so Ĝ gives us the relation between the SUSY breaking scale and the string scale. This

relation will be useful later on when checking that the potential energy never becomes

bigger than the string scale.

5.4 The Higgs/inflaton scalar potential

Even if the analysis in section 5.1 is done for an adjoint field of a U(N) gauge theory, it

also applies after we have made an orbifold projection that converts the adjoint into a set

of bifundamental fields charged under the orbifolded gauge group. In particular, we may

consider the Z4 orbifold projection of section 4.2 and hence take Φ to be the 6× 6 matrix

containing the Higgs system of the model

Φ =

 03

02 Hu

Hd 0

 (5.39)

as in (4.12). Then applying the results from section 5.1 we obtain the standard D-term

contribution to the scalar potential and the F-term contribution which is given by

V (Φ) = STr

(
Z−2gs

2
|G∗Φ− SΦ̄|2

)
, (5.40)

which in terms of the bifundamental fields Hu, Hd gives rise to

V =
Z−2gs

2

[
(|G|2 + |S|2)(|Hu|2 + |Hd|2)− 4Re(G∗S∗HuHd)

]
(5.41)

once we trace over the gauge indices. This potential can be rewritten in terms of the

combinations

h =
eiγ/2Hu − e−iγ/2H∗d√

2
and H =

eiγ/2Hu + e−iγ/2H∗d√
2

(5.42)

– 22 –



J
H
E
P
0
1
(
2
0
1
5
)
1
2
8

where γ = π −Arg(GS) as

V =
Z−2gs

2

[
(|G| − |S|)2|h|2 + (|G|+ |S|)2|H|2

]
. (5.43)

Note that, at this level, before field rescaling to canonical kinetic terms, the potential has

the structure of double chaotic inflation. Note also that for |S| = |G|, h becomes massless.

Thus, if eventually we want to fine-tune a massless SM Higgs, we would need to be close

to a situation where |S| = |G|. The subsequent running from Mc down to the scale MSS

of soft parameters will give rise to a massless SM Higgs.

We may now write this potential in terms of the real scalars (σ, θ) which we defined in

eq. (2.9). They parametrise the neutral Higgs along the D-flat direction. One finds

V (σ, θ) = Z−2gs(|G|2 + |S|2)
(

1−A cos θ̃
)
σ2 (5.44)

where we have defined

A =
2|SG|

|G|2 + |S|2
and θ̃ = θ −Arg(GS) . (5.45)

Note that 0 ≤ A ≤ 1 and one also has

A =
m2
H −m2

h

m2
H +m2

h

= |cos2β| ;
mH

mh
=

√
1 +A

1−A
, (5.46)

with tanβ = mH/mh. The potential in eq. (5.44) will be our inflation potential. It is

essentially a quadratic potential in σ modulated by the dependence on θ̃. Note however

that we still have to include the effect that the kinetic terms are non-canonical and field de-

pendent, as we will discuss later. However, the qualitative structure of the scalar potential

can already be discussed at this point.

Roughly speaking, the shape of the potential depends on the value of the parameter

A which parametrises the relative size of both types of ISD fluxes. In figure 4 we show

the structure of the scalar potential for three characteristic values A = 0.1, 0.5, 0.95. For

A ' 0, which can happen if either G or S vanish, the potential is simply given by

V =
Z−2gs

2
|G|2(|H|2 + |h|2) = Z−2gs|G|2σ2 (5.47)

which is θ̃-independent. This case will be essentially identical to a single inflaton case with

a chaotic, quadratic potential for σ (before flattening). This case with A ' 0 is depicted

in the left plot in figure 4. Getting the same result with either G = 0 or S = 0 is expected

by symmetry arguments, since a D7-brane which is point-like in the third complex plane

cannot locally distinguish between the real and imaginary parts of z3, and both choices of

fluxes are related by interchanging z3 by z̄3.

For the case A = 1 one has the fluxes related as |G| = |S|, and h is massless. The

potential is then given by

V = 4Z−2gs|G|2cos2(θ̃/2)σ2 = 2Z−2gs|G|2|H|2 . (5.48)
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Figure 4. Scalar potential for three different values of A, A = 0.1 (left), A = 0.5 (centre) and

A = 0.9 (right).

This corresponds to the right plot in figure 4. This choice of fluxes corresponds to a non-

supersymmetric situation in which the NSNS 3-form flux H3 only has a leg in one of the

real directions of the transverse space, so the other direction is a flat direction for the

D7-branes. In the 4d effective theory this is reflected by the presence of a massless real

scalar which is given by |h|.
These two cases A = 0, 1 are limiting cases in which the potential reduces to a single

field inflation model. For a generic choice of fluxes, one expects a situation in between, with

both scalars playing an important role in inflation. In section 6 we will compute the slow-

roll parameters first for the cases A = 0, 1 and then for the general 2-field inflation case.

Notice however that if we want to have a massless eigenstate at the SUSY breaking

scale (in order to get a light SM Higgs), A is not a free parameter anymore. In terms of the

mass parameters of the Higgs mass matrix in (2.1), A parametrises the ratio between the off-

diagonal entries |m3| and the diagonal ones m2
Hu

= m2
Hd

at Mc. Thus a massless eigenstate

implies |m3|2 = m2
Hu
m2
Hd

which corresponds indeed to A = 1 as we already commented.

However, as we discussed in section 2, we need the eigenstate to become massless at MSS ∼
1012 − 1013 Gev and not at the inflation scale ∼ 1016 GeV, so A needs to be slightly lower

than 1. We have computed the running between both scales and obtained that the optimal

value to have a zero eigenvalue at MSS is A ' 0.83, corresponding to mH/mh = 3.28. We

take here the unification scale Mc as the scale at which α2 = α3, see [32]. Of course this

result depends on the exact value of MSS which is in turn parametrised by the global factor

in the potential, whose size was estimated in section 5.3 obtaining MSS ∼ 1012−1013 Gev.

In figure 5 we plot the value of A that we need to start with in order to have a light

SM Higgs boson, as a function of the SUSY breaking scale. We have also imposed to get

the experimental value of the top and Higgs mass at the EW scale. We can see that for

MSS ∼ 1012 − 1013, we have 0.8 < A < 0.85, so in any case, we will be in a situation quite

close to the single field case A = 1, in which the heavy Higgs H is the scalar which plays

the role of the inflaton.

5.5 N = 1 supergravity description

Before turning to the computation of the slow roll parameters, let us compare the scalar

potential of the previous section with the one that we would have obtained from a N = 1

supergravity computation. As we will see, upon introducing the appropriate Kähler poten-
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 mhiggs=125.5 ± 0.55 GeV

Figure 5. The required value of A in order to have a massless eigenstate at MSS as a function of

the SUSY breaking scale.

tial and superpotential one recovers an F-term scalar potential with the same structure as

the one found microscopically via the D7-brane action. The exact matching does however

only occur for small values of the inflaton vev. For large field values there will be α′ cor-

rections that the supergravity approach fails to capture, and can only be seen by means of

our previous DBI+CS analysis.

In eq. (4.7) we showed the Kähler potential for the Higgs fields in a Z4 heterotic

orbifold. It is easy to convince oneself (e.g. by application of S-duality and T-duality along

the third complex plane) that the corresponding Kähler potential for the type IIB model

with a stack of D7’s is given by

KH = −log[(S + S∗)(U3 + U∗3 )− α′

2
|Hu +H∗d |2]− 3log(T + T ∗) (5.49)

where S is the complex type IIB dilaton. We have also added the well known Kähler

moduli dependent piece in terms of a diagonal Kähler moduli field T (i.e. we are taking

(Ti + T ∗i ) = (T + T ∗), ∀i). We have also set the other matter fields A1,2 = 0 since they do

not play any role in the discussion and also the complex structure moduli to U1 = U2 = 1.

These simplifications are not important and the general case can be easily included in the

discussion. The important point is that this dependence of the Kähler potential on T yields

a no-scale structure for the F-term scalar potential, typical of type IIB compactifications

with ISD fluxes [63].

In fact, it is well known that the effect of ISD fluxes on D7-brane fields can be un-

derstood macroscopically in terms of an N = 1 supergravity description in which the

SUSY-breaking effects are induced by the auxiliary fields of the Kähler moduli,see [61, 64–

68]. In our case the relevant superpotential in this effective description includes a constant

term W0 and a µ-term

W = W0 + µHuHd . (5.50)
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Due to the no-scale structure of the Kähler potential, the scalar potential is simply given by

V = eK(Kij̄DiWDj̄W̄ ) (5.51)

where the indices run over the dilaton and complex structure moduli. Let us assume that

the above potential is minimised when

DSW = 0 ; DUW = 0 (5.52)

which implies V0 = 0. Moreover, as mentioned before, we assume that supersymmetry

breaking comes from the Kähler moduli sector, namely

F t = eK/2K T̄ TDTW = −W0√
st
6= 0 , (5.53)

where s = (S+S∗), t = (T+T ∗). This is nothing but the assumption of modulus dominance

SUSY breaking in type IIB which was studied in detail in [61, 64–68]. Plugging all these

data in standard N = 1 sugra formulae [74] leads to a bilinear scalar potential of the form

V = (m2
Hu + µ̂2)|Hu|2 + (m2

Hd
+ µ̂2)|Hd|2 +Bµ̂HuHd + h.c. (5.54)

where µ̂ is the Higgsino mass with fields canonically normalised, and

m2
Hu = m2

Hd
= |M |2 , µ̂ =

W0 + µs

t3/2
√
s
, B = −2M , (5.55)

where

M = − W ∗0
t3/2
√
s
, (5.56)

is a universal gaugino mass. Note that the physical µ-term µ̂ has two contributions, one

coming from the original µ-term of the superpotential, and the other arising after SUSY

breaking from the Kähler potential via a Giudice-Masiero mechanism, which is implicit in

the form of the Kähler potential. All in all the scalar potential is given by

V = (|M |2 + |µ̂|2)(|Hu|2 + |Hd|2)− 2Mµ̂HuHd + h.c. (5.57)

This scalar potential is identical to the one we derived from explicit fluxes eq. (5.41) upon

the identifications

G∗ =
(gs

2

)−1/2 W ∗0√
st3/2

, S∗ = −
(gs

2

)−1/2 W0 + µs
√
st3/2

(5.58)

which implies M = −gs
2 G
∗ and µ̂ = −gs

2 S
∗, in agreement with the results of [61].

Finally we can write the scalar potential in terms of the fields H,h obtaining7

V =
[
(|µ̂|+ |M |)2|H|2 + (|µ̂| − |M |)2|h|2

]
. (5.59)

7In terms of H and h (5.49) reads −log[(S + S∗)(U3 + U∗3 ) − α′(cos2(γ/2)|H|2 + sin2(γ/2)|h|2)]. It is

then quite remarkable that the scalar potential is independent of which combination of H and h appears

in the Kähler potential.
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Note that in the absence of an explicit µ-term one has µ̂ = −M∗ so that the h doublet is

massless. So from the N = 1 sugra point of view, the desired situation with m2
h � m2

H

would correspond to a suppressed explicit µ-term in the superpotential. This limit with a

massless h field corresponds in terms of fluxes to a situation with G = −S∗. It is interesting

to have this N = 1 sugra description for this equality which could be unmotivated from a

microscopic point of view. Note finally that we will also have a similar situation whenever

|W0| = |W0 + µs|.
Since the N = 1 sugra formalism is quite familiar one may be tempted to discuss

inflation only in terms of the above formulae (see e.g. [75] for a recent two-field analysis

in no-scale supergravity). The structure would be just the one of double chaotic inflation.

However this N = 1 sugra formulation misses important α′ stringy corrections. On the

other hand, the DBI+CS D7-brane action on which we have based our analysis contains

corrections to all orders in α′, and so include all higher order terms in the expansion on

the Higgs field vevs. These higher order terms are missed by the sugra formulation. In

particular, the flattening of the inflation potential due to the kinetic field redefinitions is

such an α′ correction, and the sugra scalar potential would only capture the first term in

the α′ expansion.

6 Computing slow roll parameters for large inflaton

In this section we compute the slow-roll dynamics of our inflation model and the resulting

cosmological observables. We first review the generalisation of the slow roll parameters to

multiple field inflationary models in which the kinetic terms are not canonically normalised.

Then we will solve the slow roll equations of motion and show the results for different values

of A, distinguishing between the single field and two-field cases.

6.1 Slow roll equations of motion

In the previous section we derived the effective action for the Higgs/inflaton sector obtaining

for a general choice of fluxes a two-field inflation model. The 4d effective Lagrangian in

terms of the neutral Higgs scalars Hu, Hd is given by

L4d = f(Hu, Hd)(|DµHu|2 + |DµHd|2)− VF (Hu, Hd)− VD(Hu, Hd) (6.1)

where we have explicitly separated the F-term (5.41) and D-term (2.8) contribution of the

potential. The function multiplying the kinetic terms is given also in terms of the F-term

potential such that

f = 1 +
(V4µ7gs)

−1

2
VF . (6.2)

We saw that the D-term potential is minimised for

Hu = H∗de
iθ , |Hu| = |Hd| = σ (6.3)

with θ = θu+θd. Thus in terms of the remaining scalar degrees of freedom σ, θ the potential

becomes

VF = Z−2gs(|G|2 + |S|2)(1−A cos θ̃)σ2 (6.4)
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as we derived in (5.48). Recall that θ̃ = θ − Arg(GS) and A gives the relative size of the

moduli of the fluxes (see (5.45)). The kinetic terms read

|DµHu|2 + |DµHd|2 → 2(Dµσ)2 +
σ2

2
(Dµθ)

2 (6.5)

implying the following 4d effective Lagrangian for the fields σ, θ,

L4d = f(σ, θ)

(
2|Dµσ|2 +

σ2

2
(Dµθ)

2

)
− Z−2gs(|G|2 + |S|2)(1−A cos θ̃)σ2 . (6.6)

One could think that the first step is to absorb the prefactor f(σ, θ) in a redefinition of the

fields in order to have canonically normalised kinetic terms. Comparing with the general

form of a Lagrangian of multiple fields

L4d =
1

2
Gab(φ)Dµφ

aDµφb − V (φ) (6.7)

this is equivalent to ask if there exists an appropriate field redefinition such that Gab = δab,

where in our case the metric is given by

Gab =

(
4f(σ, θ) 0

0 σ2f(σ, θ)

)
. (6.8)

This is always possible for a single field, making a field redefinition of the form

φ′ =

∫
dφf1/2(φ) (6.9)

where we have assumed Gφφ = f(φ). However, in general this can not be done globally (i.e.

for all values of φ) for two or more fields simultaneously. Notice that Gab transforms as a

rank two tensor under field redefinitions of the form φ→ f(φ) and is positive definite, so it

can be interpreted as a metric on the moduli space parametrised by the fields. Therefore a

change of variables which brings the metric to the flat metric Gab = δab can only be done

globally if the curvature scalar vanishes everywhere. In fact, the metric (6.8) is conformal

to the flat metric, so the Ricci scalar of curvature will be proportional to the Hessian of

the function f . It can be checked that this scalar vanishes

R ∝ 1

f
∆(Ln f) = 0 (6.10)

if the function f can be written as f = |h(z3)|2 where h(z3) is a holomorphic function

on z3. By absorbing all the global factors in the potential into a single overall parameter

given by

|Ĝ|2 = Z−2(V4µ7)−1(|G|2 + |S|2) (6.11)

as in section 5.3 we obtain the function

f = 1 +
|Ĝ|2

2
(1−A cos θ̃)σ2 . (6.12)
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Then, recalling that z3 = (2πα′)σeiθ/2, we see that f is not a holomorphic function in

general so it does not exist any field redefinition that canonically normalises simultaneously

both fields σ and θ. Therefore for the general 2-field case we will have to keep track of the

non-flat metric all over the computation of the slow roll parameters.

The scalar equations of motion for several inflaton fields are given by

φ̈a + Γabc(φ)φ̇bφ̇c + 3Hφ̇a = −Gab∂V (φ)

∂φb
, (6.13)

with H being the Hubble constant. The slow roll condition for inflation implies that the

potential energy has to be dominant with respect to the kinetic energy over the whole

inflationary trajectory, so we can drop the first two terms in (6.13) leading to the well

known slow roll equations of motion

3Hφ̇a = −Gab∂V (φ)

∂φb
. (6.14)

This is a good approximation whenever the slow roll parameters ε, η remain smaller than

one. The generalisation of the ε parameter for multiple field inflation is given by (see

e.g. [14])

ε =
M2
p

2
Gab

V ′aV
′
b

V 2
(6.15)

where the primes denotes derivatives with respect to the fields V ′a = ∂V
∂φa . The η parameter

would correspond though to the smallest eigenvalue of the matrix of second derivatives of

the potential given by

Na
b = M2

p

GacV ′′cb
V

(6.16)

where V ′′cb = ∂V ′a
∂φb
− ΓabcV

′
a is the covariant derivative.

The ε-parameter can also be defined in the multi-field case in terms of the number of

efolds as

ε =
1

2
Gab

dφa

dNefolds

dφb

dNefolds
. (6.17)

This implies the following formula that we will use to compute Nefolds in terms of ε,

N∗ =

∫ φ2end

φ20

1√
2ε

√
G11

(
dφ1

dφ2

)2

+G22 dφ
2 (6.18)

in the two field case.8 Finally, the scalar spectral index and the tensor to scalar ratio are

defined as in section 3 (for single field) but using the multi-field generalisation of ε and η

explained here.

Below we show the results first for the single field limit cases (A = 0 and A = 1) and

then for a general two field case with arbitrary A, but with special focus on the case of

special interest A ' 0.83.

8Note that here φ2 stands for φb with b=2, so it is not an exponent but an index.
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6.2 Single field limit cases

We showed in section 5.4 that for specific choices of fluxes the potential reduces to a

single field inflationary potential where the inflaton has a clear geometric interpretation.

In particular, we get the potential

V = Z−2gs(|G|2 + |S|2)φ2 (6.19)

with φ ≡ σ for A = 0 (G = 0 or S = 0) or φ ≡ |H| for A = 1 (|G| = |S|). Recall that the

position of the D7-branes in the transverse torus is parametrised by

z3 = 2πα′ σeiθ/2 = 2πα′
1√
2

(|H|+ i|h|)e−iγ/2 . (6.20)

If A = 0 the inflaton σ parametrises the distance of the travelling D7-branes to the singu-

larity Z4, while if A = 1 the inflaton corresponds to the distance along one of the 1-cycles

of the torus, the orthogonal 1-cycle being a flat direction.

Before taking into account the field redefinition the potential is quadratic on the fields,

corresponding to a soft mass induced by breaking SUSY with the closed string fluxes. How-

ever, since we are interested in large field values, higher order corrections to the potential

become important and can not be neglected. These corrections were computed from the

DBI+CS action of the D7-brane and their effect is to induce non-canonical kinetic terms,

with a prefactor

f = 1 +
(V4µ7gs)

−1

2
V = 1 +

|Ĝ|2

2
φ2 (6.21)

where we have again defined |Ĝ| by (6.11). In the single field case, the kinetic term can

always be canonically normalised by an appropriate redefinition of the field. Therefore the

effect of the higher order corrections can be encoded on a field redefinition given by

ϕ =

∫
dφf1/2(φ) (6.22)

which becomes important for large field. Inserting (6.21) in (6.22) we get

ϕ =
1

2
√

2
|φ|
√

2 + |Ĝ|2|φ|2 +
1√
2
|Ĝ|−1sinh−1[|Ĝ||φ|/

√
2] . (6.23)

In figure 6 we plot the new normalised field ϕ in terms of the old one φ. Notice that for

large field this yields

ϕ ' 1

2
√

2
|Ĝ|φ2 (6.24)

and the potential becomes linear in the new normalised field ϕ. Hence the effect of the

higher order corrections is indeed a flattening of the potential. In figure 7 we plot the scalar

potential in terms of the new canonically normalised field, for different values of Ĝ. The

bigger Ĝ is, the sooner the flattening effect takes place. To work this plot out we have used

the fact that the overall factor in the potential (which parametrises the SUSY breaking

scale) is related to |Ĝ| by

M2
SS = Z−2gs(|G|2 + |S|2) = V4µ7gs|Ĝ|2 ' 0.05gsM

4
s |Ĝ|2 (6.25)
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Figure 7. Scalar potential in terms of the canonically normalised field ϕ for different values of Ĝ.

where Ms is the string scale. Hence the scalar potential interpolates between quadratic and

linear depending on the SUSY breaking scale (through Ĝ). For |Ĝ| > 1/Mp the potential

becomes bigger than the string scale during inflation (i.e. V 1/4 > M4
s ) and the computation

is inconsistent, since new KK and string modes should be taken into account.

Let us compute now the tensor-to-scalar ratio r and the scalar spectral index ns. We

compute the field value φ0 at which inflation starts by imposing to get between 50 and

60 efolds before inflation ends. Notice that inflation ends when ε(φend) = 1. Once we

know the initial value φ0, we can compute r and ns by using eqs. (3.2)–(3.3). We plot the

result in figure 8. The result for Higgs-otic inflation (red band) has been superimposed

over the figure with the Planck experimental exclusion limits and some inflationary models

in the literature. Remark those corresponding to quadratic and linear potentials, given

respectively by black and yellow points. Our model interpolates precisely between both

of them, recovering a quadratic potential in the small Ĝ limit, and a linear potential in

the large Ĝ limit. There is a special value for Ĝ (corresponding to the blue line inside the

red band) given by considering generic fluxes in an isotropic compactification, as estimated

in section 5.3. It corresponds to Ĝ ' 0.3/Mp, implying a SUSY breaking scale around

1012 − 1013 GeV (depending on the exact value of the string scale). The numerical results

for Ĝ ' 0.3/Mp are shown in table 1. Notice that the field range is given in units of the
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Figure 8. Tensor to scalar ratio vs scalar spectral index for A = 0, 1 in Higgs-otic inflation (red

band).

Nefolds ϕend ϕ0 r ns

60 1.38 13.38 0.080 0.972

50 1.38 12.33 0.098 0.966

Table 1. Results for Ĝ = 0.3/Mp in isotropic compactifications.

reduced Planck mass Mp. We can see that the prediction for the tensor to scalar ratio is

around r ' 0.09.

Finally one could also wonder about the density of scalar perturbations. These have

been measured experimentally by Planck obtaining an order of magnitude of

Ps =
V

24π2M4
p ε
∼
(
δρ

ρ

)2

∼ (10−5)2 . (6.26)

Using that V = MSSφ(ϕ)2 where MSS is the SUSY breaking scale and taking into account

the field redefinition φ(ϕ), we can use the experimental result for the density scalar per-

turbations to estimate the SUSY breaking scale. The result is MSS ' 1012 − 1013 GeV

depending on the exact value of the string scale, in agreement with the assumption of

closed string fluxes as the main source of SUSY breaking. More precisely, for Ĝ ' 0.3/Mp

fixed, we obtain MSS ' 3 · 1012 GeV.

We can also estimate the number of times that the inflaton has to travel along the

torus. For simplicity let us assume that the overall internal space is a direct product of the

internal 4d space wrapped by the D7-branes and the transverse torus such that

Vol(B3) = Vol(X4)Vol(T2) (6.27)
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where also X4 = T4. Then Vol(X4) = (2πRc)
4 and Vol(T2) = (2πr)2. The position of the

branes is parametrised by

z3 = 2πα′〈ϕ〉 (6.28)

and the inflaton completes a period when 〈ϕ〉0 = r
α′ . Using eq. (6.27) and the identi-

ties (5.33) one period along the transverse torus is given by

〈ϕ〉0 =
1

2πα′

(
Vol(B3)

Vol(X4)

)1/2

=
g

1/2
s mp

2α
−1/2
G

∼ 0.5g1/2
s Mp . (6.29)

Hence if we need ∆ϕ ' 10Mp, we will need about 20 periods. Of course this is the worst

case in which we are assuming the same radius for both cycles of the torus and that the

inflaton is circling only around one of them. In general

∆ϕ =
R

α′
|m+ iU3n| (6.30)

with m,n the number of periods along both 1-cycles, so the effective number of periods

can be considerably smaller (although always bigger than 1).

Note that all these A = 0, 1 results are independent on whether the inflatons have the

quantum numbers of the MSSM Higgs bosons. If they were describing any other scalar field,

but still corresponding to the position of a D7-brane in such closed string flux background,

then their potential would be described by the analysis of section 5.1 or and orbifold thereof

and the same results would apply. However, the case in which the inflaton is a Higgs field

is further constrained by known Higgs physics. In particular, for Higgs-otic inflation we are

interested in obtaining a massless eigenstate at the SUSY breaking scale that could play

the role of SM Higgs boson, so we need a specific choice of fluxes satisfying A ' 0.83. This

leads us to the two-field inflation case. However, if we start with initial conditions such

that < H >�< h > (implying Hu = H∗d) the inflaton is mostly H and the analysis here

described is a good approximation. This is essentially the initial proposal in ref. [31]. For

generic initial conditions, however, both fields are relevant for inflation and a more general

analysis is needed. We turn now to describe the more general case of two fields.

6.3 The general 2-field Higgs/inflaton case

In this section we deal with the more general and interesting case of the two field inflationary

potential.

6.3.1 Results for small field

As a first approximation we assume that the fields take only small values such that the

function f is approximately f(σ, θ) ≈ 1 + . . . and we do not have to worry about the

field redefinition. Notice that this is not consistent for our inflationary model in which

the fields necessarily have to take large trans-planckian values in order to obtain of the

order of 60 efolds during inflation. But this simplification allows us to solve analytically

the equations of motion making easier the presentation of the new features that arise in a

2-field inflationary model with respect to the previous single field case. It is also a good
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approximation for very small values of Ĝ. In the next subsection we will deal with the more

general case including the field redefinition and obtaining a flattening of the potential. This

will imply a reduction in the tensor to scalar ratio obtained in this subsection.

Neglecting the field redefinition coming from higher order corrections on α′ in the

DBI+CS action, the metric is simply given by Gab = diag(4, σ2). This leads the following

slow roll equations of motion

dσ(t)

dt
= −c σ(t)(1−A cosθ̃(t)) (6.31)

dθ̃(t)

dt
= −c 2A sinθ̃(t) , (6.32)

where c = Z−2gs(|G|2 + |S|2)/6H. These equations can be solved analytically, obtaining

σ(t) = σ(0)e−c(1+A)t

1 + e4Actcot
(
θ̃(0)

2

)2

1 + cot
(
θ̃(0)

2

)2


1/2

(6.33)

tan

(
θ̃(t)

2

)
= e−2Acttan

(
θ̃(0)

2

)
(6.34)

which can be combined to obtain the slow roll trajectory σ(θ̃). This trajectory will be

independent of the parameter c, recovering the well known result that the observables

r, ns, Nefolds are independent of the global factor of the potential in chaotic-like inflation

models. Instead, these observables will depend only on the relative size of the fluxes

parametrised by A.

By looking at the above equations, we can see that the phase remains unchanged

θ̃(t) = θ̃(0) for the case A = 0, while σ(t) = σ(0)e−ct. This is the typical exponentially

decreasing behaviour of single field inflation and we recover the results described in the

previous section. The case A = 1 is a bit special since the minimum of the potential is

at θ̃ = 0 for any value of σ, including σ 6= 0, which implies that at the end of inflation

the gauge group SU(2) × U(1) remains broken. This is an unwanted situation, since we

want to maintain the SM gauge symmetry unbroken after inflation. So this particular limit

would not be viable generically. This case can also be reduced to single field inflation as we

explained in the previous section. Here we are going to focus on an intermediate situation

in which A takes a value in between 0 and 1, so both fields may be important for inflation.

There is a novel feature of the 2-field case comparing with single field inflation: the

dependence of the results on the initial conditions σ(0) and θ(0). Depending on which

initial point on the field space inflation starts, the slow roll trajectory will be different

giving rise to different values of the cosmological observables. Although one of the initial

conditions can be fixed by imposing a specific number of efolds (as in single field inflation)

the other one remains as a free parameter. This extends the range of possibilities but in

principle also makes the model less predictive.

As we argued above, for the SM Higgs to be fine-tuned and (approximately) corre-

sponding to the h linear combination we need to have m2
h � m2

H at the string scale. This
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Figure 9. Trajectory σ(θ̃(t)) described by the slow roll eqs. of motion for A = 0.83 and the

different initial values θ̃(0) = 3, 3π/4, π/2, π/4.

corresponds to a value of A ' 1. In fact in section 5.4 we estimated the required value

of A in order to have a vanishing SM Higgs eigenvalue at a scale ' 1013 GeV, obtaining a

value around A = 0.83. For this case of interest (A = 0.83) we have plotted the trajectory

followed in the (σ, θ̃)-plane in figure 9, for different initial values θ̃(0). We see that for

an initial value at the top of the hill (θ̃(0) ' π, σ ' 7) the inflaton goes downhill in the

σ direction keeping θ̃ almost constant. Eventually the opposite happens and the phase

goes fast to zero. For initial values at large σ(0) but smaller θ̃(0) both σ and θ̃ decrease

simultaneously. For small values of θ̃(0) the inflaton goes fast to θ̃ = 0 and then goes

downhill in σ.

By using (6.15) we get the following formula for the slow roll ε parameter,

ε =
M2
p

2σ2

(
1 +A2 sin2θ̃

(1−A cos θ̃)2

)
. (6.35)

Given a value for A and for the initial conditions σ(0), θ̃(0), we can compute the ε-parameter

along the inflationary trajectory σ(θ̃). The result is shown in figure 10 for the same choices

of trajectories depicted in figure 9, and this time also for different values of A. Inflation ends

when this parameter becomes order 1, or alternatively when both fields reach their minima.

Replacing the metric in (6.18) we get the following formula for the number of efolds,

Nefolds =

∫ θ̃end

θ̃(0)

1√
2ε(θ̃, A, σ(0), θ̃(0))

√√√√4

(
dσ(θ̃)

dθ̃

)2

+ σ(θ̃)2 dθ̃ . (6.36)

The value θ̃end is the one at which ε = 1 and inflation ends. For some choices of initial

conditions, we can see that ε remains ε < 1 until the fields almost reach the minimum of the

potential, so θ̃end ' 0. Finally the tensor-to-scalar ratio is proportional to the ε-parameter

evaluated at the beginning of inflation,

r = 16ε|θ̃(0),σ(0) (6.37)
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Figure 10. The slow roll parameter ε as a function of θ̃ for different values of A and different

possible trajectories.

and the same for the primordial tilt,

ns = 1 + 2η|θ̃(0),σ(0) − 6ε|θ̃(0),σ(0) . (6.38)

We have studied the possible trajectories in our parameter space that give rise to Nefolds =

50 − 60 before inflation ends. This constraint implies a curve in the parameter space of

initial conditions (θ̃(0), σ(0)) for each value of A (figure 11). Note that the number of efolds

(for A < 1) is almost independent of θ̃(0). All the dependence comes from the fact that

ε, η do depend on θ̃(0), and thus θ̃end may be different for different initial values θ̃(0). The

dependence of Nefolds on A also comes from the slight dependence of θ̃end on A. Therefore,

the behaviour for A < 1 is quite similar to that of A = 0, in which σ is the only inflaton.

For A = 1 the situation changes drastically and Nefolds only depends on H(0), being this

field the inflaton. Notice that in this case 60 efolds are obtained if H(0) = 11Mp. Taking

into account the definition of canonically normalised fields (6.7) for which the physical field

would actually be
√

2H, this implies a physical field range of 15.5Mp, as usual in chaotic

inflation. Therefore we recover the results of chaotic inflation in the cases A = 0, 1.

Although the behaviour of Nefolds does not differ much from the single field cases, the

results for r and ns do. Let us explain the reason. We can use the constraint of getting

50-60 efolds to fix one of the initial conditions (σ(0)), as we can see in figure 12 (left).

In the single field cases this determines completely r and ns, but here we have another

free parameter, the other initial condition θ̃(0). We can then plot r and ns in terms of

θ̃(0) obtaining the functions depicted in figure 12 (right) for the case A = 0.83. It is

clear that these observables do depend on θ̃(0). The minimum value for r that we can
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Figure 12. Left: number of efolds vs the initial point σ(0) for A = 0.83 before flattening. Right:

tensor-to-scalar ratio (blue curve) and scalar spectral index (red curve) as functions of the initial

point θ̃(0) for A = 0.83.

get corresponds to the result of chaotic inflation (r ' 0.13), while the freedom of choosing

θ̃(0) allows us to get bigger values for the tensor to scalar ratio. However if we impose

the experimental constraint for the primordial tilt ns only the region θ̃(0) > 1.7 survives,

implying 0.13 < r < 0.15 again.

In figure 13 we plot the value of the tensor-to-scalar ratio (left) and the scalar spectral

index (right) without imposing a specific Nefolds in the parameter space of initial conditions

for the relevant case A = 0.83. It has been imposed that the potential energy remains lower

that the string scale (V 1/4 < Ms). This implies a lower bound in r and an upper bound in
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Figure 13. Left: tensor-to-scalar ratio (contour plot) in the parameter space of initial conditions

for A = 0.83 before flattening. Only plotted those points which imply a potential V 1/4 < Ms.

The black band corresponds to those points which lead to 50-60 efolds. Right: the same for the

primordial tilt.

ns. Therefore although we allowed for more than 60 efolds, we could not get parametrically

smaller values for r. It has also been superimposed a black band corresponding to the set

of initial points which gives rise to 50 < Nefolds < 60, to guide the eye. Notice however

that the region from the black band to the right part of the plot is also allowed (whenever

the potential remains subplanckian) corresponding to Nefolds > 60 and a smaller r. These

values for r will decrease in the next section when including the flattening of the potential.

6.3.2 Results for large field

Once we take into account higher order corrections in he DBI+CS action, the kinetic terms

turn out to be non-canonically normalised. The metric in the field space is given by (6.8)

Gab =

(
4f(σ, θ̃) 0

0 σ2f(σ, θ̃)

)
(6.39)

with

f = 1 +
|Ĝ|2

2
(1−A cos θ̃)σ2 . (6.40)

In the previous section we neglected this effect assuming Ĝ small. There the results did not

depend on Ĝ because this parameter entered only as a global factor in the scalar potential.

In this section we consider the most general case in which both Ĝ and A can take arbitrary

values. Hence, we have to deal with a two field inflationary model in which the kinetic

terms are not canonically normalised, so we will use the generalisation for the slow roll

parameters derived in 6.1. Now the results will also depend on Ĝ (and so in the SUSY

breaking scale) as it enters in the field redefinition above. As we explained in the single

field cases, the effect of the field redefinition will be a flattening of the potential giving rise

to a decrease in the tensor to scalar ratio (more important as Ĝ increases). The structure

will no longer be that of double chaotic inflation.
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Figure 14. Possible initial values that will give rise to Nefolds = 50− 60. Each curve corresponds

to a different value for A = 1, 0.83, 0.5, 0.17.

In the following we show the results for Ĝ = 1/Mp, corresponding to the biggest value

for Ĝ that still implies a potential energy lower than the string scale. For this value, in the

single field cases the potential was almost linear, so here we expect to recover the results

of linear inflation for A = 0, 1. We show the same plots than in the previous section but

now for Ĝ = 1/Mp, to highlight the flattening effect. Notice in figure 14 that 60 efolds

are achieved now when H(0) ' 4.7Mp for A = 1. This field is not canonically normalised,

so in order to compare with the physical field we have to compute the field redefinition,

possible in this single field case. In fact, the result is H ′(0) ' 11Mp, recovering the result

for linear inflation.

In figure 15 we plot Nefolds, r and ns for A = 0.83. The tensor to scalar ratio is

smaller than in the previous section for a bigger range of θ̃(0). In fact, after imposing

the experimental bound on ns, the value for r is constrained to the range 0.07 - 0.1,

corresponding again to the result of a single field with a linear potential. Therefore, after

imposing the experimental constraints, the results look quite similar to the single field case,

as in the previous section.

In figure 16 we illustrate the decrease on the tensor to scalar ratio due to the flattening

of the potential. Notice also that the bound of getting V 1/4 < Ms is stronger, and the

value Ĝ = 1/Mp corresponds to the limit case in which this bound is still satisfied.

All these figures show the results for Ĝ = 1/Mp. The figures of the previous section

can be recovered in this general analysis by fixing Ĝ small, around Ĝ ' 0.01/Mp. For

intermediate values of Ĝ we would have an intermediate situation between both sections.

Recall that we have four free parameters in the model, two of them giving the absolute and

relative size of the fluxes (Ĝ and A), and the other two parametrising the initial conditions

of the two fields. We have seen that the initial conditions can be highly constrained by

imposing a specific number of efolds and the experimental bound on the primordial tilt ns.
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Figure 15. Left: number of efolds vs the initial point σ(0) for A = 0.83. Right: tensor-to-scalar

ratio and scalar spectral index as functions of the initial point θ̃(0) for A = 0.83.
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Figure 16. Left: tensor-to-scalar ratio (contour plot) in the parameter space of initial conditions

for A = 0.83. Blank regions in the plots correspond to those points where V 1/4 > Ms. The black

band corresponds to those points which lead to 50-60 efolds. Right: the same for the primordial tilt.

The relative size of the fluxes (given by A) is fixed by imposing the condition of getting a

massless eigenstate at MSS which could play the role of the SM Higgs boson. Hence, only

Ĝ remains as a free parameter. Although we are assuming an intermediate scale of SUSY

breaking around MSS = 1011−1013 GeV (consistent with the density scalar perturbations),

this flexibility still has a big impact in the results of the cosmological observables.

In figure 17 (right) we plot all the values for r and ns that we can get for any possible

value of Ĝ. We only require to get between 50 and 60 efolds during inflation, and a light

SM Higgs (so A = 0.83). The minimum value for the tensor to scalar ratio that we can get

is that one of linear inflation, around r ' 0.07. We have marked in blue those points that

corresponds to an isotropic compactification with generic fluxes, ie. Ĝ ' 0.3/Mp.
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Figure 17. Allowed region of the parameter space (r vs ns) that gives rise to 50-60 efolds. Left:

for different values of A = 1, 0.83, 0.5, 0.17 and Ĝ = 0.3/Mp. Right: for A = 0.83 and any Ĝ (grey

points). The blue points corresponds to Ĝ = 0.3/Mp.

Figure 18. Higgs-otic inflation results for all possible values of Ĝ after imposing 50-60 efolds.

They are superimposed over experimental Planck exclusion limits. Region in blue corresponds to

Ĝ = 0.3/Mp.

For completeness, we also show the results for r and ns for different values of A and

Ĝ = 0.3/Mp (figure 17 (left)). Although for arbitrary values of A the inflaton could not

be identified with a Higgs boson, the results still apply for a generic D7-brane position

modulus playing the role of the inflaton in such a closed string background.

The general results in the r-ns plane for Higgs-otic inflation are shown in figure 18,

superimposed over the Planck exclusion limits. The red band corresponds to results with
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A ' 0.83, 50-60 efolds and general initial conditions and Ĝ. The blue region corresponds

to Ĝ = 0.3/Mp. Although not visible in the plot, the regions at smaller r are more densely

populated. This can be noticed in figure 15 (right plot) in which 0.07 < r < 0.1 except for

the region 0.1 . θ̃(0) . 1.2.

7 Inflaton potential corrections, backreaction and moduli fixing

We will consider here in turn several properties of our inflaton system concerning corrections

and the possible back-reaction of the closed string sector on the potential. We first discuss

the Planck suppressed corrections to the inflaton potential, which are under control and

fully given by the DBI+CS action. We then study the possible induction of D3-brane RR-

tadpoles for non-vanishing values of the Higgs/inflaton. We show how there is a delicate

cancellation coming from the closed string 10d action which sets to zero such tadpoles.

Finally, we briefly discuss the issue of the moduli fixing potential and how one could hope

to separate their dynamics from that of the inflaton sector.

7.1 Planck mass suppressed corrections

Higher dimensional Planck-supressed operators, i.e. terms of the form (φ4+2n/M2n
p ) correct-

ing the inflaton potential are a potential danger for the slow-roll conditions. The simplest

such corrections to a an inflation potential V0 are possible terms of the form

Vn ' V0 ×
(

Φ2

M2
p

)n
(7.1)

with n > 0. Such terms can give large contributions to the slow-roll parameters driving

ε, η ' 1 for transplanckian excursions of the inflaton. To avoid the presence of such terms

it is customary to assume the existence of a shift symmetry under which φ → φ + c and

the Kähler potential remains invariant.

The presence of such a symmetry helps also in trying to solve a second related problem,

the η problem in N = 1 supergravity. The idea is that the pre-factor eK appearing in the

supergravity potential will tend to give a large (of order H) mass to the inflaton, once

one expands K to leading order in the inflaton field. In the case of chaotic inflation this

problem is not severe because mI needs to be only one order of magnitude smaller than H,

which can easily be done by a modest fine-tuning. If the inflaton does not appear explicitly

in the Kähler potential, as happens in the presence of a shift symmetry, such mass term

for the inflaton does not appear to leading order.

The effective action of string axions are known to possess shift symmetries which

could protect the inflation potentials against these effects. In fact such shift symmetries

are typically part of larger non-compact groups leaving invariant the N = 1 supergravity

effective action. These large continuous groups are broken by instanton effects down to

discrete (infinite) groups which are 4d duality groups in general. These shift symmetries

are particularly welcome in models with large inflaton excursions, in which one expects

that the above Planck-supressed corrections could be very important.
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In the case we are considering here, the N = 1 supergravity η problem is mixed up with

the fine-tuning required to have a massless SM doublet left below the SUSY-breaking scale

MSS . There is a fine-tuning in the flux parameters such that both a SM doublet survives

and the inflaton mass is slightly below H. Both fine-tunings cannot be disentangled.

Concerning the first problem, in the case we studied above in which the inflaton is a

D7-brane modulus corrections to the inflation potential of the type (7.1) do indeed appear.

The important point however is that those corrections are computable to all orders in

inverse Planck masses and are under control. Indeed, in our case the inflaton/Higgs fields

are open string fluctuations and their action, including their interaction with closed string

moduli are given to all orders in α′ by the DBI+CS action.9 For illustrative purposes let

us look at the DBI+CS action for the U(N) adjoint that we discussed in section 5.1. There

we see that the full effect of those corrections is just a field redefinition. In particular one

gets a structure of the form

L4D = STr
([

1 +
κ

2
V0(Φ)

]
DµΦDµΦ̄− V0(Φ) + . . .

)
, (7.2)

with κ = (V4µ7gs)
−1 a constant. After a field redefinition one sees that corrections will

always appear in powers of the initial fiducial potential V0. Thus indeed large corrections to

the potential of the form in (7.1) do appear but in the D-brane case here considered these

corrections are under control and lead to a flattening of the potential, i.e., the potential

becomes of linear type rather than quadratic, leading to a new potential consistent with

slow-roll.

It is interesting to consider the N = 1 sugra avatar of this property. We have seen how

the Kähler potential involving the Higgs/inflaton fields is

KH = −log[(S + S∗)(U3 + U∗3 )− α′

2
|Hu +H∗d |2]− 3log(T + T ∗) . (7.3)

As shown in refs. [76–79] for the S-dual heterotic case, the Lagrangian described by

this Kähler potential is invariant under a SL(2,Z)U3 geometric symmetry associated to

reparametrisation of the corresponding T2. In particular it is easy to check that under the

continuous transformations

U3 −→
aU3 − ib
icU3 + d

(7.4)

S −→ S − ic

2

HuHd

icU3 + d
(7.5)

Hu −→
Hu

icU3 + d
(7.6)

Hd −→
Hd

icU3 + d
, a, b, c, d ∈ R (7.7)

9Corrections in α′ to the non-Abelian DBI action which describes our MSSM system are to date not

fully understood. However, notice that for large values of the inflaton, the inflationary system is described

by a single D7-brane plus orbifold images. Thus, all α′ corrections relevant to inflation should be captured

by those of the Abelian DBI action.
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with ac− bd = 1, the Kähler potential transforms like

KH −→ KH + log|icU3 + d|2 . (7.8)

The latter is a Kähler transformation, so the Lagrangian will be invariant under it even

if the Kähler potential is not. One can also easily check that the addition of a µ-term

does not spoil this symmetry. In fact the low-energy effective action is invariant under

these continuous symmetries, while the discrete subgroup with a, b, c, d ∈ Z is preserved

to all orders in perturbation theory or sigma model expansions and it is only broken

spontaneously once the moduli are fixed. Note that these transformations act both on

the moduli and the Higgs/inflaton fields so that e.g. the particular dependence on the

combination Hu +H∗d is dictated by the symmetries. In particular the linear combinations

of Higgs fields transform as

Hu ±H∗d −→
d(Hu ±H∗d) + ic(U3H

∗
d ∓ U∗3Hu)

|icU3 + d|2
. (7.9)

In the case with a = d = 0, b = 1, c = −1, one has U3 → 1/U3 and

eiγ/2Hu ± e−iγ/2H∗d −→ −i

(
e−iγ/2H∗d

U∗3
∓ eiγ/2Hu

U3

)
. (7.10)

For a square torus U3 = 1 and the above transformation just exchanges the fields h and H.

This is somehow expected because in this case the transformation U3 → 1/U3 corresponds

to the exchange of the two cycles of the torus. The transformation also implies a shift of

the complex dilaton S → S − 1
2HuHd, as expected from the fact that HuHd parametrises

the wandering D7-brane position. Finally, an analogous symmetry SL(2,Z)S acting on the

complex dilaton S exists. The transformations look the same as the ones above replacing

U3 ↔ S. However this S-duality symmetry is in general broken by quantum corrections.

A direct consequence of the modular symmetries is that, since the Kähler potential is

not invariant and only the Lagrangian and the potential are, one expects corrections of

higher order in α′ to appear as powers of the potential itself, that is

δVH '
∑
n>1

(V0)n

(Mp)4(n−1)
. (7.11)

Indeed this is consistent with the higher order corrections in α′ given by the DBI+CS

action that we studied, and with the fact that such action is related to a Kaloper-Sorbo

4d effective Lagrangian. As stressed, in our case these Planck suppressed corrections are

known and give rise to the flattening of the inflaton potential at large field.

Note that a corollary of this discussion is that using the (two-derivative) N = 1 sugra

standard formalism does not capture these corrections leading to the flattening of the scalar

potential for large fields. This is particularly the case for any model in which the inflaton

is an open string mode.

Let us finally comment that above the inflaton mass, where SUSY couplings are re-

covered, the loop corrections to the potential are only expected to lead to logarithmic
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corrections with small coefficients, and should not modify in any important way the shape

of the potential. Among these loop corrections one expects the presence of minute modu-

lations for the overall linear potential at large field. They would arise from the fact that,

as we mentioned at the end of section (4.2), as the D7-brane position varies over the torus,

the masses of the massive fields W±, Z0, H± etc. oscillate. This oscillation should induce

in turn one-loop minute field dependent oscillations on the inflaton mass parameters.

7.2 Backreaction and induced RR-tadpoles

In general one expects that wandering D7-branes may lead to some level of backreaction

in the surrounding geometry. This is a well known fact present in all perturbative IIB

orientifolds with D7-branes. However our setting is initially supersymmetric, with SUSY

broken spontaneously, and in this sense is more stable that settings in which there are

both branes and antibranes and SUSY is broken at the string scale. In any event, taking

into account this back reaction would require to go to a F-theory setting. We will have

nothing to add concerning this issue other than pointing out that it would be interesting

the embedding of this type of models into an F-theory background. For previous proposals

of large field inflation models within F-theory see [37, 44–46, 80].

Other than that, the presence of a non-vanishing vev for the inflaton may have also

an impact on the surrounding geometry. In particular as we have seen in section 5.1 the

inflaton vev induces a background for the B-field in the D-brane worldvolume, which in turn

leads to induced lower dimensional D-brane RR charges. This fact has already appeared in

previous monodromy inflation models, leading to the introduction of brane-antibrane pairs

to cancel the tadpoles. We show here that this is not the case in our setting, and therefore

there is no need to introduce anti-branes.

The different sources of D3-brane tadpole in a type IIB compactification with O3/O7-

planes are captured by the 5-form Bianchi identity as follows

dF̃5 = F3 ∧H3 +
∑
i

δ6(piD3) +
∑
j

δ4(πjD5) ∧B +
∑
k

δ2(SkD7) ∧ 1

2
B2 + . . . (7.12)

ignoring factors of α′, etc. Here piD3 runs over all points where D3-branes are located,

πjD5 over the 2-cycles where D5-branes are located, and SkD7 over the divisors wrapped

by the D7-branes. The δ2n’s are 2n-form bump functions localised on their respective

worldvolumes.10 Finally, the dots represent similar delta function contributions of opposite

sign that come from the O3 and O7-planes. Typically, it is this negative contribution that

allows for the integral of the r.h.s. of (7.12) over the compact manifold X6 to vanish, in

agreement with the fact that F̃5 should be globally well-defined. If this integral over X6

does not vanish we say that we have a D3-brane tadpole.

The problem arises when we have a non-trivial H3 in our compactification, because

then the contribution from D5-branes and D7-branes, which depends on the pull-back of

10In general the D7 and D5-branes will be magnetised by an open string worldvolume flux F , so one

should replace B → F = B + F everywhere in (7.12). For the sake of simplicity we will stick to the above

notation, the generalisation being straightforward.
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the B-field in their worldvolume, is position-dependent. Hence it is not clear if, given

that we can solve the tadpole condition in one particular point in open string moduli space

{piD3, π
j
D5, S

k
D7}, we can solve it for a different point {pi ′D3, π

j ′
D5, S

k ′
D7}. In other words, when

we move a D7-brane from SD7 to S′D7 the pull-back of B2 on its worldvolume changes, and

so does its induced D3-brane charge. It then seems that, during inflation, we will generate

a D3-brane tadpole as soon as we move the D7-brane from its initial location.

In the following we will show that this is not the case. Basically, when we move D5

and/or D7-branes their induced D3-brane charge changes, but the contribution to the D3-

brane tadpole coming from F3 ∧H3 changes by a similar amount. Both effects cancel each

other upon integration over X6, and so F̃5 is always well-defined and there is no tadpole.

We will show this first for the case where we only have D5-branes in our model (which is

unrealistic in SUSY compactifications) and then for the more interesting case of models

with D7-branes.

Magnetised D5-branes. Let us consider the case where in our compactification there

are only space-time filling D3-branes, D5-branes and fluxes (F3, H3). Take a D5-brane in a

2-cycle π2 and move it to a new location π′2 within the same homology class. The difference

in the contribution to the D3-brane tadpole can be measured by the integral∫
X6

δ4(π′2) ∧B −
∫
X6

δ4(π2) ∧B =

∫
π′2

B −
∫
π2

B =

∫
Σ3

H3 (7.13)

where Σ3 is a 3-chain such that ∂Σ3 = π′2 − π2. So in general we see that the contribution

to the D3-brane tadpole changes when we move one or several D5-branes.11

We should however take into account that, in the presence of D5-branes, F3 is not

a harmonic form, which is the case when we only have D3-branes. On the contrary, it

satisfies the equation

dF3 =
∑
j

δ4(πjD5) (7.14)

which we assume corresponds to a globally well-defined but non-closed F3. As a result,

when we move the D5-brane from π2 to π′2 the field strength F3 will change because (7.14)

changes. Let us represent by F3 the background flux with the D5 located at π2, and by F ′3
the flux with the D5 located at π′2 and ∆F3 = F ′3 − F3. Then it is easy to see that

d∆F3 = δ4(π′2)− δ4(π2) . (7.15)

Moreover notice that, even if non-closed, F3 and F ′3 are quantised 3-forms on X6. Hence

so is ∆F3, and this fact together with (7.15) can be used to show that [81]∫
X6

∆F3 ∧ ω3 = −
∫

Σ3

ω3 (7.16)

for any closed 3-form ω3, and where again ∂Σ3 = π′2 − π2 is a 3-chain describing the

deformation of the D5-brane location.
11Together with this D5 we should move its orientifold image on ΩR(π2). Taking this into account will

not change much the discussion, so we will ignore the effect of orientifold images in the following.
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We can now use (7.16) to prove that the D3-brane tadpole induced by the background

fluxes changes. Indeed, assuming that there are no NS5-branes in our compactification H3

is a harmonic form and we can apply (7.16). Hence∫
X6

F ′3 ∧H3 −
∫
X6

F3 ∧H3 =

∫
X6

∆F3 ∧H3 = −
∫

Σ3

H3 . (7.17)

This is precisely the opposite as the previous change (7.13), so tadpoles still cancel when

we change the D5-brane position.

Magnetised D7-branes. Let us now consider the case where we have D3-branes and

D7-branes, as in the inflationary model of section 4.2, and that we move one of the latter

as S4 → S′4. The change in D3-brane tadpole is given by

1

2

[∫
X6

δ2(S′4) ∧B2 −
∫
X6

δ2(S4) ∧B2

]
=

1

2

[∫
S′4

B2 −
∫
S4

B2

]
=

∫
Σ5

H3 ∧B (7.18)

with Σ5 a 5-chain with ∂Σ5 = S′4 − S4 and describing the above deformation.

Because the D7-branes are magnetised by the B-field they carry a D5-brane charge,

and so again F3 is not a closed 3-form. Instead it must satisfy the equation

dF3 =
∑
k

δ2(SkD7) ∧B = dF1 ∧B (7.19)

where we have used that

dF1 =
∑
k

δ2(SkD7) . (7.20)

So when we move a D7-brane as S4 → S′4, the RR fluxes (F1, F3) change to (F ′1, F
′
3) and

we can define (∆F1,∆F3) as their difference. In particular we have that

d∆F3 = δ2(S′4) ∧B − δ2(S4) ∧B = d∆F1 ∧B . (7.21)

Now it is ∆F1 the flux that is quantised, and applying the reasoning of [81] we get∫
X6

F1 ∧ ω5 = −
∫

Σ5

ω5 (7.22)

for any closed 5-form ω5 and Σ5 defined as above. In particular we can take ω5 = B ∧H3.

Putting all these things together we arrive at the following variation for the background

flux D3-brane charge∫
X6

F ′3 ∧H3 −
∫
X6

F3 ∧H3 =

∫
X6

∆F3 ∧H3 =

∫
X6

∆F1 ∧B ∧H3 = −
∫

Σ5

B ∧H3 (7.23)

which again cancels the variation (7.18) and guarantees D3-brane tadpole cancellation.
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7.3 Decoupling of moduli fixing from inflation sector

The DBI+CS derived inflaton scalar potential that we used assumes implicitly that all

the other moduli of the theory, in particular the complex dilaton S and Kähler (T i) and

complex structure (Ua) moduli are fixed at a scale well above the inflation scale. That is,

we are assuming a full scalar potential of the form

V (σ, θ;S, T i, Ua) = Vinflation(σ, θ;S, T i, Ua) + Vmoduli(S, T
i, Ua) . (7.24)

In particular we are assuming that the potential barriers fixing S, T i, Ua are such that the

inflaton scalar potential does not modify in a substantial manner the moduli dynamics.

This may proof hard for an inflaton scale ' 1016 GeV as suggested by BICEP2, since that

would require the compactification Mc and string scale Ms not much below the reduced

Planck scale Mp ' 1018 GeV. This is a general problem for all string inflation models with

large field inflation, see [42, 43, 46].

Here we would only like to add that the string models with the inflaton identified with

open string moduli may be more flexible than closed string axion models in this regard.

Indeed, the inflaton dynamics is localised in a D-brane sector of the theory rather than in

the bulk. Then, as shown in eq. (5.37), the local G3 flux felt by the D7’s (fixing the inflaton

mass) may be suppressed compared to the flux felt by the moduli in the bulk by a warp

factor Z−1/2. In this way the barriers of the potential Vmoduli could be substantially higher

than those in Vinflation. This would help in understanding the decoupling of the moduli

fixing dynamics from the inflaton dynamics in a natural way.

8 Some further cosmological issues

Our study of the cosmological perturbations induced in the Higgs-otic scenario has been

incomplete in several respects. In particular, while single inflaton models predict a Gaussian

and adiabatic spectrum, it is well known that multi-inflaton models may in general give

rise to non-Gaussianities as well as isocurvature (entropy) perturbations [82, 83]. The

Higgs inflaton potential here studied has two fields involved in inflation, σ and θ, so that

in principle one can think that non-Gaussianities and/or isocurvature perturbations could

arise. Concerning non-Gaussianities, one does not expect any effect in our scheme since it

is known that 2-field models yield non-linear parameters fNL proportional to the slow roll

parameters ε, η, see e.g. [84, 85]. On the other hand two field models can yield in general

isocurvature perturbations [86]. In some simple cases, like the so called double chaotic

inflation and others, such effects are suppressed [87–89]. In our case, for small fields the

structure is that of double chaotic inflation but this is corrected in a sizeable way for the

relevant case with large fields, with strong rescaling effects. It would be interesting to

study the possible generation of non-adiabatic perturbations in our scheme. We leave a

more complete analysis of these issues for future work.

Another interesting issue is that of reheating, which is expected to be quite efficient

in this Higgs-otic scenario. At the end of inflation the universe is extremely cold and a

reheating process occurs in which the inflaton oscillates around its minimum. The inflaton
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transfers all its energy through its decay into relativistic particles. The inflaton must couple

to the SM particles which will end up in thermal equilibrium and give rise to the big-bang

initial conditions. A generic problem in string cosmologies in which the inflaton is identified

with a closed string mode (like e.g. an axion) is that the inflaton reheats predominantly

into hidden sector fields or moduli rather than into SM fields. In our case, obviously, the

inflaton is a Higgs field which will decay predominantly into top quarks and gauge bosons

and this problem is automatically avoided. The decay rate will typically be of order

ΓH '
h2mI

8π
, (8.1)

with h the top Yukawa coupling or a gauge coupling and mI ' MSS ' 1013 GeV is the

inflaton mass, which is of the order of the SUSY breaking scaleMSS . Perturbative reheating

ends when the expansion rate of the universe given by the Hubble constantH =
√

8πρ/3M2
p

is of order of the total inflaton decay rate. The SM interactions are strong enough so that

thermal equilibrium is reached with a reheating temperature (see e.g. [90–92])

TR ' 0.2
√

ΓHMp ' 1013 GeV , (8.2)

where we have set h ' 1/2,mI ' 1013 GeV. This is high enough so that leptogenesis may

take place in the usual way at an intermediate scale.

9 Final comments and conclusions

In this paper we have completed in several directions the proposal in [31] of identifying

the inflaton with a heavy MSSM Higgs field in a chaotic-like inflation fashion, dubbing

the resulting scenario as Higgs-otic inflation. In this scheme, the inflaton mass scale is

identified with the size of the SUSY breaking soft terms, mI ' MSS ' 1012 − 1013 GeV.

Such large value of MSS requires the SM Higgs doublet to have a fine-tuned mass. As

a result, the role of supersymmetry is not to solve the hierarchy problem but instead to

stabilise the SM Higgs potential in the ultraviolet as in [6–9], this being nicely consistent

with a SM Higgs mass mH ' 126 GeV. The implementation of inflation requires trans-

Planckian excursions of the inflaton/Higgs field, which implies that we need to have a

certain control over Planck scale corrections, i.e. a theory of quantum gravity. Our leading

theory of quantum gravity is string theory, which we take as the underlying fundamental

theory in which our explicit realisations are based. Notice that the fact that the SM Higgs is

fine-tuned also points in the direction of string theory, where a large landscape of solutions

may justify the fine-tuning in terms of anthropic considerations.

The vevs of MSSM Higgs doublets in string compactifications may be embedded into

string theory as either Wilson lines or Dp-brane position moduli. We have discussed in

detail a toy example realised in terms of a IIB compactifications where the MSSM is realised

via D7-branes at singularities, and where the Higgs vevs is realised in terms of D7-brane

position moduli. Such Higgs vev parametrise the D7-brane position in its transverse space,

which in this case is T2. In this setup soft terms creating a potential for the Higgs/inflaton

fields are induced by ISD three-form closed string fluxes.
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A particularly important advantage of this realisation is that we can then compute the

scalar potential in terms of the DBI+CS action, which give us the inflation potential to all

orders in α′. The leading term of this potential for small field may be also obtained in terms

of a N = 1 supergravity Lagrangian assuming SUSY-breaking is induced by the auxiliary

fields of the Kähler moduli. However, for large field, which is relevant for chaotic-like

inflation, the α′ corrections in the DBI+CS action rescale the Higgs fields, giving rise to a

flattening of the scalar potential, which becomes almost linear for large fields. This effect is

not captured by the (2-derivative) N = 1 supergravity formulation. We have also discussed

how this protection of the potential against arbitrary Planck suppressed corrections may

be understood from a Kaloper-Sorbo effective action point of view.

The resulting inflaton/Higgs potential is a 2-field model involving the neutral compo-

nents of the fields h and H. The parameters of the model are the flux-dependent parameters

Ĝ and A defined in the main text, as well as the initial field values σ(0) and θ̃(0). A dis-

tinctive feature the Higgs-otic scenario is that the flux parameters are constrained in order

for a massless SM Higgs to survive. Further imposing 50-60 e-folds constraints substan-

tially the slow roll parameters and the resulting adiabatic perturbations that one obtains

correspond to a (broad) line in the r−ns plane. In particular the model predicts r > 0.07,

with most inflaton initial conditions leading to values of r close to this lower limit. These

values of r will be tested experimentally in the near future.

The Higgs-otic idea is conceptually quite attractive, since two apparent very different

phenomena like Higgs physics and cosmological inflation are intimately connected. Getting

light scalars is probably a rare event in the string landscape so that the merging of two

fine-tunings, one for the SM Higgs and another for the inflaton would be economical in this

sense. The form of the inflaton potential is restricted by low-energy particle physics data

(i.e. the SM Higgs mass) and the couplings of the inflaton are related to known low-energy

couplings. Efficient perturbative reheating is natural, given the large Higgs couplings to

SM particles.

There are a good number of directions in which to complete the present study. From

the string theory model building point of view, our detailed analysis is based on a local

two-family model in which the Higgs-inflaton fields parametrise the position of a D7-brane

on a T2. It would be interesting to construct specific globally consistent three-family mod-

els embedding and/or extending this kind of structure to other more general geometries

with Dp-branes travelling along more general surfaces. Another direction to explore is the

construction of analogous models with wandering D3-branes instead of D7’s. Local models

in which the MSSM Higgs vevs are parametrised in terms of D3 positions are easy to con-

struct. However the implementation of monodromy in terms of fluxes is more subtle in this

case, and it needs of closed string fluxes of the IASD kind. However, general compactifica-

tions may also include IASD fluxes and it would be interesting to implementing Higgs-otic

models based on D3 or D7-branes in such backgrounds. Finally, it would also be interest-

ing to consider globally consistent heterotic models in which the Higgs vevs parametrise

continuous Wilson lines and the potential energy could come from geometric fluxes.

Another important topic is the issue of the fixing of the closed string moduli of the

theory, which we have taken as frozen degrees of freedom. It would be important to find
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a regime in which moduli fixing occurs at scales well above the inflation scale, so that the

inflaton potential does not substantially modify the moduli fixing potential. In this context

we have emphasised that a strong non-constant warp factor Z may help in separating the

inflaton and moduli dynamics.

While the Higgs-otic scheme developed here is quite concrete, some of our findings may

be readily applied to slightly different scenarios. For instance, if SUSY particles were found

at LHC, the present Higgs-otic scenario would be ruled out, since it relies on a heavy SUSY

spectrum with large masses of order MSS ' 1012 − 1013 GeV. Nevertheless, a similar idea

could be applied to GUT Higgs multiplets or SM singlets. In that case SUSY preserving

(2, 1) fluxes could give a large SUSY mass term for the GUT Higgs and a potential could

be derived from the DBI+CS action yielding a result similar to the A = 0 limit of the

Higgs-otic potential. The results for inflation would then be similar to the one-field limit

with A = 0 discussed in the text.

From the cosmological point of view, it would be interesting to perform a more complete

study of perturbations including isocurvature perturbations as well a more detailed analysis

of the reheating process. We hope to address these issues in future work.
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A The DBI+CS computation

From the viewpoint of the local SU(3) structure the antisymmetric flux G3 transforms as

20 = 10+1̄0 with the 1̄0 and 10 representations corresponding respectively to the Imaginary

Self Dual (ISD) G+
3 and Anti Imaginary Self Dual (AISD) G−3 components of the 3-form

flux, defined as

G±3 =
1

2
(G3 ∓ i ∗6 G3) , ∗6G±3 = ±iG±3 . (A.1)

These components can be further decomposed into irreducible representations of SU(3).

Thus, ISD fluxes in the 1̄0 are decomposed according to 1̄0 = 6̄ + 3̄ + 1̄, corresponding to

(2, 1)-form, (1, 2)-form and (0, 3)-form fluxes respectively. Throughout this paper we have

only considered G(2,1) and G(0,3) fluxes since the 3̄ representation corresponds to (1,2)

non-primitive component of the flux, incompatible with the Z4 action of the orbifold. In

tensorial notation, they are denoted by

G(0,3) = G1̄2̄3̄dz̄1 ∧ dz̄2 ∧ dz̄3 (A.2)

G(2,1) = Gijk̄dzi ∧ dzj ∧ dz̄k . (A.3)
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In addition, we only consider the component Gij3̄ of G(2,1) since the other flux components

generically lead to Freed-Witten anomalies in the worldvolume of the D7-branes and are

not invariant under the Z4 action either.

The effective action for the microscopic fields of a system of D7-branes in the 10d

Einstein frame is given by the Dirac-Born-Infeld (DBI) + Chern-Simons (CS) actions

SDBI = −µ7g
−1
s STr

(∫
d8ξ
√
−det(P [EMN ] + σFMN )

)
(A.4)

SCS = µ7gsSTr

(∫
d8ξP [−C6 ∧B2 + C8]

)
(A.5)

where

EMN = g1/2
s GMN −BMN ; σ = 2πα′ ; µ7 = (2π)−3σ−4g−1

s (A.6)

P [·] denotes the pullback of the 10d background onto the D7-brane worldvolume and ‘STr’

is the symmetrised trace over gauge indices. Finally, we have ignored the factor det(Qmn)

which, as discussed in the main text, gives rise to the D-term potential.

The determinant in the DBI action can be factorised between Minkowski and the

internal space as follows

det(P [EMN ] + σFMN ) = g4
s det

(
ηµν + 2Zσ2∂µΦ∂νΦ̄ + Z1/2g−1/2

s σFµν

)
(A.7)

· det
(
gab + Z−1/2g−1/2

s σFab − Z−1/2g−1/2
s Bab − σ2([Aa,Φ][Ab, Φ̄] + [Aa, Φ̄][Ab,Φ])

)
where µ, ν label the 4d non-compact directions and a, b the internal D7-brane dimensions.

Then, using the matrix identity

det(1 + εM) = 1 + ε tr M − ε2
[

1

2
tr M2 − 1

2
(tr M)2

]
(A.8)

+ ε3
[

1

3
tr M3 − 1

2
(tr M)(tr M2) +

1

6
(tr M)3

]
− ε4

[
1

4
tr M4 − 1

8
(tr M2)2 − 1

3
(tr M)(tr M3)

+
1

4
(tr M)2(tr M2) +

1

24
(tr M)4

]
+O(ε5)

we obtain on the one hand that

− det
(
ηµν+2Zσ2∂µΦ∂νΦ̄+Z1/2g−1/2

s σFµν

)
= 1+2Zσ2

(
∂µΦ∂µΦ̄− g−1

s

4
FµνF

µν

)
(A.9)

where we have neglected terms with more than two derivatives in 4d, in agreement with the

slow-roll condition that will be imposed on this system. On the other hand we have that

det
(
gab + Z−1/2g−1/2

s Fab
)

= det(gab) f(F)2 (A.10)

where Fab = σFab −Bab and

f(F)2 = 1 +
1

2
Z−1g−1

s FabFab −
g−2
s

4
Z−2FabFbcFcdFda +

g−2
s

8
Z−2

[
FabFab

]2
. (A.11)
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Notice that for simplicity in the l.h.s. of (A.10) we have not included couplings of the form

[A,Φ] which will not be relevant for the scalar potential of the moving D7-brane analysed

in the main text. Moreover, unlike in (A.9), when deriving (A.10) we have not made any

approximation. Indeed by taking

M = g−1F and ε = (gsZ)−1/2 (A.12)

and using the fact that M is a 4× 4 matrix it is easy to see that the expansion of eq. (A.8)

ends at order ε4. Finally, using that

tr g−1F = trF tg−1 t = −tr g−1F (A.13)

so that trM = trM3 = 0, we are led to the above result, and then eqs. (5.5) and (5.7) in

the main text follow by simply replacing F → −B.

In fact for a 4× 4 matrix M with these properties we also have the identity

det(1 + εM) = 1− ε2 1

2
tr M2 + ε4detM (A.14)

which is easy to prove by looking at the characteristic polynomial of M . This allows us to

write

det(1 + εM) = 1 + ε2F2 + ε4
1

4
(F ∧ F)2 (A.15)

where the square of a p-form ω is defined as ω · ω with

ωp · χp =
1

p!
ωa1...apχ

a1...ap . (A.16)

Now, whenever F is a self or antiselfdual two form

F = ± ∗4 F (A.17)

we will have that

(F ∧ F)2 = (F ∧ ∗4F)2 =
(
F2dvolS4

)2
= (F2)4 (A.18)

and so

det(1 + εM) =

(
1 +

1

2
ε2F2

)2

(A.19)

obtaining a perfect square. This is will be the case for our wandering D7-brane system,

since there F = −B will be a (2, 0) + (0, 2) form due to (5.13).12

Putting everything together we find that the relevant part of the DBI action is given by

SDBI =−µ7gsSTr

∫
d8ξ

√
det(gab)f(F)2

(
1+2Zσ2DµΦDµΦ̄+

1

2
Zg−1

s σ2FµνFµν
)
. (A.20)

12To connect with the derivation of the perfect square in eq. (5.10) notice that in our case we have the

identity

detM = −1

4
tr M4 +

1

8
(tr M2)2

and that F (anti)selfdual translates into 4trM4 = (trM2)2 so that finally 16 detM = (trM2)2 = 4B2.
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Expanding this expression to second order in 4d derivatives and setting F = −B we obtain

SDBI =−µ7gsSTr

∫
d8ξ
√

detgf(B)

[
1+Zσ2DµΦDµΦ̄+

1

4
Zg−1

s σ2FµνF
µν)

]
(A.21)

which is the expression used in the main text (cf. (5.11)) where for simplicity
√

detg = 1

has been taken.
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[33] L. Álvarez-Gaumé, C. Gómez and R. Jiménez, Initial conditions for inflation and the energy

scale of SUSY-breaking from the (nearly) Gaussian sky, Cosmology and Particle Physics

beyond Standard Models: Ten Years of the SEENET-MTP Network (2014) 1

[arXiv:1307.0696] [INSPIRE].

– 55 –

http://dx.doi.org/10.1088/0264-9381/24/21/S04
http://dx.doi.org/10.1088/0264-9381/24/21/S04
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(P2GC)008
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(cargese)003
http://arxiv.org/abs/0708.2865
http://inspirehep.net/search?p=find+EPRINT+arXiv:0708.2865
http://dx.doi.org/10.1088/0264-9381/28/20/204002
http://dx.doi.org/10.1088/0264-9381/28/20/204002
http://arxiv.org/abs/1108.2660
http://inspirehep.net/search?p=find+EPRINT+arXiv:1108.2660
http://arxiv.org/abs/1311.2312
http://inspirehep.net/search?p=find+EPRINT+arXiv:1311.2312
http://arxiv.org/abs/1404.2601
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.2601
http://arxiv.org/abs/1409.5350
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.5350
http://dx.doi.org/10.1016/0370-2693(83)90837-7
http://inspirehep.net/search?p=find+J+Phys.Lett.,B129,177
http://dx.doi.org/10.1103/PhysRevLett.112.241101
http://arxiv.org/abs/1403.3985
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.3985
http://dx.doi.org/10.1103/PhysRevD.78.106003
http://arxiv.org/abs/0803.3085
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.3085
http://dx.doi.org/10.1103/PhysRevD.82.046003
http://arxiv.org/abs/0808.0706
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.0706
http://dx.doi.org/10.1088/0264-9381/30/21/214001
http://arxiv.org/abs/1307.0708
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.0708
http://dx.doi.org/10.1016/j.physletb.2009.12.022
http://arxiv.org/abs/0912.0208
http://inspirehep.net/search?p=find+EPRINT+arXiv:0912.0208
http://dx.doi.org/10.1007/JHEP10(2012)140
http://arxiv.org/abs/1205.2893
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.2893
http://dx.doi.org/10.1103/PhysRevD.87.096001
http://arxiv.org/abs/1212.4148
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.4148
http://dx.doi.org/10.1103/PhysRevLett.112.241301
http://arxiv.org/abs/1403.5043
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.5043
http://dx.doi.org/10.1016/j.physletb.2014.05.074
http://dx.doi.org/10.1016/j.physletb.2014.05.074
http://arxiv.org/abs/1403.6078
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6078
http://dx.doi.org/10.1103/PhysRevD.79.081302
http://dx.doi.org/10.1103/PhysRevD.79.081302
http://arxiv.org/abs/0903.0355
http://inspirehep.net/search?p=find+EPRINT+arXiv:0903.0355
http://dx.doi.org/10.1088/1475-7516/2011/09/009
http://arxiv.org/abs/1103.5758
http://inspirehep.net/search?p=find+EPRINT+arXiv:1103.5758
http://dx.doi.org/10.1016/j.physletb.2014.07.020
http://arxiv.org/abs/1404.5235
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.5235
http://dx.doi.org/10.1016/j.physletb.2014.05.077
http://dx.doi.org/10.1016/j.physletb.2014.05.077
http://arxiv.org/abs/1403.6081
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.6081
http://arxiv.org/abs/1307.0696
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.0696


J
H
E
P
0
1
(
2
0
1
5
)
1
2
8

[34] E. Pajer and M. Peloso, A review of Axion Inflation in the era of Planck, Class. Quant.

Grav. 30 (2013) 214002 [arXiv:1305.3557] [INSPIRE].

[35] G. Gur-Ari, Brane Inflation and Moduli Stabilization on Twisted Tori, JHEP 01 (2014) 179

[arXiv:1310.6787] [INSPIRE].
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[61] P.G. Cámara, L.E. Ibáñez and A.M. Uranga, Flux-induced SUSY-breaking soft terms on

D7-D3 brane systems, Nucl. Phys. B 708 (2005) 268 [hep-th/0408036] [INSPIRE].

[62] F. Marchesano, G. Shiu and L.-T. Wang, Model building and phenomenology of flux-induced

supersymmetry breaking on D3-branes, Nucl. Phys. B 712 (2005) 20 [hep-th/0411080]

[INSPIRE].

[63] S.B. Giddings, S. Kachru and J. Polchinski, Hierarchies from fluxes in string

compactifications, Phys. Rev. D 66 (2002) 106006 [hep-th/0105097] [INSPIRE].
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[66] D. Lüst, S. Reffert and S. Stieberger, Flux-induced soft supersymmetry breaking in chiral type

IIB orientifolds with D3/D7-branes, Nucl. Phys. B 706 (2005) 3 [hep-th/0406092]

[INSPIRE].
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[83] J. Garćıa-Bellido and D. Wands, Metric perturbations in two field inflation, Phys. Rev. D 53

(1996) 5437 [astro-ph/9511029] [INSPIRE].

[84] F. Vernizzi and D. Wands, Non-Gaussianities in two-field inflation, JCAP 05 (2006) 019

[astro-ph/0603799] [INSPIRE].

[85] S. Yokoyama, T. Suyama and T. Tanaka, Primordial Non-Gaussianity in Multi-Scalar

Slow-Roll Inflation, JCAP 07 (2007) 013 [arXiv:0705.3178] [INSPIRE].

[86] C. Gordon, D. Wands, B.A. Bassett and R. Maartens, Adiabatic and entropy perturbations

from inflation, Phys. Rev. D 63 (2001) 023506 [astro-ph/0009131] [INSPIRE].

[87] I. Huston and A.J. Christopherson, Calculating Non-adiabatic Pressure Perturbations during

Multi-field Inflation, Phys. Rev. D 85 (2012) 063507 [arXiv:1111.6919] [INSPIRE].

[88] I. Huston and A.J. Christopherson, Isocurvature Perturbations and Reheating in Multi-Field

Inflation, arXiv:1302.4298 [INSPIRE].

[89] L.C. Price, J. Frazer, J. Xu, H.V. Peiris and R. Easther, MultiModeCode: An efficient

numerical solver for multifield inflation, arXiv:1410.0685 [INSPIRE].

[90] L.A. Kofman, The origin of matter in the universe: Reheating after inflation,

astro-ph/9605155 [INSPIRE].

[91] L. Kofman, A.D. Linde and A.A. Starobinsky, Towards the theory of reheating after

inflation, Phys. Rev. D 56 (1997) 3258 [hep-ph/9704452] [INSPIRE].

[92] B.A. Bassett, S. Tsujikawa and D. Wands, Inflation dynamics and reheating, Rev. Mod.

Phys. 78 (2006) 537 [astro-ph/0507632] [INSPIRE].

– 58 –

http://dx.doi.org/10.1142/9789814307505_0004
http://arxiv.org/abs/hep-ph/9707209
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9707209
http://arxiv.org/abs/1409.8197
http://inspirehep.net/search?p=find+EPRINT+arXiv:1409.8197
http://dx.doi.org/10.1016/0550-3213(94)90594-0
http://dx.doi.org/10.1016/0550-3213(94)90594-0
http://arxiv.org/abs/hep-th/9405002
http://inspirehep.net/search?p=find+EPRINT+hep-th/9405002
http://dx.doi.org/10.1016/0550-3213(94)90599-1
http://arxiv.org/abs/hep-th/9405024
http://inspirehep.net/search?p=find+EPRINT+hep-th/9405024
http://dx.doi.org/10.1007/s002880050379
http://arxiv.org/abs/hep-ph/9508258
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9508258
http://dx.doi.org/10.1016/0370-2693(96)01114-8
http://arxiv.org/abs/hep-ph/9607405
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9607405
http://dx.doi.org/10.1016/j.physletb.2014.10.043
http://arxiv.org/abs/1404.4268
http://inspirehep.net/search?p=find+EPRINT+arXiv:1404.4268
http://dx.doi.org/10.1007/JHEP08(2014)157
http://arxiv.org/abs/1406.2729
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.2729
http://dx.doi.org/10.1007/978-3-540-74353-8_8
http://arxiv.org/abs/astro-ph/0702187
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0702187
http://dx.doi.org/10.1103/PhysRevD.53.5437
http://dx.doi.org/10.1103/PhysRevD.53.5437
http://arxiv.org/abs/astro-ph/9511029
http://inspirehep.net/search?p=find+EPRINT+astro-ph/9511029
http://dx.doi.org/10.1088/1475-7516/2006/05/019
http://arxiv.org/abs/astro-ph/0603799
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0603799
http://dx.doi.org/10.1088/1475-7516/2007/07/013
http://arxiv.org/abs/0705.3178
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.3178
http://dx.doi.org/10.1103/PhysRevD.63.023506
http://arxiv.org/abs/astro-ph/0009131
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0009131
http://dx.doi.org/10.1103/PhysRevD.85.063507
http://arxiv.org/abs/1111.6919
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.6919
http://arxiv.org/abs/1302.4298
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.4298
http://arxiv.org/abs/1410.0685
http://inspirehep.net/search?p=find+EPRINT+arXiv:1410.0685
http://arxiv.org/abs/astro-ph/9605155
http://inspirehep.net/search?p=find+EPRINT+astro-ph/9605155
http://dx.doi.org/10.1103/PhysRevD.56.3258
http://arxiv.org/abs/hep-ph/9704452
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9704452
http://dx.doi.org/10.1103/RevModPhys.78.537
http://dx.doi.org/10.1103/RevModPhys.78.537
http://arxiv.org/abs/astro-ph/0507632
http://inspirehep.net/search?p=find+EPRINT+astro-ph/0507632

	Introduction
	The Higgs mass and high scale SUSY-breaking
	Large field inflation, string theory and the Higgs
	String theory embeddings of an inflaton-Higgs
	The MSSM Higgs system in heterotic orbifolds
	The MSSM Higgs system in type IIB orientifolds

	Fluxes and the Higgs/inflaton potential
	Flux induced scalar potential from DBI+CS
	Kaloper-Sorbo Lagrangian
	Estimation of the scales of the model
	The Higgs/inflaton scalar potential
	N=1 supergravity description

	Computing slow roll parameters for large inflaton
	Slow roll equations of motion
	Single field limit cases
	The general 2-field Higgs/inflaton case
	Results for small field
	Results for large field


	Inflaton potential corrections, backreaction and moduli fixing
	Planck mass suppressed corrections
	Backreaction and induced RR-tadpoles
	Decoupling of moduli fixing from inflation sector

	Some further cosmological issues
	Final comments and conclusions
	The DBI+CS computation

