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1 Introduction

There has been a great deal of recent progress in calculating scattering amplitudes of the

maximally supersymmetric non-abelian Yang-Mills theory in four dimensions, N = 4 SYM.

In particular, interesting structures enabling new results have been found for the amplitude

integrand both in the planar limit as well as for the full non-planar theory. Perturbative

calculations by Feynman graphs are complicated due to the vast number of contributing

diagrams, which makes it difficult to construct even the integrand. To evaluate the integrals

is, of course, the hardest step — which we will not attempt to take in this work — but it

will obviously be facilitated by finding simple concise forms of the integrands.

There have been three main methods used for generating integrands. (Generalised)

unitarity is the most widespread technique [1–4]. Here one equates the leading singularities

of an ansatz — consisting of a sum of independent graphs with arbitrary coefficients —

with those of the amplitude, which will fix all freedom. There are various criteria as to
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which graphs should occur in the ansatz: in the planar limit one uses dual conformal

invariance [5–9], whereas in the full non-planar theory one can use the colour-kinematics

duality [10, 11]. This technique has been used to obtain the four-point amplitude up

to five-loops (planar [12–15] and nonplanar [16–19]), the five-point amplitude to three-

loops [20–22] and six-point amplitude to two loops [23, 24].

Second, one may employ a recursion relation determining higher loop amplitudes in

terms of lower ones [25]. The original BCFW [26, 27] recursion decomposed higher-point

tree-level amplitudes into products of three-point amplitudes, but in a striking develop-

ment this technique has been generalised to loop integrands [25]. The use of these on-shell

methods, in particular in terms of momentum twistor variables, yields relatively compact

expressions where Feynman graph calculations would often result in millions of terms. By

construction, BCFW recursion leads to non-local integrands, i.e. individual terms have

poles which are not of 1/p2 type. Yet, the existence of the Feynman graph method guar-

antees the cancellation of such spurious singularities in the sum of all terms. It remains

a formidable problem though, to find simple local forms for the BCFW output, since the

recursion procedure — although much more concise than any direct graph calculation —

does fan out considerably for higher-loop integrands (although much progress has been

made towards a resolution of this problem [28]). So far explicit formulae for local inte-

grands via this method are available for MHV n-point amplitudes up to three loops and

NMHV n-point amplitudes up to two loops [25, 29].

Third, another less widely known but extremely powerful technique starts from an

ansatz, but now fixes the coefficients by implementing the exponentiation of infrared sin-

gularities at the level of the integrand by asserting that the log of the amplitude should

have a reduced singularity [30]. This method has been used to obtain the four-point am-

plitude to seven loops [30], and has been shown to determine the n-point amplitudes at

two and three loops for any n [31].

Both this method and generalised unitarity customarily use graphs with local inte-

grands. In addition, the trial graphs used in generalised unitarity methods typically contain

only Lorentz products, with any parity odd structures being in the external variables only.

Planar scattering amplitudes in N = 4 are dual to polygonal Wilson loops with light-

like edges [23, 32–35]. It has recently been shown that both sides of this duality can be

generated from n-point functions of the energy-momentum tensor multiplet of the the-

ory [36–40]1 To this end, the operators in such an n-point correlator are put on the vertices

of an n-gon with light-like edges. The relation between correlation functions and Wilson

loops, which are also defined on configuration space, is rather direct [37] and can be made

supersymmetric [41–43]. On the other hand, the connection between energy-momentum

correlation functions and amplitudes is conceptually not well understood, while it provides

a fully supersymmetric integrand duality which exactly reproduces the BCFW based loop

integrands [38–40, 43]. The counterpart of the disc planarity of amplitudes is planarity

on the sphere for the correlation functions. More specifically, the correlation functions

yield the square of the amplitude integrands; here the two discs are quite literally welded

together like the hemispheres of a ball touching at the equator.

1Other operators are also suited, see [43].
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The component operators in the energy momentum tensor multiplet are dual to su-

pergravity states on AdS5 in the AdS/CFT correspondence [44–46]. In the next section we

will use superspace to package all the component operators into one superoperator; he we

rather write OΛ(x) where Λ is simply a schematic label describing the precise component

in question.

Two- and three-point functions of these operators can be shown to be protected from

quantum corrections. As the first non-trivial objects the four-point functions have been

intensely studied both at weak coupling in field theory perturbation theory and at strong

coupling exploiting the AdS/CFT duality. The loop corrections to these four-point function

take a factorised form [47]:

〈OΛ1OΛ2OΛ3OΛ4〉 = 〈OΛ1OΛ2OΛ3OΛ4〉tree + IΛ1Λ2Λ3Λ4(xi)× f(xi; a) (1.1)

In this equation I does not depend on the ’t Hooft coupling a = g2N/(4π2) but does depend

on the particular component operators in question; whereas all the non-trivial coupling

dependence lies in the single function f . We have `-loop integrands f (`)(x1, . . . x4+`) via2

f(xi; a) =

∞∑
`=1

a`

`!

∫
d4x5 . . . d

4x4+` f
(`)(x1, . . . , x4+`) (1.2)

The one- and two-loop contributions were computed using supergraphs [48–52]. In [53,

54] it was shown that all the loop integrands have an unexpected (hidden) symmetry

permuting internal and external variables:

f (`)(x1, . . . x4+`) = f (`)(xσ1 , . . . xσ4+`
) ∀σ ∈ S4+` . (1.3)

The S4+` invariance together with conformal covariance (f (`) must have conformal weight

4 at each of the 4 + ` points), the absence of double propagator terms (which follows from

an OPE analysis), and planarity of the corresponding graph beyond 1 loop, constrains the

number of undetermined parameters in an ansatz of this type so severely that up to three

loops there is only one term in the ansatz. Indeed even at higher loops it was possible

to determine f (l) up to l = 6 in combination with the aforementioned criteria about the

exponentiation of infrared singularities [53, 54].

We note that any single term in f (`) has numerator and denominator composed of

squared distances x2
ij . The graph obtained by regarding the denominator factors as edges

is called an “f -graph” below. These provide an exceptionally compact way to display the

result, for example we display the full four-point correlator up to five-loops compactly via

f -graphs below in (2.7). In diagrams we denote the numerator factors by dashed lines.

At four-points the amplitude/correlation function duality relates the four-point light-

like limit of f(xi; a) to the four-point amplitude M4(xi; a) (divided by the tree amplitude)

in dual momentum space pi = xi − xi+1:

1 + 2
∑
`≥0

a` F
(`)
4 =

(
M4(xi; a)

)2
(1.4)

2Note that we use the same symbol here f (`) and throughout for the integrated function as well as the

integrand.

– 3 –



J
H
E
P
0
1
(
2
0
1
5
)
1
1
6

where

F
(`)
4 (x1, x2, x3, x4) = external factor × lim

x2
i i+1→0

(mod 4)

∫
d4x5 . . . d

4x4+`
f (`)

`!
. (1.5)

and where the external factor is simply x2
13x

2
24

∏
1≤i<j≤4 x

2
ij . Graphically the light-like limit

on the l.h.s. corresponds to selecting all possible 4-cycles in the f -graph (corresponding to

the four external points) which then splits the planar f-graph into two disc planar pieces

corresponding to the product of two amplitudes.

The interaction between four-point correlation functions and amplitudes has been the

focus of much work in this direction [53–55]. Indeed one can use this relation in reverse to

read off the correlation function from the amplitude and to this end f (7) has recently been

obtained [56]3 using the corresponding seven-loop amplitude [30].

However, less use has been made of the fact that the very same four-point correlation

function is related to particular combinations of higher point amplitudes. This remarkable

feature takes place simply due to the fact that loop corrections of correlation functions are

correlation functions with the Lagrangian inserted. But the Lagrangian is itself an oper-

ator in the energy-momentum supermultiplet and therefore we find that loop corrections

of n-point correlators of energy-momentum multiplets are given by certain higher point

correlators of energy-momentum multiplets. These are then in turn related to higher point

amplitudes via the amplitude/correlation functions duality. The details of how this works

will be derived in the next section, but here let us simply note the result∑
`≥0

a`F
(`)
5 = M5M5 , (1.6)

where F
(`)
5 (x1, . . . , x5) is constructed from the four-point correlator integrands f (`):

F
(`)
5 (x1, . . . , x5) := external factor× lim

x2
i i+1→0

(i=1...5)

∫
d4x6 . . . d

4x5+`
f (`+1)

`!
, (1.7)

where here the external factor is 1/f (1) =
∏

1≤i<j≤5 x
2
ij . M5 is the 5-point MHV amplitude

(divided by tree-level) One can readily see the similaity between (1.6) and the four-point re-

lation (1.4). So the five-point light-like limit of the four -point correlator f -graphs yields the

above combination of the five-point amplitude, whereas the four-point lightlike limit of the

same correlator yields the four-point amplitude: both the four- and five-point amplitudes

are contained in the four-point correlator!

Even so, how can the single equation (1.6) uniquely determine M5? The perturbative

expansion of the r.h.s. contains the parity even part M5 + M5 (by choosing the leading 1

in either factor) but beyond it also all possible product terms. Now, the (sphere) planar

part of the correlator integrand on the l.h.s. of the equation breaks into classes of terms

in exactly the same way. Taking the five-point light-like limit corresponds to chosing a 5-

cycle on the f -graph (as opposed to a 4-cycle when considering the four-point amplitude)

3The result can be found attached to the arXiv version of this paper in the folder 7LoopResult.
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which splits the f -graph into two disc planar pieces; the `-loop integrand contains terms

corresponding to a single `-loop integral as well as products of m-loop and (` −m)-loop

integrals. The single equation (1.6) is therefore “stratified” into an over-determined system

that turns out to be beautifully consistent.

The article is organised as follows: in section 2 we demonstrate how the step from four-

point to five-point integrands is taken. The resulting equation is split into classes of prod-

ucts. As a first application we discuss why four-point graphs always appear in a symmetric

sum over the position of their massive leg. Sections 3,4,5, discuss the one-, two- and higher-

loop amplitudes. Our main result — a local form of the complete four-loop amplitude —

is given in section 6. Furthermore, with the publication we include computer readable files

containing also the complete five-loop and the parity even sector of the six-loop integrand

in a local form. In a final section of the actual text we discuss the relation to other forms of

the amplitude where available in the literature. Some appendices discuss technical details.

2 The amplitude5/correlator4 duality

2.1 Deriving the duality

We here derive and give more detail to some of the main formulae of the introduction. The

starting point is the correlator/amplitude duality [36–40, 43]. To make the full duality

precise we use superspace to package together component fields. The components of the

energy-momentum tensor multiplet, denoted OΛ(x) in the introduction, can all be assem-

bled into a single superfield O(x, ρ, ρ̄, y) = Tr(W 2) where the trace is over the SU(N) gauge

group, see [57, 58] and references therein. The field strength multiplet W (x, ρ, ρ̄, y) lives

on analytic superspace, which combines the Minkowski space variable x with Grassmann

odd coordinates ρ, ρ̄ and y coordinates which parametrise the internal symmetry of the

N = 4 model.4 Likewise, amplitudes connected by supersymmetry can be packaged into a

superamplitude customarily parametrised by momentum supertwistors [60, 61].

To obtain the full duality between any amplitude and any correlation function of these

operators, one identifies light-like coordinate differences on the correlator side with the

ingoing momenta of the amplitude according to xi i+1 = pi and puts ρ̄ to zero at all points.

The precise identification of the left handed Grassmann odd coordinates {ρi} with the odd

part of the momentum supertwistors {χi} is known [39, 40], but it is not needed here. Also,

in the amplitude limits the y coordinates will factor out.

Now let Gn denote the n-point function of energy-momentum multiplets O. The am-

plitude/correlator duality [36–40] states that

lim
x2
i i+1→0

Gn
Gtree
n

= (Mn)2 , ρ̄ = 0 . (2.1)

On the left hand side of this equation Gn is a superspace object containing component n-

point correlators of any operator in the energy-momentum multiplet in one object (some of

which are eliminated by sending ρ̄ to zero); similarly on the right-hand sideMn contains all

4Analytic superspace was first introduced for a superspace description of theN = 2 matter multiplet [59].
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n-point amplitudes in the theory packaged in one superspace object: the superamplitude.

To be precise, the symbolMn in the last equation denotes the full superamplitude divided

by the tree-level MHV amplitude, so the leading term is 1. Both sides of the equation

have expansions both in powers of the odd superspace variables as well as in the coupling

constant. Expanding in odd superspace variables we write

Gn =

n−4∑
k=0

Gn;k , Mn =

n−4∑
k=0

Mn;k (2.2)

where Gn;k and Mn;k contain 4k powers of the odd superspace variable. In particular, Mn;k

is the NkMHV superamplitude.

By differentiation in the coupling constant it can be shown that

G
(`)
n,k =

a`

`!

∏̀
i=1

(∫
d4xn+i d

4ρn+i

)
G

(0)
n+`;k+` , ` > 0 (2.3)

where the superscript indicates the loop order. In other words, the `-loop correction to an

energy-momentum n-point function is given by a superspace integral over a Born level cor-

relator of the same type, just with correspondingly more points. This opens the possibility

of considering various n-gon limits of the same correlator. We currently know very little

about the correlation functions Gn;k with k < n− 4. On the other hand following [53, 54]

we have a wealth of information about the “maximally nilpotent” case k = n− 4. In this

paper we exploit this mechanism to construct the five-point amplitude from the correla-

tors G
(0)
n;n−4 that were originally elaborated for the higher-loop integrands of the four-point

function. Specialising (2.3) to this case:

G
(`)
4,0 =

a`

`!

∏̀
i=1

(∫
d4x4+i d

4ρ4+i

)
G

(0)
4+`;` , G

(`−1)
5,1 =

a`−1

(`− 1)!

`−1∏
i=1

(∫
d4x5+i d

4ρ5+i

)
G

(0)
4+`;` .

(2.4)

According to [47–54] the Born level correlator with maximum k = n − 4 (maximally

nilpotent piece) has the form

G
(0)
4+`;`|ρ4

5...ρ
4
4+`

= I1234 ρ
4
5 . . . ρ

4
4+` f

(l)(x1, . . . , x4+`) , (2.5)

where

I1234 =
2 (N2 − 1)

(4π2)4
(x2

12x
2
13x

2
14x

2
23x

2
24x

2
34)

(
y2

12

x2
12

y2
23

x2
23

y2
34

x2
34

y2
14

x2
14

x2
13x

2
24 + . . .

)
(2.6)

Here the dots indicate terms subleading in both the 4-gon x2
12, x

2
23, x

2
34, x

2
41 → 0 and the

5-gon limit x2
12, x

2
23, x

2
34, x

2
45, x

2
51 → 0 which we are interested in.

The objects f (`)(x1, . . . x4+`), as explained in the introduction, are rational, symmetric

in all 4+ ` variables, conformally covariant with weight 4 at each point and have no double

poles. They can be displayed graphically via so-called f -graphs with vertices xi and edges

denoting propagators 1/x2
ij . From 2-loops in the planar theory, the f -graphs will be planar

(if we exclude numerator edges) 4+ `-point graphs with vertices of degree (or valency) four
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or more. Since we sum over all permutations of the vertices we need not label the graph

— we sum over all possible labellings. Any vertex with degree d greater that 4 must be

accompanied by d− 4 numerator lines to bring the total number of numerator lines minus

denominator lines equal to 4 (corresponding to the fact that the f (`) has conformal weight

4 at each (external and internal) point) although we sometimes suppress the numerator

lines for visual simplicity.

For illustration we here give the f -graphs to five-loops (ie the four-point correlator up

to five-loops) and corresponding expressions up to three-loops:

f (1) = =
1∏

1≤i<j≤5 x
2
ij

,

f (2) = =
1
48

∑
σ∈S6

x2
σ1σ2

x2
σ3σ4

x2
σ5σ6∏

1≤i<j≤6 x
2
ij

f (3) = =
1
20

∑
σ∈S7

x4
σ1σ2

x2
σ3σ4

x2
σ4σ5

x2
σ5σ6

x2
σ6σ7

x2
σ7σ3∏

1≤i<j≤7 x
2
ij

(2.7)

f (4) =

+ -

f (5) =

- + + - + +

We see that f (2) has no remaining numerator terms (all three apparent numerator terms

will be cancelled by the denominator) whereas f (3) has a single numerator line (coming

from the x4
σ1σ2

in the numerator which is only partially cancelled by the denominator.)

This numerator edge will connect the two 5-valent vertices (shown in blue).

The one- and two-loop contributions were originally computed using supergraphs [48–

52] whereas the three-loop and higher were computed using the above symmetry consider-

ations (as well as suppression of singularities for the coefficients) [53, 54].

Now according to (2.3), (2.4) we can consider this as either a four-point `-loop correlator

or a five-point ` − 1 loop correlator (or of course a higher point correlator). First let us

consider the four-point case (which is the one focussed on in previous work).

Four-point case

Eqns (2.3) and (2.5) lead directly to the factorised form

G4|ρ̄i=0 = 〈O1O2O3O4〉ρ̄i=0 = Gtree
4 |ρ̄i=0 + I1234(xi, ρi, yi) f(xi; a) (2.8)

which is just the superspace version of the factorisation mentioned in (1.1).

– 7 –
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Now the four-point amplitude/correlator duality (2.1) gives the amplitude purely in

terms of f(xi; a) which we displayed in the introduction (1.4)

1 + 2
∑
`≥0

a` F
(`)
4 =

(
M4;0(xi; a)

)2
(2.9)

where

F
(`)
4 = external factor × lim

x2
i i+1→0

(mod 4)

∫
d4x5 . . . d

4x4+`
f (`)

`!
. (2.10)

Five-point case

Let us instead now consider (2.5) as the ρ4
5 component of a five-point correlation function.

For this special choice equation (2.3), (2.4), (2.5) can be written

G
(l)
5;1|ρ4

5
=

a`

`!

5+∏̀
i=6

(∫
d4xi

)
G

(0)
5;1|ρ4

5

f (l+1)(x1, . . . , x5+l)

f (1)(x1, . . . , x5)
. (2.11)

Now at five points there are MHV and NMHV amplitudes only and NMHV amplitudes

are MHV amplitudes. Therefore

M5;1 = R12345M5;0 (2.12)

where R12345 is the five-point R invariant [7, 61]. Since there is only one independent object

we will henceforth drop the second subscript on M5;0 and write M5 instead. Furthermore,

in the pentagon light-cone limit

lim
x2
i i+1→0

G
(0)
5;1

Gtree
5;0

= 2R12345 (2.13)

as has been shown in [40]. The correlator amplitude duality (2.1) then implies

lim
x2
i i+1→0

G5;1

Gtree
5

= 2R12345M5M5 . (2.14)

So combining (2.11), (2.14), (2.13) and dividing by 2R12345|ρ4
5

we obtain directly the rela-

tion between f(xi; a) and the five-point amplitudes quoted in the introduction∑
`≥0

a`F
(`)
5 = M5M5 (2.15)

with

F
(`)
5 := lim

x2
i i+1→0

(mod 5)

f (`+1)

`! f (1)
. (2.16)

This is now an equation involving only spacetime points and will be the starting point for

all that follows.
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2.2 Refined duality

At the moment both sides of the equation contain the coupling constant. Expanding out

the r.h.s. of (2.15) clearly gives

F
(`)
5 =

∑̀
m=0

M
(m)
5 M

(`−m)
5 . (2.17)

But we can also say something more about the l.h.s. To do this we need to think a little

more graphically than we have so far. In the previous subsection we reviewed f -graphs.

Now to define F
(`)
5 we have done two things, firstly we have multiplied by the external

factor 1/f (1) =
∏

1≤i<j≤5 x
2
ij and secondly we have taken the light-like limit (see (1.4)).

Multiplying by
∏

1≤i<j≤5 x
2
ij corresponds to deleting all edges between points 1 to 5 (or

adding numerator lines if no line exists). Taking the light-like limit means that any choice

of external points 1,2,3,4,5 (recall that in the f -graph we sum over all choices) which are not

connected cyclically via edges [1, 2], [2, 3], . . . [5, 1] will be surpressed. (Recall an edge [i, j]

represents 1/x2
ij .) So we only consider as external points, vertices connected in a five-cycle.

Now any cycle on a planar graph immediately splits the graph into two pieces. E.g.

we can embed the graph on a sphere without crossing (since it is planar) and put the

5-cycle on the equator thus splitting the graph into a northern and a southern hemisphere.

Alternatively, given an embedding of the graph on the plane, a 5-cycle splits the graph into

an “inside” and an “outside” graph.

We can now classify terms in F
(`)
5 according to the number m of points inside (or

outside, whichever is smaller) the corresponding 5-cycle, as

F
(`)
5 =

b`/2c∑
m=0

F
(`)
5;m . (2.18)

The classification of terms in F
(`)
5 according to their graph structure is illustrated in figure 1

A simple way of determining the value of m for any given term in F
(`)
5 is to consider

the reduced graph obtained by only considering edges between internal vertices (i.e. delete

all external vertices). These will in general split into two disconnected groups of size m

and `−m.

In any case we see that F
(`)
5 naturally splits into the product of two graphs just as

the duality with the amplitude suggests (M5M̄5). Note that this split into products occurs

only at the level of the denominator. We can and will see numerator terms linking the two

product graphs. These will be considered later, but we mention here that such terms are

directly related to parity odd terms in the amplitude.

In summary, then we expect a more refined duality relating specific terms of F
(`)
5 to

specific products of amplitudes as5

F
(`)
5;m = M

(m)
5 M̄

(`−m)
5 +M

(`−m)
5 M̄

(m)
5 m = 0 . . . b(`− 1)/2c (2.19)

5Note that a completely analogous “refined” duality can be given at four-points, refining (2.9). Namely

we define F
(`)
4;m as the contribution to F

(`)
4 arising from four -cycles with m points inside and ` −m points

outside. Then the refined four-point duality reads F
(`)
4;m = M

(m)
4 M

(`−m)
4 .
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= → ∈ F
(3)
5;0

= → ∈ F
(3)
5;1

f -graph

with 5-cycle
“Inside” “Outside” ×1/f (1)

Figure 1. Figure illustrating graphically the classification of terms in F
(`)
5 into classes F

(`)
5;m.

We start with a single f graph (here contributing to f (4), see (2.7)). The correlator consists of

summing over all possible labellings of this graph. Only terms where the external points 1, 2, 3, 4, 5

are consecutively connected survive the light-like limit. Such a 5-cycle splits the f -graph into two

pieces, an “inside” and an “outside” both of which are “disc planar” i.e. have the right planarity

properties for amplitude graphs. The minimum of the number of vertices inside or outside the

5-cycle gives the value of m. Here we illustrate with two different 5-cycles (in thick red) on the

same f -graph. The first has m = 0 and the second m = 1. On the right we give the corresponding

amplitude graphs “inside” and “outside”.

F
(`/2)
5;m = M

(`/2)
5 M̄

(`/2)
5 ` ∈ 2Z .

For this refined version of the duality to be true as stated we must be certain there can

be no interaction between different terms (i.e. different values of m). The left hand side

is clearly well-defined. The inside and outside of the 5-cycle on a planar f-graph is well-

defined. On the right-hand side we need to ask if all terms in M
(`−m)
5 M̄

(m)
5 are uniquely

identified by their topology as being (`−m)-loops times m-loop object. Stated differently,

if a pentagon is drawn from points 1, 2, 3, 4, 5 around M
(m)
5 say, can we also draw some or

all of M
(`−m)
5 inside the pentagon without crossing. One can convince oneself that this is

indeed not possible: M
(m)
5 contains at least four external vertices, any internal vertex of

M
(`−m)
5 is connected to at least four external vertices and it is impossible to draw two such

graphs inside the pentagon without crossing.

2.3 Four-point graphs appear symmetrically

There is a simple all loop consequence of this duality which we mention here, namely that

for 5-point amplitude graphs depending on only 4 external points (i.e. with one massive

external momentum), the massive point must always appear symmetrically in all four places

(where allowed).

Four-point amplitude graphs only arise in the parity even part of the amplitude. (The

general form of the parity odd part will be discussed in later sections. Parity odd graphs

always depend on all five points.) The parity even part of the amplitude is given by the

m = 0 sector of F
(`)
m from (2.19). The F

(`)
m sector has an “inside” and an “outside” as

discussed in the previous section, and for m = 0 the outside (say) has no vertices in it.
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The outside and inside must both be planar, but the inside contains a vertex which is not

connected to any other point on the inside (apart from the two consecutive external points,

around the pentagon) since it supposed to be a four-point graph. Since the f -graph has

degree 4 or more at each point, this means there must be at least two lines attached to this

point on the outside pentagon. The outside pentagon is then unique given planarity. In

other words the “inside” and “outside” pentagons have the following form which combines

into the f -graph on the right. In this picture, the blue edges and vertex represent the

four-point amplitude graph in question (with conformal weight 1 at all four points)

(2.20)

See figure 1 top row for an explicit example of this.

However, now we see the f -graph this four-point amplitude graph arises from, we can

also see that there are a number of choices of 5 cycles all giving rise to the same amplitude

graph but with the massive leg in different places:

(2.21)

The massive leg (x2
14 in this case) shifts its position around the amplitude. We see that

any four-point graph will appear symmetrically with respect to the position of its massive

leg in the five-point amplitude. There is one slightly subtle apparent exception to this rule.

That is the case where the original four-point amplitude has a numerator term x2
14. In this

case the numerator means there is an edge missing in the corresponding f -graph and since

only one of the four 5-cycles does not pass through this missing edge, there is only one

possible 5-cycle this time as illustrated:

(2.22)

However this is still consistent, since there is also only one allowed position for the mas-

sive leg: all other possibilities will be suppressed in the light-like limit by this numerator.

In summary, then we find that for any four point topology, the massive leg appears

completely symmetrically. For this reason when giving our results we prefer to only display

one representative of this class. We also of course have 5-point cyclic as well as dihedral

symmetry and we only wish to display one term for all terms related by this symmetry.
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We therefore define an operator which we call “cyc”, which does precisely this, namely

cyc[“term”] denotes the sum over all terms related via cyclic or dihedral symmetry, or

swapping of the position of the massive leg in the four-point case.

We will leave the precise definition of this operation to the appendix. But suffice it

to say here that the argument of the operation cyc[] always appears with weight 1 when

expanding the result into inequivalent terms, i.e.

cyc[f(x1, x2, x3, x4)] = f(x1, x2, x3, x4) + . . . (2.23)

where the dots denote different terms.

3 The one loop five-point amplitude from the correlator

Expanding out (1.6) to first order in the coupling (equivalent to considering (2.19) where

m can only take the value 0) gives

F
(1)
5 = M

(1)
5 +M

(1)
5 . (3.1)

The left hand side of this is simply

F
(1)
5 = cyc

[
x2

13x
2
24

x2
16x

2
26x

2
36x

2
46

]
(3.2)

which we recognise as the sum over 1 mass boxes. This is indeed twice the parity even part

of the five-point one loop amplitude.

Having found the parity even part of the one loop amplitude from the correlator, we

now ask if we can obtain the parity odd part? To do so let us go to next order.

Our refined duality equation (2.19) with m = 1, ` = 2 gives

F
(2)
5;1 = M

(1)
5 M

(1)
5 . (3.3)

So let’s check this. The contributions to F
(2)
5 which correspond to product graphs

m = 1 are given by:

F
(2)
5;1 =

(
x4

13x
2
24x

2
25

x2
16x

2
17x

2
26x

2
27x

2
36x

2
37x

2
47x

2
56

+ cyclic in 1,2,3,4,5 + x6 ↔ x7

)
+

x2
13x

2
14x

2
24x

2
25x

2
35x

2
67

x2
16x

2
17x

2
26x

2
27x

2
36x

2
37x

2
46x

2
47x

2
56x

2
57

= cyc

[
x4

13x
2
24x

2
25

x2
16x

2
17x

2
26x

2
27x

2
36x

2
37x

2
47x

2
56

+
x2

13x
2
14x

2
24x

2
25x

2
35x

2
67

x2
16x

2
17x

2
26x

2
27x

2
36x

2
37x

2
46x

2
47x

2
56x

2
57

]
(3.4)

Equating this to M5M̄5, together with (3.2) gives us two equations for two unknowns,

M5 and M̄5 and we can thus solve for them. The equations are quadratic and so the

solution involves a square root whose sign we will not be able to determine without more

information.
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Figure 2. One loop five-point parity even and odd amplitude graphs. This is just a one loop box

in dual coordinates, and a pentagon graph. The starred vertex v indicates a factor iε12345v.

The solution is simply

M
(1)
5 =

1

2

(
F

(1)
5 ±

√
(F

(1)
5 )2 − 4F

(2)
5;1

)
(3.5)

M
(1)
5 =

1

2

(
F

(1)
5 ∓

√
(F

(1)
5 )2 − 4F

(2)
5;1

)
. (3.6)

We have written the full parity even and odd 5-point ampitudes in terms of purely parity

even objects (but involving a square root).

One can now ask if there is a better way of writing the parity odd part of this without

using the square root, and indeed this is the case.

There is a unique parity odd conformally invariant tensor, which is easiest to see

in the six-dimensional formalism reviewed in appendix B. In this formalism it is clear

that there is a unique parity odd conformally covariant object. It is a function of six

points, x1, . . . x6, each with weight 1 which we denote ε123456. It has a natural form in

the six-dimensional formalism, but can be written in various different ways in standard

four-dimensional formalism (see section B.1). In any case using this object one can show

that the term inside the square root (thought of as an integrand product with integrand

points x6 and x7 which are symmetrised) can be written in the more suggestive form

(F
(1)
5 )2 − 4F

(2)
5;1 = − ε123456

x2
16x

2
26x

2
36x

2
46x

2
56

× ε123457

x2
17x

2
27x

2
37x

2
47x

2
57

. (3.7)

To see this, use the identity

ε123456 × ε123457 (3.8)

= cyc
[
2x2

67x
2
13x

2
24x

2
35x

2
14x

2
25+x4

13x
2
24x

2
25x

2
46x

2
57−x4

13x
4
24x

2
56x

2
57−x2

13x
2
14x

2
24x

2
25x

2
36x

2
57

]
.

We then obtain our final result for the five-point amplitude to be

M
(1)
5 =

1

2

(
I(1)

1 + I(1)
2

)
. (3.9)

The terms in this amplitude are displayed graphically in figure 2.

I(1)
1 = cyc

[
x2

13x
2
25

x2
16x

2
26x

2
36x

2
56

]
I(1)

2 = cyc

[
iε123456

x2
16x

2
26x

2
36x

2
46x

2
56

]
(3.10)

In section 7 we show that this form of the five-point amplitude integrand is consistent

with both the local expression in terms of twistors [29], and with the all orders in ε version

containing a parity odd pentagon at order ε, [62].
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4 Two loops

We now proceed to investigate M
(2)
5 . The refined duality equation (2.19) gives two equa-

tions involving M
(2)
5 and lower loop amplitudes, namely for ` = 2,m = 0 and for ` =

3,m = 1

F
(2)
5;0 = M

(2)
5 +M

(2)
5 (4.1)

F
(3)
5;1 = M

(2)
5 M

(1)
5 +M

(1)
5 M

(2)
5 . (4.2)

Therefore as before, since we have two equations for two unknowns, M
(2)
5 and M

(2)
5 , we

can solve for these.

To do this first rewrite the equations as:

M
(2)
5 +M

(2)
5 = F

(2)
5;0 (4.3)(

M
(2)
5 −M (2)

5

)(
M

(1)
5 −M (1)

5

)
= F

(2)
5;0F

(1) − 2F
(3)
5;1 , (4.4)

thus giving an equation for the parity odd part of the two loop amplitude in term of

correlator quantities F ’s and the one loop parity odd amplitude.

Once more we can simplify the parity odd part of the amplitude at two loops. To do

this, we write an ansatz for the form of M
(2)
5 −M (2)

5 . Since it is parity odd it must contain

one factor of the six-dimensional ε tensor. By examination we find the parity odd part of

the two loop amplitude is

M
(2)
5 −M (2)

5 =
1

2!
cyc

(
±iε123456x

2
35

x2
16x

2
26x

2
36x

2
56x

2
37x

2
47x

2
57x

2
67

)
(4.5)

which is a pentabox with an epsilon in the numerator. Note that the ± here is the same

as the 1 loop one, so once that sign is fixed so will this two loop one.

The full two-loop amplitude is then

M
(2)
5 =

1

2× 2!

(
I(2)

1 + I(2)
2 + I(2)

3

)
(4.6)

where

I(2)
1 = cyc

[
x4

13x
2
25

x2
16x

2
17x

2
27x

2
36x

2
37x

2
56x

2
67

]
I(2)

2 = cyc

[
x2

16x
2
24x

2
25x

2
35

x2
17x

2
26x

2
27x

2
36x

2
46x

2
56x

2
57x

2
67

]
I(2)

3 = cyc

[
ix2

13ε123456

x2
16x

2
17x

2
27x

2
36x

2
37x

2
46x

2
56x

2
67

] (4.7)

with corresponding graphs

5 Higher loops

This process can clearly be extended to higher orders. At `-loops we use the refined

duality (2.19) with `,m = 0 and `+ 1,m = 1 giving

F
(`)
5;0 = M

(`)
5 +M

(`)
5 (5.1)
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Figure 3. Two loop five-point parity even (I(2)1 and I(2)2 ) and parity odd (I(2)3 ) amplitude graphs.

The starred vertex v indicates a factor i ε12345v.

F
(`+1)
5;1 = M

(`)
5 M

(1)
5 +M

(1)
5 M

(`)
5 . (5.2)

From (5.1) we can immediately read off the parity even part M
(`)
5 + M

(`)
5 . Then

similarly to (4.4) we can write(
M

(`)
5 −M

(`)
5

)(
M

(1)
5 −M (1)

5

)
= F

(`)
5;0F

(1) − 2F
(`+1)
5;1 , (5.3)

giving the parity odd part of the ` loop graph in terms of correlator quantities (F ’s) and

the one-loop amplitude. So knowing the right-hand side of this equation we can compute

the parity odd combination M `
5 − M̄

(`)
5 .

Now as at two loops we wish to rewrite this in a simpler form, i.e. in terms of ε123456.

In principle we could include epsilon objects with two or more internal variables so for

example ε123467. However we have always found solutions in which only a single internal

variable appears in the ε. We therefore make the following assumption:

Assumption: the parity odd part of the five-point amplitude at any loop can always

be written in the form
∫
d4x6 . . . d

4x5+` ε123456 f(xi) where f(xi) is an integrand composed

of x2
ij depending on all external and internal variables. There never is an epsilon tensor

involving two or more internal points.

With the help of this it is remarkably straightforward to compute the parity

odd part of the amplitude at ` loops from the correlator. In the combination(
M

(`)
5 −M

(`)
5

)(
M

(1)
5 −M (1)

5

)
on the l.h.s. of (5.3) we have to consider the product of

two epsilon tensors, one from ` loops using the above conjecture and one from one loop.

This product contains a single term involving an inverse propagator between two internal

vertices (see (3.8))

ε123456 ε123457 = 2 x2
67 x

2
13x

2
35x

2
25x

2
24x

2
14 + . . . . (5.4)

Thus this will produce a product graph, a pentagon around x6 glued to a higher loop

graph involving x7 together with a numerator x2
67 between them. Such a product graph

with numerator can be produced from the correlator F
(`+1)
5;1 but can not be cancelled by

any terms on the right hand side of (5.3). Thus each graph of this type in F
(`+1)
5;1 uniquely

singles out a corresponding ε-term in M
(`)
5 −M

(`)
5 .

This can again be interpreted in terms of correlator f -graphs: 5-cycles in the f -graph

split the graph into two halves. We look for 5-cycles which have the 1 loop pentagon graph

on one side. The other side then gives us the parity odd graph in question. Its coefficient

is inherited from the f -graph. The procedure is illustrated in figure 4.
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Figure 4. Figure illustrating the procedure for obtaining the parity odd part of the five-point

amplitude from the correlator f -graphs. The 5-cycle (shown in thick red) splits the graph into two

parts. The inside of the 5-cycle corresponds to the 1 loop parity odd pentagon, whereas the outside

corresponds to the higher loop parity odd graph. The starred vertex is the vertex attached to the 1

loop internal vertex via an internal line. In the first line we start with a 5-cycle in f (3) contributing

to F
(2)
1 , the “outside” of which determines the parity odd graph for M

(1)
5 . In the second line we

start with a 5-cycle in one of the three f -graphs contributing to f (4) contributing to F
(2)
5 thus giving

a contribution to F
(3)
5;1 . The “outside” of the 5-cycle then determines the parity odd graph for M

(2)
5 .

That this simple rule then correctly reproduces the entire right-hand side of (5.3)

appears somewhat miraculous and relies on many cancellations between graphs. We

will attempt to give some motivation of why/how this works in the conclusions. Notice

that this consistency determines many of the correlator coefficients not determined from

the four-point duality (determined by the rung rule which arises from consistency of the

four-point amplitude/correlator duality). The first coefficient not determined by five-point

consistency appears in f (6).

Note there are of course further consistency requirements on this picture, starting at

four loops, since we require the m = 2 part of F
(4)
5 to be given by the product of two loop

amplitudes (which were determined by F
(2)
5;0 and F

(3)
5;1 i.e. F

(4)
5;2 = M

(2)
5 M̄

(2)
5 .

Using this method we have obtained the full the three-loop five-point amplitude (par-

ity even and parity odd part) and checked that it indeed satisfies the consistency condi-

tion (5.3):

M
(3)
5 =

1

2

1

3!

∫
d4x6d

4x7d
4x8

(
13∑
i=1

ciI(3)
i

)
, (5.5)

where

c1 = · · · = c6 = c9 = . . . c12 = 1 , c7 = c8 = c13 = −1. (5.6)

and
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Figure 5. Three loop five-point parity even amplitude graphs. White vertices indicate external

points, x1, x2, x3, x4, x5 which are cyclically ordered in either orientation and black nodes integration

variables x6, x7, x8. A black line between vertices i and j indicates a propagator term 1/x2ij . A

dotted line indicates an inverse propagator x2ij . The integrand expression I(3)i is the expression thus

obtained by summing over all different such labellings.

Figure 6. Three loop five-point parity odd amplitude graphs. A starred vertex v indicates a factor

iε12345v.

I(3)
1 = cyc

(
x6

13x
2
25

x2
16x

2
17x

2
18x

2
28x

2
36x

2
37x

2
38x

2
57x

2
67x

2
68

)
I(3)

2 = cyc

(
x4

16x
2
24x

2
25x

2
35

x2
17x

2
18x

2
26x

2
28x

2
36x

2
46x

2
56x

2
57x

2
67x

2
68x

2
78

)
I(3)

3 = cyc

(
x4

13x
2
25x

2
35x

2
46

x2
16x

2
18x

2
28x

2
36x

2
37x

2
38x

2
47x

2
56x

2
57x

2
67x

2
68

)
I(3)

4 = cyc

(
x4

13x
2
24x

2
46

x2
16x

2
18x

2
26x

2
36x

2
37x

2
47x

2
48x

2
67x

2
68x

2
78

)
I(3)

5 = cyc

(
x2

14x
2
16x

2
24x

2
25x

2
37

x2
17x

2
18x

2
26x

2
28x

2
36x

2
46x

2
47x

2
57x

2
67x

2
68x

2
78

)
I(3)

6 = cyc

(
x2

16x
2
24x

4
25x

2
35

x2
18x

2
26x

2
27x

2
28x

2
36x

2
46x

2
56x

2
57x

2
58x

2
67x

2
78

)
I(3)

7 = cyc

(
x2

13x
2
24x

2
25x

2
35

x2
18x

2
26x

2
28x

2
36x

2
37x

2
47x

2
57x

2
58x

2
67x

2
68

)
I(3)

8 = cyc

(
x2

13x
2
14x

2
35

x2
16x

2
17x

2
36x

2
38x

2
48x

2
57x

2
67x

2
68x

2
78

)
I(3)

9 = cyc

(
ix4

13ε123456

x2
16x

2
17x

2
18x

2
28x

2
36x

2
37x

2
38x

2
46x

2
56x

2
67x

2
78

)
I(3)

10 = cyc

(
ix2

13x
2
14ε123456

x2
16x

2
17x

2
18x

2
28x

2
36x

2
38x

2
46x

2
47x

2
57x

2
67x

2
68

)
I(3)

11 = cyc

(
ix2

24x
2
36ε123456

x2
16x

2
26x

2
28x

2
37x

2
38x

2
46x

2
47x

2
56x

2
67x

2
68x

2
78

)
I(3)

12 = cyc

(
ix2

14x
2
27ε123456

x2
17x

2
18x

2
26x

2
28x

2
36x

2
46x

2
47x

2
57x

2
67x

2
68x

2
78

)
I(3)

13 = cyc

(
ix2

13ε123456

x2
16x

2
17x

2
26x

2
36x

2
38x

2
48x

2
57x

2
67x

2
68x

2
78

)
(5.7)

also illustrated graphically in figures 5 and 6

6 Four- and five-loops amplitude

Similarly, using the method outlined in the previous section we have obtained the full

(parity even and parity odd part) four-loop five-point amplitude and checked that it satisfies
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the consistency condition (5.3). For the four-loop result:

M
(4)
5 =

1

2

1

4!

∫
d4x6d

4x7d
4x8d

4x9

(
71∑
i=1

ciI(4)
i

)
, (6.1)

where

c1 = · · · = c28 = c45 = · · · = c62 = 1 , (6.2)

c29 = · · · = c44 = c63 = · · · = c71 = −1

and
I(4)1 = cyc

[
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The corresponding four-loop amplitude graphs are given in figures 7 and 8.

We have also been able to obtain the full five-loop parity even and odd amplitude.

In order to do this we needed f (7) which was obtained in [56] from the four-point seven-

loop amplitude [30]. The seven-loop f -graphs and their coefficients are contained in the

two separate files 7LoopTopologies.txt and 7LoopCoefficients.txt attached to the

arXiv version of this paper. The result for the five-loop five-point amplitude consists of

318 different parity even topologies and 203 parity odd graphs which we give in the file

5pointamplitude.txt, which also contains the six-loop parity even integrand. As a piece

of complementary information 5pointamplitudenumberofterms.txt contains the number

of independent terms obtained from every graph in 5pointamplitude.txt by the cyc[]

operation. In order to obtain the parity odd part of the six-loop amplitude we would need

f (8) which could be obtained for example directly from the four-point eight-loop amplitude

if it became available.

7 Relation to other ways of writing 5-point integrands

7.1 Momentum space integrands

Forms for 1- and 2-loop 5-point amplitudes are available in momentum space in the litera-

ture both in the planar [20, 62] and more recently the full non-planar theory [21]. Whilst

it is straightforward to write our dual momentum space integrands in terms of momentum

space (simply using the replacement pi = xi i+1) a direct comparison requires some ma-

nipulation. In particular the preferred bases have integration variables appearing only as

scalar products, rather than in parity odd epsilon tensors as we have here. The parity odd

epsilon tensors then only depend on external momenta.
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Figure 7. Four loop five-point parity even amplitude graphs.
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Figure 8. Four loop five-point parity odd amplitude graphs. A starred vertex v indicates a factor

iε12345v.

We can easily rewrite our integrands in such a form using a single formula for rewriting

ε123456 in terms of x2
i6 derived in appendix B.1 namely

ε123456 =
s2s3

8 ε(p1, p2, p3, p4)
Tr(/p4/p5/p1/p2

)x2
16 + cyclic 1,2,3,4,5

+
s1s2s3s4s5

16 ε(p1, p2, p3, p4)
, (7.1)

where pi = xi i+1 are the amplitude momenta and si = x2
i i+2 = (pi + pi+1)2 the usual

two-particle invariants. Note that this form breaks manifest dual conformal symmetry,

and the coefficients of the integrands are more ugly, but it enables fairly direct comparison

with results in the literature.

The canonical example is one loop. From (3.9) the 1 loop parity odd term is

iε123456

x2
16x

2
26x

2
36x

2
46x

2
56

which, using (7.1) becomes

i s2s3

8 ε(p1, p2, p3, p4)
Tr(/p4/p5/p1/p2

) × Box(p2, p3, p4, p5 + p1) + cyclic 1,2,3,4,5
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+
i s1s2s3s4s5

16 ε(p1, p2, p3, p4)
× Pent(p1, p2, p3, p4, p5) (7.2)

where we see the (one mass) scalar box integrands and a scalar pentagon integrand

Box(p2, p3, p4, p5 + p1) =

∫
d4x6

1

x2
26x

2
36x

2
46x

2
56

, (7.3)

Pent(p1, p2, p3, p4, p5) =

∫
d4x6

1

x2
16x

2
26x

2
36x

2
46x

2
56

(7.4)

with non-trivial coefficients. These can then be compared directly with for example with

the form for non-planar amplitudes (in the planar limit) found in [21] where the same basis

of scalar integrals is used and we find perfect matching.

At two loops, using the same formula we reproduce the form of the amplitude given

in [20].

7.2 Twistor space integrands

General expressions for MHV amplitude integrands up to three loops (parity even and

odd) have also been given in momentum twistor space [29]. We will not review momentum

twistors here. The only information we will need is the relation to the six-dimensional

formalism reviewed in appendix B. When the Xi are consecutively lightlike separated (i.e.

Xi ·Xi+1 = 0) then we let XAB
i = Z

[A
i−1Z

B]
i . Now let’s consider various integrands as they

are expressed in [29]. All one-loop integrands are written in terms of a dual-conformal

pentagon integral:

Ii,j =
〈AB(i− 1, i, i+ 1) ∩ (j − 1, j, j + 1)〉〈X, i, j〉

〈AB, i− 1, i〉〈AB, i, i+ 1〉〈AB, j − 1, j〉〈AB, j, j + 1〉〈ABX〉
(7.5)

This can be rewritten in terms of a trace over X variables

Ii,j =
Tr(XX̃i+1XiX̃0XjX̃j+1)

(X0 ·Xi)(X0 ·Xi+1)(X0 ·Xj)(X0 ·Xj+1)(X0 ·X)
. (7.6)

Here the integration over twistors A, B has become integration over the X-space variable

X0. The variable X is a reference twistor meaning it should drop out of the sum which

gives the one-loop amplitude. Indeed the simplest way to deal with it is to set it to be one

of the external points, e.g. X = X5. So the one loop amplitude can be written entirely in

terms of a six-trace. Just as for the more familiar four-traces in QFT, the six-trace splits

as a parity odd term ε and a parity even term (multiple scalar products)

Tr(XX̃i+1XiX̃0XjX̃j+1)) = 4 i εX(i+1)i0j(j+1) + 4 (X0.X)(Xi+1.Xj+1)(Xi.Xj) + . . . (7.7)

where the dots indicate similar terms which can be obtained by taking all possible com-

binations of scalar products between the six entries of the trace with minus signs where

appropriate. We see immediately that the parity odd part of this twistor integrand will

yield exactly the same pentagon I(5)
2 derived from the correlator. After summing all dia-

grams, the parity even terms will also give the same sum over one-mass boxes we expect.
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Similarly at two loops, the n-point momentum twistor integrand in [29] is

M5 =
1

2

∑
i<j<k<l<i

〈AB(i− 1, i, i+ 1) ∩ (j − 1, j, j + 1)〉〈i, j, k, l〉
〈AB, i− 1, i〉〈ABi, i+ 1〉〈AB, j − 1, j〉〈AB, j, j + 1〉〈ABCD〉

× 〈CD(k − 1, k, k + 1) ∩ (l − 1, l, l + 1)〉
〈CD, k − 1, k〉〈CD, k, k + 1〉〈CD, l − 1, l〉〈CD, l, l + 1〉

(7.8)

which we can re-write in X-coordinates (the integration variables are AB = X0, CD = X0̄)

in the form:

1

2

∑
ijkl

[
Xi+1X̃iX0X̃j+1Xj

]AB [
Xk+1X̃kX0̄X̃l+1Xl

]CD
εABCD

(X0 ·Xi)(X0 ·Xi+1)(X0 ·Xj)(X0 ·Xj+1)(X0 ·X0̄)(X0̄ ·Xk)(X0̄ ·Xk+1)(X0̄ ·Xl)(X0̄ ·Xl+1)
(7.9)

To rewrite further we take advantage of ‘boundary cases’, i.e. at 5-points either j = i+ 1

or j = i+ 2 and l = k + 1. For example when j = i+ 1 we get:

Xi.Xi+2 Tr(X0̄X̃kXk+1X̃i+1Xl+1X̃l)

(X0 ·Xi)(X0 ·Xi+1)(X0 ·Xi+2)(X0 ·X0̄)(X0̄ ·Xk)(X0̄ ·Xk+1)(X0̄ ·Xl)(X0̄ ·Xl+1)
(7.10)

In this way and using (7.7) we indeed recover the two loop 5-point amplitude in the

form (4.6).

At three loops, starting from the equations given in [29] we are able to reproduce the

same set of graphs which we have produced here. The mapping for parity odd terms is very

simple and can be seen directly from drawing graphs dual to those given in [29], however

the parity even terms are significantly more complicated.

8 Conclusions

The supersymmetric correlator/amplitude duality in N = 4 gives a way of relating objects

with different numbers of outer points, or in- or outgoing particles, respectively. In the

present article we have exploited this feature of the construction to derive the integrand

of the colour ordered five-point amplitude up to five (and in the parity even sector six)

loops from that of the four-point function of energy-momentum multiplets, which was so

far chiefly associated with the MHV four-point amplitude [53, 54].

In order to take the step from four to five points, one of the integration vertices of the

four-point integrand has to be regarded as an outer point. Necessarily we lose one loop

order in this way. It turns out that the five-point integrand can only be uniquely fixed by

taking into account topological information: amplitude graphs are planar on the disc, while

the correlator integrands also contain products of two such graphs. We have used the one-

loop × higher-loop terms to gain more equations on the loop corrections to the five-point

amplitude. Stripping off a one-loop amplitude implies losing another loop order, though.

A beautiful picture then emerges where the parity even five-point `-loop amplitudes

correspond to the outsides of those five-cycles in the planar correlator f (`+1)-graphs which

have no vertices on their insides, whereas the parity odd amplitude graphs correspond to

the outsides of those five-cycles in the planar correlator f (`+2)-graphs which have a single

vertex on their inside.
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Our main new results are the four- and five-loop integrands for the five-point MHV

(or in this case equivalently the NMHV) amplitude. To this end, the analysis of [54]

was extended to the seven-loop integrand of the four-point correlation function of energy-

momentum multiplets based on the result [30] for the four-point MHV amplitude up to

seven loops. We have thus made a four-point into a five-point amplitude.

Indeed, that this picture works out to be consistent is rather remarkable and non-

trivial. The duality with four-point amplitudes can be shown to be consistent as long as

the corresponding amplitude graphs obey the rung rule [12] which in the correlator picture

simply corresponds to gluing pyramids onto the f -graphs [54]. Indeed the mere existence

of the four-point duality then predicts many of the coefficients of loop level amplitudes

(all up to three loops, the first two out of the three four-loop f -graphs, and the first six

out of seven five-loop f -graphs (see (2.7) etc.) What is the topological reason stopping

certain four-point f -graphs being determined from lower loops? Recall the refined four-

point duality (see footnote 5) 2F
(`)
4;m = M

(m)
4 M

(`−m)
4 . Thus f -graphs with four-cycles with a

non-trivial “inside” and “outside” (i.e. which contribute to m > 0) are determined entirely

in terms of lower loop amplitudes. Conversely f -graphs which give no contribution to

F
(`)
m for m > 0, i.e. which have no such four-cycle, cannot be determined from lower loop

four-point amplitudes (see the final two graphs in f (4) and f (5) in (2.7)).

For the five-point duality on the other hand the consistency is much more subtle and

we have no clear understanding (i.e. a generalisation of the pyramid gluing rung rule) for

why this works. The confusion comes from the many terms which appear when gluing two

ε123456 together, many of which have to cancel. However we have noticed that the structure

does indeed determine many of the non-rung-rule-determined coefficients. Indeed merely

the structure and consistency of the picture determines all coefficients up to f (5), i.e. the

mere existence of the amplitude/correlator duality at 4- and 5-points determines the four-

point correlator and amplitude to five loops and the five-point amplitude to four loops

(parity even) and three loops (parity odd). The first coefficient which is not determined

by these purely structural arguments is that of the 10-point (6 loop) f -graph:

Clearly any f -graph giving no contribution to F
(`)
5;m for m > 0 (i.e. whose 5-cycles have

either no vertices inside or none outside) will not be determined by lower loops and it

seems likely that the converse is true also: any f -graph contributing to F
(5)
5;m for m > 0

will be determined from lower loops via the refined duality (2.19) F
(`)
5;m = M

(m)
5 M̄

(`−m)
5 +

M
(`−m)
5 M̄

(m)
5 .6 Indeed we see that all the 5-cycles of the graph above have either nothing

6Here it is a little subtle since we only determine the parity odd part of M
(`−1)
5 from F (`) itself. However

the parity even part also contributes to this formula, and so unless there is complete cancellation between

parity even and parity odd, which seems unlikely, F
(`)
5;m and the corresponding f -graph will be determined

by the lower loop amplitude.
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inside or nothing outside them and this is the first such f -graph, confirming this idea.

Interestingly this graph is also the first f -graph with a coefficient different from ±1 it

having the coefficient 2.

The integrands we find are given in a local form in configuration space, which is very

closely related to the twistor integrands of [25, 29] as we demonstrated in section 7 in the

text: the twistor numerators involving parity odd parts can be rather painlessly rewritten in

terms of simple squares of distances and the structure ε12345v = ε(X1X2X3X4X5Xv) where

the X are coordinates on the projective light-cone in 6d related to those of Minkowski

space, see appendix B. This object is conformally invariant and can be broken down to a

sum of 4d terms of the type x2
1vε(x2vx3vx4vx5v). In the 6d epsilon, 1,2,3,4,5 denote the

outer points, and only the sixth variable is an integration point. All parity odd terms in

our results are of this type; epsilon terms with more than one integration vertex do not

occur. By the use of Schouten identities etc. one can remove any given point from an

epsilon contraction, but at the expense of introducing further denominator factors. Hence

there is freedom as to the writing of the end result, although the form we found is perhaps

the most natural one since it is manifestly free of higher poles like 1/x4
ij .

Interestingly, it is possible to generate the parity even part of the five-point amplitude

from the parity odd bit up to four-loops using a few universal rules for how to replace an

epsilon term. These rules depend on the other numerator terms multiplying the ε12345v. For

example clearly the one-loop result can be rewritten as a single pentagon upon replacing

iε123456 →
(
x2

16x
2
24x

2
35 +x2

26x
2
14x

2
35 +x2

36x
2
14x

2
25 +x2

46x
2
13x

2
25 +x2

56x
2
13x

2
24 + iε123456

)
. (8.1)

This is the only parity odd graph with a numerator involving an ε and nothing else. Other

numerators have various x2 products multiplying. If we make the following replacements

for a, b, c > 0:

ix2a
13ε123456 → x2a

13

(
x2

56x
2
13x

2
24 + x2

46x
2
13x

2
25 + x2

26x
2
14x

2
35 + iε123456

)
ix2a

13x
2b
14ε123456 → x2a

13x
2b
14

(
x2

56x
2
13x

2
24 + x2

26x
2
14x

2
35 − x2

16x
2
23x

2
45 + iε123456

)
ix2a

13x
2b
24ε123456 → x2a

13x
2b
24

(
x2

56x
2
13x

2
24 + x2

26x
2
14x

2
35 + x2

36x
2
14x

2
25 + iε123456

)
ix2a

13x
2b
14x

2c
24ε123456 → x2a

13x
2b
14x

2c
24

(
x2

56x
2
13x

2
24 + x2

26x
2
14x

2
35 + x2

36x
2
14x

2
25

− x2
16x

2
23x

2
45 − x2

46x
2
13x

2
25 + iε123456

)
(8.2)

and all forms related by cyclicty related in a similar way, then the parity odd graphs will

give the parity even graphs for free up to four loops. Beyond one loop, the easiest case

to check is obviously the two loop case (4.6) where we use the first replacement. This

procedure fails for the first time at 5 loops where we are left with a single parity even

graph which is not determined by the parity odd sector in this manner:
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This happens to be the single five-point amplitude graph generated by the ten-point f -

graph above whose coefficient is undetermined by consistency with the duality. So we see

that these rules for obtaining parity even graphs from parity odd are intimatey related to

the consistency of the whole system but we have not yet fully probed this.

Note that the twistor numerators of [25, 29] (cf. section 7.2) also combine even and

odd graphs and so the above rewriting may give expressions closer to those. One direction

for future work might indeed be to look for a universal numerator describing higher-loop

n-point amplitudes.

Another direction for future work would be to consider the six-point light-like limit.

Defining

F
(`)
6 := external factor× lim

x2
i i+1→0

(mod 6)

∫
d4x7 . . . d

4x6+`
f (`+2)

`!
(8.3)

where here the external factor is x2
12x

2
23x

2
34x

2
45x

2
56x

2
61x

2
13x

2
24x

2
35x

2
46x

2
51x

2
62 then we will find

the formula ∑
`≥0

a`F
(`)
6 = M6M6 + NMHV contribution . (8.4)

There are various complications arising here. Firstly the NMHV contribution needs

to be separated out (although this may be possible due to singularities in x2
14, x

2
25 and x2

36

which can only appear here and not in the MHV sector). Another complication arises

since there is no longer a distinction between product graphs and disc planar graphs. The

graph (one loop box)× (one loop box) can appear in a disc planar fashion and indeed does

appear in the two-loop six point result. Nevertheless we have seen that one can obtain

more information than appears at first sight from these considerations and this certainly

deserves further investigation.

We note that there are not believed to be any µ terms at five-points and thus the

results here should be valid to all orders in dimensional regularisation parameter ε by

writing the integrals in momentum space and allowing the integration momenta to live in

4− 2 ε dimensions.

Finally, our results at five loops and beyond are contained in various attachments to

the electronic version of this article, as detailed at the end of section 6.
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A The operation “cyc[]”

It is defined to be the weighted sum over cyclically ordered (including parity flip) external

points. Explicitly, for a function depending on only four out of the five external points this
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is defined as

cyc [f(x1, x2, x3, x4)] :=
∑

1≤i<j<k<l<i+5≤10

f(xi, xj , xk, xl) + f(xl, xk, xj , xi)

symmetry factor[f ]
(A.1)

whereas for a 5-point function it is defined as

cyc [f(x1, x2, x3, x4, x5)] :=
∑

1≤i<j<k<l<m<i+5≤10

f(xi, xj , xk, xl, xm) + f(xm, xl, xk, xj , xi)

symmetry factor[f ]

=

5∑
i=1

f(xi, xi+1, xi+2, xi+3, xi+4) + f(xi+4, xi+3, xi+2, xi+1, xi)

symmetry factor[f ]
.

(A.2)

Here all points are external and are mod 5. The symmetry factor is defined as the number

of terms left invariant under such permutations. So for example, for a four-point function

symmetry factor [f(x1, x2, x3, x4)] =
∣∣∣{f(xi, xj , xk, xl) = f(x1, x2, x3, x4) : 1≤i<j<k<l<i+5≤10

}∣∣∣
+
∣∣∣{f(xl, xk, xj , xi) = f(x1, x2, x3, x4) : 1≤i<j<k<l<i+5≤10

}∣∣∣ (A.3)

and similarly for a five-point function. Note that this insures that the argument of the

operation cyc[] always appears with weight 1 when expanding the result into inequivalent

terms, i.e.

cyc[f(x1, x2, x3, x4)] = f(x1, x2, x3, x4) + . . . (A.4)

Finally we note that we will be dealing with integrands in general. We define integrands to

be equal if they are equal up to a permutation of internal points, i.e. our functions have hid-

den dependence on internal variables f(x1, x2, x3, x4, x5) = f(x1, x2, x3, x4, x5;x6, . . . x5+`)

and we say

f(x1, x2, x3, x4, x5) = f(xi, xj , xk, xl, xm)

m (A.5)

f(x1, x2, x3, x4, x5;x6, x7, . . . x5+`) = f(xi, xj , xk, xl, xm;xσ6 , xσ7 , . . . xσ5+`
)

for some permutation σ of the internal variables x6, . . . x5+`.

B 4d Minkowski coordinates in 6d X-variables

In order to relate our five-point integrands to similar twistor integrands found in the lit-

erature and also to explain the origin of ε12345v used for our parity odd integrands, it is

extremely useful to view 4-dimensional Minkowski space as the (Klein) quadric inside RP5.

This, and its relation to momentum twistors in the context of dual conformal symmetry

for amplitudes was introduced in [61].

Specifically we can describe Minkowski space in terms of six projective coordinates XI

living in 2+4 dimensions and satisfying the null condition

X2
−1 +X2

0 −X2
1 −X2

2 −X2
3 −X2

4 = 0 (B.1)

As such the conformal group SO(2,4) then acts linearly on these coordinates. The four-

dimensional Minkowski space coordinates xµ, µ = 0, 1, 2, 3 can be obtained easily from
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these by choosing a suitable representation for the homogeneous coordinate XI .

XI ∼
(

1− x2

2
, xµ,

1 + x2

2

)
I = −1, 0, 1, 2, 3, 4 (B.2)

It is also useful — especially in relation to twistor integrands — to consider the spinorial

representation of the XI . Using that SO(2, 4) ∼ SU(2, 2) it is this representation which we

employ later to consider the integrands. There are two versions:

XI → X = (ΣI)X
I

XI → X̃ = (Σ̃I)X
I (B.3)

where the Σ’s are are 4× 4 sigma matrices in 6 dimensions. We can choose them to satisfy

(Σ̃I)AB =
1

2
εABCD(ΣI)

CD (B.4)

giving the relation

X̃AB =
1

2
εABCDX

CD. (B.5)

The Clifford algebra relations,

ΣIΣ̃J + ΣJ Σ̃I = Σ̃IΣJ + ΣIΣ̃J = 2 ηIJ (B.6)

where ηIJ is the flat metric in 2+4 dimensions, imply the following for any 6-vectors X, Y

XỸ + Y X̃ = 2X · Y XX̃ = X ·X . (B.7)

We also have that

εIJKLMNΣIΣ̃JΣKΣ̃LΣM Σ̃N = i14 . (B.8)

B.1 Different forms for ε123456

We now consider how we are to go about writing down conformal covariants. This can be

done either using vector X’s or spinorial X’s, in both cases we simply need to soak up all

indices. In the vectorial notation we can essentially use ηIJ or εIJKLMN to form invariants,

those obtained using a single εIJKLMN will be parity-odd. The covariants for 5-points and

below must necessarily be composed of only (XI ·XJ) whereas at six-points and above we

may also have the parity-odd object

ε123456 := εIJKLMNX
I
1X

J
2 X

K
3 X

L
4 X

M
5 XN

6 = det
(
Xi

I
)

(B.9)

Indeed one can see that at six points this is the unique parity odd covariant piece. One

can convert these invariants to four-dimensional notation straightforwardly by using (B.2)

XI ·XJ ∼ −
1

2
(xi − xj)2 (B.10)

ε123456 ∼
1

2

1

4!

∑
σεS6

(−1)σx2
σ1
ε(xσ2 , xσ3 , xσ4 , xσ5) (B.11)
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Note that the latter expression for ε123456 does not look translation invariant in terms of

Minkowski space variables. But of course it must be, and indeed an infinitesimal translation

xi → xi + a gives

δε123456 =
∑
σεS6

(−1)σ
(
a · xσ1ε(xσ2 , xσ3 , xσ4 , xσ5) + 2x2

σ1
ε(a, xσ3 , xσ4 , xσ5)

)
= 0 (B.12)

The first term vanishes due to a five term identity (expressing the fact that five points in

M4 are linearly dependent) and the second term vanishes since it is independent of xσ2

and xσ6 which appear antisymmetrically.

We can therefore rewrite the expression to make the translation invariance manifest,

eg by translating by x6 giving

ε123456 ∼
1

2

1

4!

∑
σεS5

(−1)σx2
σ1 6ε(xσ2 6, xσ3 6, xσ4 6, xσ5 6) . (B.13)

It is also useful however (to compare with results in the literature which are often

written in terms of scalar integrals) to give another writing of the object ε123456.

For this we first define the 6-vector Y as

YI = εIJKLMNX
J
1 X

K
2 X

L
3 X

M
4 XN

5 (B.14)

so that ε123456 = −Y.X6 and then we decompose Y in terms of the five vectors Xi and the

vector I = (1, 0, 0, 0, 0,−1) which represents infinity in Minkowski space. Including infinity

breaks conformal invariance but allows us to write all integrands in terms of purely scalar

integrands which is common in the literature.

So we write

Y =
5∑
i=1

αiXi + βI (B.15)

and if we can solve for the coefficients αi, β we thus have an expression for ε123456 as

ε123456 = −
5∑
i=1

αiXi.X6 − β = 1/2

5∑
i=1

αix
2
i6 − β . (B.16)

To solve for by the αi, β simply dot (B.15) with Xj , Y , to obtain the matrix equation((
Xi

I

)
.(Xj , I)

)(
αi
β

)
=

(
0

Y.I

)
(B.17)

where we use that Xj .I = 1. Noting further that

Y.I = −det

(
Xi

I

II

)
=

1

4!

∑
i∈S5

(−1)σε(xσ1 , xσ2 , xσ3 , xσ4) = ε(x12, x23, x34, x45) , (B.18)

where the last equation can be obtained by simply expanding out the right-hand side

which will be recognised as ε(p1, p2, p3, p4) in momentum space. Further useful equations

straightforward to derive are

det(Xi.Xj) = − 1

16
x2

13x
2
24x

2
35x

2
41x

2
52 (B.19)
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det

((
Xi

I

)
.(Xj , I)

)
= det

(
Xi

I

II

)2

= ε(x12, x23, x34, x45)2 . (B.20)

(Note that the first equation above is the only one which is not valid for arbitrary values of

space-time points Xi, but only in the five-point light-like limit where Xi.Xi+1 = 0.): thus

inverting (B.17) and using these formulae we obtain

α1 =
−x2

24x
2
35

(
x2

13x
2
52 − x2

24x
2
13 + x2

35x
2
24 − x2

41x
2
35 + x2

52x
2
41

)
16 ε(x12, x23, x34, x45)

and cyclic for α2, . . . α5

β =
−x2

13x
2
24x

2
35x

2
41x

2
52

16 ε(x12, x23, x34, x45)
. (B.21)

The αi can be further rewritten in the simpler form in momentum space via

α1 =
s2s3

4 ε(p1, p2, p3, p4)
Tr(/p4/p5/p1/p2

) and cyclic for α2, . . . α5 (B.22)

where pi = xi i+1, si = x2
i i+2 = (pi + pi+1)2.
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