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computations of Rényi entropy across non-spherical entangling surfaces in strongly coupled

4d CFTs. Furthermore, we address the possibility that in a wide class of 4d CFTs, the

flat space spherical Rényi entropy also fixes the n-dependence of the extrinsic curvature

contribution, and hence that of arbitrary entangling surfaces. Our results have intriguing

implications for the structure of generic modular Hamiltonians.

Keywords: Conformal and W Symmetry, AdS-CFT Correspondence, Holography and

condensed matter physics (AdS/CMT)

ArXiv ePrint: 1407.8171

Open Access, c© The Authors.

Article funded by SCOAP3.
doi:10.1007/JHEP01(2015)080

mailto:aitor@princeton.edu
mailto:perl@princeton.edu
http://arxiv.org/abs/1407.8171
http://dx.doi.org/10.1007/JHEP01(2015)080


J
H
E
P
0
1
(
2
0
1
5
)
0
8
0

Contents

1 Introduction 2
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1 Introduction

It has become increasingly apparent that quantum entanglement is a profound aspect of

quantum field theories. Given a reduced density matrix ρ, a natural observable is the Rényi

entropy,

Sn =
1

1− n
log Trρn , (1.1)

where n is a non-negative integer. Upon analytic continuation of n to the reals, the n→ 1

limit yields the entanglement entropy, SEE = −Trρ log ρ. We will be concerned with the

degree of entanglement between two spatial regions A, Ā of a quantum system at fixed

time, in which case ρ is obtained by tracing over the degrees of freedom of Ā.

We now know that entanglement entropy probes the fundamental structure of quantum

field theories. For instance, suitably defined, it can be viewed as a dimension-independent

measure of degrees of freedom in conformal field theories, which furthermore has a beautiful

and robust geometric construction in the context of the AdS/CFT correspondence [1]. The

set of Rényi entropies, on the other hand, contains total information about the spectrum of

ρ, yet its relations to fundamental aspects of quantum field theory and holographic space-

time are relatively poorly understood. The broad purpose of this paper is to strengthen

both of these relations.

In quantum field theory, one can compute Rényi entropy by passing to Euclidean time

and inserting a conical deficit around the entangling surface Σ = ∂A [2]. The Rényi entropy

will be given in terms of the partition function Zn of the geometry with a conical excess of

2π(n− 1) across Σ:

Sn =
logZn − n logZ1

1− n
. (1.2)

However, this conical singularity introduces a UV divergence, which we regulate by putting

a cutoff ǫ away from the singularity. This results in the following general structure:

Sn =
ad−2(n)

ǫd−2
+
ad−4(n)

ǫd−4
+ . . .+ aeven(n) log ǫ+ a0(n) + . . . (1.3)

where the log term only appears in even dimensions. In even dimensions, in analogy with

the entanglement entropy, the “universal” term of the Rényi entropy is the log ǫ term,

aeven(n); in odd dimensions, the universal term is the constant term a0(n).

In practice, it is challenging to actually compute these functions. In this paper we

are going to develop a “Rényi perturbation theory” in deformations of the reduced density

matrix, applicable in general quantum field theories. This will be shown to boil down

to computations of correlation functions of the deforming field theory operators on the

aforementioned conical spacetime.

To see what this is good for, we will derive new non-perturbative results regarding the

geometric dependence of Rényi entropy. The functions ai(n) in (1.3) are implicit functions

of the shape of the entangling surface, Σ. The shape-dependence of Rényi entropy is

generally complicated, and often neglected in favor of the study of highly symmetric (e.g.

planar or spherical) entangling surfaces. An obvious and interesting application of our

perturbative formalism is to the case of “geometric perturbations”, where either the shape
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of Σ or the background geometry on which the quantum field theory lives is deformed. In

this case, the deformation is controlled by the stress tensor. This type of perturbation was

considered for the entanglement entropy in [3]. The linearized perturbation of the Rényi

entropy, for example, is given by the simple form

δ(1)Sn =
n

2(1− n)

∫

M

(
〈Tµν〉n − 〈Tµν〉1

)
hµν (1.4)

where hµν is the geometric perturbation, M is the manifold on which the quantum field

theory lives, and 〈Tµν〉n is the stress tensor expectation value on the conical spacetime in

the given state. Taking the n→ 1 limit gives the entanglement results of [3].

If one focuses on geometric perturbations of the vacuum Rényi entropy in conformal

field theories across a plane or a sphere, which are conformally equivalent configurations [4],

〈Tµν〉n takes a simple form, and (1.4) can be explicitly evaluated for a given hµν . In

particular, one can use the conformal transformation of [4] to recast (1.4) as a statement

about conformal field theory on the hyperbolic cylinder, S1×H
d−1. Writing the expectation

value of the stress tensor in terms of the partition function using the usual thermodynamic

relations, the definition of the Rényi entropy (1.2) leads to the following tidy form for the

n-dependence of the perturbation (1.4):

δ(1)Sn(Σ = Sd−2) ∝ n

1− n
(Sn=1 − Sn − (n− 1)S′

n)
∣
∣
Σ=Sd−2 (1.5)

where S′
n ≡ ∂nSn. (Recall that Sn=1 = SEE .)

Actually, (1.4) and (1.5) are even more powerful: for even-dimensional conformal field

theories, they imply constraints on the Rényi entropy that are non-perturbative in the

shape of Σ and the background geometry. To explain this, we first note that the universal

pieces aeven(n) and a0(n) are further constrained in conformal field theories. This is espe-

cially true in even dimensions, where they are effectively determined by scale invariance to

be local functionals of the geometry of Σ. In four dimensions, for example, the structure

of this term is [5]

Sn =

(

−fa(n)
2π

∫

Σ
RΣ − fb(n)

2π

∫

Σ

(
Ka

ijK
a
ji −

1

2
(Ka

ii)
2
)
+
fc(n)

2π

∫

Σ
Cab

ab

)

logR/ǫ . (1.6)

RΣ is the Ricci scalar of Σ, Ka
ij is the extrinsic curvature in the transverse direction xa,

and Cab
ab is the Weyl tensor projected in the directions transverse to Σ. The functions

fi(n) are theory-dependent: fa(n) is related to the thermal entropy of the CFT on the hy-

perboloid, S1
n×H

d−1 with β = 2πn [6], but relatively little is known about fb(n) and fc(n).

When n = 1, fa(1) = a and fb(1) = fc(1) = c, and this formula reduces to Solodukhin’s

formula [7] for entanglement entropy.1

We will show that (1.4) and (1.5) imply that fa(n) and fc(n) are not independent

functions: rather,

fc(n) =
n

n− 1
(a− fa(n)− (n− 1)f ′a(n)) . (1.7)

1In our conventions, a real scalar has a = 1
360

, c = 1
120

.
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Equivalently, fc(n) can finally be given an a priori definition: namely, it is proportional

to the expectation value of the stress tensor in the conical background. The latter was

studied for free theories in [8]. Analogous results apply in all even-dimensional CFTs.

Among other applications to be discussed, the relation (1.7) and its higher-dimensional

analog allows us to perform the first holographic computations of Rényi entropy in strongly

coupled even-dimensional CFTs across non-spherical entangling surfaces: the function

fa(n) can be computed via hyperbolic black hole entropy in a given bulk theory [6], and

passed through (1.7) to determine fc(n). At n = 1/2, this result can also be framed as a

computation of holographic bipartite logarithmic negativity [9].

Similarly, using the second-order geometric perturbations, one can also define fb(n) in

terms of integrated stress tensor two-point functions on the conical spacetime. One would

like to test the recent conjecture that fb(n) = fc(n) for all CFTs. This conjecture was

based on the behavior at n = 1, and a lattice calculation for the free conformal scalar

and fermion [10] that produced this result. Carrying the second order calculation to its

end, however, is rather complicated, due to features of conformal field theory on the cone.

We are not able to prove that fb(n) = fc(n), but we develop arguments supporting this

conjecture for a large class of CFTs, which includes the free fields, N = 4 super-Yang-Mills

(SYM), and CFTs with classical gravitational duals.

In particular, this implies that knowing hyperbolic black hole entropy in type IIB

supergravity is sufficient to compute the strong coupling behavior of Rényi entropy across

any entangling surface in N = 4 super-Yang-Mills and its counterparts.

These results have further intriguing consequences. It is natural to ask whether there

is a feasible holographic prescription for computing Rényi entropy for non-spherical sur-

faces directly, e.g. involving some deformations of hyperbolic black holes. We comment on

the challenges to such an approach and propose “deformed hyperboloid” geometries that

generalize the conformal mapping of Casini, Huerta and Myers to non-spherical entangling

surfaces. We also discuss the question of locality of the modular Hamiltonian for generic

surfaces. We argue that, at least for CFTs in flat space, the sphere is the only entangling

surface for which the modular Hamiltonian is local. By expanding Rényi entropy around

n = 1 (in the spirit of [11]), our results imply that even non-local modular Hamiltonians

have correlators that are largely determined by correlators of the CFT stress tensor, as we

explicitly show.

The remainder of the paper is organized as follows. In section 2, we develop the Rényi

perturbation theory. In section 3, we analyze the consequences of first order perturbations

for Rényi entropy in even-dimensional CFTs for generic entangling surfaces, including the

result (1.7). Section 4 discusses some applications of our results, including holographic

calculations for non-spherical entangling surfaces. Section 5 studies the second order per-

turbations in the general context of CFT on the cone. In section 6, we comment on the

nature of the modular Hamiltonian and the use of conformal transformations in computing

Rényi entropy for generic surfaces. We close in section 7 with an open-ended discussion.

Appendices contain some computational details and peripheral material.
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2 Rényi perturbation theory

We begin with some basic definitions to establish notation. We start with a d-dimensional

Euclidean quantum field theory (QFT) living on some manifold M with metric gµν , and

foliate the spacetime along the direction of a coordinate acting as Euclidean time. On a

fixed time slice, we choose a spatial region, A, bounded by a (d− 2)-surface, Σ = ∂A. We

then form the reduced density matrix, ρ, obtained by tracing over all degrees of freedom

living in the complement of A; the Rényi entropy, Sn, is defined as in (1.1).

We take ρ to be normalized, Trρ = 1. The dependence of ρ on the data (M, gµν ,Σ)

and on the state is left implicit. Because ρ is a positive Hermitian operator, one is free to

define the modular Hamiltonian, K, as follows:

ρ =
e−K

Tre−K
. (2.1)

We will say more about this object later.

The reduced density matrix ρ also has a path integral representation. One can write

Trρn =
Zn

Zn
1

(2.2)

where Zn is the partition function of the QFT on the n-fold covering space of M, denoted

Mn. In terms of Zn, the Rényi entropy is given in (1.2). The “replica manifold” Mn

is endowed with a Zn replica symmetry. In the language of density matrices, the replica

symmetry is manifest as cyclicity of the trace.

We now initiate a perturbative expansion of the Rényi entropy around a given reduced

density matrix in each of these pictures. We then specialize to geometric perturbations,

which probe the shape (Σ) and background geometry (gµν) dependence of the Rényi en-

tropy.

2.1 Rényi perturbation theory I: density matrix

Consider an infinitesimal perturbation of the reduced density matrix,

ρ = ρ0(1 + δρ) . (2.3)

Normalization of ρ implies Tr(ρ0δρ) = 0. We wish to expand Trρn. Before doing so, it is

convenient to write Trρn as

Trρn = Tr

n∏

j=1

ρj (2.4)

where j = 1, . . . n indexes replicas. This becomes important in perturbation theory, where

there are independent correlations among replicas that cannot be related by replica sym-

metry. Accordingly, we denote the perturbation of the density matrix living on the j’th

replica as δρj . To second order, the change in Trρn is

δ(Trρn) ≈ nTr(ρn0δρ) +
∑

j<k

Tr(δρjρ
k−j
0 δρkρ

n−k+j
0 ) +O(δρ3) . (2.5)
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We have used replica symmetry to simplify these expressions. Its effect on the linear

term is to reduce it to n times a one-point function of δρ on Mn, where δρ lives on any

fixed replica, that is,
n∑

j=1

Tr(ρn0δρj) = nTr(ρn0δρ1) . (2.6)

The quadratic perturbation, however, is more subtle because of the fact that ρ is an op-

erator. Each term in the quadratic perturbation can be viewed as a two-point function

between perturbations living on different replicas. We will make this interpretation more

transparent in the path integral picture; for the time being, let us simply write the lin-

earized perturbation of the Rényi entropy, δ(1)Sn, using (1.1):

δ(1)Sn =
n

1− n

Tr(ρn0δρ1)

Trρn0
. (2.7)

That is, δ(1)Sn is proportional to a one-point function of δρ1 in the replicated space Mn,

defined with respect to the reduced density matrix ρ0. We write this as

δ(1)Sn =
n

1− n
〈δρ1〉n . (2.8)

2.2 Rényi perturbation theory II: path integral on Mn

Consider a manifold M comprised of a τ circle times another manifold, M . The simplest

example is the hyperboloid, M = Hd ≡ S1 × H
d−1 where the S1 coordinate τ has period

τ ∼ τ + 2π, but this applies to more general geometries with a periodic coordinate. For

a general theory with fields φ, we can write its action I in terms of these τ coordinates:

I =
∫ 2π
0 dτL[φ(τ)]. Now we can implement the replica trick by changing the radius of the

circle, τ ∼ τ + 2πn, while keeping the metric periodic under τ ∼ τ + 2π.

In other words, we have n replicas with a Zn replica symmetry among them. The

partition function will just be given by the path integral in the multicovered space:

Zn =

∫

φ(2πn)=φ(0)
Dφ e−In[φ] . (2.9)

When this τ circle is an isometry of the metric, this is just a finite temperature partition

function with β = 2πn. This reconnects easily with the usual density matrix approach to

computing Rényi entropy

−n∂n logZn = −
∫

S1
n×M

〈Tττ 〉n = −2πn

∫

M
〈Tττ 〉n = n〈K〉n . (2.10)

That is, Zn =
∫
Dφe−In = Tre−nK . If M doesn’t have a τ isometry, one cannot directly

identify the modular Hamiltonian in this manner because the integrand will depend on τ .

We have presented the argument with an explicit circle for simplicity, but, of course, one

can also apply it to other geometries like a cone; there we also have a (warped) τ circle.

Now we can do perturbation theory from this path integral approach rather easily: we

want to compute

δSn =
1

1− n
(δ logZn − nδ logZ1) . (2.11)

– 6 –
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We perturb the action In, and expand. Let us denote this perturbation as

δIn = −
∫

Mn

gO (2.12)

where g is a perturbative coupling and O is a QFT operator. Using (2.9), the perturbative

expansion of logZn is

δ logZn = gn

∫

M1

〈O〉n +
g2

2
n

∫

M1

∫

Mn

〈OO〉n,c +O(g3) . (2.13)

The “c” subscript indicates a connected correlator, on account of the log.

Note that we have used replica symmetry to say that2

∫

Mn

〈O〉n = n

∫

M1

〈O〉n . (2.14)

This is equivalent to (2.6). However, when we deal with higher order correlators appear-

ing in the O(g2) term and beyond, we cannot pull out another factor of n because there

is interaction among replicas: two-point functions of O depend nontrivially on the spac-

ing between their respective copies. Analogous considerations apply, for instance, in the

classification of operators of Zn orbifold CFTs.

This expansion may seem deceptively simple, but let us compare the second order

perturbation in (2.13) with the analogous term in the density matrix approach. (For

simplicity, we temporarily consider the unnormalized reduced density matrix, which we call

ρ̃.) When one talks about second order perturbations of the Rényi entropies by thinking

about a QFT in the replicated space Mn, two types of correlations appear: one coming

from expanding each density matrix to second order, and the other from expanding two

different density matrices to first order. If we introduce the notation Oj as the integrated

operator over the j’th replica,

Oj =

∫ 2πj

2π(j−1)
dτO (2.15)

then the unnormalized perturbation δρ̃j on replica j is

δρ̃j = gOj +
g2

2
O2

j +O(g3) . (2.16)

Expanding log Tr(ρ̃+ δρ̃)n, one finds a second order contribution

log Tr(ρ̃+ δρ̃)n|g2 =
g2

2

∑

j

〈OjOj〉n,c +
g2

2

∑

k 6=j

〈OjOk〉n,c

=
g2

2
n〈O1O〉n,c .

(2.17)

We have used the replica symmetry to fix j = 1, and the notation

O =
n∑

j=1

Oj =

∫ 2πn

0
dτO =

∫

Mn

O (2.18)

2From the CFT point of view, the one-point function is periodic with τ ∼ τ + 2π.
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to denote the operator integrated over the full space Mn. The result (2.17) is equivalent

to the second order result (2.13) from the path integral.

To summarize, the linear and quadratic perturbations of the Rényi entropy induced

by an action perturbation (2.12) are

δ(1)Sn =
n

1− n

(∫

M1

〈O〉n −
∫

M1

〈O〉1
)

δ(2)Sn =
n

2(1− n)

(∫

M1

∫

Mn

〈OO〉n,c −
∫

M1

∫

M1

〈OO〉1,c
)

.

(2.19)

In appendix B, we make some comments about how to extract the correct n → 1 results

from these expressions.

2.3 First order geometric perturbations

Having established a general framework for Rényi perturbation theory, we begin study of

the first order perturbation in (2.19). In particular, we specialize to geometric perturba-

tions [3]. These are defined as those δρ which are induced by either a shape deformation

of Σ, or a metric deformation of the background geometry gµν . One can write the metric

near Σ in “adapted” coordinates, such that this metric — call it ḡµν(Σ) — is a function

of gµν and the shape of Σ. Then geometric perturbations are conveniently packaged as

perturbations of the adapted metric,

g′µν(Σ) = ḡµν(Σ) + hµν(Σ) . (2.20)

Henceforth, we drop the explicit Σ dependence of the metric.

As shown in [3], for such perturbations,

δρ =
1

2

∫

M

(
Tµν − 〈Tµν〉1

)
hµν (2.21)

where the stress tensor is defined as Tµν = − 2√
g

δL
δgµν

. This is to be understood as sitting

inside a path integral. Indeed, (2.21) is quite clear from the path integral approach above,

whereupon one simply chooses the deforming operator

O =
1

2
Tµνhµν . (2.22)

Plugging into the first line of (2.19) yields

δ(1)Sn =
n

2(1− n)

∫

M

(
〈Tµν〉n − 〈Tµν〉1

)
hµν . (2.23)

This is a simple and interesting result: δ(1)Sn is fixed by the difference in stress tensor

expectation values between the replicated and original QFTs. Taking the limit n → 1

reproduces the entanglement result of [3].

To actually compute (2.23), one needs an explicit expression for the adapted metric

perturbation hµν . Following the notation of [3], we use {xa}, a = 1, 2 to denote the two

– 8 –
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coordinates transverse to Σ, and {yi}, i = 1 . . . d − 2 to denote the coordinates along Σ.

Then to O(x2) in the distance from Σ, the adapted metric is

ds2 =

(

δab −
1

3
Racbd|Σxcxd

)

dxadxb +

(

Ai +
1

3
xbεdeRibde

∣
∣
Σ

)

εac x
adxcdyi (2.24)

+
(

γij + 2Kaij x
a + xaxc

(
δacAiAj +Riacj |Σ +KcilK

l
a j

))

dyidyj +O(x3)

γij is the induced metric of the surface; Ka
ij the extrinsic curvature corresponding to direc-

tion a; Rabcd the Riemann tensor evaluated on Σ; ε is the induced volume form in the trans-

verse space; and Ai is a KK-like vector that comes from the gia components. We use the

conventions of [3] where further definitions are provided. This foliation of the metric near

the entangling surface was particularly useful in [12–14] to justify the prescription of [1, 15].

2.4 Symmetric entangling surfaces in flat space CFTs

Our results so far apply to QFTs with general (M,Σ, gµν). Let us specialize to the case

of CFTs in flat space, M = R
d, with a planar entangling surface. In such a case, (2.23)

simplifies even further. The covering space is the conical spacetime Mn = Cn × R
d−2,

where Cn has a conical excess 2π(n− 1). We can write its metric as

ds2Cn×Rd−2 = dr2 + r2dτ2 + δijdy
idyj , τ ∼ τ + 2πn . (2.25)

Σ sits at r = 0 along {yi}, and (x1, x2) = (r cos τ, r sin τ). Tracelessness and maximal

symmetry fix the stress tensor to take the diagonal form

〈T τ
τ 〉Cn×Rd−2 =

F (n)

rd

〈Tµ
ν〉Cn×Rd−2 = − δµν

d− 1

F (n)

rd
(µ, ν 6= τ) (2.26)

where F (n) is a theory-dependent function that vanishes linearly as n → 1. Thus, we see

from (2.23) that δ(1)Sn is proportional to the energy density T τ
τ on Cn × R

d−2:

δ(1)Sn(Σ = R
d−2) =

nF (n)

2(1− n)

∫

M

1

rd

(

hτ τ −
1

d− 1

d−1∑

i=1

hii

)

(2.27)

where
∫

M is now shorthand for

∫

M
≡
∫

Σ
dd−2y

∫ 2π

0
dτ

∫ ∞

0
dr r (2.28)

As is well-known, a planar entangling surface embedded in flat space can be conformally

mapped to various other configurations, including to a spherical entangling surface in flat

space [4]. The reduced density matrix can also be conformally mapped to a thermal density

matrix of the CFT living on the hyperboloid, Hd
n ≡ S1

n×H
d−1, at inverse temperature β =

2πn. (We set the length scale of Hd
n to one.) The mapping from the conical metric (2.25)

to Hd
n in Poincaré coordinates is particularly simple,

ds2Hd
n
=

1

r2
ds2Cn×Rd−2 = dτ2 + ds2

Hd−1 , τ ∼ τ + 2πn . (2.29)

– 9 –
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Under this map, ρ and K are unitarily equivalent to ρT and H, the thermal density matrix

and Hamiltonian on Hd
n, respectively,

ρ = U−1ρTU

K = U−12πHU (2.30)

and the partition function Zn becomes thermal. The stress tensor is constant on Hd
n,

〈T τ
τ 〉Hd

n
− 〈T τ

τ 〉Hd = F (n)

〈Tµ
ν〉Hd

n
− 〈Tµ

ν〉Hd = −δµν
F (n)

d− 1
, µ, ν 6= τ (2.31)

where Hd ≡ Hd
n=1. Note that 〈Tµ

ν〉Hd 6= 0 in even dimensions.

We can write equation (2.31) in yet another way that is particularly useful. The

energy density on Hd
n is given by the usual thermodynamic relation ∂n logZn =

2πVol(Hd−1)〈T τ
τ 〉Hd

n
. We can now use this relation to take derivatives of (1 − n)Sn and

express them in terms of the one-point function of the stress tensor. Using the path integral

definition of the Rényi entropy across the sphere, (2.31) can be re-written as

2πVol(Hd−1)F (n) = (Sn=1 − Sn − (n− 1)S′
n)
∣
∣
Σ=Sd−2 (2.32)

where S′
n ≡ ∂nSn. (Recall that Sn=1 = SEE .) We have thus shown that the first order

geometric perturbation of the Rényi entropy across a plane, defined in (2.27), is a linear

function of the unperturbed Rényi entropy across a sphere and its first n-derivative. As we

exploit in the next section, this result has powerful implications in even-dimensional CFTs.

We make two related comments before moving on:

1. The function F (n) was studied many years ago in the rather different context of

cosmic strings [8]. The relation (2.32) forges a relationship between spherical Rényi

entropy and stress tensors in cosmic string backgrounds. (2.32) follows trivially from

the definition of F (n) in (2.26) by a conformal transformation. [16] used it to com-

pute the entanglement entropy (EE), but we would like to point out that one can

also extract results at finite n. To our knowledge, F (n) has only previously been

(knowingly) computed in a handful of free CFTs in various dimensions.

2. Note that F (n) is basically the same thing as what [6] calls the dimension of a

spherical twist operator. That is, one can think of the conical background as being

generated by the insertion of a twist operator along Σ: for some QFT operator O,

〈O〉n =
〈Oe−(n−1)K〉1
〈e−(n−1)K〉1

(2.33)

where K is the modular Hamiltonian associated to ρ. When O = T , one can interpret

the one-point function of the stress tensor in the conical background as the scaling di-

mension of the twist operator, hn. For a spherical entangling surface, hn = 2πn
d−1F (n).

3

Using [4, 6] computed hn for spherical twist operators (and hence F (n)) at strong

coupling using holography. See [17] for recent progress regarding twist operators.

3Note that there is a factor of n because [6] considers the stress tensor to be summed over replicas while

we are putting it at a point of the replicated space.
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3 Rényi entropy for arbitrary shapes in even-dimensional CFTs

In the vacuum of even-dimensional CFTs, the universal, logarithmic term in the Rényi

entropy is constrained to take the following schematic form:

Sn|log =
∑

i

fi(n)gi(Σ, gµν) logR/ǫ . (3.1)

The functions gi(Σ, gµν) are local integrals over Σ of conformally invariant combinations

of curvatures, and the theory-dependent functions fi(n) contain the full n-dependence.

Neither the local form of Sn, nor the factorization of shape dependence and n-dependence,

holds for the finite term of odd-dimensional CFT Rényi entropy.

Perhaps surprisingly, the form (3.1) can be used in conjunction with our perturbative

approach to powerful effect: by introducing geometric perturbations around the plane in flat

space, we can bootstrap our perturbative first order results to determine relations among

the fi(n), which were previously thought to be independent functions. Such relations hold

in full generality.

We start in the vacuum of a 4d CFT, where we show one of our main results:

given (1.6), the function fc(n) is fixed in terms of fa(n). That is, the n-dependence of

the Rényi entropy across an arbitrary entangling surface Σ which does not turn on fb(n) is

fully fixed by the Rényi entropy across Σ = S2. We then show similar results in 6d CFTs,

and provide a new explanation of why the Rényi entropy takes the form (3.1) in general

even dimensions.

In what follows, it will prove handy to have the explicit expression for the regulated

hyperbolic volume:

Vol(Hd−1) =
π

d
2

Γ(d2)
×
{

(−1)
d−1
2 , d odd

(−1)
d
2
−12π−1 logR/ǫ , d even .

(3.2)

3.1 d = 4

For convenience, we briefly review what is known about 4d CFT vacuum Rényi entropy.

3.1.1 Review

Consider the formula (1.6) for the universal part of the 4d CFT Rényi entropy in vacuum,

which we repeat here:

Sn =

(

−fa(n)
2π

∫

Σ
RΣ − fb(n)

2π

∫

Σ

(
Ka

ijK
a
ji −

1

2
(Ka

ii)
2
)
+
fc(n)

2π

∫

Σ
Cab

ab

)

logR/ǫ (3.3)

When Σ = S2, only the first term contributes, leaving

Sn(Σ = S2) = −4fa(n) logR/ǫ =
2

π
fa(n)Vol(H

3) . (3.4)

In this case, the modular Hamiltonian, call it KSph, is local:

KSph = −2π

∫

H3

Tττ . (3.5)
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As we saw earlier, it can be conformally mapped to the thermal Hamiltonian of the CFT

living on H4
n.

Near n = 1, fa(n) behaves as [11]

fa(n) ≈ a− c

2
(n− 1) + . . . (3.6)

where (a, c) are central charges defined via the conformal anomaly,

〈Tµ
µ〉 = − a

(4π)2
E4 +

c

(4π)2
CµνρσC

µνρσ (3.7)

where E4 is the Euler density. To derive (3.6), one uses (3.5) in conjunction with the

general result [11] that the expansion of Sn near n = 1, for any entangling surface, is

nothing but an expansion in connected correlators of K,4

Sn = S1 +
∞∑

m=1

(−1)m

(m+ 1)!
〈K . . .K
︸ ︷︷ ︸

m+1

〉1,c (n− 1)m . (3.8)

So in the expansion of fa(n), terms of O((n − 1)m) are fixed by connected (m + 1)-point

functions of Tττ on R
4.

At arbitrary n, fa(n) has been computed for free scalars, fermions and vectors using

heat kernel methods on H4
n [5, 16, 19]. It has also been computed for 4d CFTs at strong

coupling dual to Einstein gravity and higher derivative corrections thereof [6], by using the

conformal mapping of [4] and AdS/CFT computations of hyperbolic black hole entropy.

Otherwise, little is known about fa(n).

Even less is known about the functions fb(n), fc(n). The former is isolated by consid-

ering a cylindrical entangling surface, Σ = S1 × R; then

Sn(Σ = S1 × R) = − ℓ

2R
fb(n) logR/ǫ , (3.9)

with ℓ, R the length and radius of the cylinder, respectively. At n = 1, fb(1) = fc(1) = c.

Higher order terms in an expansion around n = 1 are determined in principle by (3.8),

but cannot be (and have not been) computed without detailed knowledge of K for non-

spherical Σ. For general n, fc(n) has only been computed for free scalars, fermions and

vectors; fb(n) was recently computed for free conformal scalars and fermions [10], and

found to equal fc(n). It was conjectured in [10] that, for general CFTs,

fb(n) = fc(n) . (3.10)

We later provide new arguments as to when this may or may not be the case. Note that

neither fb(n) nor fc(n) has ever been computed holographically.

In sum, fa(n), fb(n) and fc(n) appear to be independent functions, although

fb(n) = fc(n) in a to-be-determined class of theories that includes free conformal scalars

and fermions.

4There are subtleties in this expansion related to the proper definition of K, even for the sphere. For an

example of this in the context of the 4d free conformal scalar, see [18].
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3.1.2 New results

In fact, our perturbative results (2.27) and (2.32) imply that fc(n) is not independent of

fa(n). Starting from (3.3), consider a linearized geometric perturbation around flat space.

As discussed in [3], only the Weyl term contributes at this order:

δ(1)Sn =

(
fc(n)

2π

∫

Σ
Cab

ab

)

logR/ǫ . (3.11)

We now compare this to our general perturbative expression (2.27) in d = 4. We are

interested in extracting the log term that is linear in curvature fluctuations from the integral

δ(1)Sn =
nF (n)

2(1− n)

∫

Σ
d2y

∫ 2π

0
dτ

∫ ∞

ǫ/R
dr

1

r3



hτ τ −
1

3
hrr −

1

3

∑

i=1,2

hyiyi



 . (3.12)

We have imposed a cutoff at r = ǫ/R near the entangling surface at r = 0. By dimensional

analysis, a log ǫ/R term will only arise from terms of O(r2) ∼ O(x2). Examining (2.24),

we only need the following terms of the induced metric fluctuation:

hij = xaxcRiacj , hab = −1

3
Racbdx

cxd . (3.13)

Using (x1, x2) = (r cos τ, r sin τ), one passes to polar coordinates in the transverse space

and straightforwardly integrates (3.12). The angular integrals require that xaxc → δacr2

times some angular functions. Extracting the logarithmic piece of the radial integral yields

the following result for δ(1)Sn:
5

δ(1)Sn =

(
π

2

n

n− 1
F (n)

∫

Σ
Cab

ab

)

logR/ǫ . (3.15)

Equating this with (3.11), we obtain

fc(n) = π2
n

n− 1
F (n) . (3.16)

This gives a first principles definition of fc(n): it is proportional to the energy density on

the conical spacetime Cn × R
2. Furthermore, we can rewrite (3.16) by trading F (n) for

fa(n) using (2.32) and (3.4), upon which we arrive at the following relation:

fc(n) =
n

n− 1

(
a− fa(n)− (n− 1)f ′a(n)

)
. (3.17)

This is one of our main results. We have shown that if
∫

ΣTrK2 − 1
2K

2 = 0, the n-

dependence of 4d CFT vacuum Rényi entropy across an arbitrary surface Σ is fully fixed

by fa(n).

In section 4, we will discuss some applications of this result, including the first deriva-

tions of Rényi entropy at strong coupling across non-spherical surfaces. For now let us

make some comments:
5We have used the result that under the integral over Σ without boundary,

∫

Σ

C
ab
ab =

1

3

∫

Σ

(

δ
ac
δ
bd
Rabcd + δ

ac
δ
ij
Riacj

)

. (3.14)
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• It is straightforward to check (3.17) using free field results [5, 16, 19]. It is also

manifestly consistent with the known behavior of these functions at n = 1,

fc(1) = −2f ′a(1) = c . (3.18)

This is rather interesting. In Solodukhin’s formula for EE— the n = 1 version of (3.3)

— a and c appear as independent quantities inherited from the trace anomaly. (3.18)

trades these parameters for Taylor series coefficients of a single function near n = 1.

This speaks to the ability of Rényi entropy to recontextualize known results about

EE and other properties of CFTs.

• Our result has surprising implications for the correlators of modular Hamiltonians for

non-spherical surfaces, despite their non-locality. In particular, the logarithmically

divergent part of these correlators is largely fixed by correlators of the CFT stress

tensor. The eager reader may skip to section 6.2, where we discuss this in more detail.

• Some examples of surfaces that turn on fc(n) are black hole horizons, as black hole

backgrounds generically have a non vanishing Weyl tensor; see [20] for a detailed

overview.

• One can show, using (3.17), that the only pair (fa(n), fc(n)) for which fa(n)/fc(n)

is independent of n is that of the free scalar [19],

fc(n) = 3fa(n) = 3a
(1 + n)(1 + n2)

4n3
. (3.19)

This follows from (3.17) with the boundary condition fa(n→ 0) ∼ n−3, which is the

scaling of the thermal free energy of a CFT on R
4 [21].

• Using (3.16), we can distill our earlier comments about energy density in cosmic string

backgrounds to the following statement: in d = 4, this energy density is proportional

to the universal part of the Rényi entropy fixed by the background Weyl curvature.

• A similar first order analysis was done in [3] for EE rather than Rényi entropy.

The authors checked the consistency of the perturbative approach against the n = 1

version of the formula (3.3). Interestingly, the generalization to Rényi entropy affords

new insights with no cost in technical difficulty.

3.2 d = 6

The d = 6 story is precisely analogous to the d = 4 story. In d = 6, the Rényi entropy

functional takes the form [15, 22]

Sn =

(

2fa(n)

∫

Σ
E4 + 8πfB3(n)

∫

Σ
∇2Cab

ab + . . .

)

logR/ǫ (3.20)

where the . . . represent terms that are at least quadratic in either the Weyl tensor or

extrinsic curvatures. As such, fB3(n) is the d = 6 analog of fc(n), and clearly, fa(n) plays
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the same role here as in d = 4. a and B3 are the Weyl anomaly coefficients [23],

〈Tµ
µ〉 =

3∑

i=1

BiIi + 2aE6 (3.21)

where E6 is the d = 6 Euler density, and the Ii are independent invariants formed from

the Weyl tensor. Our normalization is such that at n = 1, fa(1) = a and fB3(1) = B3 [15].

For Σ = S4,

Sn|log = 4fa(n) logR/ǫ =
4

π2
fa(n)Vol(H

5) . (3.22)

Perturbing (3.20) around Σ = S4, the first order perturbation δ(1)Sn is

δ(1)Sn = 8πfB3(n)

∫

Σ
∇2Cab

ab logR/ǫ . (3.23)

We wish to equate this with the logarithmically divergent part of our perturbative

expression

δ(1)Sn =
n

2(1− n)
F (n)

∫

Σ
d4y

∫ 2π

0
dτ

∫ ∞

ǫ
dr

1

r5

(

hττ −
1

5
hrr −

1

5

4∑

i=1

hy
i

yi

)

. (3.24)

This time, a log term is generated by components of h that are of O(r4) ∼ O(x4). In

appendix A, we compute the transverse components of (3.24); upon matching to (3.23),

we obtain the desired relation,

fB3(n) =
1

384

n

n− 1
F (n) . (3.25)

Trading F (n) for fa(n) using (2.32) and (3.22),

fB3(n) =
1

192π3
n

n− 1

(
a− fa(n)− (n− 1)f ′a(n)

)
. (3.26)

Equations (3.25) and (3.26) are the d = 6 analogs of equations (3.16) and (3.17),

respectively.

3.3 General even dimensions

Recall the general formula (3.1). It is clear that in all even d, a linearized perturbation

around a spherical entangling surface will express the d-dimensional analog of fc(n) (the

coefficient of the term linear in the Weyl tensor) in terms of fa(n) (the coefficient of the

(d − 2)-dimensional Euler density) and its first derivative. The n-dependence takes the

form in (3.17) and (3.26).

In fact, the perturbative approach suggests a new way to think about this formula:

given geometric perturbations of magnitude ǫ around a spherical entangling surface, (3.1)

can be viewed as the truncation, at O(ǫd−2), of the perturbative expansion of the universal

part of the Rényi entropy. The key point is that we are only interested in the logarithmic

divergence, and the number of terms which can possibly contribute is fixed by dimensional
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analysis. In d dimensions, the O(rd−2) term in the derivative expansion of the metric

contributes linearly to the log, and can contribute at most O(ǫd−2). Similarly, one expects

a term of O(r
d−2
2 ) to contribute quadratically to the log; and so on. So in d dimensions, we

obtain the complete expression for the log term just by expanding the metric to O(rd−2)

and considering the perturbative corrections to the Rényi entropy of the plane through

O(ǫd−2). Note that this argument follows from conformal invariance, which means that,

even if a priori one must deal with up to d− 2 integrals over the surface, one ends up with

a single local integral.

In odd dimensions, the situation is different: as the universal term is a constant,

to understand the shape dependence one must deal with the explicit geometries. The

perturbative expansion will give an infinite number of terms that can contribute. Some

studies of the shape dependence of the EE in odd dimensions have been done in [24, 25].

We will return to the results of [25] in the next section.

4 Applications

We discuss various applications of our work so far.

4.1 fc(n) at strong coupling

Equation (3.17) allows us to compute fc(n) at strong coupling. As we will argue in section

5, it seems that for CFTs dual to 5d Einstein gravity, fb(n) = fc(n). For any theory in

which this is true, the following results give the Rényi entropy across the cylinder as well.

The Rényi entropy across the sphere was computed in [6] for a family of gravitational

theories with CFT duals. As we have seen in (2.33) and (3.16), we can write fc(n) (and

its higher dimensional analogs) simply in terms of the dimension of the spherical twist

operator, hn. For simplicity, consider CFTs dual to pure (d + 1)-dimensional Einstein

gravity. Temporarily using fc(n) to denote the coefficient of the term linear in the Weyl

tensor in any even-dimensional CFT, the ratio fc(n)/fc(1) at strong coupling is given by

fc(n)

fc(1)
=

1

n− 1

hn
h′1

=
d− 1

2

(
n

n− 1
xd−2
n (1− x2n)

)

, (4.1)

where

xn =
1

nd
(1 +

√

1− 2dn2 + d2n2) . (4.2)

The prime denotes a derivative with respect to n. These results can be easily extended to

Gauss-Bonnet and quasi-topological gravity using the results of [6].

For d = 4, one can go even further and compute the leading O(λ−3/2) and O(λ1/2N−2)

corrections to fc(n) in N = 4 super-Yang-Mills. These appear as O(α′3) and O(α′3g2s)
corrections, respectively, to hyperbolic black hole entropy in type IIB supergravity [26].

Using the conventions of [26], fc(n) is given by

fc(n) =
3π2(1 + n)

2n3

(
L

ℓp

)3

×
(

1

32

(1 +
√
1 + 8n2)3

3 +
√
1 + 8n2

+ 10γ
8n2 − 3 + 9

√
1 + 8n2√

1 + 8n2(3 +
√
1 + 8n2)3

(1− n2)2 +O(α′4)

) (4.3)
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with γ = 1
8ζ(3)α

′3/L6(1+ π2

3ζ(3)g
2
s), plus non-perturbative corrections [27]. In gauge theory

variables, γ = 1
8ζ(3)/λ

3/2(1 + 1
48ζ(3)λ

2/N2) and (L/ℓP )
3 = (N/2π)2.

These constitute the first computations of Rényi entropy across non-spherical entan-

gling surfaces in any strongly coupled CFT.

4.2 Entanglement negativity

The logarithmic entanglement negativity (henceforth, negativity), E , is a measure of

the amount of distillable entanglement present in a given state [28–30]. This is to be

distinguished from ordinary EE, which is also sensitive to bound entanglement. For a

bipartite system,

E = S1/2 (4.4)

where the right-hand side is the ordinary Rényi entropy at n = 1/2.

In [9], negativity across spherical entangling surfaces in flat space CFTs at both weak

and strong coupling was studied using the relation (4.4). In particular, [9] suggested that

the ratio of (the universal parts of) E to ordinary EE in d dimensions,

Xd =

∣
∣
∣
∣

S1/2,univ

S1,univ

∣
∣
∣
∣

(4.5)

may play a privileged role in the relation between spacetime and entanglement. Xd was

conjectured to always be greater than or equal to one, which was shown in various examples

for spherical bipartitions.

Our relations (3.17) and (3.26), evaluated at n = 1/2, thus permit immediate evalu-

ation of Xd for a class of non-spherical bipartitions in 4d and 6d CFTs, given knowledge

of fa(n). The ratio (4.1) evaluated at n = 1/2 is precisely Xd(Σc) evaluated for even-

dimensional holographic CFTs dual to Einstein gravity, where Σc is a hypothetical entan-

gling surface that isolates the fc(n) term.6 Denoting this holographic ratio as X hol
d (Σc),

one can easily show that X hol
d (Σc) is a monotonically increasing function of d, and that

X hol
d (Σc) = 1 at the low value d ≈ 1.599 where this ratio ceases to make sense anyhow. In

d = 4, 6, for example, we find

X hol
4 (Σc) ≈ 2.424 ,

X hol
6 (Σc) ≈ 2.600 .

(4.6)

It is perhaps worth noting the peculiar result that in the large d limit, X∞(Σc) = e. This

is reminiscent of similar behavior for the spherical case studied in [9].

One can also use the results of [5] to show that X hol
4 (Σc) ≈ 0.615X free

4 (Σc). This is the

same behavior that was observed in [9].

In sum, these calculations using non-spherical surfaces lend further support to the

conjecture that Xd ≥ 1 for general bipartitions.

6Clearly, our results also permit evaluation of Xd for any surface that turns on a linear combination of

the fc(n) and fa(n) terms.
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4.3 Geometric perturbation around non-vacuum states

It is hopefully clear from the analysis of section 2 that we can also apply our results to

small deformations around non-vacuum states. Because there is no analog of Solodukhin’s

formula for states other than the vacuum, these applications are necessarily perturbative

in the deformations.7

As an example, we will show how this works in the background of a Wilson loop. The

EE of the Wilson loop has been considered in [32, 33]. Here we will see how the Rényi

entropy of a Wilson line in a disk changes as we slightly perturb the background geometry.

We simply apply our formula (2.23) in the presence of the Wilson loop, W :

δ(1)Sn(W ) =
n

2(1− n)

∫
(
〈TµνW 〉n − 〈TµνW 〉1

)
hµν . (4.7)

In this case, there will also be a geometrical factor that factorizes because of conformal

invariance, so in the notation of [33], 〈TµνW 〉n = hw(n)
hw(1) 〈TµνW 〉1, where 〈TµνW 〉1 is given

in [33] and hw(n) is a theory-dependent function of n. So we can use the previous techniques

to compute 〈TττW 〉n and thus determine hw(n).

The Rényi entropy for the Wilson loop is not known in general. However, it is known at

strong coupling, where it is given by the contribution to the entropy of a hyperbolic black

hole from a string. For a black hole with horizon curvature scale R, the Rényi entropy for

the sphere at strong coupling is

Sn(W ) =
R2

α′
1

d(1− n)

(√

(d− 1)2n2 + 1− n2 + 1− dn
)

. (4.8)

When n = 1, we get the usual SEE = R2

α′(d−1) . We can apply our formula there and the

Rényi entropy for a small deformation is

δ(1)Sn(W ) =
1

2πVol(Sd−2)

n

2(n− 1)

[

1−
(

1 +
1− n2

(d− 1)2n2

)−1/2
]
∫

M
〈TµνW 〉1hµν . (4.9)

To get the final answer, one should insert an explicit expression for hµν . The expression

for 〈TµνW 〉1 can be found in [33].

4.4 n limits

Consider the n → 0 limit of fa(n). From the hyperboloid perspective, β = 2πn, so the

n → 0 limit corresponds to the high temperature regime in flat space [21]. The Rényi

entropy becomes S0 = logZ0 ∼ n−(d−1). In d = 4, from (3.17) we obtain fc(0) = 3fa(0),

as follows from the relation between free energy and energy in flat space.

The n→ ∞ limit is equivalent to computing the partition function of the hyperboloid

at zero temperature. In this limit, S∞ = − 1
n logZn + logZ1 = F∞ − F1. Now, F∞ is the

free energy of the hyperboloid at zero temperature, that is, the Casimir energy of the CFT

on S1 ×H
d−1. So, at large n, the fi(n) asymptote to constants: fc(∞) = a− fa(∞).

7Similarly, our perturbative analysis applies straightforwardly to the charged Rényi entropies of [31].
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4.5 Shape dependence in odd-dimensional CFTs

It was recently shown in [25] that in any d-dimensional CFT in a fixed flat background,

the geometric integrals appearing in our linearized analysis around the sphere are only

sensitive to the breathing mode of the sphere. Using this result,8 one can show that the

linearized change in the universal term of the Rényi entropy vanishes in all d. This is

non-trivial in odd d in particular, where the Rényi entropy is non-local, reflected in the

absence of formulae like (3.1).

5 Second order perturbations and the relation between fb(n) and fc(n)

We now move onto second order geometric perturbations. For concreteness, we continue

to study perturbations of 4d CFT vacuum Rényi entropy across a plane in flat space.

From (3.3), it is clear that second-order perturbations isolate the fb(n) term, which is

quadratic in extrinsic curvature. Thus, we can obtain a definition of fb(n) by equating

that term with the O(K2) contribution to our perturbative expressions (2.19), with O =
1
2T

µνhµν : that is,
9

δSn|K2 = δ(1)Sn|K2 + δ(2)Sn|K2 = −fb(n)
2π

∫

Σ

(

Ka
ijK

a
ji −

1

2
(Ka

ii)
2

)

logR/ǫ (5.1)

defines the function fb(n).

The first term is first-order in perturbation theory from a second-order deformation of

the metric. So we evaluate (3.12), now with (cf. (2.24))

hij = xaxcKcilK
l
a j . (5.2)

The contribution from this term is equivalent to the contribution from hij in (3.13), with

Riacj → KcilK
l
a j . Using that equation and (3.16), we obtain

δ(1)Sn|K2 =

(
fc(n)

6π

∫

Σ
Ka

ijK
a
ji

)

logR/ǫ . (5.3)

Already, we see that fc(n) appears in the definition of fb(n).

We turn to the remaining contribution δ(2)Sn|K2 ,

δ(2)Sn|K2 =
1

8(1− n)

∫

Cn×R2

d4z′
∫

Cn×R2

d4z〈T ij(z′)T kl(z)〉nhij(z′)hkl(z) (5.4)

with

hij = 2Ka
ijx

a . (5.5)

8This observation, along with essential details, also appears in [25]. We thank Mark Mezei for discussions

leading to this result.
9When expanding the Weyl tensor fc(n) term to second order, there is a contribution that goes like

K2. In carrying out the complete calculation one should also recover this term, but here we leave this term

implicit.
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We have suppressed coordinate dependence of the extrinsic curvatures.10 We have not

written the terms
∫ ∫

〈TT 〉1hh because these terms do not see the replicated geometry.

These terms also appear in the expansion of the partition function and, after we regularize

them properly,11 they will be finite.

It is difficult to extract the logarithmic divergence from (5.4). We will not reach the

end of the calculation, but would like to sketch a strategy that we believe underlies the

final answer. Let us explain why this is a difficult computation by way of a primer on

general aspects of CFT on the cone.

5.1 Conformal symmetry and the cone

Given a Lorentz invariant CFT in flat space, one can fully constrain the structures that

appear in two- and three-point functions [34, 35]. There is no conformal invariant scalar;

the only vector that can appear is x̂µ =
xµ
|x| ; the only two-tensors that can appear are

δµν , x̂µx̂ν ; and so on. Because we have translation invariance, 〈O(x)〉 = 〈O(0)〉 = 0.

Imposing tracelessness and conservation constrains the number of possible structures that

can appear in the stress tensor correlators. There is one possible structure for the stress

tensor two-point function and three for the three-point function. Because there is no

conformal invariant scalar, these correlators will then be determined by one (CT ) and

three (A,B, C) constants, respectively.12
Now moving to the cone, with metric ds2 = dr2 + r2dτ2 + δijdy

idyj and τ ∼ τ + 2πn,

we are introducing a new vector to the game: ξ = r∂τ . This vector breaks translation

invariance in the (x1, x2) directions, here written in polar coordinates. In general, we do not

expect the theory in the replicated geometry to break any global symmetry.13 The number

of structures that can appear is now much greater, and we have a conformal invariant

scalar: r̂ =
xµξµ
|x|2 = r2

r2+y2
. There is also a new number, n, so even if we could constrain

higher-point functions in a similar way as in flat space, the structures could be multiplied

by an arbitrary function of n and r̂. This makes conformal symmetry much less restrictive.

Due to the translation breaking in the (x1, x2) directions, one-point functions need not

vanish. But they are constrained nonetheless. For scalar operators O,

〈O(r, τ, y)〉n = 〈O(r, 0, 0)〉n =
aO(n)

r∆O
(5.6)

where aO(n) is some function of n. The one-point function of a vector is fixed to be zero by

parity: the only vectors that can appear are ξ or x̂, but they are not symmetric with respect

to τ → −τ , so the expectation value must be zero if parity is not spontaneously broken.14

10We have defined {zµ} = {xa, yi}, where a = 1, 2, and i = 1 . . . d− 2 as in previous sections. In the next

subsection, we will also sometimes use xµ to denote the full set of coordinates.
11For example one can express the two-point function as derivatives acting on 1

(x−y)4
and integrate it by

parts. If h is smooth, it won’t diverge.
12A Ward identity fixes one linear combination of (A,B, C) in terms of CT [34].
13There are some particular cases in settings with a large number of degrees of freedom where for n large

enough there is spontaneous breaking of some global continuous symmetries [36].
14Note that this is not true if there is a background magnetic field that breaks parity explicitly. See for

example [31].
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For the stress tensor, symmetries fix 〈Tµ
ν〉n = − F (n)

(d−1)rd
(δµν − dξµξν). The two-point

function will be much less constrained, which is the crux of the problem in computing (5.4).

A classification of the possible structures that could appear is a challenging undertaking

that we do not pursue here.

We expect that one should be able to apply familiar CFT techniques on the cone.

In particular, one can perform an operator product expansion (OPE). The OPE is an

statement about how two operators collide inside correlators. In computing two-point

functions, then, the only difference compared to flat space CFT is that now one-point

functions may be nonzero. More explicitly, the two-point function now takes the form

〈O1(z
′)O2(z)〉n =

∑

O

c12O|z′ − z|∆O−∆1−∆2〈O(z)〉n

=
∑

O

c12O|z′ − z|∆O−∆1−∆2
aO(n)

r∆O
z

.
(5.7)

We have suppressed operator indices for clarity. Note that in general, c12O = c12O(ẑ′ − ẑ).

Conformal maps. Let us also point out that when one performs a conformal transfor-

mation, r → lc, where lc is the conformal distance to the conical deficit/entangling surface.

This means that one-point functions can be evaluated in the easiest conformal frame, and

transformed by the above replacement (up to the conformal anomaly). Some examples of

geometries and their corresponding lc are:

Cone : dr2 + r2dτ2 + δijdy
idyj lc = r

Branched sphere : dθ2 + sin2 θdτ2 + cos2 θdΩ2
d−2 lc = sin θ

Hyperboloid : dτ2 + du2 + sinh2 udΩ2
d−2 lc = 1

Spherical entangling surface : dt2 + dr2 + r2dΩ2
d−2 l2c =

(r2 + t2 −R2)2 + 4R2t2

4R2

These geometries are all related to each other by straightforward conformal transforma-

tions.

5.2 An OPE argument

We now sketch a method to extract the logarithmically divergent term in (5.4). As we dis-

cussed in the previous section, this integral seems hard to tackle only using symmetries. We

would like to pursue a different direction: in particular, we will provide some arguments for

how to “fish” the log ǫ piece, by using the OPE. These arguments are rather schematic, but

we believe that a formal version of the following will provide the proper definition of fb(n).

We focus on the stress tensor two-point function, 〈T ij(z′)T kl(z)〉n. Because we are

integrating over all space, the OPE may seem irrelevant. However, the logarithmically

divergent contribution to the integral should come from the neighborhood of the entangling

surface which sits at the tip of the cone. This region is described by the limit x ∼ 0, x′ ∼ 0,

but finite (y, y′). In this limit, the OPE is an expansion in 1/r. A word of caution is in

order: because we are integrating the space surrounding the conical deficit, there could be
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kinematic configurations for which the OPE does not seem to converge.15 We are going to

ignore this issue in our discussion.

Substituting the TT OPE into (5.4), we can shift coordinates z′ = z+δz. The resulting

integral looks as follows:

δ(2)Sn|K2 =
1

2(1− n)

∑

O

aO(n)

∫

R2

d2y

∫

d4δzKa
ij(y + δy)Kb

kl(y)cTTO(δẑ)|δz|∆O−8

×
∫

d2x(xa + δxa)xb
1

r∆O
z

(5.8)

where r2z = x21 + x22. All integrals are over the full conical spacetime Cn × R
2. Our job

is to extract a logarithmic divergence from the integrals over δz and x. In particular, the

physical divergence of the Rényi entropy should come from the integral on the second line:

this is the integral that “sees” the singularity at r = 0.

Focusing now on the second line, the xbδxa term vanishes when integrated over τ ,

because it is odd in x. The integral over xaxb, on the other hand, only yields a log

divergence for ∆O = 4.

The remaining integral over δz seems UV divergent and highly dependent on the de-

tails. But because it is a z → z′ divergence, we expect that, after adding the proper contact

terms, it should simply end up contributing as an order one constant, times some tensor

structure. We emphasize that we do not expect any extra n-dependence from this integral,

as it will be dominated by regularizing the UV data and thus will not see the covering space.

Thus, we have reached an interesting, if tentative, conclusion: only ∆ = 4 operators

which appear in the TT OPE and have non-vanishing one-point function in the conical

spacetime Cn ×R
d−2 seem to contribute to the logarithmic divergence of the second order

perturbations of spherical Rényi entropy. Denoting the ∆ = 4 operators as O4, and the

result of the δz integral in the first line of (5.8) as T ijkl
O4

, we can write the result of the

previous manipulations schematically as

δ(2)Sn|K2 =
nπ

2(1− n)




∑

O4

aO4(n)

∫

R2

d2yKa
ijK

a
klT ijkl

O4



 logR/ǫ . (5.9)

In appendix C, we discuss the structure of the sum (5.9). We are led to argue that

fb(n) = fc(n) in theories which satisfy the following property: they do not contain exactly

marginal scalar operators or conserved spin-2 currents besides the stress tensor which

appear in the TT OPE and have nonzero expectation value in Cn ×R
2. Said another way,

consideration of the stress tensor contribution alone to (5.9) seems to imply fb(n) = fc(n),

but if there are other operators O4 that also contribute, these may modify the relation

between fb(n) and fc(n). We argue that the class of theories for which fb(n) = fc(n)

includes the following:

15For example, naively it seems that if we have two operators on opposite sides of the singularity, the

radius of convergence of the OPE does not extend between the operators. However, from the hyperboloid

perspective, these two points are separated a finite distance along the S1 and are far away from the

singularity at the boundary. We thank Alexander Zhiboedov for discussions on this matter.
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a) Free scalars, fermions and Maxwell fields.

b) N = 4 SYM.

c) Strongly coupled CFTs dual to classical gravitational theories with minimally

coupled scalar fields, and/or a family of hyperbolic black hole solutions without

massless scalar hair.

This includes all Einstein gravity compactifications of type IIB supergravity on com-

pact 5-manifolds. Again, the details can be found in appendix C.

The presentation of these arguments has been quite schematic. A more in-depth

treatment must address the issue of OPE convergence in the conical background, and

the details of the integrals that lead to the EE result fb(1) = fc(1) = c. We leave this

interesting pursuit for the future.

6 Are there more direct methods to compute the Rényi entropy?

We now discuss some implications of our results for the structure of a generic modular

Hamiltonian, and address the section title for generic shapes.

6.1 The rarity of local modular Hamiltonians

Modular Hamiltonians are generically complicated and non-local. For entanglement

across the plane, being the same thing as thermal entropy of Rindler space, the modular

Hamiltonian is an integral of the stress tensor. If our theory has conformal invariance, one

can perform a conformal transformation of the half-plane to a sphere and the modular

Hamiltonian of the sphere will still be given by the integral of a local stress tensor. These

modular Hamiltonians are local in τ , the coordinate conjugate to the replica parameter n.

Locality means that the operator that performs the replica trick
∫

S1×M Tττ (τ) = 2π
∫

M Tττ
does not depend on τ .16

Now we would like to argue that, at least for CFTs in flat space, the sphere and

its conformal counterparts are the only surfaces whose modular Hamiltonian will be the

integral of a local operator. Let us specify to d = 4. Recall that in any dimension, the

m’th derivative of the Rényi entropy at n = 1 is proportional to a connected (m+1)-point

function of K, cf. (3.8). The first derivative behaves as S′
n=1 ∝ 〈KK〉1,c. This contains a

logarithmic term, which we compare to a derivative at n = 1 of the formula (3.3). Now,

if K is a local integral of a stress tensor, S′
n=1 ∝ c. But this only holds if the entangling

surface only turns on fa(n), as for the sphere. That is, f ′b(1) 6∝ c. One might wonder

whether there are non-spherical surfaces with a vanishing extrinsic curvature term, but, as

was shown in [37], in flat space there are no such surfaces. So we conclude that, in flat

space, the only local modular Hamiltonian is that of the sphere.

In other words, there doesn’t exist a complicated conformal transformation that would

make local the modular Hamiltonian of an entangling surface such as the cylinder or the

16This follows from conservation of Tττ .
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stripe. In the next subsection, we will present a candidate geometry, without local modular

Hamiltonian, whose partition function we expect to give us the Rényi entropy.

The above argument was in d = 4, but we expect it to generalize to all dimensions.

In addition, we have not ruled out the possibility that, if the background Weyl tensor

is nonzero, there are non-spherical surfaces that only turn on fa(n). But these surfaces

should be regarded as in the same equivalence class of Rényi entropy as the sphere, as their

entanglement spectra have identical dependence on n.

6.2 Correlators of generic modular Hamiltonians

If modular Hamiltonians are generally non-local, what else useful can be said? Let us

return to our result (3.17) relating fa(n) and fc(n) in d = 4. The perturbative expansion

of (3.17) around n = 1 implies the following. Consider the modular Hamltonian associated

to a generic surface in a background with nonzero Weyl curvature. Then the logarithmic

part of its m-point correlators are fixed by m- and (m + 1)-point correlators of the local

modular Hamiltonian for the sphere, KSph, up to extrinsic curvature contributions.

To demonstrate this, we take the first derivative of fc(n) at n = 1, and use (3.4)

and (3.8) to trade n-derivatives for correlators of modular Hamiltonians. Then for any

entangling surface Σ with modular Hamiltonian K, we have the following relation:

1

2
〈KK〉1,c

∣
∣
log

=

[

〈KSphKSph〉1,c
16π

∫

Σ
RΣ +

〈KSphKSph〉1,c − 1
2〈KSphKSphKSph〉1,c
8π

∫

Σ
Cab

ab

] ∣
∣
∣
∣
∣
logR/ǫ

+
f ′b(1)

2π

∫

Σ

(
Ka

ijK
a
ji −

1

2
(Ka

ii)
2
)
logR/ǫ . (6.1)

As we explained in section 5, in at least some theories, fb(n) = fc(n). In such cases, the

last term in (6.1) combines with the Weyl term, and the logarithmically divergent part of

K correlators is fully determined by KSph correlators.

This perturbative data about non-local modular Hamiltonians is a surprising feature

of (3.17) that deserves closer study.

6.3 Hyperbolic geometries for non-spherical entangling surfaces

Here we would like to just mention that one can use the transformation of [4] to get a “de-

formed hyperboloid” geometry in the spirit of [12]. Deformed (or squashed [38]), means that

the expansion near infinity (close to the entangling surface) will depend on the coordinate τ .

As shown in [4], a simple conformal transformation maps flat space R
d to the hyper-

boloid Hd:

ds2
Rd = dt2 + dr2 + r2dΩd−2

= Ω2(dτ2 + du2 + sinh2 udΩd−2)
(6.2)

with Ω = (coshu+ cos τ)−1 and coordinates related by

t =
sin τ

coshu+ cos τ
, r =

sinhu

coshu+ cos τ
. (6.3)
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Now, the point is that one can use this same transformation to compute entanglement

across a cylinder or stripe, just by rewriting the transverse space r2dΩd−2. For example,

one can write the metric on R
d in cylindrical coordinates:17

ds2
Rd = dt2 + dr2 + r2dΩd−2−m + dy2m (6.4)

where dy2m parameterizes an R
m submanifold. A constant t, r surface will be a m-cylinder,

a surface with topology R
m × Sd−2−m: this is the topology of the entangling surface. The

stripe is given by setting m = d − 2 and taking −∞ < r < ∞. The previous conformal

transformation will now map the unit cylinder to the boundary of a deformed hyperboloid.

This has line element

ds2 = dτ2 + du2 + sinh2 udΩd−2−m + (coshu+ cos τ)2dy2m . (6.5)

The boundary of the (Lorentzian) hyperboloid is mapped to the causal domain of the

entangling surface: u → ∞, (r, t) → (1, 0); iτ → ±∞, (r, it) → (0,±1). In other words,

what this conformal transformation does is to map flat space to a deformed hyperboloid

that covers only the causal domain of the m-cylinder.

In the case of a sphere (m = 0), a conformal mapping to the half plane renders τ the

Rindler time coordinate. In the case of the cylinder, τ would become a coordinate that

will look like Rindler time near the entangling surface, but will differ away from it because

of extrinsic curvatures.

The deformed hyperboloid is similar in spirit to the locally hyperbolic geometries of [12]

and, near u = ∞, it has the behaviour expected there. Now, the replicated geometry has

to preserve the Zn replica symmetry. This means that if we change the periodicity to

τ ∼ τ + 2πn, the metric stays the same.

Near asymptotic infinity, the geometry becomes

ds2 = dτ2 + du2 +
e2u

4
dΩd−2−m +

e2u

4
(1 + 4e−u cos τ)dy2m + . . .

=
1

r2

(

r2dτ2 + dr2 + dΩd−2−m + (1 + 2r cos τ)dy2m

)

+ . . .

(6.6)

where r = 2e−u. Stripping off the conformal factor, this is just the metric of a singular

cone with extrinsic curvature.18 In even d, one can compute EE from the singular cone

by extracting the contributions to the trace anomaly from the surface at r = 0, as in [38].

This method involves regularizing the tip of the cone by a function f(r, a) that interpolates

between n−2r2(1/n−1) near r = 0 and unity at r = ∞.19 Thus, the deformed hyperboloid

can be used to extract the correct logarithmic terms in the EE.

We suspect that, as in [4], these geometries can be used to compute away from n = 1.

In particular, it is natural to suggest that the free energy of a CFT living in the deformed

17See also [39] for a similar application of the conformal transformation.
18We can conformally map this metric to that of the m-cylinder by conformally transforming the first

sphere to a plane and the second plane to a sphere.
19This was the method used in [38]. Note that rthere = nr1/n.
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hyperboloid (6.5) can be used to compute the Rényi entropy across the m-cylinder.20 This

seems like a challenging computation; perhaps a derivative expansion around n = 1 is

feasible.21 Also, it seems possible that this can be helpful in understanding the Rényi

entropies of the m-cylinder from the gravitational perspective. One should be able to

replicate the n = 1 solution at least pertubatively in n− 1.

We leave a full investigation into the utility of the geometries (6.5) for the future.

7 Discussion

In this work, we have used a general perturbative expansion of the Rényi entropy to make

non-perturbative statements about its geometric dependence. By deforming the replicated

geometry, we have been able to show that the function fc(n) is proportional to the one-point

function of the stress tensor on the cone, and is a linear function of fa(n).

We have also given some arguments about whether fb(n) = fc(n) for general 4d CFTs.

We have argued that it seems that only operators of dimension ∆ = 4 can contribute to the

derivation of fb(n) from the perturbative expansion, and in particular, the contribution of

the stress tensor alone gives fb(n) = fc(n). For the free theories, N = 4 SYM, and a wide

class of holographic CFTs, we have argued that there is no contribution from other ∆ = 4

operators and thus in these theories, fb(n) = fc(n).

Of course, it is clear that the calculation of fb(n) and, more generally, the second

order perturbation theory, needs further study. To do that one should be more careful

and do a more honest calculation.

Aside from obtaining a more thorough understanding of the second order perturbation

theory, there may be yet other ways to understand the underlying structure of Rényi

entropy. For instance, we expect that some analog of the trace anomaly appropriate to

CFTs on the cone at finite n may exist that could be used to derive the Rényi entropy,

analogous in spirit to the trace anomaly derivation of the EE functional.

It is worth understanding what the relations we discovered among the fi(n) imply

about the heat kernel approach to computing them. It would also be interesting to see if

there is some easy way to understand the n-dependence when considering massive defor-

mations [40–42], maybe using the methods of [43]. One might also wonder whether Rényi

entropies in supersymmetric theories have simpler n-dependence or other hidden structure,

much as their anomaly coefficients obey extra constraints. To see this, one may need to

study super-Rényi entropy instead [44].

Recall our derivation of the fact that the only entangling surface in d = 4 flat space

with a local modular Hamiltonian is the sphere. The simple math behind this statement

— namely, that the extrinsic curvature term in (3.3) is a perfect square — also suffices to

show that the sphere minimizes the universal contribution of the EE among all possible

surfaces [37]. The same statement also holds for Rényi entropy. It would be quite

20However, note that this τ direction is different from the one considered in [38]. At this moment, the

proper way of replicating the space for finite n is unclear to us.
21From this point of view, it seems that the modular Hamiltonian and the integral of the geometric

(non-conserved) Tττ may be related, even for these non-spherical entangling surfaces.
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interesting if locality of the modular Hamiltonian and minimization of entanglement could

be shown to be directly related.

Note that (2.8) is the Rényi equivalent of the first law of entanglement, which has been

an active field of research in the context of holography [45–47]. It would be nice to explore

if its Rényi generalization can yield any further insight.

Let us zoom out and return to the philosophical question we posed in the introduction:

why are we interested in the Rényi entropies? What do they give us that entanglement

entropy doesn’t? The Rényi entropies are less universal and thus more interesting in nature.

We know how to extract information about conformal field theories from derivatives of

the spherical Rényi entropy, since they contain information about all correlators of stress

tensors.

It is not very clear at the moment to what extent the shape dependence will give us

more information about quantum and conformal field theories, or if shape dependence itself

is too constrained. Each of these would be an interesting outcome. But, for example, a

better understanding of the shape dependence of Rényi entropies in gravitational setups

would be very useful. A reason is that while the Ryu-Takayanagi (RT) [1] surface is an

imaginary surface, the holographic dual of the replicated geometry drastically changes the

structure of spacetime. Intuitively, we expect the dual geometries (if they exist) to have a

smooth horizon where the RT surface was and to be similar to the original geometry far

from the RT surface. We expect that universal results like the ones we have proven could

aid in understanding what the dual geometries could be or how to compute Rényi entropy

holographically in general. It may be particularly tractable to study this question near

n = 1; exploring the relation (6.1) seems like a plausible and worthwhile target.
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A Details of first order d = 6 integral

Our starting point is (3.24). We consider only the transverse components, hττ − 1
5h

r
r. The

only terms that give a log from the transverse integral are of O(r4) ∼ O(x4); extending the

adapted metric to this order and keeping only the term linear in curvature, one finds (see

for example equation (2.16) of [48])

hac = − 1

20
∂e∂fRabcdx

exfxbxd . (A.1)
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As we are only looking at components diagonal in (ac), it is clear that xbxd collapses to

δbdr2 times some angular pieces. This then forces xexf to do the same, which leads to the

Laplacian. Proceeding straightforwardly, one arrives at

∫ 2π

0
dτ

(

hττ −
1

5
hrr

)

= − π

40
r4δacδbd(∂21 + ∂22)Rabcd .

Plugging into (the transverse part of) (3.24), and equating with the known CFT expres-

sion (3.23), we get

8πfB3(n)

∫

∇2Cab
ab = − π

40

n

2(1− n)
F (n)

∫

(∇2Rab
ab + . . .) . (A.2)

Under the integral,
∫

Σ∇2
yi(. . .) = 0. From the definition of the Weyl tensor, one can show

that

Cab
ab =

d− 3

d− 1
Rab

ab + . . . (A.3)

Using (A.3) in d = 6 leads to the relations (3.25) and (3.26). (We have only computed the

transverse piece, and are assuming that the parallel components of the integral yield the

remaining terms on the right-hand side of (A.3).)

To check the overall coefficient in (3.26), we evaluate both sides at n = 1 and check

that fB3(1) = B3. From (2.32), we have

F (1) = − (n− 1)

πVol(Hd−1)
S′
n=1(Σ = Sd−2) . (A.4)

It was shown in [11] that

S′
n=1(Σ = Sd−2) = −Vol(Hd−1) · π

d/2+1Γ(d/2)(d− 1)

(d+ 1)!
CT . (A.5)

CT is defined via the stress tensor vacuum two-point function in flat space [34]

〈Tab(x)Tcd(0)〉Rd = CT
Iab,cd(x)

x2d
. (A.6)

Iab,cd(x) is a particular tensor structure which can be found in [34]. Thus, in d = 6,

F (1) = (n− 1)π3
10

7!
CT (A.7)

and from (3.25) and (3.26), we have

fB3(1) =
π3

64 · 7!CT · 5
3
. (A.8)

The ratio B3/CT is a theory-independent quantity. Using results in the literature for the

free (2,0) tensor multiplet,22 one sees that indeed, fB3(1) = B3 as desired.

22See e.g. equations (2.29) of [23] and (3.23) of [49], where they use the same normalization that we use

for the Weyl anomaly.
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B Some additional comments about the Rényi perturbative expansion

B.1 Effect of conformal transformations

Conformal perturbation theory around a given background will not be conformally invariant

unless we allow for coordinate-dependent couplings.

If we consider two conformally related metrics ds2Ω = Ω−2ds2, then when we deform

the original theory by an operator (we consider a conformal primary for simplicity)

δS =

∫ √
gλO =

∫

M

√
gΩΩ

dλΩ−∆OΩ =

∫

M

√
gΩλΩOΩ , (B.1)

the perturbative expansions are the same if we identify the coordinate dependent cou-

pling λΩ = Ωd−∆λ. If the deformation is 1
2Tµνh

µν , this means that we keep h fixed.23

Alternatively, if we want to rescale h, the coupling becomes hµν = hµνΩ Ω−2.

B.2 Recovering the entanglement entropy

Now we would like to compute the EE from expression (2.19) for the Rényi entropy. For

simplicity of notation, it is easier to formally work at finite coupling and do the perturbative

expansion later. We can rewrite equation (2.19) in the following way

∂gSn =
n

1− n

∫

M1

(〈O〉g,n − 〈O〉g,n=1) ⇒ ∂gSEE = −∂n
∫

M1

〈O〉g,n (B.2)

It is trivial to see that this expression reproduces the first order correction.

If we want to go to second order, then we take another g-derivative and set g = 0.

There are two contributions to the n-derivative: one contributing from the expectation

value 〈OO〉n and the other one from the integral
∫

Mn
. We now derive the second order

expression in two ways.

First, we can easily see what the contribution by taking first the n-derivative. We

can do this, because at finite g the perturbation is shifting the modular Hamiltonian by

Kg−K0 = −g
∫

M1
O, see also [43]. (Note that away from g = 0, different conformal frames

won’t be equivalent and while Tττ will still be performing the replica trick it is not clear

that it is also computing the entanglement entropy in the respective frame.) As explained

in the discussion around equations (2.10) and (2.33), then, the n-derivative just lowers the

finite g modular Hamiltonian:

−∂g∂n〈O〉g,n = ∂g〈OKg〉|g=0 = 〈O∂gKg〉|g=0 + 〈OK0

∫

M1

O〉

= −〈O
∫

M1

O〉+ 〈K0O

∫

M1

O〉 .
(B.3)

We can also do the derivatives in the opposite order. A particularly easy way to do the

n-derivative of the expectation value is by using coordinates τ ′ such that the gτ ′τ ′ = n2,

23Of course if we change the metric the theory is still conformal, so all terms in conformal perturbation

theory will be conformally invariant.
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and then taking the derivative inside the integral (without deriving the operators with

respect to n). One can see then that −∂n〈O(0)O(τ ′)〉n = 〈KO(0)O(τ ′)〉n. The rest follows

−∂n∂g〈O〉g,n = −∂n〈O(0)

∫ 2π

0
ndτ ′

∫

O(τ ′)〉n|n=1

= −〈O
∫

M1

O〉+ 〈K0O

∫

M1

O〉
(B.4)

which is the same result obtained above.24 In the previous case one could wonder if

the reasoning involving Kg was also correct for a geometric perturbation: if we think

of Rindler, then if we perturb the metric it is not clear that one can still talk about a

deformed Rindler Hamiltonian. However, from this second point of view we see that there

should be no problem.

C The relation between fb(n) and fc(n): details

The purpose of this appendix is to try to unravel the structure of the sum (5.9). In doing

so, we will argue that the relation between fb(n) and fc(n) boils down to understanding

the dynamics of marginal operators O4 in the CFT.

Let us focus on the stress tensor contribution to (5.9). This will take the same func-

tional form for all CFTs. In (2.26), we wrote down the expectation value of the (yy)

components of the stress tensor on Cn × R
2. In the language of (5.6),

aT (n) = −1

3
F (n) . (C.1)

Plugging this into (5.9), we see that the n-dependence simply equals fc(n), as defined

in (3.16). So the stress tensor contributes to (5.9) as

(
fc(n)

6π

∫

R2

d2yKa
ijK

a
klT ijkl

T

)

logR/ǫ . (C.2)

This is satisfyingly similar to the contribution δ(1)Sn|K2 we derived in (5.3).

We now wish to argue that fb(n) = fc(n) in theories for which this is the only con-

tribution to the sum (5.9). To do so, let us take the n → 1 limit: that is, we consider

the second order perturbation of the EE. In this limit, the computation above requires us

to compute ∂n〈T ij(z′)T kl(z)〉|n=1 = −〈T ij(z′)T kl(z)KSph〉1. Performing the OPE between

the two stress tensors, the only term that survives the expectation value is the stress tensor

itself, because 〈OKSph〉1 = 0 for O 6= T .25

24Note that at n = 1, one also gets the same answer working in the usual τ coordinates and tak-

ing the derivative of the integral after setting n = 1 in the correlator: −∂n[〈O(0)
∫

Mn

O(τ ′)〉n]|n=1 +

∂n〈O(0)
∫

M1

O(τ ′)〉n|n=1 = −∂n〈O(0)
∫

Mn

O(τ ′)〉n=1|n=1 = −〈O(0)
∫

M1

O(τ ′)〉n=1. This seems the proper

way of analytically continuing the integral in n.
25An exception to this rule is for KSph defined in the free conformal scalar theory. In this case, KSph is

built from a non-conformal stress tensor that includes a total derivative term inherited from the boundary

of the singular cone [18].
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Now, when n→ 1 we must obtain the known result,

SEE

∣
∣
K2 = −

(
c

2π

∫

R2

(

Ka
ijK

a
ji −

1

2
(Ka

ii)
2

))

logR/ǫ . (C.3)

This is simply (3.3) with fb(1) = fc(1) = c. If this is to follow from (C.2) at n = 1,

the tensor T ijkl
T must have a particular index structure and overall normalization. As

non-trivial as this is to prove, the crucial point is that this tensor is independent of

n. Therefore, the generalization to finite n would amount simply to the replacement

c → fc(n): that is to say, fb(n) = fc(n), up to contributions to δ(2)Sn|K2 from ∆ = 4

operators besides the stress tensor.

Before moving on, let us give a realistic look at the tensor T ijkl
T . Hiding therein is

the OPE coefficient cTTT , which is a sum of three independent, conformally invariant

tensor structures, each multiplying a constant. Only one linear combination of these

is proportional to c. This seems to imply that upon integration, only the structure

proportional to c survives. The resulting term must also have the correct index structure

such that, when contracted with the extrinsic curvatures, it yields the conformally

invariant structure in (5.1). As inspiration, we wish to highlight an apparently similar

result in section 7 of [34] that may be useful.

We now consider other operators O4 6= T . Using arguments in section 5.1 and the

unitarity bound ∆ ≥ s + 2 for operators with spin s, the sum over operators O4 6= T

localizes further onto scalar operators, and onto symmetric, traceless spin-2 currents that

are not proportional to the stress tensor. While this class of operators does not contribute

at n = 1, one cannot rule out its contribution at finite n.

However, in a wide class of theories, such contributions do not exist. That is, in

the following theories, there exist neither ∆ = 4 scalar operators, nor other symmetric,

traceless spin-2 currents, that appear in the TT OPE and have nonvanishing expectation

values on the conical spacetime.

Free theories. For the free scalar, we have O4 = {φ4,L}, where L is the Lagrangian op-

erator. φ4 has vanishing three-point function with the stress tensor26 and L = (∂φ)2 doesn’t

contribute because it is a descendant of φ2, which has a constant expectation value 〈φ2〉n.
For the free fermion, we have O4 = L = ψ̄γ ·∂ψ. The expectation value of this operator

will be proportional to γxa(τ)
r5

, so it vanishes by parity.

For the free Maxwell field, the only gauge-invariant operator is O4 = L. As shown

in [34], cTTL = 0.

In the scalar and fermion theories, fb(n) = fc(n) was shown directly in [10]. Our argu-

ments are consistent with that, and extend the equality to the case of a free Maxwell field.

Planar N = 4 SYM and other holographic CFTs. Consider planar N = 4 SYM.

The only ∆ = 4 operator at finite λ which is not charged under the SO(6)R symmetry is

the Lagrangian density. It is known that cTTL = 0 for all λ. One way to see this is to resort

to the U(1)Y “bonus” symmetry of the strongly coupled theory, which forces all non-singlet

26〈TTφ4〉 = 〈Tφ2〉2 = 0.
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correlators to vanish [50, 51]. T and L have U(1)Y charges zero and four, respectively.27

From this it follows that cTTL = 0 at all λ, because all three-point functions of protected

operators are unrenormalized.

Gravitationally, cTTL = 0 maps to the statement that the dilaton does not have a

nonzero three-point vertex with two gravitons. Furthermore, the statement that an expec-

tation value for other scalar operators would break the R-symmetry maps to the fact that

all other bulk scalars besides the dilaton (descending from KK modes) can be set to zero

in the hyperbolic black hole background.

These last two arguments can be generalized to other strongly coupled CFTs besides

N = 4 SYM. Consider a CFT that admits a holographic limit. This CFT will satisfy the

previous conditions if the bulk theory possesses either of the following two properties: a)

no cubic vertex between two gravitons and a massless scalar, or b) a continuous family of

hyperbolic black hole solutions that do not turn on a massless scalar.

In particular, replacing the S5 in the type IIB supergravity compactification to D = 5

with another transverse manifold will not affect the previous conclusions.

N = 4 SYM. Finally, let us return to N = 4 SYM, but now for arbitrary gauge group

and complexified gauge coupling τ = θY M
2π + 4πig−2

YM . Even in this case, the previous

conclusions hold. Let us give two arguments. In what follows, we ignore unprotected

operators, which acquire anomalous dimensions and hence cannot be exactly marginal.

First, we again note that of the protected operators, the only SO(6)R singlet scalar

operator is the Lagrangian. Using our earlier arguments for free fields, cTTL = 0 at the free

fixed point. This three-point function is protected against renormalization as a function

of τ . One way to see this is that the τ -derivative of the stress tensor two-point function

〈TT 〉 must vanish. This derivative yields a spacetime integral over the three-point function

〈TTL〉. The integral over the lone tensor structure (see e.g. [34]) is non-vanishing, so the

OPE coefficient must vanish: that is, cTTL = 0 for all τ .

An alternative argument again utilizes the bonus symmetry of N = 4 SYM, in

particular the conjecture that OPE coefficients obey U(1)Y selection rules even away from

strong coupling and the planar limit [50, 52]. It was argued in [52] that for arbitrary

gauge group and τ , the only non-vanishing OPE coefficients for which at least two of the

three operators sit in protected multiplets of the N = 4 superconformal algebra are U(1)Y
singlets. This again implies that only U(1)Y singlets can appear in the TT OPE; but as

we already noted, this rules out the Lagrangian.

Finally, we note that our first argument above rules out the contribution of the La-

grangian to our method of defining fb(n) in all CFTs which possess a marginal gauge

coupling. If, as in N = 4 SYM, the Lagrangian is the only exactly marginal scalar opera-

tor that can appear in the TT OPE, then fb(n) = fc(n) in such theories as well.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

27We thank Alexander Zhiboedov for pointing this out.
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