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1 Introduction

The entropy of a surface is proportional to its area. This is a mysterious truth which

appears in several different contexts.

The first context in which this was noticed is black hole thermodynamics. There, it was

observed that black holes in classical general relativity obey various laws of thermodynamics

so long as they are assigned an entropy proportional to the area of their event horizon:

SH = AH/4G~. For example, Hawking’s area law [1] shows that SH is nondecreasing with

time, in accordance with the Second Law of thermodynamics. However, there are also

quantum corrections to the area theorem — Hawking radiation implies that black holes

are intrinsically quantum objects, and therefore their entropy cannot be entirely described

by classical geometry. In the semiclassical setting, the black hole entropy is given by the

so-called “generalized entropy” of the event horizon:

Sgen(H) =
〈A(H)〉

4G~
+ Sout + counterterms, (1.1)

where 〈A(H)〉 is the expectation value of the area operator on a spatial slice H of the

horizon, and Sout is the von Neumann entropy −tr(ρ ln ρ) for the state ρ of matter fields

outside the black hole (e.g. stars or Hawking radiation). At leading order in ~, Sgen(H) =

SH . The generalized entropy obeys the Generalized Second Law (GSL), which states that

Sgen is non-decreasing with time [2, 3]. Note that Sout includes a divergent component

due to the vacuum entanglement entropy of short-wavelength modes across the horizon. It
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is a standard result in quantum field theory that the leading-order divergence is in itself

proportional to the area [4] and corresponds to a renormalization of Newton’s constant [5,

6, 54, 55]. There are also various subleading divergences extensive on the horizon. These

divergences must be absorbed into counterterms, including various subleading quantum

corrections to SH [2, 3, 7, 50–53]. The area term is thus merely the dominant “classical”

contribution to the entropy.

A second context in which the entropy-area relation arises is via AdS/CFT . AdS/CFT,

or gauge/gravity duality, is a correspondence between string theories in asymptotically

Anti-de Sitter (AdS) bulk spacetimes and certain conformal gauge theories (CFT’s) living

on the conformal boundary [8]. In the limit where the CFT is strongly coupled and has a

large number N of colors, the bulk theory becomes classical general relativity, coupled to

certain matter fields obeying the null energy condition.

In this classical limit, there is strong evidence that the entanglement entropy of a

region R in the CFT can be computed from a spacelike, codimension 2 extremal surface

X such that ∂X = ∂R and X is homologous to R, as proposed by Hubeny, Rangamani,

and Takayanagi (HRT) [9]. When the spacetime is static, so that there is a preferred time

foliation, the extremal surface is minimal on a constant time slice [10]. The entanglement

entropy of a region R in the CFT is then proportional to the area of the surface in the

bulk S(R) = A(X)/4G~. Given some reasonable assumptions, this formula was recently

proven by Lewkowycz and Maldacena (LM) [11].1

In complete analogy with black hole thermodynamics, this result is only valid at

O(~−1), or equivalently O(1/N2) in the CFT. The first quantum corrections to this formula

were computed, at order O(N0) (boundary) or O(~0) (bulk), by Faulkner, Lewkowycz, and

Maldacena (FLM); see also [42, 43]. FLM found that the entropy was given by [12]:

SR =
〈A(X)〉

4G~
+ Sent + counterterms = Sgen(X). (1.2)

Here Sent is the bulk entanglement entropy across the surface X. (FLM assumed the

geometry was static, but we will assume in what follows that everything carries over to the

nonstatic case if X is an extremal surface.) Since FLM restrict their attention to a context

in which the total state is pure, Sout and Sent are interchangeable.

The similarity of eq. (1.2) with that for black hole entropy 1.1 is striking. As in the

case of a black hole, we once again find that quantum effects require us to replace the area

with a generalized entropy Sgen, now evaluated on an extremal surface X rather than on a

slice of an event horizon.2

In fact we can define Sgen more generally on a very broad class of surfaces. Although

it is tempting to call Sgen of the horizon “the black hole entropy”, in fact there are many

1Out of caution, LM only claim to have proven the static version of the conjecture, which involves minimal

area surfaces. To prove the argument in the non-static case, one would have to analytically continue to

complex manifolds. Although there might be subtleties in the analytic continuation, so far as we can tell,

the same argument should also work for extremal surfaces in non-static but analytic spacetimes.
2On a generic manifold obeying the null energy condition, an extremal surface X is never a slice of a

causal horizon, since a null surface shot out from X has decreasing area by the Raychaudhuri equation,

while causal horizons have increasing area [19].
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Figure 1. A surface E splits an AdS-Cauchy slice Σ into Ext(E) and Int(E). The generalized

entropy can be defined with respect to either side, depending on whether we pick Sin or Sout to

calculate Sgen. In the case where the state is pure, the choices yield identical results.

possible surfaces one could choose on any given spacetime background, and these surfaces

may also have a statistical interpretation [13–18]. The only necessary ingredient is an

entangling surface E, defined as any spacelike codimension 2 surface which divides a Cauchy

surface Σ into two pieces. Let Ext(E) be that side of Σ which is outside E, and let Int(E)

be the side which is inside E. We can then define Sout(E) as the entanglement entropy in

the spatial region Ext(E), and take Sgen as in eq. (1.1), although here Sgen is evaluated

on E as opposed to the spatial slice of a horizon. See figure 1. By unitarity, any choice

of Σ passing through E defines the same entropy, so Sgen(E) does not depend on the

choice of Σ.3

If the state is pure, then Sout(E) is equal to the entropy Sin of Int(E); if the state is

mixed we must choose which side to consider. For purposes of the FLM formula, it seems

clear that one should choose the entropy S which lies on the same side as the region R

whose boundary entropy is of interest. Choosing the other side would violate locality, since

throwing a mixed qubit into the bulk from the complementary boundary region R̄ would

immediately affect S(R), which is unphysical. Note that in an abuse of notation, we shall

use the term entanglement entropy to refer to the entropy of both pure and mixed states.

Having observed that the generalized entropy can be defined for arbitrary surfaces, we

now propose a modification to the FLM formula — besides extending to extremal surfaces

in non-static spacetimes — namely, that instead of a) extremizing the area and then adding

Sout as FLM did,4 one should instead b) extremize the total generalized entropy Sgen. We

will call such a surface a quantum extremal surface since it is a quantum deformation

of the usual notion of an extremal surface, in which one extremizes the area. It will be

shown below that prescriptions (a) and (b) are equivalent at the order of the first quantum

corrections (O(~0)). Since this was the order of the FLM proof, it does not distinguish

which of (a) or (b) is correct at higher order. At higher, potentially infinite order in ~, we

will argue that (a) is not invariant under boundary unitary transformations and is therefore

not the entanglement entropy. Furthermore, we will prove several suggestive theorems

about (b), which do not hold for (a). This gives us confidence that the prescription (b) is

correct, and that quantum extremal surfaces are connected to key physical properties of

3This statement fails in theories with a gravitational anomaly [20, 21].
4Note that FLM only proposed this prescription at O(~0) in the entropy. However, we will refer to it as

the FLM formula at all orders.
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quantum spacetimes.

The quantum results we will present all have analogues in classical general relativity,

for classical extremal surfaces. Some of these results are needed for the consistency of the

holographic entropy conjecture; others are useful for identifying the regions of spacetimes

probed by the extremal surfaces.

In particular, quantum extremal surfaces, like their classical counterparts, are con-

strained to lie further into the bulk than the causal surface. In the classical case, it is known

that the extremal surfaces XR do not intersect the causal wedge WR = I−(DR) ∩ I+(DR)

associated with the domain of dependence DR of a boundary region R, on any spacetime

obeying the null energy condition [22, 23]. In fact it lies deeper into the bulk in a spacelike

direction, so that it cannot even intersect the domain of influence IR = I−(DR)∪ I+(DR);

the same holds for the extremal surface anchored to the complement of R [22].

We will show that these results continue to hold for quantum extremal surfaces in the

perturbative quantum gravity regime, even though the null energy condition is no longer

satisfied! As a consequence, it follows that no bulk signals sent in from DR can change

the spacetime behind the quantum extremal surface, so long as the bulk signals propagate

locally. This is true even if one uses time folds to create signals located outside of the

causal wedge, as in the Shenker-Stanford construction [24].

On the other hand, there are also bounds limiting the reach of classical extremal

surfaces. For example, in [25], we showed that spacelike extremal surfaces cannot prop-

agate past any codimension 1 surface with negative extrinsic curvature (assuming that

the extremal surfaces can be deformed continuously so as to lie outside). It turns out

that a perturbatively quantum spacetime features analogous “barrier surfaces”: any null

surface on which the generalized entropy is non-increasing is an obstacle for quantum

extremal surfaces.

These results place limits on certain methods of bulk reconstruction in AdS/CFT. We

will show that the bulk region behind a quantum extremal surface XR cannot be accessed

from R by any of the types of boundary observables we consider, namely entanglement

entropy and local causal signals.

The paper is structured as follows: we introduce necessary terminology in section 2.1

and technical assumptions on non-classical geometry as well as a key theorem from [26]

in section 2.2. Section 3 details our prescription for computing holographic entanglement

entropy, including some consistency checks and comparison to the FLM formula. In sec-

tion 4, we prove that quantum extremal surfaces lie deeper than (and spacelike to) the

causal surface, and additionally act as an obstacle to causal signals. We also “quantize”

the theorem that the apparent hroizon always lies inside the causal horizon. We comment

on the implication for bulk signals coming in from the boundary. Section 5 contains sev-

eral theorems qualifying barriers to quantum extremal surfaces, and section 6 discusses the

implications for bulk reconstruction.
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2 Preliminaries

2.1 Definitions

For any future-infinite timelike (or null) worldline W+ (i.e. an observer), we can define a

future causal horizon as the boundary of the past of W+, i.e. ∂I−(W+) = H+ [27]. This

definition is broad enough to include not only black holes, but also Rindler and de Sitter

like horizons, to which the same laws of horizon thermodynamics also apply.

The Generalized Second Law (GSL) is the statement that the generalized entropy of

a causal horizon is nondecreasing in time. More precisely, if Σ is a Cauchy surface then

H = Σ ∩H+ is a horizon slice. In its differential form [28], the GSL says that

δSgen(H)

δHa
ka ≥ 0 (2.1)

where δHa(p), p ∈ H, is a normal vector field living on the surface H defining a first order

variation of H along its normal directions, and ka is a future-pointing null vector parallel

to the null generators of H+.

It is also possible to extend the GSL to the case in which there is a set of future-

infinite worldlines, and H+ = ∂I+(
⋃
W+) [26]. In the context of AdS/CFT, this allows us

to apply the GSL to causal horizons of boundary spacetime regions. One can also invoke

the time-reverse of the GSL, which says that Sgen is decreasing with time for past horizons

H− = ∂I+(
⋃
W−). This follows from the GSL by CPT symmetry [29].

For the purpose of defining δHa and Sout, it is conventional to define the “outside”

as the region in which W+ lies. In cases where the total state is mixed, Sout 6= Sin, and

in fact the GSL holds regardless of which side one evaluates the entropy on (so long as

one is consistent). That is because strong subadditivity in the form S(AC) + S(BC) ≥
S(A) + S(B) tells us that

δSin(H)

δHa
ka ≥ δSout(H)

δHa
ka, (2.2)

choosing a complete slice of the spacetime ABC such that C is the infinitesimal region on

H+ corresponding to a null-futureward variation δH along H+, and A and B are inside

and outside respectively [29]. See figure 2. We will have occasion to use the GSL for both

Sin and Sout below; we will write Sent when we do not care which.

Presumably the GSL holds because of the statistics of quantum gravity microstates [13,

28, 30–32]. The GSL has been proven to hold at least for free bulk fields coupled to

semiclassical Einstein gravity [28], although there are some mixed results in the case of

higher-curvature gravity theories [33–36]. We will assume that the GSL holds in any UV-

complete theory of quantum gravity, and will invoke it below even in contexts that go

beyond the proof in [28].

We may use Sgen to generalize constructs from classical general relativity to perturba-

tive quantum gravity. Recall that the classical definition of a (marginally) trapped surface

T is a codimension 2 spacelike surface such that the null expansion θ of future-outward-

pointing geodesic congruences from T is negative: θ+ ≤ 0, with equality for marginally

trapped surfaces. Recall that θ = 1
A
dA
dλ , where λ is an affine parameter along the null

– 5 –
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Figure 2. The dashed line represents a future causal horizon H+, the solid green lines are regions

within the horizon and the solid blue lines are outside it. C is an infinitesimal region on H+,

along which the entropies Sout or Sin are evolved. Strong subadditivity says that S(AC)− S(A) ≥
S(B)− S(BC), so that Sin increases faster than Sout.

congruence.5 Classical trapped surfaces are therefore surfaces whose area decreases along

the null congruence: dA
dλ ≤ 0. These conditions can be rephrased as:

δA

δT a
ka ≤ 0 (2.3)

where δT a is an infinitesimal variation normal to T and ka is a future-pointing null gener-

ator of a geodesic congruence on T . Similarly, a classical codimension 2 spacelike extremal

surface X is defined to be marginally trapped in both the past- and future- directions, i.e.

θ± = 0, or equivalently:
δA

δXa
= 0 (2.4)

where δXa is again an infinitesimal variation normal to X.

While the mathematical notions of extremal and (marginally) trapped surfaces remain

well-defined in semiclassical geometries (and presumably even perturbative quantum grav-

ity) they fail to capture key quantum properties of such spacetimes. To define constructs

that respect the new, non-classical structure, we must define them in terms of a quantity

that is sensitive to quantum fields propagating on the spacetime, but reduces to the area

A in the absence of such effects. A natural candidate for this quantity is the generalized

entropy, which was previously used in [26] to define a notion of quantum trapped surfaces.

We will follow in the same vein and extend the definition in [26] to marginally trapped and

extremal surfaces.

Let T be a codimension 2 spacelike surface on a Cauchy surface6 Σ, and let δT a be as

5For purposes of singularity theorems, it is also necessary to assume that the trapped surface is compact,

but for purposes of AdS/CFT it is also interesting to consider “trapped” surfaces anchored to the boundary.
6Technically AdS space is not globally hyperbolic due to the existence of a timelike boundary at infinity,

but its causal properties are still fine assuming that there are boundary conditions at infinity. We can define

a spacelike slice Σ in the spacetime M to be an AdS-Cauchy surface if Σ is a Cauchy surface in M once

∂M has been conformally compactified. We further define a spacetime to be AdS-hyperbolic, in keeping

with [22], if (1) it has no closed causal curves, and (2) for any two points x and y in M, J+(x) ∩ J−(y)

is compact after conformal compactification of the AdS boundary. These two conditions are equivalent to

– 6 –
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(a)

δT
T

(b)

Figure 3. (a) T is a quantum trapped surface with infinitesimal normal ~δT , and N is the null

surface generated from null congruences shot from T . We could consider variations of Sgen in any

direction δ ~T , but we take them only in the direction ~k, which is a null generator of N . T is quantum

trapped, so we know that the generalized entropy on T along ~k must be strictly decreasing. (b)

There are two possible directions in which one could deform a codimension 2 surface. δT a is defined

as any combination of the two.

above. If, for any future-directed generator ka of a null congruence on T

δSgen

δT a
ka < 0 (2.5)

then T is a quantum trapped surface. This definition was first introduced in [26]. A surface

T is therefore quantum trapped if its generalized entropy decreases when it is evolved

forwards in time along any future-directed null congruence on T . Since in the classical

limit, Sgen ∝ A, we recover in this regime the definition of a classical trapped surface. If

the inequality sign in eq. (2.5) is replaced by an equality, we obtain a quantum marginally

trapped surface. The extension to quantum extremal surfaces follows naturally — just as

a classical extremal surface is marginally trapped in both past- and future- directions, a

quantum extremal surface X is quantum marginally trapped in both directions:

δSgen

δX a
= 0 (2.6)

which again reduces to the classical definition in the ~→ 0 limit.

It is worth pausing at this point to address the utility of the definitions above. Black

hole thermodynamics provides a tantalizing hint at a connection between thermodynamics

and quantum gravity. The GSL has already been used by one of us to prove the exis-

tence of geodesically-incomplete quantum geometries in the presence of quantum trapped

surfaces [26]. A definition of quantum extremal surfaces should prove similarly useful,

requiring the existence of an AdS-Cauchy surface. The definitions above allow us to assume a reasonable

causal structure without relinquishing relevance to AdS/CFT.

– 7 –
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in particular in the context of AdS/CFT and holographic entanglement entropy in non-

classical bulk spacetimes.7

2.2 Premises about quantum geometry

There are subtleties in the definition of quantum extremal surfaces that do not arise for

extremal surfaces in classical geometry. Such subtleties stem from properties of quantum

gravity away from the ~ = 0 limit. Below we clarify some of these issues in an attempt

to make quantum extremal surfaces well-defined at any order in ~. Readers who are not

concerned with the technical discussion which follows below may wish to skip directly to

the statement of Theorem 2.1, which is crucial to the rest of this paper.

We begin by qualifying the regime of validity of the results in this paper. We work in

perturbative quantum gravity via an ~ expansion. A spacetime will be said to admit an ~
expansion if its metric can be described by an expansion in finite order of ~G/l2, where l

is some length scale of the quantum fields in the theory:

gab = g
(0)
ab + g

(1/2)
ab + g

(1)
ab + g

(3/2)
ab + . . . (2.7)

where the superscripts represent orders of ~ after setting G, l = 1 (the fractional orders

arise because quantized gravitons have amplitude
√
~). If we expand about some specific

classical background, then the first term has no fluctuations but the others all do. The

terms in this expansion must therefore be regarded as operators. (In the semiclassical

approximation, one only considers expectation values of the g
(1)
ab term; if one also ignores

graviton fluctuations (as done by e.g. FLM [12]) then this is the first quantum correction

to the metric, resulting in an O(~0) contribution to the generalized entropy.)

The terms in the ~ expansion can be calculated by iterative quantization and backre-

action of all fields, including gravitons. We may obtain an effective field theory at this level

by introducing a UV cutoff at energies much smaller than the Planck scale. We assume

without proof that this effective field theory can be consistently defined, and that the GSL

holds in it (as stated above).

The generalized entropy receives radiative corrections due to loop divergences. These

divergences must be absorbed into counterterms, which are of subleading order in ~ com-

pared to the classical area term. Sent is likewise subleading in ~ since its leading order

contribution is at ~0. We can also include α′ corrections in a similar expansion to describe

a perturbatively stringy spacetime. This would produce additional subleading higher-

curvature corrections to Sgen, which can be calculated for actions which are arbitrary

functions of the Riemann tensor by using the Dong entropy formula [37].8 Either way, the

counterterms are subleading with respect to some parameter. This allows the countert-

erms to be consistently neglected in the results that follow. When proving inequalities in a

regime with a small expansion parameter, it is sufficient to prove the result at the first order

at which it is not saturated, since that dominates over all higher terms. In the context of

7Unlike ref. [26], our applications do not involve strong gravity regions near singularities, making our

assumption of the GSL more plausible.
8The entropy formulae in more restricted cases are given by [33, 38–41].
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our proofs, it can be shown [26] that whenever the counterterms would be important, the

Bekenstein-Hawking term is always more important, due to being lower order. The same

does not necessarily hold for Sent, because it is possible to find situations where an order

~ correction to the area is balanced against the entanglement entropy.

In order to define the notion of a quantum extremal surface, we need to face the

unpleasant fact that quantum fluctuations of a spacetime can involve superpositions of

different geometries. As with any gauge theory, this leads to a drastic enhancement of the

diffeomorphism group, because each term in the quantum superposition can be separately

coordinatized. For example, in a quantum superposition of a black hole and a neutron star,

we could define the “r” coordinate independently for each classical metric. Even if we fix

the classical background metric (and we need not!), the issue of quantum superpositions

arises at the next order in ~.

Often this problem is dealt with by gauge fixing, but fixing the gauge introduces

Faddeev-Popov ghosts with negative norm, which is problematic as it introduces negative

contributions to the entanglement entropy, violating quantum inequalities. So it is better

to define the quantum extremal surface X in a gauge-independent (i.e. covariant) way. We

expect that this can be done in a precise manner, but in this article our main concern is

not with quantum superpositions, but rather with the effects of deforming the definition

of an extremal surface by adding Sent. Thus we merely outline a possible approach.

It is instructive to start with the simpler case in which we extremize just the area. In

this case we should promote the area from an expectation value to an operator Â. (We

can likewise promote the counterterms to operators.) The surface may then be found by

demanding that the first order variation of the area vanish as an eigenvalue equation:

δÂ

δXa
ρ = 0 = ρ

δÂ

δXa
, (2.8)

where ρ is a state in a joint Hilbert space

H = Hbulk ⊗Hsurfaces, (2.9)

where the first factor contains the bulk field theory degrees of freedom, and the second

contains the degrees of freedom for (general linear superpositions of) possible locations of

the codimension 2 surface. Since the surface is purely a theoretical construct and not an

actual physical quantity, we expect that there will also be an operator Ω : Hsurfaces → C
which we can use to reduce states of H to states of Hbulk, the actual physical degrees

of freedom. This ensures that ρ corresponds to the same state of the bulk felds that we

started with (the one dual to the chosen CFT state).

In the case of the quantum extremal surface, we cannot simply promote Sent to an

operator, since it is not linear in the density matrix ρ. Fortunately, for purposes of defining

the extremal surface, we are only interested in the first order variations of Sent with respect

to δXa. By definition this first order variation is linear in the perturbations δρ, so it

corresponds to some linear operator, which could then be inserted into eq. (2.8).

Having defined the quantum extremal surface X , we can then evaluate Sgen(X ); at

this step we only need the expectation values: 〈A〉+Sent + 〈counterterms〉. This approach

– 9 –
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requires further investigation, but for now we choose to work under the assumption that

it can be made precise in the ~ expansion. Hence we will assume that there always exists

a gauge-frame in which X , and any other surfaces of interest (e.g. horizons), have a sharp

location, and that the classical geometrical relations between such surfaces continue to hold

as operator relations in the perturbative regime.

We will now quote a theorem from [26] which we will use throughout this paper to

prove a number of results about quantum extremal surfaces. This theorem assumes an ~
expansion (which is needed to consistently neglect the higher-curvature counterterms, and

also to justify a quantum inequality applied to Sent):

Theorem 2.1. (from [26]): Let M , N be null splitting surfaces (i.e codimension 1 surfaces

which divide spacetime into two regions [25] and have an open exterior) which coincide at

a point p and let Σ be a spacelike slice that goes through p. If (1) M ∩ Ext(N) = ∅, and

(2) M , N are smooth at the classical order near p, and the spacetime is described by an ~
expansion there, then there exists a way of evolving Σ forward in time in a neighborhood

of p so that

∆Sgen (M) ≥ ∆Sgen (N) (2.10)

with equality only if M and N coincide at a neighborhood.

In particular, there exists a normal vector δΣa to Σ ∩M such that

δSgen (M)

δΣa
ka − δSgen (N)

δΣa
ka ≥ 0 (2.11)

where ka is the null normal to M and N at p. Note that we use Sgen(M) to denote the

generalized entropy of a spatial slice M ∩ Σ of M .

3 A holographic entanglement entropy proposal

We will now detail our proposal for computation of entanglement entropy via holography

at any order in ~. We begin by briefly reminding the reader of some recent holographic

entropy proposals.

HRT proposed that the holographic entanglement entropy S(R) is proportional to the

area of a classical extremal surface XR anchored to ∂R and homologous to R. (If there are

multiple such extremal surfaces, one must choose the one with the least area.) When R

has a boundary, XR is noncompact, and A(XR) is IR divergent. This bulk IR divergence is

dual to the UV divergence of S(R) in the boundary CFT. In order to test the conjecture,

one must compare universal aspects of the divergent entropies (those that do not depend

on the choice of regulator).

The FLM formula (1.2) generalizes the classical prescription by considering quantum

corrections to the Euclidean gravitational path integral. FLM showed that the entangle-

ment entropy of a region R on the boundary is given by the generalized entropy of the

classical extremal surface, at least at O(~0) and for static situations.

We expect that at higher orders in ~, the entanglement entropy is given by the gen-

eralized entropy of a surface whose location is sensitive to the quantum corrections to the
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entropy. Our ideal candidate for a formula for holographic entanglement entropy in a non-

classical bulk should therefore (1) be sensitive to quantum effects at any order in ~, (2)

reproduce the classical HRT formula at O(~−1), and (3) reproduce the result of FLM at

O(~0). We will show below that the generalized entropy of a quantum extremal surface

obeys all three requirements. We propose the following conjecture.

Conjecture. The entanglement entropy of a region R in a field theory with a holographic

dual is given at any order in ~ in the holographic dual by the generalized entropy of the

quantum extremal surface XR anchored at R and homologous to R:

SR = Sgen (XR) (3.1)

If there are multiple such quantum extremal surfaces, then we propose that the one with

least Sgen should be selected, at least when their difference is large: ∆Sgen � 1 bit.9 A

noncompact quantum extremal surface also has IR divergences, not only in the area term,

but also in Sout (not to mention the counterterms). Since the presence of IR divergences is

not a new feature of quantum extremal surfaces, we will not worry about it here, but will

assume that these divergences are cut off in a suitable manner.

In cases where the total state of the system is mixed, it is necessary to choose one

side of X to evaluate the entropy on: we may use either Sout to calculate S(R), or Sin to

calculate S(R̄). In our proposal these correspond to two different bulk surfaces Xout and

Xin. This fact that there are now two surfaces is reminiscent of the case of black holes,

where there is also a mixed boundary CFT and two extremal surfaces in the bulk, but for

a different reason (the homology constraint).

3.1 Comparison to Faulkner-Lewkowycz-Maldacena formula

We will now show that our proposal reproduces the FLM result in the regime in which FLM

showed it. Given a region R of a CFT, we can find either the classical extremal surface XR

anchored to ∂R, or the quantum extremal surface XR. Once we include quantum effects,

these are no longer the same surface. The leading order quantum correction to the entropy

however, is the same. In the absence of graviton fluctuations, as in the derivation of FLM:

Sgen(XR) = Sgen(XR) +O(~1) (3.2)

In a semiclassical spacetime, we expect that the classical extremal surface XR and the

quantum extremal surface XR are a (proper) distance of order ~ apart. The difference in

Sent(XR) and Sent(XR) is therefore of order O(~) and can be neglected at this order. It

remains to show that the areas agree at order ~. XR and XR are a distance ~ apart, but

9Presumably the surface with least Sgen dominates in an FLM-like gravitational path integral calculation

of S(R) [12], although if two entropies differ only by an order unity number of bits, then there might be

comparable contributions coming from each extremal surface. The holographic entanglement community is

currently puzzled about what the LM argument says when there are multiple extremal surfaces, due to a

perplexing argument by Myers [45–47] that found the average of the areas. His argument takes the number

of replicas n→ 1 first, before taking Newton’s constant G→ 0. If one takes the other order of limits, one

gets the minimum area surface as expected.
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first order variations away from the classical extremal surface XR do not change the area.

Hence A(XR)−A(XR) = O(~2).

The proposals Sgen(XR) and Sgen(XR) will not agree at higher order. Calculations at

higher order in ~ (perhaps using the methods of [44]) could in principle determine which

of the two approaches gives the correct formula for the holographic entanglement entropy.

Because it is easier to prove fruitful theorems about the quantum extremal surface XR, we

expect that our prescription is more likely to be correct.

For example, we will show in section 4 that the quantum surface XR always lies outside

the domain of influence of the causal wedge WR. This is an important consistency relation,

since the entropy Sgen(XR) must be invariant under all unitary transformations of the

boundary region R. The classical extremal surface XR does not obey this condition, and

we will argue that its entropy can therefore be influenced by unitary operations in R

(although there is a sense in which this effect goes beyond the ~ expansion).

The surface XR also seems to be more likely to be able to handle radiative corrections.

When the gravitational action is no longer Einstein-Hilbert, it is known that one must

extremize, not the area, but a corrected entropy functional [33, 37–41, 48, 49]. It is possible

to obtain these corrections from divergences in the entanglement entropy [50–56]. The

choice of UV cutoff determines which contributions are considered “entanglement” and

which are “higher curvature corrections”. An RG flow of the cutoff towards in the infrared

reassigns entropy from the former category to the latter. Consistency under the RG flow

therefore requires that these two types of modifications to the holographic entropy must

be treated in the same way.

It is not clear whether the FLM result can be extended to include quantized bulk

gravitons. In this case it is possible that the prescriptions for entropy will not agree even

at O(~0).10 Any differences between the two prescriptions would arise due to XR and XR
being at different locations. Gravitons might produce an order ~1/2 separation between

the two surfaces X and X . This does not lead to a discrepancy at O(~−1/2) since X is

extremal. But it might lead to a discrepancy at O(~0). It would be interesting to check

this with more explicit calculations.

4 Quantum extremal surfaces lie deeper than causal surfaces

We will now show that the quantum extremal surface cannot intersect the causal wedge.

In fact, it must be spacelike to it, lying deeper in the bulk.

First we review the classical situation. If the bulk obeys the null energy condition, it

is known that the extremal surface XR for a boundary region R cannot intersect the bulk

causal wedge WR, defined as the intersection of the past and future of R:

WR = I− (DR) ∩ I+ (DR) . (4.1)

10There is no correction to Sgen at the intermediate order O(~−1/2). At this order, the graviton field is

linear, so that there is a symmetry g
(1/2)
ab → −g(1/2)ab . In any quantum state which preserves this symmetry

(e.g. a Hartle-Hawking state), there will be a vanishing expectation value 〈gab〉 = 0 + O(~1), where the

correction is due to nonlinear effects.
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Figure 4. The causal surface CR is the spacelike boundary of the causal wedge (depicted in green)

associated with R. The domain of dependence DR of R is depicted in purple. The quantum

extremal surface XR does not intersect the causal wedge.

The boundary of this wedge is called the causal surface (see figure 4):

CR = ∂I− (DR) ∩ ∂I+ (DR) = ∂0WR. (4.2)

Assuming the null energy and generic conditions, XR lies farther from the boundary than

CR, and is spacelike to it [26].11 In other words, XR also cannot lie anywhere inside the

domain of influence IR, defined as

IR = I+(DR) ∪ I−(DR). (4.3)

(The weaker result that XR does not lie in the wedge WR, was proven in [23].) In the case

where R is taken to be an entire asymptotic boundary, this result reduces to the classic

theorem that trapped surfaces are enclosed by event horizons [19, 57]

This has some important implications for bulk reconstruction. Using the classical

equations of motion, it is possible (at least perturbatively in the bulk coupling constants)

to reconstruct the bulk state in WR from the bulk fields near DR [23, 58–66]. More

generally, one could measure the bulk fields in WR by sending in bulk observers who begin

and end within DR.

However, since the extremal surface lies outside of CR, it seems that one can in fact

obtain some information about the spacetime farther from the boundary than CR [23, 67];

plausibly all information up to XR can be reconstructed [26].

When the bulk becomes quantum, it no longer satisfies the null energy condition. This

implies that XR could be closer to the boundary than CR, or else timelike separated from it.

This implies that one cannot always reconstruct the bulk up to XR. For suppose we

have a pure state, so that XR = XR̄, and suppose that R̄ can be used to reconstruct

anything up to XR̄ on the R̄ side. If XR were to lie in I+(DR), then it would be possible

11Nongenerically, it is possible for XR and CR to be null separated or to coincide.
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H

XR

p

+
R

H
+
ΞΣ

Figure 5. A projection of H+
R (depicted in red) and H+

Ξ (depicted in blue) onto a slice Σ passing

through XR (dashed black).

to send a signal from DR to the reconstructed region, which would imply that observables

in R and R̄ do not commute, violating microcausality of the CFT. The same argument in

time reverse shows that XR could not lie in I−(DR). Thus the reconstruction hypothesis

is consistent only if the extremal surface is spacelike to CR and deeper into the bulk.

The solution is to use the quantum extremal surface XR instead. This surface is deeper

than CR and spacelike to it, as we will now show. We can no longer use the null energy

condition, so we instead prove our result using the GSL (2.1), which we assume holds for

bulk spacetimes with arbitrary quantum corrections.

Theorem 4.1. A quantum extremal surface XR can never intersect WR. The surface XR
is moreover generically spacelike separated from the causal surface CR, but might be null

separated from or coincide with CR in non-generic spacetimes.

Proof. This proof is a reversed application of the method used in [25] to prove the existence

of classical barriers to extremal surfaces, which is also used below in Theorems 5.1 and 5.2

to prove the existence of quantum barriers. We would like to show that CR cannot extend

beyond XR, i.e. CR ∩ Int (XR) = ∅. As defined in section 1, Int(XR) is that part of the

AdS-Cauchy surface which is on the R̄ side, but in this proof it is more convenient to use

the codimension 0 domain of dependence Int(XR) ≡ DInt(XR); similarly for Ext(XR).

Assume for contradiction that CR ∩ Int(XR) 6= ∅. Consider continuously shrinking

DR to a new boundary spacetime region Ξ (not necessarily a domain of dependence) such

that the causal surface CΞ = ∂I+(Ξ) ∩ ∂I−(Ξ) is entirely contained in Ext(XR). Let

H+
Ξ = ∂I−(Ξ) be the associated future causal horizon, and H−Ξ = I+(Ξ) the past horizon.

Because the shrinking action is continuous, we can find a choice of Ξ such that H±Ξ coincides

with XR at some points {p} and is tangent to it at those points, and elsewhere lies in

Ext(XR). Without loss of generality, we consider the case in which it coincides with H+;

the case of H− is exactly the same except that we would need to use the time reverse of

the GSL below. This is illustrated in figure 5.

At any such coincident point p, let us functionally differentiate XR and a slice of H+
Ξ

with respect to their shared normal directions na. By construction, H+
Ξ ⊂ Ext(XR), so by

eq. (2.11),

δSgen(N(XR))

δna
ka ≥

δSgen(H+
Ξ )

δna
ka, (4.4)

– 14 –



J
H
E
P
0
1
(
2
0
1
5
)
0
7
3

where N(XR) is the null surface generated by shooting out light rays from XR in the future-

outwards direction (towards R). By the definition of a quantum extremal surface, the left

hand side of eq. (4.4) vanishes, so we find that for future-outward ka,

δSgen(H+
Ξ )

δna
ka ≤ 0, (4.5)

with equality only if XR lies on H+
Ξ in a neighborhood of p.

But the GSL says that

δSgen(H+
Ξ )

δna
ka ≥ 0, (4.6)

where the inequality can be saturated only in non-generic situations. In the generic case,

this is in direct contradiction with eq. (4.5). We have thus shown that the quantum

extremal surface must lie outside the causal extremal surface, for generic spacetimes.

Suppose now that the spacetime falls under the non-generic case where the inequalities

are saturated. By continuity with the generic conclusion, XR cannot be outside of either

horizon; at worst XR ∈ H+
Ξ or XR ∈ H−Ξ or both (in which case XR = CR). Thus

CR is either spacelike or null separated from XR, and is closer to R. We therefore find

that quantum extremal surfaces probe a deeper region of the spacetime than the causal

surface does.

Note that this proof is valid whether we define XR using Sout or Sin, as long as we

use the same side to define the extremal surface and the horizon entropy (since the GSL

is valid either way). This, combined with the fact that ∂R = ∂R̄, shows that both the

extremal surface XR and the complementary extremal surface XR̄ lie deeper in the bulk

than the causal surface CR. This is a quantum generalization of a theorem in [22], which

showed the same for the classical extremal surface XR and XR̄.

We can also prove a quantum generalization of the known classical black hole result,

that the apparent horizon always lies within the event horizon of a black hole. In order to

state this generalization precisely, we define the notion of a quantum apparent horizon.12

Let Σ be an AdS-Cauchy surface, and let T be the union of all quantum trapped

surfaces on Σ. Define the quantum apparent horizon Happ to be the boundary of T (on

Σ). By Theorem 2.1, Happ is a quantum marginally trapped surface. Since in the clas-

sical limit, quantum trapped and marginally trapped surfaces reduce to ordinary trapped

and marginally trapped surfaces, the quantum apparent horizon reduces to the ordinary

(classical) apparent horizon in the limit where ~→ 0.

Theorem 4.2. The quantum apparent horizon always lies inside the horizon.

Proof. The proof follows directly from Theorem 4.1. Since the variation δSgen/δX a only

appears when contracted with a null normal, i.e. (δSgen/δX a) ka, the proof of Theorem 4.1

also applies to marginally quantum trapped surfaces. In particular, a marginally trapped

quantum surface T anchored at ∂R̄ is outside and spacelike to CR.

12We thank D. Marolf for pointing this out to us.
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WRXR

Figure 6. A conformal diagram illustrating the fact that XR cannot be affected by unitary operators

on R, since the resulting causal signals remain within the domain of influence IR (consisting of the

top, bottom, and rightmost quadrants)

This result, while of interest in its own right, also gives us confidence that quantum

extremal, trapped, and marginally trapped surfaces are the correct ways of generalizing

the same classical concepts.

4.1 A limit to causal signaling

The fact that the quantum extremal surface XR always lies deeper inside the spacetime than

the causal surface CR has interesting consequences for the resulting geometries. Because

the quantum extremal surface lies outside the causal surface, it limits the farthest extent

to which causal sources can propagate in from the boundary.

Suppose we throw some causal signals in from the boundary. We could do this by

acting on the boundary field theory region DR at some time t with a unitary operator U(t)

whose effects on the boundary are purely local. An example of this, in the limit where

the bulk fields are free, would be if U(t) translates a bulk field φ by some function of the

spatial coordinates: φ→ φ+f(x). In the interacting case it is probably necessary to smear

out the operator a little bit in the time direction so that it lies within a small time interval

t ± ε (but staying inside DR). We can then define U by deforming the Hamiltonian by

the addition of relevant or marginal operators. In either case, the resulting pulse will be

localized inside the causal wedge WR.

At any finite order in ~, the resulting signal will propagate locally within the bulk, so

it can also reach the past or future of WR. Thus, if we act with a single unitary operator

U(t), this implies that the signal must remain within the causal domain of influence IR =

I+(WR)∪I−(WR), and thus does not extend past CR in a spacelike direction. So the pulse

cannot reach the quantum extremal surface XR, since by Theorem 4.1, XR is spacelike

outside of CR. Hence the area of XR cannot be affected, and neither can Sent be affected

since the operator is unitary. See figure 6. XR, its area, and anything behind it are therefore

identical in the perturbed and unperturbed spacetimes.

In the cases in which a region R has multiple quantum extremal surfaces XR, one

cannot signal past any of them, so among these the tightest bound comes from the one

closest to R. This will not necessarily be the one with least entropy, which would be used
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to calculate the holographic entanglement entropy.

Similarly, one could act on the CFT boundary with operators which excite n-point

functions of the fields. So long as n is order unity in N (otherwise the concept of bulk

locality might break down), the fields should still propagate into the bulk causally.

This shows that the region behind XR is invariant under a important class of operators

acting on DR: local bulk-causal unitaries.13

Of course, there is also a classical version of this statement for the classical extremal

surface XR, but it is restricted to the case when the bulk obeys the null energy condition,

which can be violated by quantum fields. This could present a consistency problem for

FLM: if, in the region outside C(R), the null energy falling across the horizons H± = ∂±WR

is negative, this can cause the extremal surface XR to lie inside the causal wedge. The

area or Sout of XR could then be affected by unitary signals sent in from the boundary,

ruling out XR for use in the holographic entanglement entropy S(R). However, it should

be noted that if the null energy condition violation is of order ~, then XR and XR will

also be separated by a distance of order ~. This requires the signal sent in from DR to be

highly boosted relative to the separation, by an amount of order ~−1. So this argument

should be qualified with the caveat that it may require quantum gravity effects outside the

domain of validity of the ~ expansion.

4.2 With time folds

One can also consider the effects of multiple unitary operators using the “time fold” con-

struction [68]. Even in this case we can show that causal signals cannot influence the region

behind XR.

A nice example was provided by Shenker and Stanford [24]. They started with an

eternal AdS-Schwarzshild black hole, dual to the thermofield double state |TFD〉. By

acting on this state with a sequence of unitary operators at various times t0, t1, . . . tn:

U(tn) . . . U(t2)U(t1)U(t0)|TFD〉, (4.7)

they described signals propagating into the bulk from either or both of the two CFT

boundaries (CFT1 and CFT2). In the case where the times are not in sequential order, it

is necessary to use the time fold formalism [68] to work out the resulting bulk spacetime.

(For ease of calculation, Shenker and Stanford ultimately take the limit where the times

go to t = ±∞, but we will avoid taking this limit here.)

Surprisingly, this can be used to create causally propagating sources that are outside

of the domain of influence ICFT′s = ICFT1+CFT2 . This is because the unitary operators to

the left in eq. (4.7) can change the relative location of the earlier signals to the past or

future horizon. The leftmost source always propagates from the boundary, but the others

may emerge from the past or future black hole singularities, outside of ICFT′s.

13One can also analyze sending in signals from the boundary which are local but nonunitary, thus changing

the entropy of R. One could do this by coupling R to an auxilliary system by means of a unitary operator.

But beware: these can affect Sout, and therefore also the location of the quantum extremal surface XR!

However, if one defines XR using Sin, the proof goes through.
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We will generalize this construction away from the thermofield double state to the case

of arbitrary states and arbitrary regions R. There might not be any singularities, but the

basic point remains that the perturbations can be outside of IR. However, we can show

that the perturbations cannot extend past XR:

Theorem 4.3. The perturbation described in eq. (4.7) cannot affect the bulk past XR, for

any number n of unitary operators.

Proof. We will show this by induction. In the last section we proved the case where n = 1.

We assume the statement holds for the (n−1) rightmost signals in eq. (4.7), and let n−1CR
be the causal surface in the resulting bulk spacetime. We then consider the effects of the

n-th signal, using the fact that XR is deeper than n−1CR (Theorem 4.1).

Since the n-th signal is unitary, it does not affect the entropy Sent on any side of any

bulk surface anchored to ∂R lying outside of n−1IR. Therefore, the location of XR cannot

be affected through its dependence on Sent.

XR also depends on the area A. But the n-th signal does not change the geometry

outside of n−1IR either, by causality and the fact that XR is outside of IR.14

Since XR cannot be affected, a fortiori the region behind it cannot be affected either.

Hence, assuming that the first n−1 unitary operators cannot modify the spacetime deeper

than XR, neither can the n-th, proving the result. To summarize, each signal can change

the bulk up to CR, and it can change the location of CR, but it cannot change the fact

that CR is closer to the boundary than XR

Therefore XR, its entropy, its geometry, and the geometry behind it cannot be affected

by any unitary signals propagating in from R. This defines a sacrosanct region which

cannot be causally influenced by R. For example, in the case of an eternal black hole

with an Einstein-Rosen bridge, even if we allow signals to be sent in from both sides, the

geometry of the extremal surface lodged in its throat cannot be changed by the Shenker-

Stanford construction. Nor can any new extremal surfaces be created. If we start with a

throat with two extremal surfaces in the throat (e.g. because there is a bag of gold [69, 70]

in the interior), the region in between them is sacrosanct. This provides some evidence

that the information in the bag of gold is not in fact contained in the CFT, as suggested

in [71–73], although a proof of this fact would require also analyzing operators which do

not propagate into the bulk causally.

5 Barriers to quantum extremal surfaces

In a recent paper [25], we found that classical geometries feature extremal surface barriers,

i.e. regions which limit the reach of extremal surfaces anchored within a boundary region

R. In some cases, there are even barriers when R is the entire boundary, preventing any

boundary-anchored extremal surface from accessing an entire portion of the bulk. In this

section we will extend several of our results to quantum extremal surfaces.

14There may be multiple quantum extremal surfaces, but if so, similar reasoning shows that they cannot

be created or destroyed.
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Since the established AdS/CFT dictionary translates extremal surfaces into non-local

boundary observables, the blindness of such probes is especially troubling in the case where

the reach of local observables is likewise limited. As in the previous section, this situation

raises the question of whether the dual field theory contains any information about the

blind region.

We shall use terminology from [25] to qualify quantum barriers. Define a splitting

surface M to be a codimension 1 surface which divides the spacetime into two regions,

Ext(M) and Int(M). Given a splitting surface M , a quantum extremal surface Xi is said

to be M -deformable if it can be continuously deformed from an initial surface X0 which

lies entirely in Ext(M), via a family of surfaces {Xi} each anchored to the boundary in

Ext(M).

Using Theorem 2.1, we prove the following results about the reach of quantum ex-

tremal surfaces:

Theorem 5.1. Let M be a smooth, null, splitting surface. If every spacelike slice Q of M

is quantum trapped, i.e. for any point q on Q,

δSgen(M)

δQa
ka
∣∣∣∣
q

< 0 (5.1)

then no M -deformable quantum extremal surface ever touches M .

Proof. Let {Xi} be a family of M -deformable surfaces as described above, and assume that

there exists a surface XI ∈ {Xi} such that XI crosses M , i.e. XI ∩ Int (M) 6= ∅. Since X0

and XI are related via a series of smooth deformations, there is a “midway” surface X
which coincides with Q at some set of points {qα} and is tangent to Q at those points. Let

q ∈ {qα} be one such point. Let N be the codimension 1 null surface generated by null

congruences shot from X . In a small neighborhood of q, the infinitesimal normals to Q

and X agree, and the null generators on N and M likewise agree. By Theorem 2.1, there

exists a variation δQa along the shared normal directions, such that at some point p in a

neighborhood of q:

δSgen (M)

δQa
ka
∣∣∣∣
p

≥ δSgen (N)

δQa
ka
∣∣∣∣
p

=
δSgen (N)

δX a
ka
∣∣∣∣
p

= 0 (5.2)

where the last equality follows from the definition of a quantum extremal surface. This

contradicts the assumption that at any point on Q, the generalized entropy is decreasing.

Therefore M cannot coincide with X at any point.

An analogous theorem can be proven in the non-generic case where the generalized en-

tropy is unchanging on a null surface (e.g. a stationary horizon in the Hartle-Hawking state):

Theorem 5.2. Let M again be a smooth null splitting surface. If every spacelike slice Q

of M is quantum marginally trapped, i.e. for any point q on Q,

δSgen

δQa
ka = 0 (5.3)

then no M -deformable connected quantum extremal surface can ever cross or touch M .

– 19 –



J
H
E
P
0
1
(
2
0
1
5
)
0
7
3

Proof. Let {Xi} be again a family of M -deformable surfaces anchored to Ext(M), with

X0 ⊂ Ext(M) and XI ∩ Int(M) 6= ∅. Take X as before to be the “midway” surface, and

let N be the codimension 1 null surface generated by null congruences shot from X . Pick

Q to be a spatial slice of M which passes through each point p where X touches M .

At a coincident point p:

δSgen (M)

δQa

∣∣∣∣
p

≥ δSgen (N)

δQa

∣∣∣∣
p

=
δSgen (N)

δX a

∣∣∣∣
p

= 0 (5.4)

By Theorem 2.1, eq. (5.4) can only be saturated if N and M coincide on an entire neigh-

borhood of p. We can repeat the analysis above at the edge of each neighborhood, so that

M and N (and therefore X and Q) must coincide everywhere. Since M and N are smooth,

codimension 1 null surfaces, we find that N = Mc, where Mc is the connected component of

M containing p. However, this implies that X lies entirely on M , and therefore X cannot

be anchored to Ext(M), which is a contradiction. We arrive at the conclusion that no

surface in {Xi} can ever cross or touch M .

The proof of Theorem 5.2 gives rise to an immediate corollary:

Corollary 5.3. Let M be a null splitting surface whose slices are all quantum marginally

trapped, as above. If X is a connected quantum extremal surface that touches and is tangent

to M at a point, then X lies on M .

Proof. The proof follows immediately from the proof of Theorem 5.2.

Theorems 5.1 and 5.2 establish that there can be regions of spacetime which are in-

accessible to quantum extremal surfaces anchored at some region R on the boundary. In

particular, when R is the entire boundary, a quantum barrier defines a region of the bulk

spacetime which is entirely inaccessible to any boundary-anchored quantum extremal sur-

face, and — if our holographic entanglement proposal in section 3 is true — also cannot

be probed using the entanglement entropy of the boundary region.

In the classical case, a (codimension 2) extremal surface can itself be used to construct

a barrier for other extremal surfaces, under the assumption of the null energy condition [25].

This result can also be extended to quantum extremal surfaces. Let N+ be a null surface

shot out from some X in the future-outward direction, and let N− be a null-surface shot

out in the past-outward direction. Their union N = N+ ∪N− is a barrier surface.

Initially, as one moves along either of N±, the generalized entropy is unchanging. It

will be conjectured in a future paper [74] that — at least for free fields — if the generalized

entropy of a null surface is nonincreasing, it continues to be nonincreasing thereafter (and if

it begins to decrease, it continues to do so). This helps to explain the result (proven in [26]

from the GSL) that null surfaces generated by quantum trapped surfaces must inevitably

terminate at finite values of the affine parameter. It is analogous to the classical case,

where the area must focus because of the Raychaudhuri equation.

Assuming that this quantum focusing property applies, we see that N has the requisite

behavior for a barrier:
δSgen(N)

δQa(p)
ka ≤ 0, (5.5)
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ka being an outwards pointing null vector. If there were a family of quantum extremal

surfaces which could be deformed across N , it would have to cross either N+ or N− first.

Whichever is the case, by Theorems 5.1 and 5.2, we get a contradiction. So N is a barrier

to N -deformable quantum extremal surfaces anchored in Ext(N).

6 Discussion: limits on bulk reconstruction

We have proven a number of results for quantum extremal surfaces, and proposed that their

generalized entropy is likely to be the correct extension of the HRT and FLM proposals

to quantum bulk spacetimes at subleading order in ~. This corresponds to calculating

corrections to the boundary entanglement entropy which are subleading in N . It may be

possible to prove additional theorems about quantum extremal surfaces using the maximin

approach [22].

We will now discuss how these results fit into the bigger picture of bulk reconstruc-

tion. By analogy to DR and IR, we will define DR and IR as the regions which can be

reconstructed/influenced by R using the AdS/CFT dictionary.

An important open question in AdS/CFT is how much of the bulk can be reconstructed

from a specified boundary region R [23, 66, 67]. It seems that this reconstructable region

DR should be at least as large as the causal wedge WR, and plausibly should extend all

the way to the extremal surface XR [26], at least for classical bulk geometries. In the

case of quantum spacetimes, it is natural to generalize this idea to the quantum extremal

surface XR.

A related question is how large of a bulk region can be influenced by operations in the

region R. This region of influence IR must be at least as large as the domain of influence

IR, due to the ability to send signals into the bulk causally, but the Shenker-Stanford

construction [24] shows that it must be larger than that.

In fact — assuming that there are no operators in DR which commute with everything

else in DR — this region of bulk influence IR must be at least as large as DR, since one

can freely act on DR with unitary operators in order to change it into anything one likes.

However, IR cannot extend into the complementary domain of reconstruction DR̄, or else

unitaries in R would be able to affect the spacelike separated region R̄.

For a classical pure bulk XR = XR̄, so if the reconstructable region extends up to XR,

then DR and DR̄ are also complementary. That would imply that IR = I+(DR)∪I−(DR),

so that the two concepts would be essentially the same, except that IR would also include

the region timelike to XR. But it is unclear whether the needed assumptions are in fact

true. These same reflections would also apply to the quantum extremal surface X .

Our results provide evidence that quantum extremal surfaces X are closely related to

the regions of bulk reconstruction and influence. In section 4 we used the GSL to prove

that causally propagating signals cannot go farther into the bulk than the closest quantum

extremal surface XR. To the extent that this propagating signal is a good measure of what

unitary operators can do, this suggests that the domain of influence extends no farther

than the quantum extremal surface X .
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Another probe of the spacetime is the entanglement entropy itself, which is a good

example of a nonlocal bulk observable. In section 5 we showed that in many spacetimes,

there exist barrier surfaces which cannot be crossed by any other quantum extremal surface

Xi anchored within some boundary region DR, at least when Xi is continuously deformable

to the region outside XR.

It is therefore natural to suppose that the reconstructable region DR extends up to the

outermost barrier itself. Using some results from a future article [74], we also argued that

a null surface N shot out from a quantum extremal surface XR has the requisite properties

to be a barrier to other quantum extremal surfaces.

Thus there are several indicators that XR forms some type of boundary surface relevant

to questions of bulk reconstruction and influence from R. We should emphasize that we

have only explored these questions using a limited subset of probes, so it is possible that

new regions of the bulk would be accessible to a different kind of probe.

In the case where R is taken to be the entire boundary, these results suggest that it

may not be possible to reconstruct the region behind the extremal surface of the entire

boundary XCFT from the dual CFT. If that is really true, then it suggests that there

might be so-called “superselection” information in the bulk which is not contained in the

boundary CFT [71–73]. Alternatively, there might be a firewall at XCFT which destroys

in-falling observers and obviates the need for a region behind it [25, 75].

Our results depend heavily on the fact that we are only interested in proving inequal-

ities, since this allowed us to use Theorem 2.1 to neglect higher-curvature effects in the

entropy functional (cf. section 2.2) as compared to the Bekenstein-Hawking area term. If

the higher-curvature terms were instead of the same order as the area term, many of our

results would become much more difficult to prove; perhaps even false.

There is a hypothesis that in full quantum gravity, the entropy of a stationary black hole

is in fact entirely due to entanglement entropy outside the horizon [5–7, 31, 32, 76]. That

would mean that Sgen would be the fine-grained entropy of the exterior quantum gravity

microstates. If we apply this hypothesis to quantum extremal surfaces, we would conclude

that X is really obtained by extremizing the entanglement entropy. This would formally

allow the various proofs in this article to be applied using only the information-theoretical

parts associated with Sent. But this argument places us squarely in the non-perturbative

quantum gravity regime, making usual metric concepts highly suspect.

Besides black hole thermodynamics, one of the few clues we have about nonpertur-

bative quantum gravity is AdS/CFT. The entanglement entropy S(R) of a CFT region is

just as well-defined at small N and weak coupling as at large N and strong coupling. If

AdS/CFT is valid in the former regime, there must be some concept in the bulk quan-

tum gravity theory which is dual to S(R). It is interesting to ask whether the concept

of a quantum extremal surface can be generalized to that context. Perhaps progress can

be made by assuming that some suitably quantum notion of holographic entanglement

surfaces survives, and using that to explore the meaning of quantum geometry.

– 22 –



J
H
E
P
0
1
(
2
0
1
5
)
0
7
3

Acknowledgments

It is a pleasure to thank Don Marolf, Ahmed Almheiri, Gary Horowitz, Raphael Bousso,

Zachary Fisher, William Kelly, Dalit Engelhardt, Mark Van Raamsdonk, and Mudassir

Moosa for helpful discussions. This work is supported in part by the National Science

Foundation under Grant No. PHY12-05500. NE is also supported by the National Science

Foundation Graduate Research Fellowship under Grant No. DGE-1144085. AW is also

supported by the Simons Foundation.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] S.W. Hawking, Gravitational radiation from colliding black holes, Phys. Rev. Lett. 26 (1971)

1344 [INSPIRE].

[2] J.D. Bekenstein, Black holes and entropy, Phys. Rev. D 7 (1973) 2333 [INSPIRE].

[3] S.W. Hawking, Particle creation by black holes, Commun. Math. Phys. 43 (1975) 199

[Erratum ibid. 46 (1976) 206] [INSPIRE].

[4] M. Srednicki, Entropy and area, Phys. Rev. Lett. 71 (1993) 666 [hep-th/9303048] [INSPIRE].

[5] L. Susskind and J. Uglum, Black hole entropy in canonical quantum gravity and superstring

theory, Phys. Rev. D 50 (1994) 2700 [hep-th/9401070] [INSPIRE].

[6] T. Jacobson, Black hole entropy and induced gravity, gr-qc/9404039 [INSPIRE].

[7] V.P. Frolov, D.V. Fursaev and A.I. Zelnikov, Statistical origin of black hole entropy in

induced gravity, Nucl. Phys. B 486 (1997) 339 [hep-th/9607104] [INSPIRE].

[8] J.M. Maldacena, The large-N limit of superconformal field theories and supergravity, Int. J.

Theor. Phys. 38 (1999) 1113 [hep-th/9711200] [INSPIRE].

[9] V.E. Hubeny, M. Rangamani and T. Takayanagi, A covariant holographic entanglement

entropy proposal, JHEP 07 (2007) 062 [arXiv:0705.0016] [INSPIRE].

[10] S. Ryu and T. Takayanagi, Holographic derivation of entanglement entropy from AdS/CFT,

Phys. Rev. Lett. 96 (2006) 181602 [hep-th/0603001] [INSPIRE].

[11] A. Lewkowycz and J. Maldacena, Generalized gravitational entropy, JHEP 08 (2013) 090

[arXiv:1304.4926] [INSPIRE].

[12] T. Faulkner, A. Lewkowycz and J. Maldacena, Quantum corrections to holographic

entanglement entropy, JHEP 11 (2013) 074 [arXiv:1307.2892] [INSPIRE].

[13] R.D. Sorkin, 1983 paper on entanglement entropy: “On the entropy of the vacuum outside a

horizon”, contibuted paper for at the 10th International Conference on General Relativity

and Gravitation, July 4–9, Padova, Italy (1983), arXiv:1402.3589 [INSPIRE].

[14] T. Jacobson, Thermodynamics of space-time: the Einstein equation of state, Phys. Rev. Lett.

75 (1995) 1260 [gr-qc/9504004] [INSPIRE].

[15] E. Bianchi and R.C. Myers, On the architecture of spacetime geometry, Class. Quant. Grav.

31 (2014) 214002 [arXiv:1212.5183] [INSPIRE].

– 23 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1103/PhysRevLett.26.1344
http://dx.doi.org/10.1103/PhysRevLett.26.1344
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,26,1344
http://dx.doi.org/10.1103/PhysRevD.7.2333
http://inspirehep.net/search?p=find+J+Phys.Rev.,D7,2333
http://dx.doi.org/10.1007/BF02345020
http://inspirehep.net/search?p=find+J+Comm.Math.Phys.,43,199
http://dx.doi.org/10.1103/PhysRevLett.71.666
http://arxiv.org/abs/hep-th/9303048
http://inspirehep.net/search?p=find+EPRINT+hep-th/9303048
http://dx.doi.org/10.1103/PhysRevD.50.2700
http://arxiv.org/abs/hep-th/9401070
http://inspirehep.net/search?p=find+EPRINT+hep-th/9401070
http://arxiv.org/abs/gr-qc/9404039
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9404039
http://dx.doi.org/10.1016/S0550-3213(96)00678-5
http://arxiv.org/abs/hep-th/9607104
http://inspirehep.net/search?p=find+EPRINT+hep-th/9607104
http://dx.doi.org/10.1023/A:1026654312961
http://dx.doi.org/10.1023/A:1026654312961
http://arxiv.org/abs/hep-th/9711200
http://inspirehep.net/search?p=find+EPRINT+hep-th/9711200
http://dx.doi.org/10.1088/1126-6708/2007/07/062
http://arxiv.org/abs/0705.0016
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.0016
http://dx.doi.org/10.1103/PhysRevLett.96.181602
http://arxiv.org/abs/hep-th/0603001
http://inspirehep.net/search?p=find+EPRINT+hep-th/0603001
http://dx.doi.org/10.1007/JHEP08(2013)090
http://arxiv.org/abs/1304.4926
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.4926
http://dx.doi.org/10.1007/JHEP11(2013)074
http://arxiv.org/abs/1307.2892
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.2892
http://arxiv.org/abs/1402.3589
http://inspirehep.net/search?p=find+EPRINT+arXiv:1402.3589
http://dx.doi.org/10.1103/PhysRevLett.75.1260
http://dx.doi.org/10.1103/PhysRevLett.75.1260
http://arxiv.org/abs/gr-qc/9504004
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9504004
http://dx.doi.org/10.1088/0264-9381/31/21/214002
http://dx.doi.org/10.1088/0264-9381/31/21/214002
http://arxiv.org/abs/1212.5183
http://inspirehep.net/search?p=find+EPRINT+arXiv:1212.5183


J
H
E
P
0
1
(
2
0
1
5
)
0
7
3

[16] V. Balasubramanian, B.D. Chowdhury, B. Czech, J. de Boer and M.P. Heller, A

hole-ographic spacetime, Phys. Rev. D 89 (2014) 086004 [arXiv:1310.4204] [INSPIRE].

[17] R.C. Myers, J. Rao and S. Sugishita, Holographic holes in higher dimensions, JHEP 06

(2014) 044 [arXiv:1403.3416] [INSPIRE].

[18] B. Czech, X. Dong and J. Sully, Holographic reconstruction of general bulk surfaces, JHEP

11 (2014) 015 [arXiv:1406.4889] [INSPIRE].

[19] S.W. Hawking and G.F.R. Ellis, The large scale structure of spacetime, Cambridge

University Press, Cambridge U.K. (1973).

[20] A.C. Wall, Testing the generalized second law in 1+1 dimensional conformal vacua: an

argument for the causal horizon, Phys. Rev. D 85 (2012) 024015 [arXiv:1105.3520]

[INSPIRE].

[21] N. Iqbal and A.C. Wall, Entanglement anomalies, to appear.

[22] A.C. Wall, Maximin surfaces and the strong subadditivity of the covariant holographic

entanglement entropy, Class. Quant. Grav. 31 (2014) 225007 [arXiv:1211.3494] [INSPIRE].

[23] V.E. Hubeny and M. Rangamani, Causal holographic information, JHEP 06 (2012) 114

[arXiv:1204.1698] [INSPIRE].

[24] S.H. Shenker and D. Stanford, Multiple shocks, JHEP 12 (2014) 046 [arXiv:1312.3296]

[INSPIRE].

[25] N. Engelhardt and A.C. Wall, Extremal surface barriers, JHEP 03 (2014) 068

[arXiv:1312.3699] [INSPIRE].

[26] A.C. Wall, The generalized second law implies a quantum singularity theorem, Class. Quant.

Grav. 30 (2013) 165003 [Erratum ibid. 30 (2013) 199501] [arXiv:1010.5513] [INSPIRE].

[27] T. Jacobson and R. Parentani, Horizon entropy, Found. Phys. 33 (2003) 323

[gr-qc/0302099] [INSPIRE].

[28] A.C. Wall, Ten proofs of the generalized second law, JHEP 06 (2009) 021 [arXiv:0901.3865]

[INSPIRE].

[29] A.C. Wall, Proving the achronal averaged null energy condition from the generalized second

law, Phys. Rev. D 81 (2010) 024038 [arXiv:0910.5751] [INSPIRE].

[30] R.D. Sorkin, Toward a proof of entropy increase in the presence of quantum black holes,

Phys. Rev. Lett. 56 (1986) 1885 [INSPIRE].

[31] V.P. Frolov and I. Novikov, Dynamical origin of the entropy of a black hole, Phys. Rev. D 48

(1993) 4545 [gr-qc/9309001] [INSPIRE].

[32] A.O. Barvinsky, V.P. Frolov and A.I. Zelnikov, Wavefunction of a Black Hole and the

Dynamical Origin of Entropy, Phys. Rev. D 51 (1995) 1741 [gr-qc/9404036] [INSPIRE].

[33] S. Sarkar and A.C. Wall, Generalized second law at linear order for actions that are functions

of Lovelock densities, Phys. Rev. D 88 (2013) 044017 [arXiv:1306.1623] [INSPIRE].

[34] T. Jacobson and R.C. Myers, Black hole entropy and higher curvature interactions, Phys.

Rev. Lett. 70 (1993) 3684 [hep-th/9305016] [INSPIRE].

[35] S. Sarkar and A.C. Wall, Second law violations in Lovelock gravity for black hole mergers,

Phys. Rev. D 83 (2011) 124048 [arXiv:1011.4988] [INSPIRE].

[36] T. Liko, Topological deformation of isolated horizons, Phys. Rev. D 77 (2008) 064004

[arXiv:0705.1518] [INSPIRE].

– 24 –

http://dx.doi.org/10.1103/PhysRevD.89.086004
http://arxiv.org/abs/1310.4204
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.4204
http://dx.doi.org/10.1007/JHEP06(2014)044
http://dx.doi.org/10.1007/JHEP06(2014)044
http://arxiv.org/abs/1403.3416
http://inspirehep.net/search?p=find+EPRINT+arXiv:1403.3416
http://dx.doi.org/10.1007/JHEP11(2014)015
http://dx.doi.org/10.1007/JHEP11(2014)015
http://arxiv.org/abs/1406.4889
http://inspirehep.net/search?p=find+EPRINT+arXiv:1406.4889
http://dx.doi.org/10.1103/PhysRevD.85.024015
http://arxiv.org/abs/1105.3520
http://inspirehep.net/search?p=find+EPRINT+arXiv:1105.3520
http://dx.doi.org/10.1088/0264-9381/31/22/225007
http://arxiv.org/abs/1211.3494
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.3494
http://dx.doi.org/10.1007/JHEP06(2012)114
http://arxiv.org/abs/1204.1698
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.1698
http://dx.doi.org/10.1007/JHEP12(2014)046
http://arxiv.org/abs/1312.3296
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.3296
http://dx.doi.org/10.1007/JHEP03(2014)068
http://arxiv.org/abs/1312.3699
http://inspirehep.net/search?p=find+EPRINT+arXiv:1312.3699
http://dx.doi.org/10.1088/0264-9381/30/19/199501
http://dx.doi.org/10.1088/0264-9381/30/19/199501
http://arxiv.org/abs/1010.5513
http://inspirehep.net/search?p=find+EPRINT+arXiv:1010.5513
http://dx.doi.org/10.1023/A:1023785123428
http://arxiv.org/abs/gr-qc/0302099
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0302099
http://dx.doi.org/10.1088/1126-6708/2009/06/021
http://arxiv.org/abs/0901.3865
http://inspirehep.net/search?p=find+EPRINT+arXiv:0901.3865
http://dx.doi.org/10.1103/PhysRevD.81.024038
http://arxiv.org/abs/0910.5751
http://inspirehep.net/search?p=find+EPRINT+arXiv:0910.5751
http://dx.doi.org/10.1103/PhysRevLett.56.1885
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,56,1885
http://dx.doi.org/10.1103/PhysRevD.48.4545
http://dx.doi.org/10.1103/PhysRevD.48.4545
http://arxiv.org/abs/gr-qc/9309001
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9309001
http://dx.doi.org/10.1103/PhysRevD.51.1741
http://arxiv.org/abs/gr-qc/9404036
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9404036
http://dx.doi.org/10.1103/PhysRevD.88.044017
http://arxiv.org/abs/1306.1623
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.1623
http://dx.doi.org/10.1103/PhysRevLett.70.3684
http://dx.doi.org/10.1103/PhysRevLett.70.3684
http://arxiv.org/abs/hep-th/9305016
http://inspirehep.net/search?p=find+EPRINT+hep-th/9305016
http://dx.doi.org/10.1103/PhysRevD.83.124048
http://arxiv.org/abs/1011.4988
http://inspirehep.net/search?p=find+EPRINT+arXiv:1011.4988
http://dx.doi.org/10.1103/PhysRevD.77.064004
http://arxiv.org/abs/0705.1518
http://inspirehep.net/search?p=find+EPRINT+arXiv:0705.1518


J
H
E
P
0
1
(
2
0
1
5
)
0
7
3

[37] X. Dong, Holographic entanglement entropy for general higher derivative gravity, JHEP 01

(2014) 044 [arXiv:1310.5713] [INSPIRE].

[38] D.V. Fursaev, A. Patrushev and S.N. Solodukhin, Distributional geometry of squashed cones,

Phys. Rev. D 88 (2013) 044054 [arXiv:1306.4000] [INSPIRE].

[39] J. Camps, Generalized entropy and higher derivative gravity, JHEP 03 (2014) 070

[arXiv:1310.6659] [INSPIRE].

[40] A. Bhattacharyya, M. Sharma and A. Sinha, On generalized gravitational entropy, squashed

cones and holography, JHEP 01 (2014) 021 [arXiv:1308.5748] [INSPIRE].

[41] A. Bhattacharyya and M. Sharma, On entanglement entropy functionals in higher derivative

gravity theories, JHEP 10 (2014) 130 [arXiv:1405.3511] [INSPIRE].

[42] B. Swingle and M. Van Raamsdonk, Universality of gravity from entanglement,

arXiv:1405.2933 [INSPIRE].

[43] T. Barrella, X. Dong, S.A. Hartnoll and V.L. Martin, Holographic entanglement beyond

classical gravity, JHEP 09 (2013) 109 [arXiv:1306.4682] [INSPIRE].

[44] V. Rosenhaus and M. Smolkin, Entanglement entropy, planar surfaces and spectral functions,

JHEP 09 (2014) 119 [arXiv:1407.2891] [INSPIRE].

[45] R. Myers, private communication.

[46] S. Fischetti and D. Marolf, Complex entangling surfaces for AdS and Lifshitz black holes?,

Class. Quant. Grav. 31 (2014) 214005 [arXiv:1407.2900] [INSPIRE].

[47] M. Headrick, Entanglement entropy, talk given at the KITP Conference: Quantum Fields

beyond Perturbation Theory, January 27–31, University of California Santa Barbara, U.S.A.

(2014).

[48] L.-Y. Hung, R.C. Myers and M. Smolkin, On holographic entanglement entropy and higher

curvature gravity, JHEP 04 (2011) 025 [arXiv:1101.5813] [INSPIRE].

[49] J. de Boer, M. Kulaxizi and A. Parnachev, Holographic entanglement entropy in Lovelock

gravities, JHEP 07 (2011) 109 [arXiv:1101.5781] [INSPIRE].

[50] D.V. Fursaev and S.N. Solodukhin, On one loop renormalization of black hole entropy, Phys.

Lett. B 365 (1996) 51 [hep-th/9412020] [INSPIRE].

[51] J.-G. Demers, R. Lafrance and R.C. Myers, Black hole entropy and renormalization,

gr-qc/9507042 [INSPIRE].

[52] S.N. Solodukhin, One loop renormalization of black hole entropy due to nonminimally

coupled matter, Phys. Rev. D 52 (1995) 7046 [hep-th/9504022] [INSPIRE].

[53] S.P. de Alwis and N. Ohta, Thermodynamics of quantum fields in black hole backgrounds,

Phys. Rev. D 52 (1995) 3529 [hep-th/9504033] [INSPIRE].

[54] D.N. Kabat, Black hole entropy and entropy of entanglement, Nucl. Phys. B 453 (1995) 281

[hep-th/9503016] [INSPIRE].

[55] F. Larsen and F. Wilczek, Renormalization of black hole entropy and of the gravitational

coupling constant, Nucl. Phys. B 458 (1996) 249 [hep-th/9506066] [INSPIRE].

[56] S.P. Kim, S.K. Kim, K.-S. Soh and J.H. Yee, Renormalized thermodynamic entropy of black

holes in higher dimensions, Phys. Rev. D 55 (1997) 2159 [gr-qc/9608015] [INSPIRE].

[57] R.M. Wald, General relativity, Chicago University Press, Princeton U.S.A. (1984).

[58] S. Gao and R.M. Wald, Theorems on gravitational time delay and related issues, Class.

Quant. Grav. 17 (2000) 4999 [gr-qc/0007021] [INSPIRE].

– 25 –

http://dx.doi.org/10.1007/JHEP01(2014)044
http://dx.doi.org/10.1007/JHEP01(2014)044
http://arxiv.org/abs/1310.5713
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.5713
http://dx.doi.org/10.1103/PhysRevD.88.044054
http://arxiv.org/abs/1306.4000
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4000
http://dx.doi.org/10.1007/JHEP03(2014)070
http://arxiv.org/abs/1310.6659
http://inspirehep.net/search?p=find+EPRINT+arXiv:1310.6659
http://dx.doi.org/10.1007/JHEP01(2014)021
http://arxiv.org/abs/1308.5748
http://inspirehep.net/search?p=find+EPRINT+arXiv:1308.5748
http://dx.doi.org/10.1007/JHEP10(2014)130
http://arxiv.org/abs/1405.3511
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.3511
http://arxiv.org/abs/1405.2933
http://inspirehep.net/search?p=find+EPRINT+arXiv:1405.2933
http://dx.doi.org/10.1007/JHEP09(2013)109
http://arxiv.org/abs/1306.4682
http://inspirehep.net/search?p=find+EPRINT+arXiv:1306.4682
http://dx.doi.org/10.1007/JHEP09(2014)119
http://arxiv.org/abs/1407.2891
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.2891
http://dx.doi.org/10.1088/0264-9381/31/21/214005
http://arxiv.org/abs/1407.2900
http://inspirehep.net/search?p=find+EPRINT+arXiv:1407.2900
http://dx.doi.org/10.1007/JHEP04(2011)025
http://arxiv.org/abs/1101.5813
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.5813
http://dx.doi.org/10.1007/JHEP07(2011)109
http://arxiv.org/abs/1101.5781
http://inspirehep.net/search?p=find+EPRINT+arXiv:1101.5781
http://dx.doi.org/10.1016/0370-2693(95)01290-7
http://dx.doi.org/10.1016/0370-2693(95)01290-7
http://arxiv.org/abs/hep-th/9412020
http://inspirehep.net/search?p=find+EPRINT+hep-th/9412020
http://arxiv.org/abs/gr-qc/9507042
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9507042
http://dx.doi.org/10.1103/PhysRevD.52.7046
http://arxiv.org/abs/hep-th/9504022
http://inspirehep.net/search?p=find+EPRINT+hep-th/9504022
http://dx.doi.org/10.1103/PhysRevD.52.3529
http://arxiv.org/abs/hep-th/9504033
http://inspirehep.net/search?p=find+EPRINT+hep-th/9504033
http://dx.doi.org/10.1016/0550-3213(95)00443-V
http://arxiv.org/abs/hep-th/9503016
http://inspirehep.net/search?p=find+EPRINT+hep-th/9503016
http://dx.doi.org/10.1016/0550-3213(95)00548-X
http://arxiv.org/abs/hep-th/9506066
http://inspirehep.net/search?p=find+EPRINT+hep-th/9506066
http://dx.doi.org/10.1103/PhysRevD.55.2159
http://arxiv.org/abs/gr-qc/9608015
http://inspirehep.net/search?p=find+EPRINT+gr-qc/9608015
http://dx.doi.org/10.1088/0264-9381/17/24/305
http://dx.doi.org/10.1088/0264-9381/17/24/305
http://arxiv.org/abs/gr-qc/0007021
http://inspirehep.net/search?p=find+EPRINT+gr-qc/0007021


J
H
E
P
0
1
(
2
0
1
5
)
0
7
3

[59] V. Balasubramanian, P. Kraus and A.E. Lawrence, Bulk versus boundary dynamics in

Anti-de Sitter space-time, Phys. Rev. D 59 (1999) 046003 [hep-th/9805171] [INSPIRE].

[60] V. Balasubramanian, P. Kraus, A.E. Lawrence and S.P. Trivedi, Holographic probes of

Anti-de Sitter space-times, Phys. Rev. D 59 (1999) 104021 [hep-th/9808017] [INSPIRE].

[61] T. Banks, M.R. Douglas, G.T. Horowitz and E.J. Martinec, AdS dynamics from conformal

field theory, hep-th/9808016 [INSPIRE].

[62] I. Bena, On the construction of local fields in the bulk of AdS5 and other spaces, Phys. Rev.

D 62 (2000) 066007 [hep-th/9905186] [INSPIRE].

[63] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Local bulk operators in AdS/CFT: a

boundary view of horizons and locality, Phys. Rev. D 73 (2006) 086003 [hep-th/0506118]

[INSPIRE].

[64] A. Hamilton, D.N. Kabat, G. Lifschytz and D.A. Lowe, Holographic representation of local

bulk operators, Phys. Rev. D 74 (2006) 066009 [hep-th/0606141] [INSPIRE].

[65] D. Kabat, G. Lifschytz and D.A. Lowe, Constructing local bulk observables in interacting

AdS/CFT, Phys. Rev. D 83 (2011) 106009 [arXiv:1102.2910] [INSPIRE].

[66] R. Bousso, S. Leichenauer and V. Rosenhaus, Light-sheets and AdS/CFT, Phys. Rev. D 86

(2012) 046009 [arXiv:1203.6619] [INSPIRE].

[67] B. Czech, J.L. Karczmarek, F. Nogueira and M. Van Raamsdonk, The gravity dual of a

density matrix, Class. Quant. Grav. 29 (2012) 155009 [arXiv:1204.1330] [INSPIRE].

[68] I. Heemskerk, D. Marolf, J. Polchinski and J. Sully, Bulk and transhorizon measurements in

AdS/CFT, JHEP 10 (2012) 165 [arXiv:1201.3664] [INSPIRE].

[69] J.A. Wheeler, The quantization of geometry, in Relativity, groups, and fields, B.S. DeWitt

and C. DeWitt eds., Gordon and Breach, New York U.S.A. (1964).

[70] S.D.H. Hsu and D. Reeb, Unitarity and the Hilbert space of quantum gravity, Class. Quant.

Grav. 25 (2008) 235007 [arXiv:0803.4212] [INSPIRE].

[71] B. Freivogel et al., Inflation in AdS/CFT, JHEP 03 (2006) 007 [hep-th/0510046] [INSPIRE].

[72] D. Marolf, Black holes, AdS and CFTs, Gen. Rel. Grav. 41 (2009) 903 [arXiv:0810.4886]

[INSPIRE].

[73] D. Marolf and A.C. Wall, Eternal black holes and superselection in AdS/CFT, Class. Quant.

Grav. 30 (2013) 025001 [arXiv:1210.3590] [INSPIRE].

[74] R. Bousso, Z. Fisher and A.C. Wall, The covariant entropy bound as a quantum focussing

theorem, in preparation.

[75] A. Almheiri, D. Marolf, J. Polchinski and J. Sully, Black holes: complementarity or

firewalls?, JHEP 02 (2013) 062 [arXiv:1207.3123] [INSPIRE].

[76] V.P. Frolov and D.V. Fursaev, Thermal fields, entropy and black holes, Class. Quant. Grav.

15 (1998) 2041 [hep-th/9802010] [INSPIRE].

– 26 –

http://dx.doi.org/10.1103/PhysRevD.59.046003
http://arxiv.org/abs/hep-th/9805171
http://inspirehep.net/search?p=find+EPRINT+hep-th/9805171
http://dx.doi.org/10.1103/PhysRevD.59.104021
http://arxiv.org/abs/hep-th/9808017
http://inspirehep.net/search?p=find+EPRINT+hep-th/9808017
http://arxiv.org/abs/hep-th/9808016
http://inspirehep.net/search?p=find+EPRINT+hep-th/9808016
http://dx.doi.org/10.1103/PhysRevD.62.066007
http://dx.doi.org/10.1103/PhysRevD.62.066007
http://arxiv.org/abs/hep-th/9905186
http://inspirehep.net/search?p=find+EPRINT+hep-th/9905186
http://dx.doi.org/10.1103/PhysRevD.73.086003
http://arxiv.org/abs/hep-th/0506118
http://inspirehep.net/search?p=find+EPRINT+hep-th/0506118
http://dx.doi.org/10.1103/PhysRevD.74.066009
http://arxiv.org/abs/hep-th/0606141
http://inspirehep.net/search?p=find+EPRINT+hep-th/0606141
http://dx.doi.org/10.1103/PhysRevD.83.106009
http://arxiv.org/abs/1102.2910
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.2910
http://dx.doi.org/10.1103/PhysRevD.86.046009
http://dx.doi.org/10.1103/PhysRevD.86.046009
http://arxiv.org/abs/1203.6619
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.6619
http://dx.doi.org/10.1088/0264-9381/29/15/155009
http://arxiv.org/abs/1204.1330
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.1330
http://dx.doi.org/10.1007/JHEP10(2012)165
http://arxiv.org/abs/1201.3664
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.3664
http://dx.doi.org/10.1088/0264-9381/25/23/235007
http://dx.doi.org/10.1088/0264-9381/25/23/235007
http://arxiv.org/abs/0803.4212
http://inspirehep.net/search?p=find+EPRINT+arXiv:0803.4212
http://dx.doi.org/10.1088/1126-6708/2006/03/007
http://arxiv.org/abs/hep-th/0510046
http://inspirehep.net/search?p=find+EPRINT+hep-th/0510046
http://dx.doi.org/10.1007/s10714-008-0749-7
http://arxiv.org/abs/0810.4886
http://inspirehep.net/search?p=find+EPRINT+arXiv:0810.4886
http://dx.doi.org/10.1088/0264-9381/30/2/025001
http://dx.doi.org/10.1088/0264-9381/30/2/025001
http://arxiv.org/abs/1210.3590
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.3590
http://dx.doi.org/10.1007/JHEP02(2013)062
http://arxiv.org/abs/1207.3123
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.3123
http://dx.doi.org/10.1088/0264-9381/15/8/001
http://dx.doi.org/10.1088/0264-9381/15/8/001
http://arxiv.org/abs/hep-th/9802010
http://inspirehep.net/search?p=find+EPRINT+hep-th/9802010

	Introduction
	Preliminaries
	Definitions
	Premises about quantum geometry

	A holographic entanglement entropy proposal
	Comparison to Faulkner-Lewkowycz-Maldacena formula

	Quantum extremal surfaces lie deeper than causal surfaces
	A limit to causal signaling
	With time folds

	Barriers to quantum extremal surfaces
	Discussion: limits on bulk reconstruction

