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1 Introduction

Holography, as phenomena with emergent extra dimensions is most clearly implemented

in the AdS/CFT correspondence relating d-dimensional QFT’s to d+1 dimensional Grav-

ity/and String theories. The most extensively studied example is N=4 SuperYang-Mills

theory and its relation to AdS5×S5 String theory with features of integrability [1–4].

Higher Spin equations were studied long ago [5–7]. Interacting theories of all spins

containing Gravity were successfully constructed through a gauge principle [8–11]. Their

correspondence withN -component vector field theories represents a significant example [12,

13] of AdS/CFT duality characterized by relative simplicity. It provides a great laboratory

for studying [14] and understanding some of the basic questions regarding the origin of

holography and of emergent space-time.

Holography, in QFT and Gravity has been understood in a number of different schemes.

In the concrete example of AdSd+1/CFTd the origin of the extra AdS coordinate has been

attributed most commonly to a ‘renormalization group scale’. There are other physical

ideas on the emergence of space-time and Gravity. The collective field [15] approach pro-

vides a direct construct of the emergent theory as large N collective phenomena. Here one

has an effective re(summation) of Feynman diagrams into effective interaction vertices (

with extra dimensions). As such the approach gives a systematic scheme for construction

of the dual AdS theory and provides considerable insight into the origin of holography [17].
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In the case of N -component vector models, this has been demonstrated [18–20] in the

light-cone gauge [21] (where HS gravity is the simplest). A similar identification of AdS

space in light-cone QCD was developed in [22, 23]. In addition a renormalization group

method for bi-local observables is being developed in [24–27]. The collective method is

easily formulated in any time-like frame, and it has been used for example in in [29, 30]. A

recent overview of the canonical formulation of the AdS/CFT map can be found in [31]. A

covariant version is also possible and is seen to explain [20] some of the interesting one-loop

results found in [32, 33]. More complex Higher Spin correspondences involving conformal

theories in 2d are also of high interest [16, 28]. In this paper we aim to strengthen the

Collective/Gravity identification and provide deeper understanding of it. We will study

HS gravity through a world line spinning particle picture and will identify several different

‘gauges’ of the theory. The most well known one, which we call the Fronsdal gauge, trans-

lates in the second-quantized version into the Higher Spin equations of Fronsdal with de

Donder gauge condition. We then introduce a more symmetric or ‘bi-local’ gauge which

features space-time and internal coordinates in a symmetrical way. It is in this gauge that

the appearance of CFT in its collective representation becomes manifest. We also discuss

the transformations and algebraic equivalences between the different gauges.

For a bulk identification between the two sides it is useful to have Gravity (and HS

theory) written in the ‘gauge independent’ representation where all gauge constraints are

solved. This ‘gauge reduction’ can be quite nontrivial in any gauge theory and we perform

it in Higher Spin Gravity. We demonstrate in particular that the physical content of 4D

AdS HS theory is represented by a single scalar field dynamics in 6d. Since in this (physical)

version one has no gauge conditions or redundant variables, consequently the identification

with 3 + 3 dimensional bi-local collective equations becomes visible. This demonstration

is performed at the quadratic level, which determines the spectrum of the theory, One can

hope that the features and reductions identified extend to the case of interactions.

The outline of the paper is as follows: In section 2 we give the description of the

world line particle formulation of higher spins and write down the different gauges that

we consider. Section 3 discuss the appearance of the bi-local collective equations in the

symmetric gauge. Section 4 presents the reductions to unconstrained fields, and the process

of solving the gauge conditions demonstrating reduction to a 6d scalar field equation.

Equivalence relations between the gauges are demonstrated in section 5. In the Conclusions,

section 6, we give a summary of our demonstration.

2 Gauges

Let us begin by discussing Higher Spin field equations in terms of a world line (first quan-

tized) particle in AdSd+1. It is useful to embed AdSd+1 into a d+2 dimensional space-time

Rd,2, since the SO(d, 2) conformal symmetry is manifestly realized [34]. Even though some

of the kinematical facts will hold for any dimension d we will concentrate specifically on the

3d case representing AdS4/CFT3 duality. In terms of the coordinates XA of the embedding

space and the coordinates xµ of the AdS space, the higher spin field hµ1···µs
(x) is related
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to a higher spin field in embedding space as

HA1···As
(X) = xµ1

,A1
· · ·xµs

,As

hµ1···µs
(x) (2.1)

where xµ,A = ∂xµ/∂XA. To generate all spins one introduces the internal(spin) coordinate

as a copy of Rd,2 denoted by Y A. The higher spin field is then

H(X,Y ) =
∑

s

HA1···As
(X)Y A1 · · ·Y As (2.2)

For the specific case of AdS4 which we focus on we have SO(3, 2) realized on the tensor

product of two copies of R3,2. Introducing the momenta (ηAB = (−,−,+,+,+))

PA = −i
∂

∂XA
KA = −i

∂

∂Y A
(2.3)

conjugate to XA and Y A respectively. The generators are

LAB = PAXB − PBXA +KAYB −KBYA (2.4)

For the massless spin s theory, which is to be associated with the D(s+1, s) representations

of SO(3, 2), one can constrain the second and fourth order Casimir operators as

C2 + E2
0 + s2 = 0 , C4 + E2

0s
2 = 0 (2.5)

It will be useful to write out the explicit forms

C2 =
1

2
LABL

AB

= X2P 2 − (X · P )2 + Y 2K2 − (Y ·K)2 + 2X · Y P ·K − 2X ·KY · P (2.6)

C4 =
1

4
LABL

B
CL

C
DL

DA − 1

2

(

1

2
LABL

AB

)2

= X2
(

K2(Y · P )2 + P 2(Y ·K)2 − 2(P ·K)(Y · P )(Y ·K)
)

+Y 2
(

K2(X · P )2 + P 2(X ·K)2 − 2(K · P )(X · P )(X ·K)
)

+(X2Y 2 − (X · Y )2)
(

(P ·K)2 − P 2K2
)

− (X ·K)2(Y · P )2

−(X · P )2(Y ·K)2 + 2(X · P )(X ·K)(P · Y )(Y ·K)

+2(P ·K)(X · P )(X · Y )(Y ·K) + 2(P ·K)(X ·K)(X · Y )(Y · P )

−2P 2(X ·K)(X · Y )(Y ·K)− 2K2(X · P )(X · Y )(Y · P ) (2.7)

Eliminating s one has the following equation(constraint):

L = C4 +
1

4
C2
2 = 0 (2.8)

This equation for the spinning particle is analogous to the Laplacian constraint.

This restriction of the Casimirs, however, is still not sufficient to specify the irreducibil-

ity of representations, and one needs to impose further first class constraints. These are not

unique and their specification corresponds to different gauges of the theory [19]. Several

cases starting with the Fronsdal’s one will be given below.
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2.1 Fronsdal /de Donder gauge

The gauge invariant equation of motion for a symmetric traceless s-tensor gauge field

hµ1···µs
in AdSd+1 is given by

(�−m2)hµ1···µs
+ s∇(µ1

∇νhµ2···µs)ν −
s(s− 1)

2(d+ 2s− 3)
g(µ1µ2

∇ν1∇ν2hµ3···µs)ν1ν2 = 0 (2.9)

where gauge symmetry fixes

m2 = (s− 2)(d+ s− 3)− 2

In his original treatment of higher spin fields, Fronsdal [34] employed a covariant gauge

specified by

∇ρhρµ2···µs
= 0 gρσhρσµ3···µs

= 0 (2.10)

In this gauge, the equation of motion becomes

(�−m2)hµ1···µs
= 0 (2.11)

To have transversality and tracelessness one imposes, following Fronsdal [34], the following

four constraints

T1 = XAPA + Y AKA + 1 = 0 (2.12)

T2 = XAKA = 0 (2.13)

T3 = KAKA = 0 (2.14)

T4 = PAKA = 0 (2.15)

These first class constraints specify the Fronsdal gauge. In the phase space one is free to add

to these certain gauge conditions. Specifically we will make use of the “gauge conditions”

T−1 = XAXA + r2 = 0 (2.16)

T−2 = XAYA = 0 (2.17)

where r is the radius of the AdS spacetime.

With the above constraints we find that

L = C4 +
1

4
C2
2 =

1

4

(

P 2
)2

(2.18)

which represents the Laplace operator in the Fronsdal gauge. To explicitly verify that (2.18)

reproduces (2.9), change variables in the embedding space into the radial coordinate r and

four coordinates that parametrize the constraint surface determined by (2.16). Restricting

the embedding space Laplacian to the constraint surface and projecting tensors to the

space tangent to the constraint surface then reproduces (2.9).
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2.2 KLSS gauge

In [35, 36] another description of the spinning Anti-de Sitter particle was given and it

was shown to reduce to a description on AdS4 times S2. The four first class constraints

of [35, 36] are

1

2
(−X · PX + Y · PY ) = 0 (2.19)

1

2
(X · PX + Y · PY ) = 0 (2.20)

PY · PY = 0 (2.21)

X · PY = 0 (2.22)

We refer to this as KLSS Gauge. Again one adds “gauge conditions” which can be identical

ones in the Fronsdal case.

2.3 Symmetric gauge

Finally we give another even more symmetric gauge, which will turn out to be related

to the bi-local collective field description. The bilocal fields reside in 2 + 1 dimensional

Minkowski spacetime, with events labeled by U and V .

One writes the following four first class constraints

1

2
V · PV = 0 (2.23)

1

2
U · PU = 0 (2.24)

U · U = 0 (2.25)

V · V = 0 (2.26)

A single “gauge condition” U · V = 1 will be of relevance.

We will discuss this gauge in much more detail in the following section, as it represents

the bi-local/collective field version of the theory. We will also demonstrate an algebraic

equivalence between the various gauges specified above. We mentioned that in the present

work we are using the simplest version of spinning particle dynamics. There are a number

of other relevant studies of spinning particles in AdS space, in particular [37, 38]. It will

be interesting to incorporate the present scheme in future work as part of the more general

a tensor particle theory [39–41] and a so called “parent theory” [42] from which Fronsdal’s

and Vasiliev’s unfolded formulations are known to follow through two different reductions.

3 Collective field /symmetric gauge

Collective field theory of the O(N) vector model concentrates on the dynamics of the

composite, bi-local field

Ψ(xµ1 , x
µ
2 ) = ϕ(x1) · ϕ(x2) (3.1)

– 5 –
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which takes place in the six dimensional space given by the tensor product of two copies of

R2,1. In this section the index µ = 0, 1, 2 is a vector index for 2 + 1 Minkowski space R2,1.

Its dynamics is fully specified by the (collective) action

S =

∫

d3x

(

−∆xΨ(x, y)
∣

∣

∣

x=y

)

− N

2
Tr logΨ (3.2)

which is directly deduced from the QFT. The QFT Lagrangian represents the first term in

the above expression. The second term encapsulates all the quantum effects, and N which

now appears as a coupling constant defines the complete nonlinearity in this collective

representation.

After a shift by the stationary background

Ψ(x1, x2) = Ψ0(x1, x2) + Ψ̃(x1, x2) (3.3)

one gets the linearized equations and a sequence of 1/N vertices:

∂2
1∂

2
2Ψ̃(x1, x2) +

∞
∑

n=3

N1−n

2 n

∫ n−2
∏

l=1

d3yl
∂

∂yl
∂

∂yl
∂2
1∂

2
2Ψ̃(x1, y1)Ψ̃(y1, y2) · · · Ψ̃(yn−2, x2) = 0

(3.4)

It was proposed [17] that this action and the associated collective equations define the

gravitational dual of the O(N) vector CFT. As emphasized in [17] this represents a bulk

description of Higher Spin theory. The emergent AdS space-time can be most clearly

identified in the light-cone gauge [18]. We will, in what follows, extend this identification to

the covariant case and demonstrate that the bi-local description can be directly associated

with the symmetric gauge of Higher Spin theory.

In the world line description, we consider the particle variables introduced in the

previous section. Denote the variables conjugate to U, V by PU , PV . After a Fourier

transform, the constraints are

1

2
V · PV = 0 (3.5)

1

2
U · PU = 0 (3.6)

U · U = 0 (3.7)

V · V = 0 (3.8)

With the above constraints we find that

C4 +
1

4
C2
2 = P 2

UP
2
V (3.9)

defining the Laplace operator in this gauge.

We have that the field Ψ(U, V ), is defined in the 5 + 5 dimensional space obtained by

taking two copies of R3,2. To obtain the unconstrained physical description we need to

solve the pairs of constraints U · PU = 0, U · U = 0 and V · PV = 0, V · V = 0. We will

now demonstrate that after solving the constraints we obtain a 3 + 3 dimensional bi-local

description with the correct collective dynamics.
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We will describe in detail the solution to U · PU = 0, U · U = 0. The solution to

the second pair of constraints follows exactly the same logic. To solve the constraints it is

useful to introduce the light cone momenta

U± = U3 ± U5 (3.10)

To implement the constraint U ·PUΨ(U) = 0 where U ·PU generates scale transformation

U± → λU± Uµ → λUµ (3.11)

we express the wave function in terms of invariants under scaling. (In this section, we use

µ = 01, 2, 3 as index for three-dimensional Minkowski space) One can choose

uµ =
Uµ

U−
,

U+

U−
(3.12)

as independent set of invariants. However, because of U · U = 0, we have

U+

U−
= −1

2
uµu

µ (3.13)

so that it does not represent an independent variable. Hence, our reduced wave function

reads

Ψ (U) = Ψ (uµ) (3.14)

To obtain the reduced form for the SO (2, 3) generators, we proceed as follows. One can

express the momentum in the embedding space in terms of U− and independent invariants

uµ’s according to chain rule.

PUµ → ∂

∂Uµ
=

1

U−

∂

∂uµ

PU− → ∂

∂U−
= − uµ

U−

∂

∂uµ
(3.15)

This expresses U and PU in terms of uµ, U−. The answers for the generators will depend

only on the invariant variables uµ. Performing the same reduction for the pair (V, PV ),

the collective wave function, after performing both reductions is Ψ(uµ, vµ). The original

SO(3, 2) generator

LAB = PUAUB − PUBUA + PV AVB − PV BVA (3.16)

become

Lµ+ = Pµ Lµ− = Kµ L+− = D

Pµ =
∂

∂uµ
+

∂

∂vµ

Mµν = −uµ
∂

∂uν
+ uν

∂

∂uµ
− vµ

∂

∂vν
+ vν

∂

∂vµ

D = uµ
∂

∂uµ
+ vµ

∂

∂vµ
+ 1

Kµ = −1

2
u2

∂

∂uµ
+ uµu

ν ∂

∂uν
− 1

2
v2

∂

∂vµ
+ vµv

ν ∂

∂vν
(3.17)
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which are seen to be the generators of the three-dimensional conformal group acting on a

bi-local field. The field in linearized approximation will obey an equation following from

the reduction of the Casimirs: from eq. (3.9) one indeed obtains

C4 +
1

4
C2
2 =

1

4
(u− v)2 p2up

2
v (3.18)

where we have (u− v)2 factor in addition to eq. (3.9). This factor appears because the above

reduction does not satisfy the “gauge condition” U · V = 1 in general. A field-dependent

gauge transformation to U · V = 1 gauge will eliminate (u− v)2 factor in the collective

Laplacian. To summarize, we have shown that the bi-local collective field equations (in

leading order) can be obtained from a symmetric gauge fixing of higher spins.

4 Gauge reduction

We now proceed to a direct method for demonstrating equivalence of collective and higher

spin equations. The non triviality of direct identification comes from the fact that HS

fields require gauge fixing conditions, while the bi-local field of collective theory is not

constrained. So one strategy for a comparison is to solve the gauge constraints imposed on

the Higher Spins and obtain equations entirely in terms of independent (gauge invariant)

variables with no constraints. This is usually difficult to do. We will be able to perform

this reduction in the Higher Spin case and show that it leads to a scalar field dynamics 6

dimensions, which are split into 4 of AdS4 and a 2-sphere S2 for the reduced spin degrees

of freedom. A specific example of this reduction to physical degrees of freedom was first

presented in the spinning particles framework in the work of [35, 36] which we describe

first. We will then demonstrate a that a very similar reduction holds for the Fronsdal

HS case [34].

4.1 KLSS reduction to AdS4×S2

In this subsection we start from two copies of the five dimensional flat space R3,2 with

coordinates and momenta (XA, PA) and (Y A,KA) for the two copies. The copy of R3,2 with

coordinates Y A is used to package the complete set of higher spin fields into a single field.

After imposing the constraints introduced above, which implement the KLSS gauge, we

are left with the 6 dimensional space AdS4×S2. The fields on this space are unconstrained

since to obtain this description all of the gauge constraints have been solved. We introduce

symmetric coordinates qm for the AdS4 and complex coordinates z for the S2. AdS4 is the

physical space-time while the S2 is used to collect the complete set of higher spin fields

into a single field.

In [35, 36] the constraints implementing the KLSS gauge were solved. We will briefly

summarize this reduction. The constraints X · Y = 0, X · P = 0 and X ·K = 0 eliminate

one component from each of Y, P,K, by forcing them to lie within the subspace orthogonal

to X. Within this subspace we still need to impose Y AKA = 0 and KAKA = 0. These

constraints define the Dirac cone which was studied in detail in the last section. The

– 8 –
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momenta K̄µ transervse to X can be written using the spinor helicity formalism as

K̄aḃ =

[

−K̄0 + K̄3 K̄1 − iK̄2

K̄1 + iK̄2 −K̄0 − K̄3

]

(4.1)

The fact that K̄ is null implies that det K̄aḃ = 0 and hence that K̄aḃ is the outer product

of a single vector

K̄aḃ = vaw̄ḃ (4.2)

The fact that K̄aḃ is hermitian means that w̄ḃ = v∗a. Following [35, 36] introduce two

spinors

ωa = (1,−1/z) za = (−z, 1) (4.3)

ωa = (−1/z,−1) za = (1, z) (4.4)

The variables z and z̄ are the coordinates of the S2. Parametrize AdS4

(X0)2 + (X5)2 − (X1)2 − (X2)2 − (X3)2 = r2 (4.5)

by the coordinates qµ with

X0 =
2rq0

1 + q · q X1 =
2rq1

1 + q · q (4.6)

X2 =
2rq2

1 + q · q X3 =
2rq3

1 + q · q (4.7)

X5 =
r(1− q · q)
1 + q · q q · q = (q0)2 − (q1)2 − (q2)2 − (q3)2 (4.8)

It is straightforward to verify that

ds2 = − 4r2dq · dq
(1 + q · q)2 (4.9)

On AdS4 × S2, in terms of the above coordinates, the generators of the SO(3, 2) algebra

are (I, J = 1, 2, 3)

L0I = q0pI + qIp0 + S0I

LIJ = qIpJ − qJpI + SIJ

LI5 = RpI +
1

4R
(2qIqµpµ + q2pI) +

qµ

2R
SIµ

L05 = Rp0 −
1

4R
(2q0qµpµ − q2p0) +

qµ

2R
S0µ (4.10)

with

Sµν = −(σµν)αβz
αzβpz + (σ̄µν)α̇β̇ z̄

α̇z̄β̇pz̄
{qµ, pν} = δµν {z, pz} = 1 {z̄, pz̄} = 1 (4.11)

– 9 –
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4.2 Fronsdal case to AdS4×S2

In this subsection we again start from two copies of the five-dimensional flat space R3,2

with coordinates and momenta (XA, PA) and (Y A,KA) for the two copies. The copy of

R3,2 with coordinates Y A is again used to package the complete set of higher spin fields

into a single field. After imposing the constraints introduced above, which implement

the Fronsdal gauge, we are left with the 6 dimensional space AdS4×S2. The constraints

defining the Fronsdal and KLSS gauge are different, but the resulting physical space is the

same. Since to obtain this description all of the gauge constraints have been solved, the

result should be gauge invariant so that this is not unexpected. We introduce Poincare

coordinates xµ for the AdS4 and coordinates θ, φ for the S2. AdS4 is the again physical

space-time while the S2 is again used to collect the complete set of higher spin fields into

a single field.

In Fronsdal’s gauge we have the four second class constraints, T1, T2, T−1, T−2, and two

first class ones T3, T4. First of all, we will solve the four second class constraints. Under a

transformation,

(

X,A PA, Y A,KA
)

−→
(

XA, PA − XA

X ·X ,Y A,KA

)

(4.12)

the ordering term in T1 vanishes and other constraints are invariant up to linear combina-

tion. The only change is in T1 which becomes

T ′

1 = X · P + Y ·K (4.13)

The second class constraints, T ′
1, T2, T−1, T−2 are solved by

Xa =
xa

z
(4.14)

X3 =
1

2

(

1

z
− xaxa

z
− z

)

(4.15)

X5 =
1

2

(

1

z
+

xaxa
z

+ z

)

(4.16)

PA =
∂xµ

∂XA
pµ +

(

∂2xµ

∂XA∂XB

∂XB

∂xν

)

yνkµ (4.17)

Y A =
∂XA

∂xρ
yρ (4.18)

KA =
∂xν

∂XA
kν (4.19)

where we use the convention for indices in this section.

a, b, · · · = 0, 1, 2, i, j, · · · = 1, 2, I, J, · · · = 1, 2, 3, µ, ν, · · · = 0, 1, 2, 3

With this solution, the remaining first constraints become

T3 = z2ηµνk
µkν (4.20)

T4 = zy3ηµνk
µkν + z2ηµνk

µpν (4.21)
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where ηµν = diag (−1,+1,+1,+1). Ignoring ordering issues, we need to solve the following

two equations

kµkµφ (x; y) = 0 (4.22)

pµkµφ (x; y) = 0 (4.23)

where we used the flat metric and

φ (x; y) = φµ1···µs
yµ1 · · · yµs (4.24)

Note that one can get the same equations starting from the traceless condition and in

covariant gauge. i.e.

ηµ1µ2ϕµ1µ2···µs
= 0 (4.25)

(

∂z −
2

z

)

ϕzµ2···µx
+ ∂iϕiµ2···µs

= 0 (4.26)

where ϕµ1···µs
(x) is Fronsdal’s higher spin field. Redefining the field ϕ,

φµ1···µs
=

1

z2
ϕµ1···µs

(4.27)

one recovers eq. (4.22) and eq. (4.23). In [21], Metsaev solved the system of equations

eq. (4.22) and eq. (4.23). We will follow a similar procedure. Consider a Fock space which

consists of

|φ (x; y)〉 = φµ1µ2···µs
(x) yµ1yµ2 · · · yµs |0〉 (4.28)

The traceless condition eq. (4.22) and the covariant gauge condition eq. (4.23) can be

written as

kµkµ |φ〉 = 0 (4.29)

pµkµ |φ〉 = 0 (4.30)

Introduce kernels, M1,M2,M3 and M4 to manipulate eq. (4.29) and eq. (4.30).

M1 ≡ exp

[

−y0
(

1

p0
kIpI

)]

(4.31)

M2 ≡ exp
[

−θ1
(

y1k2 − y2k1
)]

(4.32)

M3 ≡ exp
[

−θ2
(

y3k1 − y1k3
)]

(4.33)

M4 ≡ exp

[

−y3k3 log

(

1

p0
√

−pµpµ

)]

(4.34)

where

θ1 ≡ arctan
p2

p1
, θ2 ≡ arctan

√

pipi
p3

(4.35)

Define a new basis for the Fock space,
∣

∣Φ
(

x; y0, y1, y2, y3
)〉

.

∣

∣φ
(

x; y0, y1, y2, y3
)〉

= M1M2M3M4

∣

∣Φ
(

x; y0, y1, y2, y3
)〉

(4.36)
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In
∣

∣Φ
(

y0, y1, y2, y3
)〉

basis, eq. (4.29) and eq. (4.30) takes the following form.

(

kIkI + k0f (p, k)
) ∣

∣Φ
(

x; y0, y1, y2, y3
)〉

= 0 (4.37)

−k0p0
∣

∣Φ
(

x; y0, y1, y2, y3
)〉

= 0 (4.38)

where f (p, k) is an unimportant function of p and k. The covariant gauge condition

eq. (4.38) can be easily solved by
∣

∣Φ
(

x; y1, y2, y3
)〉

which is independent of y0. In
∣

∣Φ
(

y1, y2, y3
)〉

basis, the traceless condition reads

kIkI
∣

∣Φ
(

y1, y2, y3
)〉

= 0 (4.39)

This traceless condition is also solved by spherical harmonics of y1, y2, y3. i.e. when re-

stricting on spin-s field, one has
∣

∣

∣
Φsol
s,m

(

x; y1, y2, y3
)

〉

= Φ(x)Ys,m
(

y1, y2, y3
)

|0〉 (4.40)

Hence, we obtain AdS4 × S2 by solving all Fronsdal constraints. Now, we will calculate

the representation of SO(2, 3) for AdS4×S2. We start with the SO(2, 3) generators for the

(5 + 5)-dimensional embedding space

LAB = XAPB −XBPA + Y AKB − Y BKA

=







Jab −1
2P

a −Ka −1
2P

a +Ka

1
2P

b +Kb 0 D
1
2P

b −Kb −D 0






(4.41)

With the solution eq. (4.14)∼eq. (4.19), one can easily obtain the form of the SO(2, 3)

generators for (4 + 4)-dimensional space. Note that the transformation in eq. (4.12) does

not change the form of the generators. Finally, using M1, · · · ,M4, one can obtain repre-

sentation of SO(2, 3) in the
∣

∣Φsol
s,m

〉

basis

P 0 = p0 (4.42)

P 1 = p1 (4.43)

P 2 = p2 (4.44)

D = xµpµ + s (4.45)

J01 = tp1 − x1p0 +M12 p0p2p3

(p̂)2(p̄)2
−M23 p p

2

p̂p̄
−M31 p

1p3p

p̂(p̄)2
(4.46)

J12 = x1p2 − x2p1 (4.47)

J20 = x2p0 − x0p2 +M12 p0p1p3

(p̂)2(p̄)2
−M23 p p1

p̂(p̄)2
+M31 p

2p3p

p̂(p̄)2
(4.48)

K0 = −1

2
xµxµp

0 + tD +
(

M12
)2 p0

2

(

− 1

(p̂)2
+

2

(p̄)2
− 1

(p)2

)

−M IJMIJ
p0

2

(

1

(p̄)2
− 1

(p)2

)

+M12M23 p3 p

p̂(p̄)2
+M12 p

0p3J12

p̂2p̄

−M23 p J
12

p̂p̄
+M31 p

(

−p3
(

xipi
)

+ (p̂)2z
)

p̂(p̄)2
(4.49)
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K1 = −1

2
xµxµp

1 + x1D +
(

M12
)2 p1

2

(

1

(p̂)2
− 2

(p̄)2
− 1

(p)2

)

+M IJMIJ

p1
(

p0
)2

2(p̄)2(p)2

−
(

−M31s+M12M23
) p0p1p3

p̂p(p̄)2
+
(

M23s+M12M31
) p0p2

p̂ p p̄

−M12s
p2p3

(p̂)2p̄
+M12 p

2
(

p0p3t− (p̄)2z
)

(p̂)2p̄
−M23 p

2 p

p̂p̄

−M31 p
1p3 p t

p̂(p̄)2
(4.50)

K2 = −1

2
xµxµp

2 + x2D +
(

M12
)2 p2

2

(

1

(p̂)2
− 2

(p̄)2
− 1

(p)2

)

+M IJMIJ

(

p0
)2

p2

2(p̄)2(p)2

−
(

sM23 +M12M31
) p0p1

p̂ p p̄
−
(

−sM31 +M12M23
) p0p2p3

(p̂)3 p

+sM12 p
1p3

(p̂)2p̄
+M12 p

1
(

−p0p3t+ pIpIz
)

(p̂)2p̄
+M23 p

1 p t

p̂p̄

−M31 p
2p3 p t

p̂(p̄)2
(4.51)

where p =
√−pµpµ, p̂ =

√

pipi, p̄ =
√

pIpI .
(

y1, y2, y3
)

are constrained on unit sphere S2

so that (θ, φ) are coordinates of the S2 and corresponding conjugate momenta are
(

kθ, kφ
)

.

Moreover, M IJ are the angular momentum on the S2. i.e.

M12 = kφ (4.52)

M23 = −kφ cosφ cot θ − kθ sinφ (4.53)

M31 = −kφ sinφ cot θ + kθ cosφ (4.54)

They indeed satisfy SO (2, 3) algebra.

In summary we have seen that in higher spin gauge theory one can effectively solve the

gauge fixing conditions (for Fronsdal fields in particular) and obtain the reduced physical

set of fields and equation. The physical degrees of freedom of all spins were shown to be

collected into a 6-dimensional unconstrained scalar field, the six dimensions consisting of

AdS4 and S2. This is the same number of degrees of freedom contained in the bi-local

field derived from CFT. Consequently at the level of unconstrained physical fields we can

make a one-to-one identification between collective and reduced Higher Spin degrees of

freedom. For this Map one only needs to give the change of coordinates (and momenta).

Such canonical transformations were constructed in [18].

In the final section we will return to the gauge world line particle framework and demon-

strate the equivalence relations between the constraint algebras, giving another scheme for

the Map.

5 Equivalences

In this section we will demonstrate that the algebras of the constraints specifying various

gauges match. At the algebraic level the gauges are defined by the structure constants of

these algebras. Consequently, if the algebra of the constraints can be seen to match in a

particular basis equivalence between the two gauges follows.
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5.1 Isomorphism of the KLSS and collective gauges

The constraints specifying the KLSS gauge are given by the χ’s below, while the constraints

specifying the collective gauge are given by the η’s. Labeling the constraints as

χA =
1

2
(−X · P + Y ·K) ηA =

1

2
(u · Pu + v · Pv)

χB =
1

2
(X · P + Y ·K) ηB =

1

2
u · Pu

χC = K ·K ηC = Pu · Pu

χD = X ·K ηD = Pv · Pv (5.1)

we obtain the following Lie algebras

[

χA, χB

]

= 0
[

ηA, ηB
]

= 0
[

χC , χD

]

= 0
[

ηC , ηD
]

= 0
[

χA, χC

]

= −χC

[

ηA, ηC
]

= −ηC
[

χA, χD

]

= −χD

[

ηA, ηD
]

= −ηD
[

χB, χC

]

= −χC

[

ηB, ηC
]

= −ηC
[

χB, χD

]

= 0
[

ηB, ηD
]

= 0 (5.2)

There is a complete match between the two algebras.

5.2 Equality of the Fronsdal and collective gauges

For the collective (bilocal) description impose the following (first class) constraints

U2 = 0 V 2 = 0

U · PU = 0 V · PV = 0 (5.3)

To obtain the correct Laplacian

Ω2 +
1

4
Ω2
1 −→ P 2

UP
2
V (5.4)

impose the little gauge condition

U · V = 1 (5.5)

For the Fronsdal description, impose the following (again first class) constraints

X · P + Y ·K = 0 X ·K = 0

P ·K = 0 K ·K = 0 (5.6)

To obtain the correct Laplacian

Ω2 +
1

4
Ω2
1 −→ P 2 (5.7)

impose the little gauge conditions

X · Y = 0 X2 = 1 (5.8)
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To map between these two sets of constraints, start by setting

X = U + V Y = U − V

U =
1

2
(X + Y ) V =

1

2
(X − Y )

PU = P +K PV = P −K (5.9)

Apply this change of coordinates to the collective constraints. The constraints U2 = 0 = V 2

becomes

X2 + Y 2 = 0 X · Y = 0 (5.10)

PPU + V PV = 0 becomes

X · P + Y ·K = 0 (5.11)

and PPU − V PV = 0 becomes

X ·K + Y · P = 0 (5.12)

Now perform the canonical transformation Y → K and K → −Y . The collective con-

straints become

X · P − Y ·K = 0 X ·K = 0

X2 +K2 = 0 −X · Y + P ·K = 0 (5.13)

Now add the little gauge conditions

X2 = 1 X · Y = 0 (5.14)

so that the constraints become

X · P − Y ·K = 0 X ·K = 0

1 +K2 = 0 P ·K = 0 (5.15)

There are two unfamiliar features: first K2 = −1 so that K is a set of coordinates for de

Sitter space. Second, X ·P + Y ·K is now X ·P − Y ·K. To understand the second point,

note that Fronsdal uses

hA1···As
Y A1 · · ·Y As (5.16)

Acting on these fields, we have

X · P + Y ·K −→ X · ∂

∂X
+ Y · ∂

∂Y
(5.17)

For collective we use

hA1···As
KA1 · · ·KAs (5.18)

Acting on these fields, we have (ignore ordering issues)

X · P −K · Y −→ X · ∂

∂X
+K · ∂

∂K
(5.19)

so there is again a perfect match.
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6 Conclusions

We have presented two (equivalent) schemes for demonstrating the comparison between

higher spin fields and bi-local fields built in CFT. In the first, the 3+3 dimensional bi-local

field equation is up-lifted to a 5+5 dimensional gauged system. It is seen that it represents

a symmetric gauge of this HS theory in its world line description. It is then compared

with a similar realization of Fronsdal’s Higher Spin equations and also the Higher Spin

particle system of [35]. Equivalences between the gauges were then established at the level

of constraints, namely, we have seen that they represent isomorphic algebras. For direct

comparison of bulk fields and equations we have proceeded to solve the gauge constraints

imposed on the Higher Spins and obtain equations entirely in terms of independent (gauge

invariant) variables with no constraints. We were able to perform this reduction in the

Higher Spin case and show that it leads to a unconstrained scalar in 6 dimensions, with

space-time given by a product of AdS4 and a 2-sphere S2 representing the reduced spin

degrees of freedom. Collective fields mimic the dynamics of these unconstrained (invariant)

fields. This reduction is a Higher Spin analog of a reduction to invariant fields known in

pure gravity [43, 44].

The world line scheme that we have employed for the present considerations most

directly concerns the quadratic level of the theory and also the one loop equivalences seen

in direct calculations performed in [20, 32] (see also [51]). The structure of gauges that

we identify should in principle extend to the interacting case. One could hope that much

like for strings the world line picture of spinning particles can be extended to the case of

n-point amplitudes. The fully nonlinear collective action indeed features bilocal Feynman

rules characteristic of a spinning dipole. This direction is worthy of future study.

The present scheme of establishing the correspondence gives a different perspective of

holography in AdS/CFT as compared to the standard projections to the boundary. Usually

the correspondence is established through comparison of boundary correlation functions.

In the present discussion we are establishing the correspondence in the bulk and off-shell.

It is seen that collective field theory can be identified with the reduced, unconstrained fields

of Higher Spin Gravity. It therefore summarizes the physical, ‘gauge invariant’ data of the

theory. We should mention that there are other, possibly related views on the holography in

Higher Spin theories. In the renormalization group construction of [25] bi-local observables

are extended by additional (gauge) degrees of freedom. Comparison regarding the origin

of AdS space is of interest. At the level of gauge invariant Higher Spin equation on has the

proposals of Vasiliev [45, 50]. Relationships between all these approaches to Holography

are of major interest.
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