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1 Introduction

Supergravity [1–4] provides a proper theoretical framework to describe cosmic inflation in

a supersymmetric set-up. Supersymmetry has to be broken due to the absence of sparticles

in the low energy observable sector. Therefore, one usually explicitly introduces two matter

sectors which are in general different. The first one is the supersymmetry breaking sector,

a hidden sector serving only one purpose, to break supersymmetry. The second one is

the inflationary sector which is designed to implement the early universe quasi de Sitter

phase [5]. Pursuing a minimal description one can avoid the addition of a matter superfield

that accommodates the inflaton field. It is possible that the inflaton has a pure gravitational

origin [6–9], and thus in a supersymmetric setup, it can be a degree of freedom of a pure

supergravity theory. Indeed, a class of higher curvature supergravities, like the R + R2

theory [10–13], incorporate supermultiplets which can accommodate the inflaton [14, 15].

In this work we show that apart from inflation, supergravity higher curvature models can

implement at the same time the supersymmety breakdown.

In new-minimal supergravity the R + R2 theory can be dualized to standard (old-

minimal) supergravity coupled to a massive vector multiplet [12, 13, 16] which are solid

candidates for single field inflation. Indeed, a single field Starobinsky model utilizing

massive vector multiplets was proposed in [14, 15]. This embedding has attracted further

attention in a series of papers [17–21] due to its single field property. In the old-minimal

supergravity, the R+R2 theory is embedded utilizing two additional chiral multiplets [11]:
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the inflaton T and the (goldstino) S . This embedding was further developed in [14, 22–

35]. In both embeddings, there is an inflationary phase driven by a single scalar with

a potential exhibiting appropriate plateau and a supersymmetric Minkowski vacuum at

the end of the inflationary phase. Alternative methods for embedding the Starobinsky

model have been followed in [36–41] and modified no-scale supergravity models have been

presented in [42–44]. A proposal for a dynamical origin of such a phase has also been

investigated in [45–47]. For supergravity N = 2 embeddings see [48–50] and for embedding

and related work in superstrings see [51–54]. Finally for discussion on the UV properties

of these models see [55, 56].

Although higher curvature pure supergravity may successfully accommodate the in-

flaton, as we stressed above, an extra hidden sector with matter superfields is usually

introduced to break supersymmetry. However, the vacuum structure of the old-minimal

higher derivative supergravity is rich enough [57–59], and non-trivial vacua of the new

degrees of freedom (associated with higher curvature gravity) may also lead to super-

symmetry breaking [57, 58]. We find that when the inflaton ends up in an R-symmetric

vacuum supersymmetry does not break [21], but when the R-symmetry is violated then

proper supersymmetry breaking vacua can be selected. This gives rise to a novel approach:

the inflationary and the supersymmetry breaking sector are implemented by the same field

configuration which is contained in higher curvature supergravity. In other words, we in-

vestigate here the possibility that the inflationary sector and the supersymmetry breaking

sector are in fact manifestations of pure higher curvature supergravity. The advantage of

this approach is its universality, in the sense that supergravity, and substantially higher

curvature supergravity, has to exist in every extension of the supersymmetric low energy

physics that includes gravity. The mediation of this supersymmetry breaking to the ob-

servable sector requires appropriate couplings [58] of the higher curvature supergravity to

the low energy theory. The details of this mediation scheme are left for a future work.

The outcome of this work is that inflation and supersymmetry breaking can be actually

realized in a generic pure supergravity setup, described by

L = −3M2
P

∫
d4θ E f(R, R̄)

where R is the supergravity chiral superfield which contains the Ricci scalar. The standard

realization of the Starobinsky model in old-minimal supergarvity is described by

f(R, R̄) = 1− 2
RR̄
m2

+
1

9
ζ
R2R̄2

m4

which includes only R-symmetric terms. Note that this f(R, R̄) does not lead to an R4

extension as we will explicitly see below, and still describes R + R2 supergravity. The

ζ-parameter has to be sufficiently large for single field inflation and leads to a unique

Minkowski supersymmetric vacuum. Such a model that exhibits only a unique supersym-

metric vacuum appears to be a rather special case. Here we generalize the supergravity

Starobinsky model and investigate superspace functions of the form

f(R, R̄) = 1 + γ
R+ R̄
m

− 2
RR̄
m2

+ β
RR̄2 +R2R̄

m3
+

1

9
ζ
R2R̄2

m4
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where γ and β are free coefficients which parametrize the magnitude of the R-violation. In

these more generic models, supersymmetry breaking vacua are present and the inflationary

trajectory can naturally end up in non-supersymmetric and R-violating vacua which can

be chosen to be Minkowski as well.

The paper is organized as follows. In section 2, we discuss generic properties of higher

curvature standard minimal supergravity, and the relations between the dual formulations.

In section 3, we elaborate on the vacuum structure of the R + R2 supergravity in the

old-minimal formulation and the importance of the ζ parameter for R-symmetric models.

Section 4 is where we turn on the γ and β R-symmetry violating terms. The theories

we study in the 4th section are still of pure higher curvature supergravity origin but now

they can play a dual role as both the inflatonary and the supersymmetry breaking sector.

Finally we conclude in section 5.

2 Generic pure supergravity

Poincaré Supergravity, due to the underlying superconformal structure [1, 3, 4, 60–63],

has more than one off-shell formulations. In fact due to the existence of two minimal

scalar multiplets which serve as compensators, we find Poincaré minimal supergravity in

two flavors: the old-minimal [2] and the new-minimal [64]. In principle these formulations

coincide [65] when there are no curvature higher derivatives in the theory, but the duality

can not be proven in the presence of such terms, and is expected to break down. In this

work we restrict ourselves to the old-minimal formulation.

The most general (without explicit superspace higher derivatives) pure old-minimal

supergravity in superspace has the form

L = −3

∫
d4θ E f(R, R̄) (2.1)

which can be also written as

L =
3

8

∫
d2Θ 2E (D̄2 − 8R)f(R, R̄) + c.c. (2.2)

up to total derivatives. Here R is the supergravity chiral superfield and 2E is the chiral

density, while E is the full superspace density. For the moment we set MP = 1; we

will restore dimensions later. Let us remind the reader the superspace fields inside the

Lagrangian (2.2). The Ricci superfield R is a chiral superfield

D̄α̇R = 0 (2.3)

with lowest component the auxiliary field M

R| = −1

6
M. (2.4)

The fermionic component is

DαR| = −
1

6
(σaσ̄bψab + ibaψa − iσaψ̄aM)α (2.5)
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where ψαm is the gravitino and ψαmn is the gravitino field strength. The highest component

of this curvature chiral superfield is

D2R| =− 1

3
R+

4

9
MM̄ +

2

9
baba −

2i

3
e m
a Dmba +

1

3
ψ̄ψ̄M − 1

3
ψmσ

mψ̄nb
n

+
2i

3
ψ̄mσ̄nψmn +

1

12
εklmn[ψ̄kσ̄lψmn + ψkσlψ̄mn].

(2.6)

The real vector bm is an auxiliary field of the old-minimal supergravity. The superspace

field 2E is a chiral density, defined as

2E = e
{

1 + iΘσaψ̄a −ΘΘ
(
M̄ + ψ̄aσ̄

abψ̄b

)}
. (2.7)

Our conventions can be found in [2] and a full list of the components of the curvature

superfields of the old-minimal supergravity can be found in [66]. The Lagrangians (2.1)

and (2.2) represent a pure supergravity theory, and it is easy to see from the structure of

the theory and the superfield R that in their generic form, they lead to higher derivative

gravitation.

These generic pure supergravity self-couplings can be brought in first order form by

introducing appropriate Lagrange multipliers, giving rise to an equivalent theory which

contains two chiral superfields coupled to standard supergravity, denoted by T and S. It

is instructive to reproduce the procedure here in the old-minimal supergravity framework.

The Lagrangian

L =
3

8

∫
d2Θ 2E (D̄2 − 8R)f(S, S̄) + c.c.+ 6

∫
d2Θ 2E T (S −R) + c.c. (2.8)

is the first step. Indeed, from the superspace equations of motion of T we have

S = R (2.9)

which leads to Lagrangian (2.2). On the other hand we may use the superspace identity

−6

∫
d2Θ 2E T R+ c.c. =

6

8

∫
d2Θ 2E (D̄2 − 8R)T + c.c.

= −3

∫
d4θ E (T + T̄ )

(2.10)

to rewrite Lagrangian (2.8) as

L =
3

8

∫
d2Θ 2E (D̄2 − 8R)

[
T + T̄ + f(S, S̄)

]
+ c.c.

+ 6

∫
d2Θ 2E T S + c.c.

(2.11)

which is nothing but standard supergravity

L =
3

8

∫
d2Θ 2E (D̄2 − 8R)e−

1
3
K + c.c.+

∫
d2Θ 2E W + c.c. (2.12)
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with Kähler potential

K = −3 ln
{
T + T̄ + f(S, S̄)

}
(2.13)

and superpotential

W = 6 T S. (2.14)

Thus, the bottom line of the above discussion is that the standard supergravity theory

coupled to the chiral superfields T and S with a Kähler potential given by (2.13) and a

superpotential given by (2.14) is equivalent to a supergravity theory containing only pure

supergravity sector and its higher derivatives. This procedure was initially established in

the language of superconformal supergravity in [11], and here we have followed it closely.

The function f(R, R̄) in principle may contain terms which violate the R-symmetry

(here we denote them fv(R, R̄)) and can be split as

f(R, R̄) = f0(R, R̄) + fv(R, R̄). (2.15)

These terms have a very rich form, for example

f(R, R̄) = 1 + γn
Rn + R̄n

mn
− 2
RR̄
m2

+
1

9
ζ
R2R̄2

m4
(2.16)

where the R-symmetry violation is parameterized by γn, and leads to an equivalent theory

with

K = −3 ln

{
1 + T + T̄ + γn

Sn + S̄n

mn
− 2
SS̄
m2

+
1

9
ζ
S2S̄2

m4

}
(2.17)

and the superpotential is given by (2.14). A more generic R-symmetry breaking can origi-

nate from

fv(R, R̄) ⊃ RpR̄q (2.18)

for p 6= q. Let us also mention another useful equivalence. As we saw the function f can

be split such that it has the form

f(R, R̄) = h(R) + h̄(R̄) + g(R, R̄). (2.19)

From our previous discussion it is easy to see that the higher derivative supergravity theory

in (2.19) is equivalent to standard supergravity with superpotential (2.14) and Kähler

potential

K = −3 ln
{
T + T̄ + h(S) + h̄(S̄) + g(S, S̄)

}
. (2.20)

But there is another equivalent form this theory may have. By shifting

T → T − h(S) (2.21)

– 5 –
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the Kähler potential (2.20) becomes (2.13) (with f(S, S̄) replaced by g(S, S̄)) and the

superpotential now reads

W = 6 T S − 6S h(S). (2.22)

This equivalence has been discussed for the supergravity sector in [57] and also later found

to exist in the superconformal supergravity [25]. Note that if we set [30, 34, 67, 68]

S = XNL (2.23)

where

X2
NL = 0 (2.24)

the most general Kähler potential reads

K = −3 ln
{
T + T̄ + γXNL + γX̄NL − 2XNLX̄NL

}
(2.25)

but in fact due to the aforementioned equivalence the linear terms γXNL and γX̄NL in-

side (2.25) are redundant and vanish. As we will see later, these linear terms play a

fundamental role in our work, therefore the use of a constrained superfield (2.24) is not

appropriate, and will have to be modified for our models.

For future reference we write down the bosonic sector of a standard supergravity theory

with Kähler potential (2.13) and superpotential (2.14)

e−1L = −1

2
R−Kij∂zi∂z̄j − V(zi, z̄i) (2.26)

where we denote collectively the complex scalar fields T (the lowest component of T ) and

S (the lowest component of S) as zi and the potential has the standard form

V = eK
[
(K−1)ij̄(Wi +KiW)(W̄j̄ +Kj̄W̄)− 3WW̄

]
. (2.27)

In formula (2.26) we have

Kij∂zi∂z̄j = −3
fSS̄∂S∂S̄

(f + T + T̄ )
+ 3
|fS∂S + ∂T |2

(f + T + T̄ )2
(2.28)

and

V = 12
|S|2

(
f − 2(fSS + fS̄S̄) + 4fSS̄ |S|2

)
− (fSS̄)−1|T − fSS + 2fSS̄ |S|2|2

(f + T + T̄ )2
. (2.29)

When restoring the canonical dimensions for the fields of the previous formulae one merely

has to compensate them with appropriate MP powers, since the new scales are hidden

inside the function f .

Finally we would like to clarify the relevance of the model (2.1)

L = −3

∫
d4θ E f(R, R̄) (2.30)

– 6 –
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in describing R + R2 gravity. Writing down the bosonic sector of theory in the pure

supergravity picture one finds [57]

L =− 1

2

(
f +MfM + M̄fM̄ − 4MM̄fMM̄ − 2bmbmfMM̄

)
R− 3

4
fMM̄R

2

+ 3fMM̄ ∂M∂M̄ − 3fMM̄ (∇mbm)2 + i
(
fM∂

mM − fM̄∂mM̄
)
bm

− i
(
fMM − fM̄M̄

)
∇mbm −

1

3
MM̄

{
f − 2

(
fMM + fM̄M̄

)
+ 4MM̄fMM̄

}
+

1

3
bmb

m
{
f + fMM + fM̄M̄ − 4MM̄fMM̄ − bnbnfMM̄

}
(2.31)

where f = f
(
−1

6M,−1
6M̄
)
, fM = ∂f/∂M and fM̄ = ∂f/∂M̄ . A very interesting discussion

on (2.31) can be found in [57]. Note that this is a theory of curvature and curvature square

terms only, as far as gravitation is concerned. Nevertheless it does not propagate the same

degrees of freedom as standard gravity. The R+R2 theory on top of the dynamical degrees

of freedom of the metric, also gives rise to an additional real scalar propagating degree of

freedom [9] known as the scalaron. For a gravitational theory the counting of the degrees

of freedom ends here. For the supergravitational embedding, as can be seen from (2.31),

the scalaron comes with supersymmetric scalar partners. The counting of the total scalar

supersymmetric degrees of freedom is [10, 30, 57]

• M : 2 real scalar degrees of freedom,

• ∇mbm: 1 real scalar degree of freedom,

• R2 → scalaron: 1 real scalar degree of freedom.

The above degrees of freedom reside inside appropriate supersymmetric multiplets as shown

in [10], and are the reason why one needs exactly two chiral superfields (S and T ) to perform

the duality of the theory (2.31) to standard supergravity; the degrees of freedom should

match.

We stress that even though in the following sections we will work with the models in

the dual picture, one may always turn to the pure supergravity description by the use of

formula (2.31), but the on-shell properties of the two descriptions and the dynamics will

be exactly the same, leading to identical predictions.

The situation during inflation is quite subtle. When the field M is strongly stabilized

to 〈M〉 = 0 one finds the Starobinsky model. But when M is not strongly stabilized, there

will be a slight translation of the vev of M during inflation. The dynamics of these models

is in general highly involved but they are related to a well known class of gravitational

theories. In fact the situation is similar to [73]. If we start from (2.31) it is easy to see that

for small kinematic terms of M

3fMM̄ ∂M∂M̄ � −1

3
MM̄

{
f − 2

(
fMM + fM̄M̄

)
+ 4MM̄fMM̄

}
(2.32)

the field M becomes an auxiliary field leading to algebraic equations of motion. Thus in

the limit (2.32) the equations for M will have solutions of form

M =M(R) (2.33)

– 7 –
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and after plugging back to the Lagrangian, this theory will be nothing but an F(R) gravity

e−1L = F(R). (2.34)

To summarize:

1. For vanishing 〈M〉, the inflationary phase is described by the Starobinsky model.

2. For non-constant 〈M〉, the inflationary phase is described by a general F(R) model.

Thus, even thought this is a theory of quadratic gravitation its inflationary dynamics has

various phases depending on the choice of f(R, R̄). As we will see, it also has a rich vacuum

structure.

3 R+R2 in old-minimal supergravity and the ζ parameter

There are two different directions towards the embedding of the Starobinsky model of

inflation [6] in old-minimal supergravity in a superspace setup. One is essentially the

embedding of the inflationary potential

V =
3

2
m2M2

P (1− e−
√

2
3
ϕ/MP )2 (3.1)

for the real scalar inflaton field ϕ, by employing various supemultiplets. The second method

is somewhat more geometrical, and it consists of embedding the higher derivative model

e−1L = −1

2
M2
PR+

M2
P

24m2
R2 (3.2)

into supergravity, thus one employes a pure supergravitational sector [14]. Due to the

well-known duality [9] between a gravitational theory coupled to a propagating scalar with

potential given by (3.1) and a higher derivative gravitation of the form (3.2) (which we

reproduced in a supergravity framework in the previous section), the two aforementioned

methods of embedding the Starobinsky model in supergravity lead to equivalent results.

Note that for Starobinsky inflation the new scale M is in general taken as

m ∼ 10−5MP . (3.3)

The R + R2 supergravity was initially found in the linearized level in [10]. Later the

embedding was extended to the full theory of the old-minimal supergravity [11], and it

corresponds to the following superspace Lagrangian

L = −3M2
P

∫
d4θ E

[
1− 2

RR̄
m2

]
(3.4)

or in other words to a specific function f(R, R̄) inside (2.1) or (2.2)

f(R, R̄) = 1− 2
RR̄
m2

(3.5)

– 8 –



J
H
E
P
0
1
(
2
0
1
5
)
0
4
3

where we have now restored the Planck mass MP for the rest of this article. Taking

into account our discussion in the previous section, we see that the equivalent standard

supergravity system coupled to matter is described by a Kähler potential

K = −3M2
P ln

{
1 +
T + T̄
MP

− 2
SS̄
M2
P

}
(3.6)

and superpotential

W = 6m T S (3.7)

where following [57] we have redefined

S → m

MP
S. (3.8)

Indeed for the extremum

〈S〉 = 〈ImT 〉 = 0 (3.9)

the potential for the canonical normalized inflaton, which is the appropriately redefined

ReT , is given by (3.1).

In [23] it was pointed out that for the specific Kähler potential (3.6) and superpo-

tential (3.7) the extremum (3.9) during inflation is unstable due to a tachyonic mass for

S. This instability was proposed to be remedied by introducing an additional term in the

Kähler potential which includes the ζ parameter

K = −3M2
P ln

{
1 +
T + T̄
MP

− 2
SS̄
M2
P

+
1

9
ζ
S2S̄2

M4
P

}
. (3.10)

This has a pure supergravity origin in the dual picture since it corresponds to setting

f(R, R̄) = 1− 2
RR̄
m2

+
1

9
ζ
R2R̄2

m4
(3.11)

inside (2.1) or (2.2).

The ζ parameter controls the vacuum structure of the models, and there are some

specific critical values, which lead to different properties. We wish to discuss this further.

The scalar potential is

V =12m2M2
P

(
1− 2(s2 + c2) +

ζ

9
(s2 + c2)2 + 2t

)−2
×[

(s2 + c2)
{

1− 2(s2 + c2) + ζ(s2 + c2)2
}

+
9

2

[t− 2
3(s2 + c2)(3− ζ(s2 + c2))]2 + b2

(9− 2ζ(s2 + c2))

] (3.12)

where we have set

T

MP
= t+ ib

S

MP
= s+ ic.

(3.13)
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Note that

∂2V
∂s2

∣∣∣
b=s=c=0

= m2

{
2916t2

(9 + 18t)3
+

81(4− 8t)

2(9 + 18t)2
+

18t2ζ

(9 + 18t)2

}
(3.14)

which sets a lower bound for the value of ζ such that the mass of the s field is not tachy-

onic [23]. In our conventions we find

ζ & 3.54. (3.15)

In the remainder of this section we further study the structure of the new, supersymme-

try breaking vacua. As far as their inflationary properties are concerned, only the models

with ζ > 3.54 are solid candidates since otherwise the scalar S may lead to instabilities.

The model enjoys a rich vacuum structure due to the term

1

9
ζ
R2R̄2

m4
(3.16)

but an inflationary phase exists only for (3.15). We will show in the next section that

turning on R-symmetry violating terms new vacua emerge and also new inflationary tra-

jectories. For now let us return to the vacuum structure of (3.12).

We shortly review the work of [57] where

ζ = 1. (3.17)

We use the parametrization (3.13) for T and the full potential reads [57]

V =12m2M2
P

(
1− 2

|S|2

M2
P

+
1

9

|S|4

M4
P

+ 2t
)−2
× |S|2

M2
P

{
1− 2

|S|2

M2
P

+
|S|4

M4
P

}
+

9

2

[
t− 2

3
|S|2
M2

P

(
3− |S|

2

M2
P

)]2
+ b2(

9− 2 |S|
2

M2
P

)
 . (3.18)

It is easy to see that

〈b〉 = 0 (3.19)

in the vacuum state and since the potential depends only on |S|2 it has a flat direction

along the argument of S. A plot of the potential (3.18) with 〈ImS〉 = 〈ImT 〉 = 0 can be

found in figure 1. Following the method in [57] we find the following vacua

• Supersymmetric Minkowski vacuum: 〈S〉 = 〈T 〉 = 0

• Mikowski vacuum with broken supersymmetry: 〈|S|〉 = MP , 〈T 〉 = 4
3MP .

In the supersymmetry breaking vacuum the R-symmetry is broken spontaneously and the

flat direction is parameterized by the argument of S which is nothing else but the R-axion.

These vacua were originally found in [57].
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Figure 1. The shape of the scalar potential (3.18) in units of 12m2M2
P . The scalar fields T and S

are in MP units.

(a)
(b)

Figure 2. The shape of the scalar potential (3.12) for meta-stable de Sitter vacua with ζ = 1.1

(left panel) and anti-de Sitter vacua with ζ = 0.9 (right panel) in units of 12m2M2
P . The scalar

fields T and S are in MP units.

We can further develop this setup and investigate the properties of the models with

small deviations of ζ from the special value ζ = 1 . We are not in contrast with the work

of [70] since here we deform a Minkowski vacuum with broken supersymmetry. If we set

ζ & 1 (3.20)

it is easy to understand that the SUSY-breaking Minkowski vacua will get slightly uplifted

leading to a metastable de Sitter vacuum. For ζ . 1 the SUSY-breaking vacua will get

slightly dragged down. This is illustrated in the plots in figure 2a and figure 2b. Note that in

the supersymmetry breaking vacuum the spontaneous breakdown of the R-symmetry gives

rise to an R-axion. Metastable supersymmetry breaking vacua have also been encountered

in the past in a different setup, as for example in [71, 72].

We can summarize the dependence of the vacuum structure of the R-symmetric models

(for the relevant field space region) on the various ζ values

• ζ > 3.54 (Kallosh-Linde bound [23]): The S field is always stabilized at 〈S〉 = 0 and

the model has a single supersymmetric Minkowski vacuum for 〈T 〉 = 0. For larger

values of ζ the mass of the S-field increases and becomes bigger than the Hubble

scale during inflation, therefore does not influence the dynamics.
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ζ-parameter Minkowski de Sitter anti-de Sitter
tachyonic

instability
ζ > 3.54 X(+) no

ζ & 1 X(+) X(−) yes

ζ = 1 X(+), X(−) yes

ζ . 1 X(+) X(−) yes

ζ = 0 X(+) yes

Table 1. R-Symmetric models. The X(+) symbol stands for supersymmetric vacua, while X(−)

for vacua with broken supersymmetry.

• ζ & 1: The model has two minima. The Minkowski one with 〈S〉 = 〈T 〉 = 0 which

preserves supersymmetry and the local de Sitter one with 〈|S|2〉 ∼M2
P and 〈T 〉 ∼MP ,

which breaks both supersymmetry and R-symmetry.

• ζ = 1 (Hindawi-Ovrut-Waldram critical value [57]): The model has two degenerate

Minkowski local minima. The trivial 〈S〉 = 〈T 〉 = 0 which preserves supersymmetry

and the new one with 〈|S|2〉 = M2
P and 〈T 〉 = 4

3MP , which breaks both supersym-

metry and R-symmetry with vanishing cosmological constant.

• ζ . 1: The model has two minima. The trivial Minkowski one 〈S〉 = 〈T 〉 = 0 which

preserves supersymmetry and the global anti-de Sitter one with 〈|S|2〉 ∼ M2
P and

〈T 〉 ∼MP , which breaks both supersymmetry and R-symmetry.

• ζ = 0 (Cecotti critical value [11]): The model has only one stable vacuum, the trivial

Minkowski one which preserves supersymmetry. For ζ < 0 the model will in principle

suffer from instabilities.

The above results have been collected in the following table 1.

4 Including R-symmetry violating terms

In the previous section we saw higher curvature supergravity may have Minkowski vacua

with broken supersymmetry, but this led to two drawbacks. Firstly, for a Minkowski

vacuum one has to set ζ = 1 and therefore the same model can not describe a single

field inflationary phase. Secondly, these vacua led to the spontaneous breaking of the R-

symmetry, giving rise to the massless R-axion. Even for a de Sitter vacuum with a small

cosmological constant these problems persist. In this section we introduce R-symmetry

violating terms and we show how single field inflation and supersymmetry breaking can be

realized in this class of models avoiding at the same time the R-axion massless mode.

4.1 Vacuum structure for fv = γ
MP

(
S + S̄

)
Our first model is given by

f(R, R̄) = 1 + γ
R
m

+ γ
R̄
m
− 2
RR̄
m2

+
1

9
ζ
R2R̄2

m4
(4.1)
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where the second and third term source the R-symmetry breaking, and the equivalent

Kähler potential is

K = −3M2
P ln

{
1 +
T + T̄
MP

+ γ
S + S̄
MP

− 2
SS̄
M2
P

+
1

9
ζ
S2S̄2

M4
P

}
(4.2)

while the superpotential is

W = 6m T S. (4.3)

The scalar potential for this model reads

V(t, b, s, c) =12m2M2
P

(
1− 2(s2 + c2) +

ζ

9
(s2 + c2)2 + 2t+ 2γs

)−2
×[

(s2 + c2)
{

1− 2(s2 + c2) + ζ(s2 + c2)2 − 2γs
}

+
9

2

[t− γs− 2
3(s2 + c2)(3− ζ(s2 + c2))]2 + (γc+ b)2

(9− 2ζ(s2 + c2))

] (4.4)

in the parametrization (3.13). This potential will in general have two classes of vacuum

solutions. First there is the trivial vacuum

〈T 〉 = 〈S〉 = 0 (4.5)

with no supersymmetry breaking and vanishing vacuum energy. Then there is the new

class of vacua

〈T 〉 = MP 〈t〉+ iMP 〈b〉 = MP t0

〈S〉 = MP 〈s〉+ iMP 〈c〉 = MP s0

(4.6)

which will break supersymmetry with vanishing vacuum energy or small positive (or neg-

ative) vacuum energy depending on the parameters ζ and γ.

To find the non-trivial vacuum we follow a similar procedure as in [57]. Let us first

explain why the imaginary components of T and S are stabilized to the origin

〈c〉 = 〈b〉 = 0. (4.7)

It is easy to see from the term (γc+ b)2 inside the potential (4.4) that

〈b〉 = −γ〈c〉. (4.8)

When (4.8) is satisfied the c-field appears quadratically in (3.12) and does not have tachy-

onic mass, hence it will be stabilized at 〈c〉 = 0 . Then the potential becomes

V(t, s) =12m2M2
P

(
1− 2s2 +

ζ

9
s4 + 2t+ 2γs

)−2
×[

s2
{

1− 2s2 + ζs4 − 2γs
}

+
9

2

[t− γs− 2
3s

2(3− ζs2)]2

(9− 2ζs2)

]
.

(4.9)
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Since the denominator is positive-definite, the model will have local Minkowski vacua

around the field space regions where the numerator is non-negative:

s2
{

1− 2s2 + ζs4 − 2γs
}

+
9

2

[t− γs− 2
3s

2(3− ζs2)]2

(9− 2ζs2)
≥ 0. (4.10)

For the regions where 9− 2ζs2 > 0 it is easy to see from the second term in (4.10) that the

vacuum expectation value for t will be at

t0 = γs0 +
2

3
s2

0(3− ζs2
0). (4.11)

Now we look for the regions of the s field space where the first term of (4.10)

ωγ(s) = 1− 2s2 + ζs4 − 2γs (4.12)

has a local minimum s0 with

ωγ(s0) = 0. (4.13)

The requirement for local minimum implies

∂ωγ(s)

∂s

∣∣∣
s0

= 0 (4.14)

∂2ωγ(s)

∂s2

∣∣∣
s0
> 0. (4.15)

The above expressions (4.13) and (4.14) relate s0 to ζ and γ as follows

ζ =
1 + 2s2

0

3s4
0

(4.16)

γ = −2s0 +
2 + 4s2

0

3s0
(4.17)

where we remind the reader that s0 = 〈s〉. Thus, the parameters ζ and γ for Minkowski

vacua are parameterized by the vacuum expectation value of the s-field, which should be

chosen such that

9− 2 + 4s2
0

3s2
0

> 0 (4.18)

according to second term in (4.10) and should also realize (4.15). We conclude that there

is a whole parameter space for ζ(s0) and γ(s0) which give Minkowski vacua with broken

supersymmetry.

Let us now turn to the mass of the gravitino field at the vaccum which reads

m2
3/2 = 〈eK|W|2〉 =

24m2s2
0(1 + 2s2

0)2

11− 14s2
0

. (4.19)

The above expression yields a bound on the possible values of s0

|s0| <
√

11

14
(4.20)
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such thatm2
3/2 > 0. Interestingly, this bounds 〈S〉 to sub-Planckian values. Moreover (4.20)

also gives γ > 0.16 and ζ > 1.38. It is well known that whenever the gravitino acquires a

non-vanishing mass in a Minkowski vacuum

〈(K−1)ij̄(DiW)(Dj̄W̄)〉 − 3〈WW̄〉 = 0 (4.21)

this signals supersymmetry breaking

〈DiW〉 6= 0. (4.22)

Note that even though supersymmetry is broken and the vacuum energy is vanishing the

gravitino mass is not specified unless a value for the parameter s0 is chosen.

We illustrate the features of the vacuum structure in a simple example where

ζ = 8 , γ = 1. (4.23)

By following our previous discussion it is easy to see that the potential (4.4) will have a

supersymmetry preserving vacuum (4.5) and on top of that there will be the vacuum

〈T 〉 = MP t0 =
2

3
MP

〈S〉 = MP s0 =
1

2
MP .

(4.24)

The shape of the scalar potential (4.4) for ζ = 8 and γ = 1 can be seen in figure 3 where it

is easy to identify the two minima with vanishing vacuum energy and subplanckian vacuum

expectation values. An investigation of the kinematic terms gives(
f(S, S̄) +

T

MP
+

T̄

MP

)
fSS̄ < 0 (4.25)

which shows that they are positive definite around the second vacuum. Supersymmetry is

broken and gravitino mass is found to be

m2
3/2 = 〈eK|W|2〉 ' 7

4
m2 (4.26)

while 〈DTW〉 ≈ 〈DSW〉 ≈ mMP .

Finally we should note that for ζ = 8 and

γ & 1 (4.27)

the model describes metastable de Sitter vacua, while for

γ . 1 (4.28)

anti-de Sitter local minima are found.

Here we briefly study the global limit of the model about the supersymmetry breaking

vacua. Let us have ζ = 8, γ = 1. Our method to find the global model around the second

SUSY-breaking vacuum is to expand the Kähler potential and superpotential in powers

– 15 –
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Figure 3. The shape of the scalar potential (4.4) with ζ = 8 and γ = 1 in units of 12m2M2
P . The

scalar fields T and S are in MP units.

of MP as proposed for the similar case in [57], even though alternative decoupling limits

exist [69]. To expand around the second vacuum we set

T =
2

3
MP + T̃ (4.29)

S =
1

2
MP + S̃. (4.30)

After diagonalizing the fields by setting X̃ = T̃ − 7
9 S̃ we have a global supersymmetric

model with

K = 3X̃ ¯̃X +
10

27
S̃ ¯̃S (4.31)

W = 3µ2X̃ +
1

3
µ2S̃ (4.32)

where µ =
√
mMP . The supersymmetry breaking leads to

〈V〉 =
33

10
µ4. (4.33)

4.2 Inflationary properties of fv = γ
MP

(
S + S̄

)
As we have mentioned the above models describe higher derivative supergravity and due to

the existence of more than one scalar fields the vacuum structure is rich. In this subsection

we show that there are directions in the field space that can successfully drive inflation. This

class of models, apart from R-symmetric terms, includes the R-violating terms controlled

by the parameter

γ 6= 0. (4.34)

The models contain two complex scalars, T and S where their imaginary parts are

stabilized to ImT = b = 0 and ImS = c = 0. The relevant inflationary scalar potential

reads

V(t, s) =12m2M2
P

(
1− 2s2 +

ζ

9
s4 + 2t+ 2γs

)−2
×[

s2
{

1− 2s2 + ζs4 − 2γs
}

+
9

2

[t− γs− 2
3s

2(3− ζs2)]2

(9− 2ζs2)

]
.

(4.35)
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Figure 4. The shape of the scalar potential (4.4) with ζ = 8 and γ = 1 in units of 12m2M2
P . The

scalar fields T and S are in MP units. A plateau similar to the Starobinsky model can be seen

for large ReT values. The inflationary trajectory terminates at the SUSY breaking vacuum where

ReS = 0.5.

For a Minkowski vacuum with broken supersymmetry one asks for

ζ → ζ0 =
1 + 2s2

0

3s4
0

, γ → γ0 = −2s0 +
2 + 4s2

0

3s0
. (4.36)

Here s0 is the vacuum expectation value of ReS which serves as a free parameter for the

Minkowski vacua.

4.2.1 Inflationary trajectory

This model inflates for large t values during which s takes small values close to zero. The s

field constantly drifts away from zero, and approaches s0 at the end of inflation. This can

be seen at the plot in figure 5a for the scalar potential V(t, s). An important feature is that

the field configuration is attracted to the broken vacuum, thus the model will inflate and

then settle down to the supersymmetry breaking vacuum. A plot can be seen in figure 4.

Although there are two fields t and s which are varying we will show that there is a

field redefinition which reduces the system to a single field case. The procedure to find the

proper fields is straightforward. To achieve this we define a new field which is a combination

of the original ones, and is stabilized at zero

〈y(s, t)〉 = 0. (4.37)

Note that the field s varies very slowly and it will always be stabilized at the minimum of

its potential for the given t thanks to the large ζ value. Hence the value of s can be always

parameterized by the value of t.

By calculating the first derivative of the potential with respect to s we have

∂V(t, s)

∂s
= 0 (4.38)

which is the s-direction minimum. Equation (4.38) is algebraic and can in principle be

solved for s in terms of t, that is

s = Q(t) (4.39)
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leading to

∂V(t, s)

∂s

∣∣∣
s=Q(t)

= 0. (4.40)

For the potential (4.35) an expansion of the equation (4.38) is

t = a0
1

s
+ a1 + a2s+ a3s

2 +O(s3) (4.41)

where

a0 =
1296γ

144ζ

a1 = −36(ζ − 36)

144ζ

a2 = −36 + 288γ2 − ζ
144γ

a3 =
8γ2(ζ − 99) + 9(4− ζ)

144γ2
.

(4.42)

Equation (4.41) can be solved to find the Q(t) function, used in (4.40), to be

Q(t) =− a2

3a3
+

1

3a3

(
−q(t) +

√
q(t)2 + 4p(t)3

2

)1/3

− p(t)

3a3

(
−q(t) +

√
q(t)2 + 4p(t)3

2

)−1/3
(4.43)

where

p(t) = −a2
2 + 3a1a3 − 3a3t (4.44)

q(t) = 2a3
2 − 9a1a2a3 + 27a0a

2
3 + 9a2a3t. (4.45)

Let us now define a new scalar field y as

y = s−Q(t) (4.46)

and the new potential for t and y as

V(t, y) = V(t, s)|s=y+Q(t). (4.47)

It is then clear that since the potential V(t, s) was minimized for s − Q(t) = 0, the new

potential (4.47) will be minimized for y = 0, that is

∂V(t, y)

∂y

∣∣∣
y=0

= 0. (4.48)
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(a) (b)

Figure 5. The trajectory in field space ReT - ReS for γ = 1 and ζ = 8 for the original fields in

the scalar potential (4.35) (left) and for the redefined fields in the scalar potential (4.49) (right).

Thus the appropriate fields to describe a single field inflationary phase are given by t and

y. Here t is the inflaton and y will be stabilized at the origin given that m2
y > H2. The

scalar potential becomes

V(t, y) =12m2M2
P

(
1− 2(y +Q(t))2 +

ζ

9
(y +Q(t))4 + 2t+ 2γ(y +Q(t))

)−2
×[

(y +Q(t))2
{

1− 2(y +Q(t))2 + ζ(y +Q(t))4 − 2γ(y +Q(t))
}

+
9

2

[t− γ(y +Q(t))− 2
3(y +Q(t))2(3− ζ(y +Q(t))2)]2

(9− 2ζ(y +Q(t))2)

]
.

(4.49)

A plot of the potential (4.49) can be found in figure 5b which clearly shows that we

are dealing with a single field inflationary model. For 〈y〉 = 0 the potential is further

simplified to

V(t)=12m2M2
P

(
1− 2Q(t)2 +

ζ

9
Q(t)4 + 2t+ 2γQ(t)

)−2

×[
Q(t)2

{
1− 2Q(t)2 + ζQ(t)4 − 2γQ(t)

}
+

9

2

[t− γQ(t)− 2
3Q(t)2(3− ζQ(t)2)]2

(9− 2ζQ(t)2)

]
.

(4.50)

From (4.50) we see that in the vacuum 〈Q(t)〉 6= 0, hence 〈s〉 6= 0 and supersymmetry is

broken.

For completeness we give the Lagrangian fot t

e−1L = −
M2
P

2
R− 1

2
K(t)∂t∂t− V(t) (4.51)
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where the potential is given by (4.50) and the kinematic function reads

K(t) =
6M2

P

(f(S, S̄) + (T/MP ) + (T̄ /MP ))2

∣∣∣
(S/MP )=Q(t), (T/MP )=t

=
6M2

P

(1 + 2t+ 2γQ(t)− 2Q(t)2 + (ζ/9)Q(t)4)2
.

(4.52)

4.2.2 Inflationary observables

Let us now turn to the slow-roll stage. In principle we would like to redefine the t field such

that it has a canonically normalized kinematic term, but due to the very involved function

K(t) this is not manageable. Thus, the standard formulas for the slow-roll parameters

can not be directly applied. We write the slow-roll conditions for the Lagrangian (4.51) in

terms of the non-canonically normalized field. The equation of motion for the homogeneous

scalar t and the Friedmann equation read respectively

K(t)ẗ+ 3HK(t)ṫ+
1

2
K ′(t)ṫ2 + V ′(t) = 0

1

3M2
P

(
1

2
K(t)ṫ2 + V(t)

)
= H2

(4.53)

where V ′(t) = ∂V
∂t , ṫ refers to the cosmic time derivative and H is the Hubble scale. Note

that the t-field here is dimensionless. The non-canonical equations of motion (4.53) give

rise to generalized slow-roll parameters defined as

εK =
1

2
M2
P

V ′2

KV2

ηK = M2
P

V ′′

KV
− 1

2
M2
P

K ′V ′

K2V
.

(4.54)

Under the conditions

|ηK | � 1 , εK � 1 (4.55)

the equations (4.53) approximate to

ṫ ' − V ′(t)
3HK(t)

, H2 ' V(t)

3M2
P

(4.56)

and the system undergoes an inflationary phase. Notice that the modified slow-roll condi-

tions (4.55) become the standard ones for K = 1. Finally, the e-folds are defined as usual,

but now the formula is also modified due to K

N =

∫ t∗

te

KV
M2
PV ′

dt. (4.57)

Note that t refers to the t-field and not the cosmic time, whereas t∗ is the value of t at the

pivot scale and te the value at the end of inflation.

– 20 –



J
H
E
P
0
1
(
2
0
1
5
)
0
4
3

Another important issue in inflationary models is the effect of the additional scalar

fields. They have to have masses above the Hubble scale during the accelerated phase

m2
scalar

H2
> 1 (4.58)

in order that it is indeed a single field inflation. The fact the fields have non-canonical

kinetic terms the comparison between H and mscalar is not straightforward. In general we

can redefine the fields so as to canonically normalize the kinematic terms as

∂φ̂

∂φ
=
√
B (4.59)

such that

−1

2
B(φ)∂φ∂φ = −1

2
∂φ̂∂φ̂. (4.60)

Thus the mass of the new field φ̂ is related to the original potential V and the kinematic

function B as

m2
φ̂
≡ ∂

∂φ̂

(
∂

∂φ̂
V
)

=
∂

∂φ̂

(
∂V
∂φ

∂φ

∂φ̂

)
=

∂

∂φ̂

(
V ′(φ)

1√
B

)
=
V ′′(φ)

B
− 1

2

V ′(φ)

B2
B′(φ)

(4.61)

Hence, for the strongly stabilized fields at the vacuum

m2
φ̂

=
〈V ′′(φ)〉
〈B〉

. (4.62)

From (4.61) we can find a mapping between the generalized and the standard slow roll

parameters to verify (4.54)

ε =
M2
P

2

(
V ′(t̂)
V

)2

=
M2
P

2

1

K(t)

(
V ′(t)
V

)2

≡ εK (4.63)

and

η = M2
P

V ′′(t̂)

V
= M2

P

V ′′(t)
KV

− 1

2
M2
P

K ′(t)V ′(t)
K2V

≡ ηK (4.64)

where we have used B = K for the inflaton.

Plots of m2
ĵ
/H2 where j = c, b, y can be found in figure 7a, figure 7b and figure 7c.

The only non-diagonal term in the scalar mass matrix is the t − y term, which is of

order m2
t−s ∼ O(

m2
t

10 ) � m2
y and thus negligible. For the t-field a plot of the ηK- and

εK-parameter, can be found in figure 6b and in figure 6a respectively.

The canonically normalized t-field (inflaton) mass in the vacuum, ∂2V/∂t̂∂t̂, is found

to be

m2
inf =m2

(
−9259827984 + 114906047256s2

0 − 98720480160s4
0 + 22001657400s6

0

)−1×(
64s−6

0 + 1288s−4
0 + 26244s−3

0 + 74245s−2
0 + 26244s−1

0 − 63649− 52488s0

−59680s2
0 + 2048s4

0

)2
(4.65)
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(a)
(b)

Figure 6. The slow-roll parameters during inflation for γ = 1 and ζ = 8 case. The εK- and ηK-

parameter during inflation with respect to the t-field value (left and right panel respectively).

(a) (b) (c)

Figure 7. Plots of the masses squared of the stabilized scalars ĉ, b̂ and ŷ over H2 during inflation

for γ = 1 and ζ = 8 case (from left to right panel).

and it depends on s0 directly and also via the ζ0 and the γ0 parameters.

For a ζ-parameter of order 10, s0 is of order a half, and the gravitino and inflaton mass

turn out to be

m2
3/2 ' m

2 , m2
inf '

1

4
m2 . (4.66)

Hence these models imply a relation of the inflaton mass to the gravitino mass m3/2 via

the new scale m.

As an illustrative example we further study the case

ζ = 8 , γ = 1. (4.67)

For these parameters ζ and γ it is straightforward to find that the value of t at the end of

inflation (εK ' 1) is te = 2.1. For an approximate number of N(t∗) ' 55 e-folds (4.57), we

find the value t∗ = 50. Therefore the tensor-to-scalar ratio r is

r = 16ε(t∗) ' 8× 10−3 (4.68)

at the pivot scale t∗. Thus the model predicts very small amount of gravitational waves.

There is another way to understand this. For large t values (t > 20) it is consistent to
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Figure 8. A plot of the scalar potential in (4.72) for the inflaton field during inflation.

approximate

〈y〉 ' s∗ � 1. (4.69)

This leads to the inflationary effective Lagrangian for t

e−1L = −
M2
P

2
R−

3M2
P

(1 + 2s∗ + 2t)2
∂t∂t− 6m2M2

P

(t− s∗)2

(1 + 2s∗ + 2t)2
. (4.70)

After a redefinition of the t field

t =
1

2

(
e

√
2
3
ϕ/MP − 1− 2s∗

)
(4.71)

we have

e−1L = −
M2
P

2
R− 1

2
∂ϕ∂ϕ− 3

2
m2M2

P

(
1− (1 + 4s∗)e

−
√

2
3
ϕ/MP

)2

. (4.72)

From the number 2
3 in the exponential we see that the model is similar to the origi-

nal Starobinsky model and will give rise to the similar amount of gravitational waves

(see also [24]), which is favored by the Planck collaboration data [74]. Note that for the

Starobinsky model in supergravity s∗ = 0 always.

4.3 Vacuum structure for fv = β
M3

P

(
SS̄2 + S̄S2

)
A second example of higher curvature supergravity that drives single field inflation and

breaks supersymmetry is described by the model

f(R, R̄) = 1 + β
RR̄2 +R2R̄

m3
− 2
RR̄
m2

+
1

9
ζ
R2R̄2

m4
(4.73)

The second term in (4.73) source the R-symmetry breaking. The equivalent Kähler and

super potential read

K = −3M2
P ln

{
1 +
T + T̄
MP

+ β
S2S̄ + SS̄2

M3
P

− 2
SS̄
M2
P

+
1

9
ζ
S2S̄2

M4
P

}
(4.74)
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W = 6m T S (4.75)

that yield the scalar potential

V(t, b, s, c) =12m2M2
P

(
1− 2(s2 + c2) +

ζ

9
(s2 + c2)2 + 2t+ 2βs(s2 + c2)

)−2
×[

(s2 + c2)
{

1− 2(s2 + c2) + ζ(s2 + c2)2 + 6βs(s2 + c2)
}

−
[t− 2(s2 + c2) + 5βsc2 + 5βs3 + 2

3ζ(s2 + c2)2]2 + (b− βc3 − βcs2)2

(4βs− 2 + 4
9ζ(s2 + c2))

](4.76)

where T/MP = t + ib and S/MP = s + ic. This potential generically has two classes of

vacuum solutions: the supersymmetric Minkowski vacuum

〈T 〉 = 〈S〉 = 0 (4.77)

and a new class of vacua

〈T 〉 = MP 〈t〉+ iMP 〈b〉 = MP t0

〈S〉 = MP 〈s〉+ iMP 〈c〉 = MP s0

(4.78)

which break supersymmetry with vanishing or small positive (or negative) vacuum energy

depending on the parameters ζ and β.

The potential involves the (b− βc3− βcs2)2 term and even powers of the filed c which

imply that

〈c〉 = 〈b〉 = 0. (4.79)

This has been also verified numerically. Considering that the b and the c field are stabilized

at the origin the potential reads

V(t, s) =12m2M2
P

(
1− 2(s2) +

ζ

9
(s2)2 + 2t+ 2βs(s2)

)−2
×[

s2
{

1− 2s2 + ζs4 + 6βs3
}
−

[t− 2s2 + 5βs3 + 2
3ζs

4]2

(4βs− 2 + 4
9ζs

2)

]
.

(4.80)

Following the same reasoning as in the previous sections we find that the supersymmetry

breaking vacua are Minkowski ones for the parameter space

ζ =
3− 2s2

0

s4
0

(4.81)

β =
2s2

0 − 2

3s3
0

. (4.82)

The gravitino mass at this vacuum has the value

m2
3/2 = 〈eK|W|2〉 = m2 729s2

0

8(3− s2
0)3

(4.83)
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The above formula (4.83) offers a non-trivial bound on the possible values of s0

|s0| <
√

3 (4.84)

such that the gravitino mass squared is positive. This also implies ζ > −0.1 and β <

1.48. Moreover note that even though supersymmetry is broken and the vacuum energy is

vanishing the gravitino mass is not specified until the parameter s0 is chosen.

To illustrate the features of the potential let as choose specific vaues for the ζ and β

parameters

ζ = 8 , β = −2
√

2

3
. (4.85)

Apart from the supersymmetric vacuum at the origin there is also the supersymmetry

breaking one that lies at

〈T 〉 = MP t0 =
4

3
MP

〈S〉 = MP s0 =
1√
2
MP .

(4.86)

All the vacua have vanishing vacuum energy, see figure 9. The vacuum expectation values

of these fields are here marginally transPlanckian. A consistency check for the kinematic

terms shows that they are positive definite around this vacuum(
f +

T

MP
+

T̄

MP

)
fSS̄ < 0 . (4.87)

The gravitino mass is found to be

m2
3/2 = 〈eK|W|2〉 ' 73

25
m2 (4.88)

and 〈DTW〉 ≈ 〈DSW〉 ≈ MMP .

We note that one can obtain de Sitter or anti-de Sitter vacua for ζ = 8 and

β & −2
√

2

3
, β . −2

√
2

3
(4.89)

respectively.

4.4 Inflationary properties for fv = β
M3

P

(
SS̄2 + S̄S2

)
In order to find the single-field inflationary trajectory we follow the procedure discussed

earlier. We define the new field variable y = s − Q(t) such that the new potential V(t, y)

has a valey along the y = 0 direction

∂V(t, y)

∂y

∣∣∣
y=0

= 0. (4.90)
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Figure 9. The shape of the scalar potential (4.76) with ζ = 8 and β = − 2
√
2

3 in units of 12m2M2
P .

The scalar fields T and S are in MP units. A plateau similar to the Starobinsky model can be seen

for large ReT values. The inflationary trajectory terminates at the SUSY breaking vacuum where

ReS ' 0.7.

(a) (b)

Figure 10. The trajectory in field space ReT - ReS for β = − 2
√
2

3 and ζ = 8 for the original fields

in the scalar potential (4.76) (left) and for the redefined fields in (4.91) (right).

The potential (4.80) now reads

V(t, y) =12m2M2
P

(
1− 2(y +Q(t))2 +

ζ

9
(y +Q(t))4 + 2t+ 2β(y +Q(t))3)

)−2
×[

(y +Q(t))2
{

1− 2(y +Q(t))2 + ζ(y +Q(t))4 + 6β(y +Q(t))3
}

−
[t− 2(y +Q(t))2 + 5β(y +Q(t))3 + 2

3ζ(y +Q(t))4]2

(4β(y +Q(t))− 2 + 4
9ζ(y +Q(t))2)

]
.

(4.91)

For plausible values for the parameters ζ and β the mass of the y field can be larger than

the Hubble scale during inflation and stabilized at 〈y〉 = 0. Hence the potential effectively

depends on a single field, the t, whose Lagrangian reads

e−1L = −1

2
M2
PR−

1

2
K(t)∂t∂t− V(t) . (4.92)
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The above kinematic function is given by the expression

K(t) =
6M2

P

(f + T/MP + T̄ /MP )2

∣∣∣
(S/MP )=Q(t), (T/MP )=t

=
6M2

P

(1 + 2t+ 2βQ(t)3 − 2Q(t)2 + (ζ/9)Q(t)4)2
.

(4.93)

In order to turn the non-canonical normalized kinematic term into a canonical form a field

redefinition is required, however this cannot be done in straightforward manner. Never-

theless, the slow roll parameters and the number of e-folds can be calculated using the

formulas (4.54) and (4.57) respectively.

Let us see the inflationary features and observables for the specific model (4.85). The

trajectory, y = 0, is specified by the equation

∂V(t, s)

∂s

∣∣∣
s=Q(t)

= 0 (4.94)

which can be solved by using the approximation

t = b0 + b−1(s− si)−1 + b−2(s− si)−2 + b−3(s− si)−3. (4.95)

Here si ∼ 0.5 is the s field value in the beginning of inflation, t � 1, and the expansion

coefficients are found by a numerical fit to be

b0 = −7.40686

b−1 = 3.07583

b−2 = 0.16067

b−3 = 0.00839 .

(4.96)

The approximation (4.95) allows us to find the form of Q(t) in the same fashion as in (4.43),

and hence, with great precision the inflationary potential and trajectory. Equipotential

contours for the scalar potential V(t, s) and V(t, y) are depicted in figure 10b. This is the

field trajectory because the scalar fields b̂, ĉ and ŷ have masses larger than the Hubble scale

during inflation and get stabilized at their vacuum, see the plots in figure 11a, figure 11b

and figure 11c. In this example, as in the previous one, the field trajectory terminates in

the supersymmetry breaking vacuum.

The mass of the canonically normalized t-field (inflaton) in the vacuum is given by

m2
t̂

=
∂2V
∂t̂∂t̂

= m2 (192− 576s0 + 88s2
0 + 252s3

0 − 63s4
0 + 324s5

0 − 405s6
0)2

944784s6
0 − 472392s8

0 + 17496s12
0

. (4.97)

For the values (4.85) we take the mass squareds for the t̂-field and the gravitino in the

vacuum

m2
3/2 ' 3m2 , m2

t̂
' 1

10
m2. (4.98)

Inflation is driven for slow roll parameters εK , |ηK |. Their values depend on the t field

and the corresponding plots can be found in figure 12a, 12b . Inflation ends when εK = 1
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(a) (b) (c)

Figure 11. Plots of the masses of the stabilized scalars over H2 during inflation for ζ = 8 and

β = − 2
√
2

3 . From left to right: the mass of the ĉ field over H2, the d̂ field over H2 and the ŷ field

over H2.

(a) (b)

Figure 12. The slow-roll parameters during inflation for β = − 2
√
2

3 and ζ = 8. The εK-parameter

during inflation for t (left panel). The ηK-parameter during inflation for t (right panel).

which is found to take place at te = 2.6. For an approximate number of N ' 55 e-folds,

inflation starts from ti = 80 which we can identify with the pivot scale t∗. For this field

value the tensor-to-scalar ratio r reads

r∗ = 16ε(t∗) ' 3.2× 10−3. (4.99)

Hence, this model predicts a very small amount of gravitational waves in accordance with

the results of the Planck collaboration [74].

5 Conclusions

In this work we have exploited the properties of pure supergravity in order to show that

it may account for both the inflationary phase of our universe and the breakdown of

supersymmetry. Our investigation was carried out in the framework of higher curvature old-

minimal supergravity. This higher curvature theory is equivalent to standard supergravity

coupled to two chiral supermultiplets.
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We have illustrated how the well known R-symmetric models can not give a stable

inflationary regime with supersymmetry breaking in the vacuum. This is expressed by the

fact that the ζ-parameter, in front of the higher curvature R2R̄2/m4 term, can take no

values such that both the aforementioned phenomena to be accomplished: small values

for the ζ-parameter yield supersymmetry breaking vacua but such small value cannot

implement the inflationary phase.

We have shown that when one departs from exact R-symmetric theories, by taking

into account leading order R-violating terms, stable inflationary trajectories that end up

in consistent supersymmetry breaking vacua appear. These non-supersymmetric vacua

can be tuned to be Minkowski, therefore no extra terms are required in order to set the

cosmological constant to zero. In these models the inflaton and the gravitino masses are of

the same order of magnitude that is much higher than the electroweak scale. Furthermore,

the corresponding Polonyi field that implements the supersymmetry breakdown can be

identified as part of the inflaton field. Thereby by construction these models do not suffer

from any cosmological problem associated with a light gravitino or Polonyi field. Despite

the high scale of supersymmetry breaking a low energy soft supersymmetry breaking mass

term pattern can be achieved with a moderate degree of fine-tuning in the transmission

scenario [58].

Summarizing, we found that a wide class of a higher curvature gravitational models

can account for both the cosmic inflationary phase and the supersymmetry breakdown.

The inflationary predictions are similar to those of the Starobinsky model. The analysis of

the mediation of the breaking to the low energy physics is left for future work. We stress

that the models we discussed here are of pure supergravity origin, and no additional sector

is invoked. Therefore these models provide a minimalistic and unifying description of the

inflationary phase and the supersymmetry breakdown.
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