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1 Introduction

In considering possible applications of holography to real world systems, the electrical

conductivity is an interesting observable to focus on. Indeed many exotic materials, which

are known to be strongly coupled, exhibit striking and poorly understood phenomena. For

example, the strange metallic phase, arising in the cuprates and heavy fermion systems,

has a DC resistivity which scales linearly in temperature, in contrast to ordinary Fermi

liquids were it scales quadratically.
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For systems at finite charge density, the electric and heat currents mix and so one

should consider the thermoelectric conductivity matrix. The electrically charged AdS-

RN black holes of Einstein-Maxwell theory provide a natural starting point to investigate

thermoelectric conductivities using holography. These black holes describe CFTs at finite

charge density with unbroken translation invariance. However, the latter implies that mo-

mentum is conserved and hence the application of an external electric field gives rise to

infinite thermoelectric DC conductivities. More precisely, the real part of the AC conduc-

tivity has a delta function for all temperatures [1–3]. In order to alleviate this feature one

needs a mechanism to dissipate momentum. This can be achieved by considering “holo-

graphic lattice” black holes where one explicitly breaks the translation invariance using UV

deformations [4–13].

Recently it has been shown how to obtain the thermoelectric DC conductivity in terms

of black hole horizon data for a general class of homogeneous Q-lattices [12, 14]. Recall that

Q-lattices exploit a global symmetry in the bulk space-time in order to break translation in-

variance while maintaining a homogeneous metric [10]. At a technical level this is significant

because the holographic black holes can be constructed by solving ODEs rather than PDEs,

and this simplification helped in obtaining the results in [12, 14]. The basic strategy of [12,

14] is to consider linearised perturbations about the black holes with sources for the electric

and heat currents that are linear in time. By then manipulating the equations of motion

to obtain expressions for the electric and heat currents in terms of horizon data, and also

demanding regularity of the perturbation at the black hole horizon, leads to the final result.

In the first part of this paper we show that the techniques1 of [12, 14] can also be

applied in the context of inhomogeneous holographic latices. More specifically we obtain

an analytic result for the thermoelectric DC conductivity for holographic lattices associated

with an arbitrary periodic chemical potential depending on one of the spatial coordinates, in

the context of D = 4 Einstein-Maxwell theory. Our final results, which are summarised in

section (3.3), are remarkably similar to those obtained in [12, 14]. In particular, the electric

DC conductivity is naturally written as a sum of two terms, one of which is precisely the

electric conductivity with vanishing heat current and hence can be thought of, loosely, as

being associated with the evolution of charged particle-hole pairs (possibly pair produced).

The other term can be thought of as arising from momentum dissipation processes. We

also find a result for the “figure of merit” ZT , which provides a measure of the efficiency

of a thermoelectric engine (e.g. see [26]), and show that it can become arbitrarily large at

low temperatures (the maximum known value for real materials is less than three.)

We also find in the high temperature limit that the electrical DC conductivity saturates

to a constant value, set by the details of the UV deformation, generically with2 σ > 1. This

saturation of the DC conductivity is reminiscent of the Mott-Ioffe-Regel bound [27, 28] of

1For other work on the electric DC conductivity for various holographic black holes and using different

approaches, see [11, 15–22]. The methods of [12, 14] were recently used to obtain the electric DC conductivity

in the presence of a magnetic field [23] and for a class of helical lattices [24]. They were also used to obtain

the thermoelectric DC conductivity in the context of massive gravity [25].
2Note, by contrast, that this is not the same as the ω →∞ limit of the optical conductivity, σ(ω), which

approaches unity.
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real metals, but here it is arising in a strongly coupled setting. Note, by contrast, that the

T →∞ limit of the electrical conductivity for the Q-lattices diverges, except in the special

case that the UV deformation is a marginal operator as in [11], for example.

In the second part of this paper we construct fully back reacted black hole solutions of

D = 4 Einstein-Maxwell theory corresponding to various holographic lattices by numeri-

cally solving PDEs. We will consider monochromatic lattices with a single wave-number k

as well as dichromatic lattices with wave-numbers k and 2k with the same phase. We also

consider an example of a “dirty lattice” built from many wave-numbers (ten) and random

phases. In the monochromatic case, such black holes were first constructed in [5], building

on the pioneering work [4] and while we recover many of the results of that paper, we also

find some important differences. We will calculate the optical conductivity and observe

the appearance of Drude-type peaks that are broadly similar to what was seen in [5]. We

use our AC results to obtain the limiting DC conductivity and we find excellent agreement

(better than 10−4%) when we compare with the results using our new analytic formula.

This provides an excellent test of our numerics and the fit to Drude physics.

A striking claim of [4, 5] was the existence of an intermediate frequency scaling regime

for the optical conductivity for various holographic lattices, including the lattices we will

construct here. More precisely, for the monochromatic case, the optical conductivity was

reported to have the form |σ(ω)| ∼ Bω−2/3 + C, where B,C are frequency independent

constants within the range 2 < ωτ < 8, where τ is the characteristic time scale obtained

from the Drude peak. Since similar behaviour is seen for the high Tc cuprate superconduc-

tors, albeit with C = 0 and a frequency independent phase (e.g. [29, 30]), it is important to

further investigate this issue. The experimental data is plotted on a log-log diagram and,

similar looking plots were presented in [4, 5], based on their results for the AC conductivity.

While we find some discrepancy with the AC conductivity plots in [5] a more important

point is that if such an intermediate power-law is present it should be manifest using more

refined measures. In [10], it was suggested that a sharp diagnostic for such intermediate

scaling is to plot the quantity 1 + (ω/µ)|σ|′′/|σ|′ and look for a range of ω/µ in which this

quantity is constant. Doing this we will find no evidence for such an intermediate scaling

regime for the black holes that we construct here. Indeed, the intermediate behaviour for

the optical conductivity is broadly similar to what was seen for the homogeneous Q-lattices

constructed in [10].3

At very low temperatures, all of the black holes associated with monochromatic lattices

that we have constructed appear to approach AdS2 × R2 in the far IR. More precisely, as

T → 0 the DC conductivity of the black holes exhibit a scaling behaviour consistent with

the T = 0 black holes being domain walls interpolating between an irrelevant deformation

of AdS2 × R2 in the far IR and AdS4 in the UV, as first envisaged by [31]. We find

no evidence for the new “floppy” ground states that were discussed in [32]; it is logically

possible that they appear at even lower temperatures than what we have considered, but the

robustness of the scaling behaviour makes this seem unlikely to us. It is an open possibility

3An intermediate scaling was also not seen for a different class of lattices in the recent constructions

of [22].
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whether stronger lattice deformations than we have constructed and/or different types of

lattice deformations will lead to a transition to new IR behaviour, as in the metal-insulator

transitions of [7, 10, 12] or the metal-metal transitions of [12].

The plan of the rest of the paper is as follows. In section 2 we describe the inhomo-

geneous lattice black holes of Einstein-Maxwell theory that we will be considering. The

derivation of the thermoelectric DC conductivity is presented in section 3. For readers who

are just interested in the final analytic results, we point them to sections 3.3 and the subse-

quent discussion in section 3.4. In section 4, following the approach of [33], we describe the

numerical methodology that we employ to solve the PDEs which leads to the holographic

lattice black holes. We also explain how we obtain the AC conductivity. The main results

of our numerical constructions are presented in section 4.3. We show that the electrical con-

ductivity satisfies a standard type of sum rule, following [34], and a second sum rule which

is associated with the electromagnetic duality of the D = 4 Einstein-Maxwell theory [35].

We briefly conclude in section 5. We have three appendices. In appendix A we discuss the

derivation of the stress tensor and heat current, while appendix B describes some aspects of

the implementation of our numerics as well as some of the convergence checks that we used.

In appendix C we make some additional comments on the relation of our work to that of [32].

2 Inhomogeneous lattices

We will focus on Einstein-Maxwell theory in four bulk dimensions, which is a minimal and

rather universal setting to study holographic lattices. In particular, it can be obtained as

a consistent Kaluza-Klein truncation associated with an arbitrary AdS4 ×M solution of

string/M-theory, where M is a compact manifold with an isometry. An interesting class of

examples is provided by the infinite class of AdS4 × SE7 solutions, where SE7 is a seven-

dimensional Sasaki-Einstein space, dual to CFTs with N = 2 supersymmetry in d = 3

space-time dimensions [36].

The action is given by

S =

∫
d4x
√
−g

(
R+ 6− 1

4
F 2

)
, (2.1)

with F = dA being the field strength of the gauge field A and F 2 = FµνF
µν . The equations

of motion can be written in the form

Eµν ≡ Rµν + 3gµν −
1

2

(
FµρFν

ρ − 1

4
gµν F

2

)
= 0 ,

∇µFµν = 0 . (2.2)

Note that we have chosen the cosmological constant so that a unit radius AdS4 solves the

equations of motion. We have also set 16πG = 1 in order not to clutter up various equations.

The electrically charged AdS Reissner-Nordström (AdS-RN) black brane solution

solves the equations of motion and is the bulk dual of a CFT held at temperature T

and deformed by a constant chemical potential µ. Recall that at T = 0 the solution in-

terpolates between AdS4 in the UV and the electrically charged AdS2×R2 solution in the
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IR. The AdS-RN black hole preserves translation invariance and hence there is no mech-

anism for momentum to dissipate upon adding an external electric field. This gives rise

to infinite DC conductivity, or more precisely a delta function in the optical conductivity

at zero frequency. This feature can be eliminated by studying more general black holes in

which the chemical potential has a periodic dependence on one of the spatial dimensions,

x, with period L. We can write

µ (x) = µ0 + µ̄ (x) , (2.3)

with µ0 a constant, and µ̄ (x) = µ̄ (x+ L) is a periodic function which averages to zero

over a period. Note that when µ0 6= 0, a simple scaling argument reveals that true UV

parameters are T/µ0 combined with the function µ̄ (x/µ0) /µ0 with period Lµ0. We also

note that in the figures that appear later in the paper we have dropped the subscript from

µ0 for clarity.

Some special examples of these holographic lattice black holes have been studied pre-

viously, for the special case of monochromatic sources. Specifically, black holes associated

with deformations of the form µ = µ0 + V cos(kx) were constructed for µ0 6= 0 in [5] (and

will be reconstructed here in section 4.1) and for µ0 = 0 in [9]. In the T = 0 limit the

black holes with µ0 6= 0 in [5] approach AdS2 × R2 in the far IR, perturbed by irrelevant

deformations, and we will find the same feature here (in contrast to the more recent claims

of [32]), while those with µ0 = 0 that were constructed4 in [9] approach AdS4.

Our new analytic results for the DC thermoelectric conductivity, described in the next

subsections, will be valid for an arbitrary periodic chemical potential deformation of the

form (2.3). An ansatz that is general enough to cover the relevant black hole solutions of

interest is given by

ds2 = −U Htt dt
2 +

Hrr

U
dr2 + Σ

[
eBdx2 + e−B dy2

]
,

A = at dt , (2.4)

where U = U(r), while Htt, Hrr,Σ, e
B and at are all functions of both r and x.

The boundary conditions at the asymptotic AdS4 boundary, which we take to be

located at r → ∞, are given by U,Σ → r2, Htt, Hrr, e
B → 1 and at → µ (x) as in (2.3).

The black hole horizon is taken to be located at r = 0 and regularity of the solution implies

that we can expand the functions in powers of r as

U (r) = 4π T r + U (2) (x) r2 + . . . ,

at(r, x) = r
(
a

(0)
t (x) + a

(1)
t (x) r + . . .

)
,

Htt(r, x) = H
(0)
tt (x) +H

(1)
tt (x) r + . . . ,

Hrr(r, x) = H
(0)
tt (x) +H(1)

rr (x) r + . . . ,

Σ(r, x) = Σ(0) (x) + Σ(1) (x) r + . . . ,

B(r, x) = B(0) (x) +B(1) (x) r + . . . , (2.5)

4Note that we have also constructed some black holes with µ0 = 0 numerically, as well as calculated the

optical conductivity, and our results are in agreement with [9].
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where a
(0)
t , H

(0)
tt ,Σ

(0) and B(0) are all periodic functions of x, as are the higher order terms

in the expansion in r. Indeed, regularity of the solutions as r → 0 is easily seen by replacing

the t coordinate with the in-going Eddington-Finklestein coordinate v defined by

v = t+ (4πT )−1 ln r +O(r) . (2.6)

The current density Ja ≡ {J t, Jx, Jy} in the dual field theory takes the form

Ja =
√
−gF ar , (2.7)

where the right hand-side is evaluated at the boundary r →∞. With this definition Ja has

a finite limit as r → ∞ (see the discussion in appendix A). The total constant charge, q,

of the background black holes is given by q ≡
∫
J t, where we have introduced the notation∫

↔ L−1

∫ L

0
dx , (2.8)

with L the period of x. We can obtain an expression for q in terms of horizon data by

using the gauge-equations of motion. Indeed the only non-zero component of the gauge-field

equation of motion is the t component which we can write as
√
−g∇µFµt = ∂r(

√
−gF rt) +

∂x(
√
−gF xt) = 0. Since

√
−gF xt depends on ∂xat, after integrating over a period of x the

second-term vanishes and we deduce that

q =

∫
Σ∂rat

(HrrHtt)1/2
,

=

∫
Σ(0)a

(0)
t

H
(0)
tt

, (2.9)

where the second line follows by evaluating the constant at the horizon.

3 The thermoelectric DC conductivity

3.1 Calculating σ and ᾱ

In this subsection we calculate the DC conductivities associated with switching on a con-

stant electric field on the boundary theory in the x direction, the direction in which the

background lattice breaks translational invariance. Recall, by definition, that the linear

response is given by

J = σE, Q = ᾱTE , (3.1)

where J ≡ Jx is the electric current and Q ≡ T tx − µJ is the heat current, both in the

x direction, and σ, ᾱ are the electric and thermoelectric DC conductivities. We will show

how σ, ᾱ can be expressed in terms of horizon data of the unperturbed black hole.

We first introduce gauge field perturbations of the form

δA = δaµ(r, x)dxµ − E t dx , (3.2)

where E is the constant magnitude of the linearised electric field in the x direction and δaµ,

whose non-vanishing components lie in the set {δat, δar, δax}, are functions of r, x and are

– 6 –
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periodic in x. This is supplemented with metric perturbations δgµν , with non-vanishing

components lying in the set {δgtt, δgtr, δgrr, δgrx, δgxx, δgtx, δgyy}, which are again functions

of r, x and again are periodic in x. It will be convenient to not fully fix our gauge and

coordinate dependence apart from requiring that some components fade sufficiently fast

close to the AdS4 boundary.

The next step is to use the equation of motion for the gauge-field to show that J is con-

stant and moreover to obtain an expression in terms of horizon data. Specifically, the r and

the x components of the gauge field equation of motion imply that ∂x(
√
−gF xr) = 0 and

∂r(
√
−gF rx) = 0, respectively, and hence J =

√
−gF xr is a constant. Thus, we can write

J =
e−B√
HrrHtt

[∂xatδgtr − ∂ratδgtx +HttU (∂xδar − ∂rδax)] , (3.3)

where the right hand side can be evaluated at any value of r, including at the black hole

horizon.

The next key step is to obtain a similar result for the heat current in the x direction,

Q, induced by E. Following [14] we first observe that if k is any Killing vector satisfying

LkF = 0, then we can define a two-form G by

Gµν = ∇µkν +
1

2
k[µF ν]σAσ +

1

4
(ψ − 2θ)Fµν , (3.4)

where ψ and θ are defined by LkA = dψ and ikF = dθ. The two-form G has the important

property that

∇µGµν = 3kν , (3.5)

when the equations of motion (2.2) are satisfied (see appendix B of [14]). Focussing on

the Killing vector k = ∂t, if we consider the r and x components of (3.5) we deduce

that ∂x(
√
−gGxr) = ∂r(

√
−gGrx) = 0 and hence that

√
−gGrx is a constant. Choosing

θ = −EX − at − δat and ψ = −Ex, we conclude that at linearised order we can write

Q ≡ 2
√
−gGrx ,

= 2
√
−g∇rkx + at

√
−gF rx ,

=
e−BU2H

3/2
tt√

Hrr

[
∂r

(
δgtx
UHtt

)
− ∂x

(
δgtr
UHtt

)]
− atJ , (3.6)

and we can evaluate the right hand side at any value of r. In particular, if we evaluate at

the boundary r →∞ we find, as we explain in appendix A,

Q = (T tx − µJ) . (3.7)

To proceed we now need to ensure that the perturbation is regular at the horizon, after

switching to the Eddington-Finklestein coordinate v given in (2.6). Near r = 0 we demand

that we can expand

δgtt = U (r)
(
δg

(0)
tt (x) +O(r)

)
, δgrr =

1

U

(
δg(0)
rr (x) +O(r)

)
,
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δgtr = δg
(0)
tr (x) +O(r), δgxx = δg(0)

xx (x) +O(r), δgyy = δg(0)
yy (x) +O(r) ,

δgtx = eB
(0)
(
δg

(0)
tx (x) +O(r)

)
, δgrx =

eB
(0)(x)

U

(
δg(0)
rx (x) +O(r)

)
,

δat = δa
(0)
t (x) +O(r), δar =

1

U

(
δa(0)
r (x) +O(r)

)
,

δax = lnU δa(0)
x (x) +O(r) , (3.8)

with the following constraints on the leading functions of x:

δg
(0)
tt + δg(0)

rr − 2 δg
(0)
rt = 0, δg(0)

rx = δg
(0)
tx ,

δa(0)
r = δa

(0)
t , δa(0)

x = − E

4π T
. (3.9)

Observe, in particular, that the expression for δa
(0)
x involving the UV data E arises as a

direct consequence of the way in which we switched on the background electric field in (3.2).

Expanding out the right hand side of (3.3) at the black hole horizon we find that at

leading order in r we must have

J = e−B
(0)
(
E + ∂xδa

(0)
t

)
− a

(0)
t

H
(0)
tt

δg
(0)
tx , (3.10)

where the right hand side must be a constant. We can also evaluate the right hand side of

the expression for Q in (3.6) at the horizon. At leading order in r we deduce that

Q = −4πTδg
(0)
tx , (3.11)

and hence we obtain the important condition

δg
(0)
tx = constant . (3.12)

By expanding to next order in r, at fixed temperature, we obtain another constraint on

the horizon boundary data:

∂x

(
4πT

δg
(0)
tr

H
(0)
tt

)
+
a

(0)
t

H
(0)
tt

(
E + ∂xδa

(0)
t

)
+

δg
(0)
tx

(H
(0)
tt )2

(
(a

(0)
t )2 + 2πT

(
H(1)
rr + 2H

(0)
tt B

(1) − 3H
(1)
tt

)
− 2H

(0)
tt U

(2)
)

= 0 . (3.13)

Remarkably, using the background equations of motion we can rewrite this in the following

useful form

∂x

(
4πT

δg
(0)
tr

H
(0)
tt

− 1

Σ(0)
∂x

[
B(0) − ln(H

(0)
tt Σ(0))

]
δg

(0)
tx

)

+
a

(0)
t

H
(0)
tt

(
E + ∂xδa

(0)
t

)
+

1

Σ(0)

[
∂x ln

eB
(0)

Σ(0)

]2

δg
(0)
tx = 0 . (3.14)
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The constraints (3.9), (3.10), (3.12) and (3.14) are sufficient to get a consistent set of

ODEs for the expansion parameters in the falloff (3.8). In particular, by expanding the

right hand side of (3.3) and (3.6) in higher powers of r at the black hole horizon do not

lead to additional constraints.

We have now assembled the ingredients to obtain the DC conductivities σ and ᾱ.

We multiply equation (3.10) by eB
(0)

and then integrate over a period of x to obtain an

equation involving E, J and δg
(0)
tx . Equation (3.10) can also be used in (3.14) which we

then integrate to give a relation between J and δg
(0)
tx . We can solve for J in terms of E,

and hence obtain an expression for σ = J/E. We find

σ =

∫ (
eB

(0)

(
a
(0)
t

H
(0)
tt

)2

+ 1
Σ(0)

[
∂x ln eB

(0)

Σ(0)

]2
)

∫
eB

(0)
∫ (

eB
(0)

(
a
(0)
t

H
(0)
tt

)2

+ 1
Σ(0)

[
∂x ln eB

(0)

Σ(0)

]2
)
−
(∫

eB
(0) a

(0)
t

H
(0)
tt

)2
, (3.15)

where we remind the reader that the notation
∫

means L−1
∫ L

0 dx, with L the period of x.

As advertised this formula for σ only depends on the near horizon data of the unperturbed

black hole. The Schwarz inequality implies that(∫
eB

(0) a
(0)
t

H
(0)
tt

)2

≤
∫
eB

(0)

∫
eB

(0)

(
a

(0)
t

H
(0)
tt

)2

, (3.16)

and hence we deduce that σ > 0.

We also find an expression relating Q = −4πTδg
(0)
tx and E and we deduce that ᾱ ≡ Q

TE

can be written as

ᾱ =
4π
∫
eB

(0) a
(0)
t

H
(0)
tt∫

eB
(0)
∫ (

eB
(0)

(
a
(0)
t

H
(0)
tt

)2

+ 1
Σ(0)

[
∂x ln eB

(0)

Σ(0)

]2
)
−
(∫

eB
(0) a

(0)
t

H
(0)
tt

)2
. (3.17)

3.2 Calculating κ̄ and α

In this section we will introduce a source for the heat current. Following [14] we consider

the following time dependent perturbation around the background (2.4):

δds2 = δgµν dx
µ dxν − 2t(UHttζ) dt dx ,

δA = δaµ dx
µ + t(at ζ)dx . (3.18)

The non-zero static perturbations are in the sets {δgtt, δgtr, δgrr, δgrx, δgxx, δgtx, δgyy} and

{δat, δar, δax} and they depend on r and periodically on x. It is important to emphasise

that the terms that are linear in t, parametrised by ζ, have been chosen so that all time

dependence drops out after we substitute into the equations of motion. As discussed in [14]

they provide a source for the heat current.

The near horizon expansion for the perturbation is very similar to (3.8)

δgtt = U (r)
(
δg

(0)
tt (x) +O(r)

)
, δgrr =

1

U

(
δg(0)
rr (x) +O(r)

)
,
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δgtr = δg
(0)
tr (x) +O(r), δgxx = δg(0)

xx (x) +O(r), δgyy = δg(0)
yy (x) +O(r) ,

δgtx = eB
(0)
(
δg

(0)
tx (x) + δg

(l)
tx (x) U lnU +O(r)

)
, δgrx =

eB
(0)(x)

U

(
δg(0)
rx (x) +O(r)

)
,

δat = δa
(0)
t (x) +O(r), δar =

1

U

(
δa(0)
r (x) +O(r)

)
,

δax = δa(0)
x (x) +O(r) , (3.19)

where once again regular in-falling boundary conditions require

δg
(0)
tt + δg(0)

rr − 2 δg
(0)
rt = 0, δg(0)

rx = δg
(0)
tx , δa(0)

r = δa
(0)
t . (3.20)

The extra logarithmic term appearing in the expansion of δgtx in (3.19), when compared

to (3.8), is fixed by expanding the equations of motion of the fluctuations near the horizon

at r = 0. More specifically we find

δg
(l)
tx = −e

−B(0)

4π T
H

(0)
tt ζ . (3.21)

This is precisely of the form needed to make the perturbation regular after combining with

the time dependent term in (3.18).

Once again we find that J , given by (3.3), is a constant. Furthermore, expanding the

equations of motion close to the horizon we find once more that

δg
(0)
tx = constant , (3.22)

J = e−B
(0)
∂xδa

(0)
t −

a
(0)
t

H
(0)
tt

δg
(0)
tx , (3.23)

and

∂x

(
4πT

δg
(0)
tr

H
(0)
tt

− 1

Σ(0)
∂x

[
B(0) − ln(H

(0)
tt Σ(0))

]
δg

(0)
tx

)

+
a

(0)
t

H
(0)
tt

∂xδa
(0)
t +

1

Σ(0)

[
∂x ln

eB
(0)

Σ(0)

]2

δg
(0)
tx + 4πT ζ = 0 . (3.24)

The expression for Q given in (3.6) is again a constant and expanding near the horizon we

have, as before,

Q = −4πTδg
(0)
tx . (3.25)

As in [14] we find that the heat current has a time-independent piece, given by Q, and

a time-dependent piece:

T tx − µJx = Q− ζtT xx , (3.26)

as we discuss in appendix A. As explained in appendix C of [14], the time-dependent

piece is associated with a static susceptibility for the QQ correlator, given by T xx of the

background.5 On the other hand the time independent piece is associated with the DC

conductivity.

5The absence of analogous time-dependent pieces in J in this sub-section and in both Q and J in the

last sub-section, imply that the static susceptibilities for the JQ correlator and the JJ correlator vanish.
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Using almost identical manipulations of the previous section we deduce the DC con-

ductivities:

α ≡ J

Tζ
=

4π
∫
eB

(0) a
(0)
t

H
(0)
tt∫

eB
(0)
∫ (

eB
(0)

(
a
(0)
t

H
(0)
tt

)2

+ 1
Σ(0)

[
∂x ln eB

(0)

Σ(0)

]2
)
−
(∫

eB
(0) a

(0)
t

H
(0)
tt

)2
, (3.27)

and

κ̄ ≡ Q

Tζ
=

(4π)2T
∫
eB

(0)

∫
eB

(0)
∫ (

eB
(0)

(
a
(0)
t

H
(0)
tt

)2

+ 1
Σ(0)

[
∂x ln eB

(0)

Σ(0)

]2
)
−
(∫

eB
(0) a

(0)
t

H
(0)
tt

)2
. (3.28)

Comparing with (3.17), it is satisfying that we have α = ᾱ. Indeed this is expected since

the lattice deformation does not break time-reversal invariance.

3.3 Summary of DC conductivity

We now summarise the results of the previous two subsections. To do so it is helpful to

define the following quantity, constructed from the horizon data of the background black

holes given in (2.5):

X =

∫
eB

(0)

∫ eB(0)

(
a

(0)
t

H
(0)
tt

)2

+
1

Σ(0)

[
∂x ln

eB
(0)

Σ(0)

]2
−(∫ eB

(0) a
(0)
t

H
(0)
tt

)2

, (3.29)

where
∫

is defined in (2.8). Using the Schwarz inequality (3.16) we have X ≥ 0. The DC

thermoelectric conductivities can then be written in the form:

σ =
1∫
eB

(0)
+

(∫
eB

(0) a
(0)
t

H
(0)
tt

)2

X
∫
eB

(0)
,

ᾱ = α = 4π

∫
eB

(0) a
(0)
t

H
(0)
tt

X
,

κ̄ =
(4π)2T

∫
eB

(0)

X
. (3.30)

We have shown that these results are valid for all black hole solutions within the

ansatz (2.4), with near horizon behaviour given by (2.5) and approaching AdS4 in the

UV with chemical potential µ(x). In fact we can show that they are also valid for more

general black hole solutions provided that they have the same near horizon and asymptotic

limits. For example, we have explicitly carried out the derivation for the black holes that

we construct numerically in section 4 which have grx1 6= 0.

We first observe that σ and κ̄ are both positive, as expected. We next note the similar-

ity of these expressions with those obtained for the homogeneous lattices of [14]. In partic-

ular, the electric conductivity appears as the sum of two positive terms. The first term has
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a precise interpretation as the conductivity with zero heat current. Recalling the definition

σQ=0 ≡
(
J

E

)
Q=0

= σ − α2T

κ̄
, (3.31)

which is guaranteed to be positive because it is proportional to the determinant of the

positive definite thermo-electric matrix, we find

σQ=0 =
1∫
eB

(0)
. (3.32)

Thus, very roughly, we can interpret the first term in σ as being associated with the evolu-

tion of charged particle-hole pairs. The second term in σ is then α2T/κ which is obviously

positive. For the special case of the neutral AdS Schwarzschild black hole the second term

in σ vanishes and the first term gives unity, and so we recover the result of [15]. For the

AdS Schwarzschild black hole we will also have α = 0, but a divergent κ̄ or, more precisely,

a delta function in the AC thermal conductivity, since there is no momentum dissipation.

Observe that in general we have

κ̄

α
=

4πT
∫
eB

(0)∫
eB

(0) a
(0)
t

H
(0)
tt

, (3.33)

which is similar to an expression for the homogeneous lattices in [14], but unlike [14] the

right-hand side is not simply given by Ts/q.

We next introduce κ, the thermal conductivity at zero electric current. We find

κ ≡ κ̄− α2T

σ
=

(4π)2T
∫
eB

(0)

X +

(∫
eB

(0) a
(0)
t

H
(0)
tt

)2 . (3.34)

We also obtain the following expressions for the Lorenz factors:

L̄ ≡ κ̄

σT
=

(4π)2
(∫

eB
(0)
)2

X +

(∫
eB

(0) a
(0)
t

H
(0)
tt

)2 ,

L ≡ κ

σT
=

(4π)2
(∫

eB
(0)
)2
X[

X +

(∫
eB

(0) a
(0)
t

H
(0)
tt

)2
]2 . (3.35)

Generically L, L̄ are neither equal nor constant and the Wiedemann-Franz law is violated.

Finally we recall the definition6 of the dimensionless “figure of merit”, ZT ,

ZT ≡ α2T

κσ
≡ α2T

κ̄σQ=0
. (3.36)

6To avoid confusion, in our notation the Seeback coefficient, S, is given by α/σ.
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The figure of merit provides a measure of the efficiency of thermoelectric engines. There

is no upper bound on ZT and when ZT approaches infinity the efficiency approaches the

Carnot limit. The maximum value of ZT for any known material is less than three. For

our holographic lattice we find that

ZT =

(∫
eB

(0) a
(0)
t

H
(0)
tt

)2

X
. (3.37)

We will see in the next subsection that holographic lattices can have arbitrarily high figures

of merit at low temperatures.

3.4 High and low temperature behaviour

It is interesting to examine the high temperature behaviour of the DC conductivity. More

precisely we are interested in the limit T much greater than µ0 and 1/L where µ0 is the

constant term in the modulated chemical potential (2.3) and L is the period of the lattice.

In this limit, the black hole background is approximated by the AdS-Schwarzschild black

hole metric:

ds2 = −Udt2 + U−1dr2 + r2(dx2 + dy2) (3.38)

with U = r2 − r3
+/r

2 and r+ = 4πT/3. Note that here the horizon is located at r = r+

(and not at r = 0 as above). Furthermore, in the high temperature limit the leading term

in the solution for the gauge-field equations of motion is given by at = (1 − r+
r )µ(x) for

arbitrary periodic µ(x). Using (3.30) we obtain, as T →∞,

σ = 1 +
(
∫
µ)2∫

µ2 − (
∫
µ)2

, α =
(4π)2T

3

∫
µ∫

µ2 − (
∫
µ)2

,

κ̄ =
(4π)4T 3

9

1∫
µ2 − (

∫
µ)2

, κ =
(4π)4T 3

9

1∫
µ2

. (3.39)

It is interesting that as T →∞ we have σ approaching a constant value, with σ ≥ 1 (recall

that for the optical conductivity we have limω→∞ σ(ω) = 1). This is reminiscent of the

Mott-Ioffe-Regel bound [27, 28] of metals (see figure 2), though here, of course, there are

no quasi-particles.

We can also consider the low-temperature behaviour of the DC conductivity. This

will obviously depend on the precise nature of the zero temperature ground states. As

we will discuss in the next section, all of the black holes that we have constructed which

are associated with monochromatic lattices with µ = µ0 + V cos(kx) and µ0 6= 0, seem

to approach AdS2 × R2 in the far IR at T = 0, perturbed by an irrelevant deformation.

For these black holes we can obtain the low-temperature behaviour as follows. We have

U → 6r2, Htt, Hrr → 1, a
(0)
t → 2

√
3 and eB0 ,Σ approach constants that depend on the

UV lattice data. We immediately conclude from (3.29) that X → 0 and hence the second

term in the DC electric conductivity in (3.30) dominates the first. More precisely, using

the analysis of [31, 37] as T → 0 we find that the DC conductivity scales as

σ ∼ T 2−2∆(k̄), α ∼ T 2−2∆(k̄), κ̄ ∼ T 3−2∆(k̄) , (3.40)
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where

∆(k̄) =
1

2
+

1

2

[
5 + 4k̄2 − 4

√
1 + 2k̄2

]1/2
, (3.41)

and k̄ is the renormalised wave-number, k̄ ≡ k/(6Σ(0)eB
(0)

)1/2, which depends on the UV

wave-number k and the zero temperature domain wall solution. It is worth emphasising

that for the T = 0 AdS-RN black brane we have Σ(0)eB
(0)

= µ2/12. Therefore we can

define a length renormalisation factor, λ̄, via

k̄ =
k
√

2

µλ̄
(3.42)

with, in general, λ̄ 6= 1 for the lattice black holes. As T → 0 we note that the DC con-

ductivity σ diverges and this is associated with the Drude peak in the optical conductivity

turning into a delta function at T = 0. The scaling of σ, omitting the issue of λ̄, was

pointed out in [31], who obtained it in the limit of small lattice strengths by using the

memory matrix formalism and also by taking a limit of the optical conductivity obtained

from a matching argument. The issue of length renormalisation was discussed in [7, 10].

It is also interesting that we have the scaling κ ∼ T . In particular, while κ is going to

zero, κ̄ diverges if k̄2 > 3/4 +
√

3/2, goes to a constant if k̄2 = 3/4 +
√

3/2 and vanishes if

0 ≤ k̄2 < 3/4+
√

3/2. We also note that as T → 0 we have L̄→ 4π2

3 = s2

q2
and κ̄/α→ Ts/q,

in this limit, independent of the lattice deformation. Finally, we note that the figure of

merit is diverging as T → 0 with ZT ∼ T 2−2∆(k̄).

Although we will not be discussing them further in this paper, we pause to comment

upon the DC results for the lattices µ = µ0+V cos(kx) with µ0 = 0 that were studied in [9].

In the T = 0 limit these black holes approach AdS4 in the far IR. It is straightforward to

see that in the black hole solutions the x dependence of the gauge field can be expanded in

terms of Fourier modes that are odd multiples of k whereas for the metric functions they

will be even multiples. Hence, we can deduce that for these black holes we have, for all

temperatures,

σ =
1∫
eB

(0)
, ᾱ = α = 0 , κ̄ =

(4π)2T∫ (
eB

(0)

(
a
(0)
t

H
(0)
tt

)2

+ 1
Σ(0)

[
∂x ln eB

(0)

Σ(0)

]2 ) . (3.43)

4 Numerical construction of inhomogeneous lattices and the AC con-

ductivity

In this section we will numerically construct black holes corresponding to inhomogeneous

lattices. We can then immediately obtain the DC conductivity using the results of the

last section. We will also numerically determine the AC conductivity. We will see the

appearance of a coherent Drude-type peak in the AC conductivity, as in [5], but we will

not see any evidence for an intermediate scaling regime that was reported in [5]. On the

other hand we observe see an interesting resonance phenomenon, also seen in [5], which we

associate with sound modes. We also carry out a detailed check of a sum-rule satisfied by

the optical conductivity and also a sum-rule associated with electromagnetic duality [35].
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Finally, we show that the low temperature black holes exhibit scaling behaviour consistent

with them approaching AdS2 × R2 in the IR, in contrast to [32].

In section 4.1 and 4.2 we will describe the numerical construction and in section 4.3

we will present the main results.

4.1 The backgrounds

To construct the black hole geometries that we are interested in, we will make the following

ansatz:7

ds2 =
1

z2

[
−f Qtt dt2 +

Qzz
f

dz2 +Qxx (dx+Qzx dz)
2 +Qyy dy

2

]
,

A = (1− z) at dt , (4.1)

where

f = (1− z)
(

1 + z + z2 − µ3z3

4

)
, (4.2)

and F = {Qtt, Qrr, Qxx, Qzx, Qyy, at} are all functions of the radial coordinate z and x. In

this section, the AdS4 boundary will be located at z = 0 and the black hole horizon at

z = 1. Notice that the function f , with Qtt = Qrr = Qxx = Qyy = 1, Qzx = 0 and at = µ

gives the standard electrically charged AdS-RN black hole. We also notice that we have not

fixed the diffeomorphism invariance in the (z, x) coordinates, for reasons we now explain.

Substituting the ansatz (4.1) into the equations of motion (2.2) one finds a consistent

set of PDEs for the functions F but, due to diffeomorphism invariance of Einstein’s equa-

tions, the boundary value problem is underdetermined [33]. Similar problems can arise due

to the gauge invariance of the Maxwell field, but the specific electric ansatz (4.1) leads to

just a second-order equation for the function at without any constraints on it.

In order to deal with the diffeomorphism invariance of Einstein’s equations we will

follow the approach of Headrick, Kitchen and Wiseman [33] (see also [38, 39]). The key step

is to modify Einstein’s equation from Eµν = 0 in (2.2) to Eµν = ∇(µ ξν) where the “DeTurck

term” on the right-hand side is defined by the vector ξµ = gνλ
(
Γµνλ (g)− Γ̄µνλ (ḡ)

)
and ḡ is

a fixed reference metric. The addition of this term transforms Einstein’s equations into an

elliptic set of equations for the metric functions, for arbitrary reference metric ḡ. Indeed it

is the first order term gνλΓµνλ (g) in ξµ that modifies the character of Einstein’s equations.

The role of the second term in ξ, involving the reference metric, is as follows. We want

solutions of Eµν = ∇(µ ξν) to be solutions satisfying Eµν = ξµ = 0, a point which we will

return to below. That this might be possible relies on interpreting ξµ = 0 as a gauge-fixing

condition, and this is where the reference metric is important. For the special case of the

ansatz (4.1) we still have diffeomorphisms in z and x leaving us with two gauge conditions

to be imposed. Assuming that the reference metric lies within the ansatz (4.1), it is easy

to check that only non-trivial components of the vector ξµ are the z and the x components.

Thus, at the level of counting constraints, the condition ξµ = 0 matches the number of

gauge conditions left to be imposed in order to obtain a gauge-fixed black hole solution.

7In fact, instead of using the Q variables in our numerics, we have found it slightly more accurate to use

F variables defined through Qii = 1 + z Fii and Qzx = z Fzx.
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For the case of Einstein’s equations with a negative cosmological constant, it has been

shown that there are no solutions of Eµν = ∇(µ ξν) with a non-trivial ξ, provided that

ξ = 0 on the boundary of the given problem [40]. A similar general statement for Einstein-

Maxwell theory with a negative cosmological constant is still lacking. Our approach here,

therefore, will be to check that in the continuum limit our solutions are converging towards

ξµ = 0, or equivalently, since ξ is a space-like vector, ξ2 = 0. In fact, we have been

able to achieve a resolution of at least ξ2 < 10−19 for all of the background geometries

that we consider in this paper. We further discuss the implementation of our numerics

and convergence tests in appendix B. Our results, and also those in [5], constitute some

evidence that the theorem of [40] can be extended to the case of Einstein-Maxwell theory

with a cosmological constant.

It is clear from the above discussion that the choice of reference metric is important

since it is ultimately part of the gauge fixing procedure. The holographic lattice black holes

that we are interested in can be viewed as deformations of the AdS-Reissner-Nordström

black hole mentioned above. Guided by this, we will take the reference metric ḡ to simply

be that of the AdS-RN black hole.

In order for the two dimensional elliptic problem at hand to have a unique solution, we

need to impose appropriate boundary conditions. We will choose the coordinate x to be

periodic and we are therefore left with the boundary conditions that need to be imposed

on the black hole horizon and on the AdS4 boundary, both of which are singular points of

the PDEs.

On the horizon at z = 1, we will impose that the functions F are analytic, with an

expansion of the form

F (r, x) = F (1, x)− ∂zF (1, x) (1− z) +O
(

(1− z)2
)
. (4.3)

After substituting into the equations we obtain a total of six sets of constraints on the

values of F (1, x), and the normal derivatives, ∂zF (1, x). The simplest amongst these is

that surface gravity should be constant, which simply reads

Qtt (1, x) = Qzz (1, x) . (4.4)

It is precisely these six constraints that we will be imposing as boundary conditions at the

z = 1 surface.

We now turn to the AdS4 boundary at z = 0. Demanding that the only deformations

of the CFT are temperature and the inhomogeneous chemical potential µ (x) we are led to

the asymptotic expansion

at (z, x) = µ (x) + qt (x) z +O
(
z2
)
,

Qtt (z, x) = 1+qtt (x) z3+
1

4

(
−µ2+(qt (x)−µ (x))2

)
z4+g1 (x) z(3+

√
33)/2+O

(
z5 ln z

)
) ,

Qzz (z, x) = 1 +
1

4

(
µ2 − (qt (x)− µ (x))2 + µ′ (x) 2

)
z4 + g2 (x) z(3+

√
33)/2 +O

(
z5 ln z

)
) ,

Qxx (z, x) = 1 + qxx (x) z3 + g1 (x) z(3+
√

33)/2 +O
(
z5 ln z

)
) ,
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Qzx (z, x) = qzx (x) z4 +
1

5

[
(qt (x)− µ (x)) µ′ (x)− 2 q′xx (x)

]
z4 ln z +O

(
z5 ln z

)
) ,

Qyy (z, x) = 1 + qyy (x) z3 − 1

4
µ (x)′ 2 z4 + g1 (x) z(3+

√
33)/2 +O

(
z5 ln z

)
) , (4.5)

with

qtt (x) + qxx (x) + qyy (x) = 0 . (4.6)

The functions {qt, qtt, qxx, qzx, g1, g2} are arbitrary functions which will be fixed by solving

the PDEs with a regular horizon at z = 1.

It is worth highlighting the terms parametrised by g1 and g2 that arise from solving

the modified Einstein equations. The condition ξµ = 0 implies g2 = −1
2 (3 +

√
33)g1.

If one considers gi as parametrising a linearised perturbation about the µ(x) deformed

AdS4 space, one can see that these conditions imply that the gi can be absorbed into a

redefinition of the z coordinate via z(1− g1z
∆/2) = z̄, and hence are pure gauge. It is also

worth mentioning here that the appearance of the non-analytic terms, which are appearing

at order higher than z4, will affect the convergence rates of the numerical scheme, locally

in z, as we discuss further in appendix B.

It is clear from the asymptotic expansion (4.5) that a suitable set of boundary condi-

tions on the AdS4 boundary are

Qtt (0, x) = Qzz (0, x) = Qxx (0, x) = Qyy (0, x) = 1 ,

Qzx (0, x) = 0, at (0, x) = µ (x) . (4.7)

We will be choosing

µ (x) = µ0 + µ̄ (x) (4.8)

with µ̄ (x) averaging to zero over a period in x.

Observe that ∂y is a Killing vector for our geometry (4.1) which also preserves the

gauge-field. Since it has no fixed points in the bulk, following the general arguments

of [41], we can conclude that our solutions should satisfy the Smarr-type relation:∫ [
T tt (x) + T yy (x)− µ (x) J t (x)

]
= T S , (4.9)

where the charge density, J t, and the entropy, S, are given by8

J t (x) = −qt (x) + µ (x) , S = 4π

∫
Q1/2
xx (1, x) Q1/2

yy (1, x) , (4.10)

and the components of the stress tensor (following from a similar analysis to appendix A)

are given by

T tt (x) = 2 +
µ2

2
− 3 qtt (x) ,

T xx (x) = 1 +
µ2

4
+ 3 qxx (x) ,

8The origin of the shift by µ(x) in Jt is the factor of (1− z) in (4.1).
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T yy (x) = 1 +
µ2

4
+ 3 qyy (x) . (4.11)

The Smarr-relation (4.9) provides a check for the numerical error of our solutions. Observe,

from (4.6), that the stress tensor is traceless. Also, on-shell, with vanishing deTurck vector,

we obtain the Ward identity ∇µTµν + JµFµ
ν = 0, which we have also verified in our

numerical solutions (at the order of 10−3% error).

In order to numerically integrate the system of PDEs in the bulk, subject to the

boundary conditions we have just described, we discretise the problem in the z and x

directions. This leads to a non-linear algebraic system of equations which we solve using

Newton’s method.

Since the x direction is periodic and we expect all of the functions to be smooth away

from the two boundaries, we find it appropriate to use spectral methods for that direction.

More specifically we will use a Fourier decomposition in order to approximate the partial

derivatives along the x direction and an equi-spaced grid is appropriate. We will denote the

number of grid points in the x direction by Nx. For the monochromatic and dichromatic

lattices, described at the beginning of section 4.3, we have taken Nx = 45 and Nx =

90, respectively. For the dirty lattices, described in section 4.3.7, for which the memory

requirement of our numerical computation is significantly higher, we take Nx = 150.

A little more care is required for the discretisation of the radial direction z. As we can

see from equation (4.5), the asymptotic expansion at the z = 0 boundary reveals that our

functions will not be infinitely differentiable there. This point immediately excludes the use

of spectral methods uniformly in the radial direction. We have checked that a Chebyshev

decomposition would still work with a convergence that would only be power law. The

same type of convergence is also achieved using finite difference methods. We will use the

latter approach since it is more memory efficient since the linear systems that we have to

solve at the iterative steps of Newton’s method are much sparser. More specifically, the

results in the paper are obtained using sixth-order finite differences, but we note that we

also made some cross-checks using fourth-order finite differences.

At temperatures which are not too low, we have found that a simple finite difference

patch is enough to accurately describe the solutions we are interested in. As we lower the

temperature we find that we need to increase the resolution in the radial direction. In fact

we find that as T → 0 the near horizon limit of our black holes approach AdS2 × R2 and

this is changing the analytic behaviour near the horizon. Therefore, instead of increasing

the number of points uniformly in our computational domain we can divide it into different

regions and consider higher resolution or higher order finite differences9 for the ones closer

to the horizon. Some care is required at the interface between two such regions, as one

needs to ensure that the solution will have a continuous first derivative.10 In more detail,

consider two such sets of uniformly distributed points zi1 and zi2 with i1 = 1, . . . , N1,

i2 = N1 +1, . . . , N2 +N1 and with zN1 = zN1+1. The simplest way to patch these two grids

9One can also take one or both of the patches to be spectral.
10Continuity of the second normal derivative is a result of satisfying the second order equations of motion

at the interface from both sides.
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together is to require that

F (zN1 , x) = F (zN1+1, x) , F ′ (zN1 , x) = F ′ (zN1+1, x) , (4.12)

and then check that the equations of motion, which are second order in z, are satisfied at

z = zN1 in the continuum limit.

We take the total number of lattice points in the z direction, N , to be sufficiently high

to ensure that we achieve a resolution of at least ξ2 < 10−19 for all of the background

geometries. For most lattices and temperatures that we have considered this is achieved

for N ∼ 350. In appendix B we discuss in more detail our convergence tests, where we also

achieve resolutions of ξ2 ∼ 10−24 for larger values of N . We also note that for our high

precision numerics at very low temperatures we used N ∼ 5000 distributed non-uniformly

in three patches, in order to achieve ξ2 < 10−19 resolution, as described in appendix C.

4.2 AC conductivity

In this sub-section we describe the numerical strategy we use to extract the AC electric

conductivity in the x direction, σ(ω), for the class of black holes described in 4.1. As

usual we need to perturb the background geometry by an oscillating electric field in the x

direction of the form e−iωtE. A consistent ansatz for the perturbation that describes the

response of the bulk geometry to such an oscillating electric field is given by

δds2 =
1

z2

[
− f Qtt ĥtt dt2 +Qxx ĥxx (dx+Qzx dz)

2 +Qyy ĥyy dy
2+

+ 2f Qtt ĥtx dt (dx+Qzx dz)
]
,

δA = (1− z) ât dt+ âx (dx+Qzx dz) , (4.13)

where Ŵ ≡
{
ĥtt, ĥtx, ĥxx, ĥyy, ât, âx

}
are six functions of {t, z, x}. We note that here

we have chosen a gauge with

δgµz = δAz = 0 . (4.14)

It is convenient to also define

ĥxx = (1− z) ĥ+ + ĥ−, ĥyy = (1− z) ĥ+ − ĥ− . (4.15)

Note that we have pulled out some factors of (1− z) for convenience arising from regularity

considerations and using the equations of motion. As we will elaborate upon below, we

note that regularity implies that ĥtt ∼ O (1− z) close to the horizon or, more precisely,

that the tt component of the metric perturbation should vanish as O
(

(1− z)2
)

in this

gauge. Thus, the perturbation is not changing the behaviour of the black hole horizon. We

also need to impose in-falling boundary conditions on the Killing horizon of the black hole

at z = 1. By introducing

Ŵ = e−iωt
(
1− z3

) iω
4πT W̃ , (4.16)

the in-falling boundary conditions translate into analyticity conditions for the time inde-

pendent functions W̃.
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The equations of motion consist of six second order equations in z as well as four con-

straint equations which are first order in z. The six second-order equations of motion arise

from the {tt, tx, xx, yy} components of Einstein’s equations and the {t, x} components of

Maxwell equations. These six equations are all second order with respect to the coordinate

z in the domain of the coordinates z and x. These constraint equations can be charac-

terised by considering the foliation of the spacetime by surfaces with constant z. The unit

normal one form to these surfaces, n ∝ dz, has a dual vector field nµ with non-vanishing

components nz and nx1 . The constraint equations are then obtained by contracting this

vector field with Einstein equations, written in conventional form, and with the Maxwell

equations: Cµ ≡ nν
(
Eµν − 1

2gµνE
ρ
ρ

)
= 0 and D ≡ nν∇µFµν = 0. This provides a total of

four constraints since Cy = 0 trivially for our background and perturbation ansatz (4.13).

Following the standard ADM type analysis, one can show that the six second-order

equations of motion imply that if Cµ = D = 0 on any constant z slice then we also have

∂zCµ = ∂zD = 0 on that slice. In other words, we only need to impose the constraints

on any constant z surface and we will choose to impose them on the expansion near the

horizon at z = 1. Note that if we had chosen this surface to be the AdS4 boundary at

z = 0 it would involve imposing boundary conditions on third order derivatives of fields

and this is less accurate.

It is worth emphasising that in contrast to the background black holes, for the per-

turbations we are solving Einstein’s equations rather than the equations modified by the

DeTurck term. This is because the perturbations involve time-dependence and the De-

Turck term does not turn the problem into an elliptic one. However, checking that the

constraints are satisfied in the continuum limit is one of the convergence checks that we

perform, as discussed in appendix B.

We will now turn to the question of boundary conditions that we impose on the func-

tions W̃ defined in (4.16). Expanding the six second-order equations in z along with the

four constraint equations we find that a total of ten boundary conditions must be imposed

on the horizon at z = 1. Amongst these we find that we must impose h̃tt = 0, as we

mentioned earlier.

We are now left with two more conditions that need to be imposed in order to obtain

a unique solution to the six second-order equations. As we will now show, these come

from boundary conditions imposed at the AdS4 boundary at z = 0. We first note that the

second-order system of equations implies that we can develop an expansion of the six fields

in W̃ in terms of non-normalisable and normalisable data of the form

h̃µν (z, x) = h̃(0)
µν (x) + · · ·+ h̃(3)

µν (x) z3 + · · · ,

ãµ (z, x) = ã(0)
µ (x) + ã(1)

µ (x) z + · · · . (4.17)

Now the four first-order constraints can be used to express four of these functions in terms

of the remaining ones as well as the background fields, but, as mentioned above, this will

automatically be taken into account by the ten boundary conditions that we imposed at the

horizon. These conditions correspond to the two non-trivial components of stress-energy

conservation, current conservation, and the tracelessness of the stress-energy tensor.
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Proceeding, we now find ourselves in a situation very similar to the one discussed in [10]

regarding the UV boundary conditions of the perturbation. We have a total of six non-

normalisable fall-offs in (4.17) but only two boundary conditions left to impose and further-

more we only want to source a single field on the boundary - a time oscillating electric field in

the x direction. At first sight this seems to lead to an over-defined boundary value problem.

The simple resolution to this puzzle is that the requirement of sourcing only one of the

perturbation fields is actually weaker than setting the remaining non-normalisable pieces

all equal to zero. This can be seen in detail as follows. Suppose that we allow all of

the non-normalisable pieces in (4.17) to be switched on in such a way that there exists a

combination of boundary reparametrisations, xµ → xµ + ξµ, and gauge transformations,

Aµ → Aµ + ∂µΛ, where

ξ = e−iωt
(
ξt (x) ∂t + ξz (x) z ∂z + ξx (x) ∂x

)
+ · · · ,

Λ = e−iωt λ (x) + · · · , (4.18)

such that close to the AdS4 boundary we have

z2 [δgµν + Lξgµν ]→ 0 ,

δA+ LξA+ dΛ→ e−iωt µJ dx . (4.19)

This would imply that we are actually only sourcing our boundary theory by an oscillating

electric field and all of the other non-normalisable fall-offs of the functions are just gauge

artefacts.

Conversely, if we demand that the asymptotic behaviour in (4.17) is such that there

is a combination of coordinate and gauge transformations satisfying (4.19) we deduce that

we must have

ξx = − i
ω

(
h̃

(0)
tx − ξt′

)
, ξt =

i

2ω

(
−h̃(0)
− + h̃

(0)
+ + h̃

(0)
tt

)
,

ξx′ = −h̃(0)
− , ξz =

1

2

(
−h̃(0)
− + h̃

(0)
+

)
,

ω λ = −ω µ(x) ξt − i
(
ã

(0)
t + ξx µ(x)′

)
, ã(0)

x = µJ − µ(x) ξt′ − λ′ , (4.20)

where we notice the appearance of the background function µ(x) of the holographic lat-

tice. This gives a total of six equations that should be satisfied. However, the gen-

eral reparametrisation and gauge transformation is parametrised by only four functions{
ξt, ξr, ξx, λ

}
. Examining the integrability conditions of the six equations (4.20) we are

lead to two constraints that our non-normalisationle fall-offs should satisfy:

2ω2 h̃
(0)
− + h̃

(0)
−
′′ − 2i ω h̃

(0)
tx
′ − h̃(0)

+
′′ − h̃(0)

tt
′′ = 0 ,

ω3
(
ã(0)
x − µJ

)
+
i ω2

2

((
3 h̃

(0)
− − h̃

(0)
+ − h̃

(0)
tt

)
µ(x)′ − 2 ã

(0)
t
′
)

+
1

2
µ(x)′′

(
−2ω h̃

(0)
tx − i

(
h̃

(0)
−
′ − h̃(0)

+
′ − h̃(0)

tt
′
))

= 0 . (4.21)

These two conditions are precisely the remaining two boundary conditions that we

need to impose on the AdS4 boundary in order that we are only sourcing an oscillating
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electric field on the boundary. Moreover, the current can be read off after performing the

above transformation and then using (2.7) or, equivalently, from the sub-leading fall-off of

the gauge field perturbation, and we find

J = ã(1)
x +

i

2ω
(µ(x)− qt)

(
h̃

(0)
− − h̃

(0)
+ − h̃

(0)
tt

)′
. (4.22)

The uniform mode of the current is now given by a simple integration over a period:

J =
1

L

∫ L

0
J dx , (4.23)

and the AC electric conductivity in the x direction is given by the Kubo formula:

σ(ω) =
J

i ω µJ
. (4.24)

Finally, we comment that for numerically obtaining the optical conductivity we used

the same computational grid that we used for the background lattice black holes.

4.3 Numerical results

In this section we will present the results that we extracted from the numerical setup we

outlined in the previous sub-sections. Our implementation can handle a very general class

of periodic lattices. The class that we have analysed in greatest detail are monochromatic

lattices of the form

µ(x) = µ+Aµ cos (k x) , (4.25)

where µ 6= 0 is a constant (note that for clarity, we have dropped the subscript in (2.3) here

and in the remainder of this section), as is A and k. Such lattices were first constructed

in [5] and, as we shall discuss, while we find some agreement with their results we find some

important differences too. We have also looked in some detail at second class of lattices

are dichromatic lattices of the form

µ(x) = µ+Aµ cos (k x) +Bµ cos (2k x) , (4.26)

which have similar properties but also exhibit some new features. Finally, we have briefly

considered a single example of a dirty lattice that is constructed from a larger number of

modes, specifically ten, and random phases in section 4.3.7

4.3.1 Drude peaks and DC conductivity

In figure 1 we show the real and imaginary parts of the optical conductivity for a monochro-

matic lattice with A = 1/2, k/µ = 1/
√

2 and for various temperatures. We have only plot-

ted low temperatures and small values of frequency in order to highlight some important

features. In particular, we see a Drude-type peak emerging at low-temperatures, as also

seen in [5]. Indeed, for low frequency we find an excellent two-parameter fit11 of the form

σ ∼ Kτ

1− iωτ
. (4.27)

11As in [10], one can also make a four parameter fit: 1/σ = (a1 + a2ω
2) − iω(a3 + a4ω

2), for constants

ai, where one uses the fact that σ∗(ω) = σ(−ω), and it leads to very similar results.
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T/µ τµ K/µ Kτ 2 < ωτ < 8

0.14 53.31 0.33 17.86 0.036 < ω/µ < 0.15

0.080 75.99 0.34 25.84 0.026 < ω/µ < 0.11

0.039 117.05 0.32 37.53 0.017 < ω/µ < 0.068

0.020 175.58 0.30 52.98 0.011 < ω/µ < 0.046

0.015 204.66 0.30 60.52 0.0098 < ω/µ < 0.039

Table 1. Parameters after fitting to the Drude behaviour (4.27) for small ω, for the monochromatic

lattices displayed in figure 1.Note that Kτ gives a numerical estimate for the DC conductivity which

can be compared with the analytic result; see figure 6.

This fit is carried out for ω � T ; in practise in the region 10−4 . ω/µ . 10−2 and

only for values of ω/µ significantly smaller than the maximum in Im(σ) (see figure 1).

This leads to the results, including a numerical result for the DC conductivity given by

Kτ , which we summarise in table 1. Comparing this quantity with the result that is

obtained from our formulae (3.30) in the last section we find excellent agreement for both

monochromatic and dichromatic lattices; see figure 6. We also note for comparison that

the value of K/µ for the AdS-RN black hole (i.e. with no lattice deformation) is given by

(K/µ)RN = q2/(µ(T tt + T xx)) [1] and hence

(K/µ)RN =
1

2
√

3 + (4πT/µ)2 − 4πT/µ
(4.28)

which differs a little from the lattice results.

We now make some specific comparisons with the results of [5]. To do so, we need

to take into account a relative scaling of the chemical potential: µ =
√

2µthere. Then

the monochromatic lattices that we have been considering for the specific temperature

T/µ = 0.039 correspond to those in figures 6-9 of [5]. We find very good agreement with

figure 6 which shows the charge density of the background black holes. We find less good

agreement (of the order of a couple of percent) with the plot of the AC conductivity in figure

8 of [5]. Furthermore, in figure 9 of [5] distinct kinks are found in the AC conductivity which

we do not see for these or in fact any of our lattices. We discuss the issue of intermediate

scaling claimed in [5] in the next subsection.

4.3.2 Absence of intermediate scaling

The next feature that we would like to report on is the possibility of an intermediate

frequency scaling behaviour of the form

|σ(ω)| ∼ Bω−2/3 + C , (4.29)

where B,C are frequency independent constants. Such a scaling was reported in [4, 5],

based on log-log plots, for the approximate range 2 < ωτ < 8, where τ is obtained from

the fit to the Drude peak. If this scaling is present then a sharp diagnostic is that 1 +

(ω/µ)|σ|′′/|σ|′ ∼ −2/3. As illustrated in figure 1, we find no evidence for such scaling
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Figure 1. The real (top left) and the imaginary (top right) parts of the optical conductivity σ as a

function of ω/µ for a monochromatic lattice µ(x)/µ = 1 + A cos (k x), with A = 1/2, k/µ = 1/
√

2,

and various T/µ close to the origin. The conductivity clearly shows a Drude-like peak developing

at low temperatures. The bottom figure shows the corresponding behaviour of 1 + (ω/µ) |σ|′′ / |σ|′

and there is no evidence of a mid-frequency intermediate scaling with exponent −2/3. Note the

different horizontal scale in the top and bottom figures.

(the relevant range of ω/µ is given in table 1). Moreover, we find similar behaviour to

what we saw for a homogeneous Q-lattice in [10]. Finally, we highlight that at very low

temperatures, where the Drude peak becomes sharper, the function 1 + (ω/µ)|σ|′′/|σ|′

approaches 2 as ω → 0 and, in addition, there is a scaling region with exponent −1, visible

in figure 1; both of these features arise from (4.27).

We make a final comparison with [5] for the specific case of T/µ = 0.039. In figure

9 of [5] a log-log plot suggested a scaling with exponent −2/3 for the approximate range

0.02 . ω/µ . 0.07. However, there is no evidence for this scaling in the bottom panel in

figure 1. In fact, for this range of ω/µ we can see from the top panels in figure 1 that we

are not too far from the Drude peak. Indeed, we have checked that our fit to the Drude

behaviour is in fact rather reasonable12 over this entire range of ω/µ.

12As an aside, if instead one fits to the form (4.27) over this entire range of ω/µ (leading to different

non-physical values of K, τ than those given in table 1), then on a log-log plot one finds excellent agreement

with the data. This underscores the difficulties in deducing power-law behaviour from a log-log plot.
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4.3.3 Scaling behaviour and AdS2 × R2 in the IR as T → 0

We next discuss how the black holes behave as T → 0. When the constant part of µ(x)

is non-vanishing, i.e. µ 6= 0, for the monochromatic lattices we find that in the far IR

the solutions all seem to approach AdS2 × R2. More precisely, as we discuss in the next

paragraph, we find that the black hole solutions exhibit a low temperature scaling behaviour

that are consistent with the T = 0 solutions interpolating between AdS4 in the UV and

AdS2 × R2 perturbed by an irrelevant operator in the locally quantum critical theory in

the IR. In particular, for the values of k that we have looked at and for the temperatures

we have looked at, we find no evidence for the “floppy” ground states discussed in [32].

Some additional comparisons with this work are made in appendix C.

In figure 2 we show the behaviour of the DC conductivities σ and κ̄, obtained

from (3.30), as well as their log-derivatives, as a function of temperature for four different

monochromatic lattices. At low temperatures we see that the conductivities approach the

scaling behaviour given in (3.40) and (3.41) as depicted by the dashed red lines. Note

that the low-temperature scaling is obtained by taking the lowest temperature black hole

to deduce the approximate value of the renormalised wave-number k̄ given in (3.41). The

renormalisation factor λ̄, defined in (3.42) is actually very small: for example it is λ̄ = 1.027,

for the case A = 1/2, k/µ = 1/
√

2 (red) and for other cases it is given in table 2. Note the

former case has κ̄ → 0 while for the latter case κ̄ → ∞ as T → 0. At high temperatures

we see that σ → 1 + 2/A2 = 9 in agreement with (3.39).

4.3.4 Sum rules on conductivity

It is illuminating to check sum-rules associated with the AC electrical conductivity. As

ω →∞ we have σ(ω)→ 1 and hence after defining the integrated spectral weight as:

S(ω/µ) ≡
∫ ω/µ

0
(Re[σ(ω′)]− 1)dω′ , (4.30)

following [34] we might expect that limω→∞ S(ω) → 0. We briefly discuss the proof high-

lighting the underlying assumptions. In the absence of instabilities the retarded Greens

function GJxJx(ω) is analytic in the upper half plane and we assume this includes the

real axis. We also need to assume that for Im(ω) > 0 that the function GJxJx(ω) − iω
vanishes faster than 1/|ω| as |ω| → ∞. The Kramers-Krönig relations then imply that

limω→∞ S(ω) = limω→0+ π/2Re[GJxJx(ω)− iω] = 0, provided that Re[GJxJx(0)] = 0 which

is satisfied in our case (see figure 1). This sum rule is manifest in figure 3 for monochromatic

lattices.

We also note from figure 3 that as T → 0, the function S(ω) is developing a step like

behaviour near ω → 0, corresponding to the Drude-peak becoming a delta function exactly

at T = 0. It would appear that the weight of the delta function is slightly smaller than

that of the AdS-RN black hole. To see this, and to make an additional comparison, we

note that the electrical conductivity of the AdS-RN black hole has a delta function for all

temperatures with σRN (ω) = 1 + σ0(ω) + KRN

(
i
ω + πδ(ω)

)
where σ0(ω) is an analytic

function that falls off faster than 1/|ω| at infinity and KRN is given in (4.28). Thus for
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Figure 2. Plots of the DC conductivity for σ (top left) and κ̄ (bottom left), obtained from (3.30),

against temperature for four monochromatic lattices of the form µ(x)/µ = 1 +A cos (k x), all with

A = 1/2 and k/µ =
√

2/3 (orange), 2
√

2/5 (blue), 1/
√

2 (red) and
√

2 (green). The red dashed lines

on the right hand plots indicate the low-temperature scaling behaviour, given in (3.40) expected for

black holes approaching AdS2 × R2 in the far IR. The k/µ =
√

2 case provides an example where

κ̄ diverges as T → 0, while the other cases are examples where κ̄ vanishes as T → 0. In all cases κ

vanishes linearly with T . As T →∞ we see that σ → 1 + 2/A2 = 9, marked with a red dashed line

in the top left figure, in agreement with (3.39).

AdS-RN black holes, as ω/µ → 0 we should have S(ω/µ) → (π/2)KRN/µ. At T = 0 we

have KRN/µ = q/µ2 = 1/(2
√

3) and hence S(ω/µ) ∼ 0.45 as ω/µ → 0, which is slightly

bigger than the weight of the delta function appearing at T = 0 for the lattice black holes.

We can also consider lattice black holes at finite temperature with fixed k/µ and then take

the lattice strength A → 0. In this limit we should find that as ω → 0, S(ω/µ) should

approach the AdS-RN result at the same temperature; this is also confirmed in figure 3 for

the case of T/µ = 0.12 for which (π/2)KRN/µ ∼ 0.51.

We can also consider a different sum rule first discussed in [35]. Defining

Sd(ω/µ) ≡
∫ ω/µ

0

(
Re

[
1

σ(ω′)

]
− 1

)
dω′ , (4.31)

the sum rule is limω→∞ S̃d(ω) → 0. This arises from the electromagnetic duality of

the D = 4 Einstein-Maxwell theory, with the dual gauge-field being associated with a

second CFT arising from an alternative quantisation scheme [42] (for related discussion
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Figure 3. Sum rules for monochromatic lattices. The top left panel plots the integrated spectral

weight S(ω/µ), defined in (4.30), for a monochromatic lattice µ(x)/µ = 1 + A cos (k x), with

A = 1/2, k/µ = 1/
√

2 (as in figure 1) for three different temperatures, and we see it vanishes when

ω/µ → ∞ as expected from the first sum rule. As T/µ → 0 we see that S(ω/µ) is developing

a step-like behaviour corresponding to the appearance of a delta function with weight smaller

than the T = 0 AdS-RN black hole (which has the value ∼ 0.45). The top right panel considers

monochromatic lattices with k/µ = 1/
√

2 and fixed T/µ = 0.12 and various A. As A → 0 we see

that the S(ω/µ) is developing a step-like behaviour corresponding to the appearance of a delta

function with the same weight as the AdS-RN black hole at the same temperature (which for

this case has the value ∼ 0.51). The bottom panel plots Sd(ω/µ), defined in (4.31), for the same

monochromatic lattices as in the top left panel and we see that the second sum rule is also satisfied.

see also [43–46].) In our setup the lattice deformation with chemical potential µ(x) gets

mapped to a magnetic field that is spatially modulated in the x direction. We have verified

this sum rule as shown in figure 3.

4.3.5 Intermediate resonances

Next, we highlight some interesting features of the optical conductivity that appear at

intermediate frequencies, as illustrated in figure 4. In particular for the monochromatic

lattices with k/µ = 1/(3
√

2) and various lattice strengths A, we find that there is a bump in

the optical conductivity just outside the Drude-peak. Now the Drude peak arises because

there is a pole near ω = 0 in the T txT tx correlator. One might expect that there could be

additional features due to contributions from the sound modes. From the analysis of [37]

at T = 0 we have vs = 1/
√

2 and furthermore it was shown that vs has only a weak

dependence on temperature in [47]. Thus we might expect to see a resonance appear near

ω/µ ∼ vs(k/µ) ∼ 1/6, and this is what is seen in figure 4. Note that such resonances are
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Figure 4. The real (left) and the imaginary (right) parts of the optical conductivity as a function

of ω for various monochromatic lattices µ(x)/µ = 1+A cos (k x). The three different cases have fixed

temperature T/µ ≈ 0.0795 and period k/µ =
(
3
√

2
)−1

but varying lattice strength A. We clearly

see the appearance of a resonance associated with the sound mode frequency ω/µ ∼ vsk/µ ∼ 1/6.
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Figure 5. The real (left) and the imaginary (right) parts of the optical conductivity as a function

of ω/µ for the dichromatic lattice µ(x)/µ = 1 + A cos (k x) + B cos (2k x), with A = 1/2, B = 1,

k/µ = 1/
(
3
√

2
)

and T/µ ≈ 0.0796. In this case we see two resonances associated with sound modes

at ω/µ ∼ vsk/µ ∼ 1/6 and also ω/µ ∼ vs(2k)/µ ∼ 1/3.

also seen for the lattices with A = 1/2, k/µ = 1/
√

2 at ω/µ ∼ vsk/µ ∼ 1/2, but these lie

outside the range plotted in figure 1.

Similarly, for the dichromatic lattices (4.26), containing wave-numbers k and 2k, we

might expect to see structure in the optical conductivity at frequencies ω/µ ∼ vs(k/µ) and

also twice this frequency. Such behaviour is illustrated in figure 5.

4.3.6 Conductivities for higher Fourier modes

Until this point we have focussed on the zero-mode of the current J appearing in (4.22)

in order to extract the optical conductivity as in (4.24). We can also extract the higher

Fourier modes of J and construct the corresponding Greens function. If we write the nth
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Figure 6. Comparison of the two numerical results for the DC conductivity for three different

lattices of the form µ(x)/µ = 1 + A cos (k x) + B cos (2k x). The first is obtained from using the

analytic formulae involving black hole horizon data in equation (3.15). The second is obtained from

the ω → 0 limit of the AC conductivity after fitting to a Drude-peak form. The data is superimposed

in the figure on the left and the difference is undetectable to the naked eye. The relative difference

is shown in the figure on the right hand and we see agreement at a level better than 10−4%.

Fourier mode as Jn, then we can define

Gn =
Jn
µJ

, (4.32)

which defines the current two point correlator GJxJx (k1 = nkL, k2 = 0, ω). It is worth

emphasising that these correlators with k2 6= k1 are non-vanishing as a consequence of the

broken translation invariance of the backgrounds. For the monochromatic lattice of figure

1, with A = 1/2, k = 1/
√

2 and T/µ = 0.08, in figure 7 we have plotted the real and

imaginary parts of Gn/ω for n = 1, 2 and 3. Notice that the conservation of the current

∂aJ a = 0 implies that at ω = 0 we have Jn = 0 if n 6= 0, as we see in the plot. Observe

that there is a peak in the imaginary part at ω/µ ∼ 0.5, which is associated with the sound

mode at ω/µ ∼ vsk/µ ∼ 1/2.

4.3.7 A dirty lattice

We have also constructed black holes for “dirty lattices”, comprising of many wave-numbers

and random phases, with a view to modelling disorder (see e.g. [48–54].) Specifically, we

consider a truncated version of Gaussian white noise given by

µ(x) = 1 +
A
√
nm

nm∑
n=1

cos(nk x+ θn) , (4.33)

for a random collection of phases θn sampled over a uniform distribution. The maximum

wavenumber, nm k, represents a UV cutoff while the overall period, 2π/k, is the IR cutoff.

A specific example that we analysed has A = 1/2, k/µ = 1/(4/
√

2), T/µ = 0.08 and

nmax = 10, with the corresponding local chemical potential plotted in figure 8. In figure 8

we also show the optical conductivity: it is manifest that these lattices continue to exhibit a

Drude-peak with a DC electrical conductivity that is in precise agreement with our analytic

– 29 –



J
H
E
P
0
1
(
2
0
1
5
)
0
3
5

●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●
●●●●●●●●●●
●●●●●●●
●●●●●
●●●●
●●●●●●
●●●●●●
●●●●●●●
●●●●●●
●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●●●●●●●●●●●

●●
●

●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
■■■■■■■■■■■■■■

■■■■■■■■
■■■■■■■■■■■
■■■■■■■■■■■■
■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

■■■■■■■■■■■■■■■ ■ ■ ■ ■ ■ ■
■

■
■ ■ ■ ■

■
■

■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆
◆

◆
◆

◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

n=1

n=2

n=3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-2

-1

0

1

2

3

ω/μ

1
0
n
·I
m
(G

n
)/
ω ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●
●
●
●
●
●
●
●
●
●
●
●●

●●
● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■

■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■■
■■

■■
■■■

■■■
■■■■

■ ■ ■ ■ ■
■

■ ■ ■
■

■
■

■
■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■ ■◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆

◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆◆
◆◆◆

◆◆◆
◆◆◆◆

◆◆◆◆ ◆ ◆ ◆ ◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

◆
◆

◆
◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆ ◆

n=1

n=2

n=3

0.0 0.5 1.0 1.5 2.0 2.5 3.0

-3

-2

-1

0

1

ω/μ

1
0
n
·R
e
(G

n
)/
ω

Figure 7. A plot of the imaginary (left) and real (right) parts of Gn/ω, where Gn is the Green’s

function for the nth Fourier modes of the current as in (4.32). The plots are for the monochromatic

lattice in figure 1 with T/µ = 0.08 and for Fourier modes n = 1, 2 and 3. Notice that different

vertical scales are used for each n. Observe they all vanish at ω = 0, as expected from current

conservation, and the feature at ω/µ ∼ vsk/µ ∼ 1/2, associated with the sound mode.

result. We also expect resonances at mid-frequencies arising from sound modes, and we

have verified the existence of the first peak at ω/µ ∼ vsk/µ ∼ 0.125, as well as the next

two at roughly twice and three times this value.

5 Final comments

We have found a remarkably compact analytic expression for the thermoelectric DC con-

ductivity for a class of inhomogeneous black hole lattices, for all temperatures, generalising

the results for homogeneous lattices in [12, 14]. Our results provide strong evidence that

this approach can be generalised to arbitrary lattices. It would be interesting to next ex-

amine an inhomogeneous lattice with a UV deformation that depends on more than one

spatial dimension, as in the recent construction of holographic checkerboards in [55].

Our results provide a powerful way to obtain the low-temperature scaling behaviour

of the DC conductivity. For translationally invariant ground states, such as black hole

solutions which approach irrelevant deformations of AdS2 × R2 in the far IR, when the

lattice strength is small one can also use13 the memory matrix formalism [31], and in this

case we find precise agreement. On the other hand, if one approaches a ground state which

breaks translations, as in [12, 20], then the memory matrix formalism cannot be used and

so our analytic results provide a particularly powerful tool to study the properties of these

novel holographic ground states.

Here and in [14], we have seen that as T → ∞ the UV lattice deformation leads to a

modification of the DC conductivity away from the value of the optical conductivity σ(ω)

in the limit ω → ∞. In this paper, we have seen that a periodic chemical potential µ(x)

13Although the renormalisation of length scales from the UV to the IR needs to be put in as an extra

ingredient.
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Figure 8. The top panel shows the chemical potential for a “dirty lattice” constructed from ten

different wave numbers as in (4.33) with A = 1/2 and k/µ = 1/(4/
√

2). In the bottom panels we

show the real (bottom left) and imaginary (bottom right) parts of the optical conductivity for this

lattice at T/µ = 0.08. The real part exhibits a Drude peak with a DC conductivity that agrees

precisely with the analytic result obtained from the black hole horizon, indicated by a blue dot.

leads to a saturation of the electric DC conductivity to a constant value14 as T →∞, with

the value depending on µ(x) as in (3.39). This is a kind of generalised Mott-Ioffe-Regel

bound [27, 28] without quasi-particles. It is also worth noting that as T →∞ we find that

the optical conductivity approaches unity for all values of ω/µ, except at ω/µ → 0 where

it jumps to the higher DC value.

We have also made detailed constructions of the inhomogeneous black holes arising

in Einstein-Maxwell theory for various periodic chemical potentials. We focussed in most

detail on monochromatic lattices, associated with a single wave-number, k, but we also

considered dichromatic lattices, with wave-numbers k and 2k and the same phase. In

addition we constructed black holes that model a dirty lattice which were built from ten

sequential wave-numbers with random phases. The black holes, as well as the optical

conductivity were obtained by numerically solving PDEs. We have found Drude peaks

in the optical conductivity at finite temperature, as in [4], but, in contrast to [4], we do

not find any intermediate scaling for the monochromatic lattices. At low temperatures

our ground states for the monochromatic lattices all seem to approach AdS2 × R2 in the

14By contrast, recall that for the Q-lattices of [14] the DC saturates at high temperature to a divergent

result, with an associated minimum value of the DC conductivity for Q-lattice metals.
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far IR and, specifically, we find the DC scaling behaviour is precisely consistent with this.

While it is possible that lowering the temperature of the black holes further will reveal

some exotic new ground states, as in [32], we feel this is unlikely. It would be interesting

to know if exotic ground states appear for stronger lattice deformations and/or for other

deformations of the chemical potential.

We have shown that the monochromatic, dichromatic and dirty lattices naturally give

rise to mid frequency resonances that can be associated with sound modes. It will be

interesting to consider this issue in more detail for the dirty lattices since in the limit where

the number of modes and the characteristic wave-number is going to zero (i.e. nm → ∞,

k → 0 in (4.33)) the resonances may coalesce and change the analytic structure of the

Greens functions in the mid-frequency region.

Acknowledgments

We thank Pau Figueras, Sean Hartnoll, Gary Horowitz, Elias Kiritsis, Jorge Santos, David

Tong, Toby Wiseman and Jan Zaanen for helpful discussions. The work is supported by

STFC grant ST/J0003533/1, EPSRC programme grant EP/K034456/1 and also by the

European Research Council under the European Union’s Seventh Framework Programme

(FP7/2007-2013), ERC Grant agreement STG 279943 and ADG 339140.

A The stress tensor and heat current

For the perturbed black holes of interest we can obtain the heat current from the stress

tensor following the approach of [14]. From [56] we can write the stress tensor and the

current as

1

2
T̃µν = −Kµν +Kγµν − 2γµν +Gµν ,

J̃ν = −nµFµν , (A.1)

where nµ is the unit normal to the boundary, Kµν = (δµ
ρ+nµn

ρ)∇ρnν , Gµν is the Einstein

tensor of the boundary metric γ and expressions are to be evaluated at the boundary

r →∞.

For all of the black holes that we considered in calculating the DC conductivities,

including the perturbation, we have

nµ =

(
Hrr

U

)1/2

(1 +
Uδgrr
2Hrr

) (0, 1, 0, 0) . (A.2)

For the black hole backgrounds (with vanishing perturbation) we obtain the following

expressions

T̃ tt =
1

UHtt

[
4− U1/2

H
1/2
rr

∂r ln Σ

]
+ 2Gtt ,

T̃ xx =
1

eBΣHtt(UHrr)1/2

[
∂r(UHtt)− UHtt

(
∂r ln

eB

Σ
+ 4

H
1/2
rr

U1/2

)]
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− 1

2Σ2Htte2B

(
∂x ln

eB

Σ

)
(∂xHtt) ,

T̃ yy =
eB

ΣHtt(UHrr)1/2

[
∂r(UHtt)− UHtt

(
∂r ln

e−B

Σ
+ 4

H
1/2
rr

U1/2

)]
+ 2Gyy ,

J̃ t =
1

(UHrr)1/2Htt
∂rat , (A.3)

where we have omitted the explicit expressions for Gtt and Gyy for brevity. As r →∞ we

have T̃ ab ∼ r−5 and J̃a ∼ r−3 so it is convenient to define

T ab = r5T̃ ab , Ja = r3J̃a . (A.4)

We next consider the perturbation about the black holes backgrounds discussed in

section 3, but with a general time dependence in δgtx for the moment, finding

T̃ tx =
1

eBΣHtt(UHrr)1/2

[
− δgtx(t, r, x)

(
∂r

ln eB

Σ
+
H

1/2
rr

U1/2

)

+ ∂rδgtx(t, r, x)−Htt∂x
δgtr
Htt

]
− δgtx(t, r, x)

2e2BΣ2H2
ttU

(
∂x

ln eB

Σ

)
(∂xHtt) , (A.5)

where we have included the argument of δgtx, here and below, for clarity. It will be

convenient, shortly, to note that

U1/2H
1/2
tt Σ

(
UHttT̃

tx − δgtx(t, r, x)T̃ xx
)

=
U2H

3/2
tt

eBH
1/2
rr

[
∂r

(
δgtx(t, r, x)

UHtt

)
−∂x

δgtr
UHtt

]
. (A.6)

We now consider the particular linearised time-dependence for the perturbation given

in sections 3.2 and 3.3:

δA = −tEdx+ tζat + δaµ(r, x)dxµ ,

δds2 = −2tζUHttdtdx+ δgµν(r, x)dxµdxν , (A.7)

with falloffs of δaµ(r, x) and δgµν(r, x) as r → ∞ chosen so that the only sources

are parametrised by E and ζ. Now these time-dependent sources give rise to a time-

independent expression for J̃x:

J̃x =
e−B√
HrrHtt

[δgtr∂xat − δgtx(r, x)∂rat +HttU (∂xδar − ∂rδax)] , (A.8)

which, when evaluated at r →∞ and using (A.4), agrees with the expression for J in (3.3).

By contrast we obtain a time-dependent component in T tx. Explicitly, from (A.5) we

immediately obtain

T̃ tx =
1

eBΣHtt(UHrr)1/2

[
− δgtx(r, x)

(
∂r

ln eB

Σ
+
H

1/2
rr

U1/2

)
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+ ∂rδgtx(r, x)−Htt∂x
δgtr
Htt

]
− δgtx(r, x)

2e2BΣ2H2
ttU

(
∂x

ln eB

Σ

)
(∂xHtt)− ζtT̃ xx ,

≡ T̃ tx0 − ζtT̃ xx . (A.9)

Returning now to (A.6) and substituting in (A.7) we find that all of the time dependence

drops out and hence we can conclude that

U1/2H
1/2
tt Σ

(
UHttT̃

tx
0 − δgtx(r, x)T̃ xx

)
=
U2H

3/2
tt

eBH
1/2
rr

[
∂r

(
δgtx(r, x)

UHtt

)
− ∂x

δgtr
UHtt

]
. (A.10)

Evaluating both sides at r →∞ we deduce that

r5T̃ tx0 = lim
r→∞

U2H
3/2
tt

eBH
1/2
rr

[
∂r

(
δgtx(r, x)

UHtt

)
− ∂x

δgtr
UHtt

]
. (A.11)

Recalling the expression for Q given in (3.6), we deduce that

T tx − µJx = Q− ζtT xx . (A.12)

Now as explained in appendix C of [14], the time dependent piece is associated with a

static susceptibility for the Q Q correlator, which we see is explicitly given by T xx of the

background black holes. On the other hand the time independent piece is associated with

the DC conductivity.

B Convergence tests

In this section we will provide a few details on three different convergence tests that we

carried out for the numerical methods which we discussed in sections 4.1 and 4.2.

For the black hole backgrounds, in the continuum limit, which is approached as the

number of grid points is taken to infinity, we expect that the norm of the DeTurck vector,

ξ2, should approach zero uniformly everywhere on our computational grid. Checking that

this happens is the first test that we performed. Along the same lines, our backgrounds

should satisfy the equations of motion (2.2) without the additional DeTurck term. Cor-

respondingly, our second convergence test is to check the absolute value of the trace of

Einstein’s equations in (2.2).

Our third check concerns the convergence properties of the perturbation about the

background black holes in order to extract the optical conductivity as described in sec-

tion 4.2. As we pointed out in the main text, the six functions that we used in the

perturbation ansatz (4.13) should solve ten equations of motion, of which four are con-

straints that we impose on the black hole horizon. As a non-trivial check of our numerics,

we check that the constraints are satisfied everywhere in the bulk in the continuum limit.

As an illustration of this we can take the trace of Einstein’s equations, expand it to first

order in the perturbation and then examine the absolute value of the leading term.

Let us present some results of these tests for the specific monochromatic lattice

µ(x) = µ
(

1 + 1
2 cos

(
µ√
2
x
))

for three different temperatures T/µ ≈ 0.035, T/µ ≈ 0.02
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and T/µ ≈ 0.015. These black holes have been discussed in the main text and some of their

properties are presented in figure 1. In order to give a more detailed treatment, we divide

our computational grid into two halves: the “boundary” half, defined by 0 < z < 1/2, and

the “horizon” half, defined by 1/2 < z < 1. In all of our tests we have fixed the number of

points in the periodic, field theory direction to be Nx = 45 and then we vary the number

of points, N , in the radial direction. For the perturbation convergence tests we have fixed

the frequency ω/µ ≈ 0.0008 which for the three temperatures is very close to the top of

the Drude peak; we do this because it is a region in ω/µ which is challenging numerically.

In figure 9 we show the results of the two convergence tests for the black hole solutions,

discussed above, for the boundary and horizon regions. The boundary expansion (4.5)

suggests that we should have convergence not better than fifth order for the boundary

region and indeed we find that while ξ2
b converges as N−8, the trace of Einstein’s equations

converges as N−4.6. On the other hand, close to the horizon, we have an analytic expansion

and we find convergence of the same quantities of the form N−11.7 and N−5.7, respectively.

In figure 10 we show a plot of the convergence test for the perturbation that we

discussed above. For the range of resolutions shown in the figure we find a convergence

rate scaling like N−5.4 which is suggestive that all the error comes from the horizon and,

moreover, from the fact that our background satisfies the DeTurck modified equations

instead of Einstein’s.

The numerical schemes outlined in section 4 were implemented in C++. The facility

of class templates has been particularly helpful to accommodate the various numerical

precisions we have used at low temperatures and in the convergence tests. At certain

key points of our code we have specialised our templates to double, long double, Intel’s

_QUAD and MPFR [57] data types.15 In particular this was necessary for the relevant sparse

linear solver that we used both in Newton’s method and for the linear perturbations for

the optical conductivity. For our double precision numerics we have chosen UMFPACK from

the SuiteSparse library [58] compiled with Intel’s MKL BLAS which takes advantage of

multicore systems when combined with OpenMP. For the three remaining data types we have

chosen to use the SparseLU solver from the Eigen3 template library [59]. In writing our code

we have greatly benefited from the float128 wrapper class of the Boost C++ library [60].

Concerning the plots appearing in figures 9 and 10, we have found that double pre-

cision is saturated when we reach 450 points in the radial direction after which we need

to use long double precision numerics for the backgrounds. As far as the conductivity

perturbation is concerned, we found that _QUAD precision had to be used when we reach

300 points in the radial direction. For these cases the corresponding black hole background

was computed using the same _QUAD precision.

C Further comments on scaling behaviour

The black holes that we have constructed numerically, described in section 4, are consistent

with the T = 0 limits approaching domain wall solutions interpolating from AdS2 × R2 in

the IR to AdS4 in the UV. This can be contrasted with the conclusion of [32] where it was

15These allowed us to work with 53, 80, 113 and arbitrary bits of significand precision, respectively.
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Figure 9. Convergence tests for the numerical construction of monochromatic lattice black holes

of figure 1 for three different temperatures. The figures on the left denote convergence tests in the

boundary region, while those on the right correspond to the horizon region. We have plotted the

norm of the de Truck vector, ξ2 and the absolute value of the trace of Einstein’s equations Eµµ
against the number of radial points in the grid, N , with a fixed number Nx = 45 points in the

periodic spatial x-direction.
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Figure 10. Convergence tests for the numerical construction of the perturbation about the black

holes considered in figure 9 that is needed to obtain the AC conductivity. We have plotted δEµµ,

which is obtained by considering the trace of Einstein’s equations, expanding it to first order in the

perturbation and then taking the absolute value of the leading term, against the number of radial

points in the grid, N . Again, Nx = 45.

– 36 –



J
H
E
P
0
1
(
2
0
1
5
)
0
3
5

argued that the T = 0 ground states have an inhomogeneous IR behaviour. Here we would

like to provide a possible explanation for the disparity.

As illustrated in figure 2 we have seen that for temperatures as low as T/µ ∼ 4×10−5,

and T/µ ∼ 9.8 × 10−6 for one specific case, the electrical and thermal DC conductivities

exhibit a clear scaling behaviour, exactly consistent with (3.40) and (3.41), predicted from

the dimension of the least irrelevant operator about AdS2 × R2. It is also illuminating to

consider a quantity $ introduced in [32]. Let W = ||∂y||2r=r+ and then, by considering the

variation along the x direction, define

$ =
Wmax

Wmin
− 1 . (C.1)

If the T = 0 ground states have AdS2 × R2 in the IR, then this should approach 0 at

T = 0. More precisely, it should approach 0 with a specific scaling behaviour which can be

extracted from the analysis of [31, 37]:

$ ∼ T∆(k̄)−1 . (C.2)

It is worth restating here that k̄ is related to the UV lattice factor as in (3.42), which

involves a renormalisation scale λ̄ that depends on the UV data. In figure 11, for four

monochromatic lattices with16 A = 1/2 and k/µ =
√

2/3, 2
√

2/5, 1/
√

2 and
√

2, we see

that $ scales exactly17 as expected for an AdS2 × R2 ground state. Now, a simple but

key observation is that if the scaling exponent is small, then the value of $ can still be

parametrically large, compared to the temperature scale, even when one is in the scaling

regime as we see in figure 11 and also in table 2. This situation occurs when k̄ is small

which arises, in practise when k is small.

Recalling (3.29), another quantity we can consider is

Υ =

∫
1

Σ(0)

[
∂x ln

eB
(0)

Σ(0)

]2

. (C.3)

If the black holes approach AdS2 × R2 in the far IR as T → 0, then we should also have

Υ ∼ T 2∆(k̄)−2 . (C.4)

In fact we find that this quantity approaches the scaling behaviour slightly quicker than $

and we have illustrated this in figure 11.

For these constructions, in order to keep the error small at low temperatures we used

three patches in combination with long double precision. As an indicative example, in

lowest temperature black hole for the case k/µ = 2
√

2
5 of table 2 we partitioned the coor-

dinate z interval (0, 1) into three patches as
(
0, 94

100

]
∪
[

94
100 ,

997
1000

]
∪
[

997
1000 , 1

)
. Following

16In the notation of [32] these correspond to A0 = 1/2 and k0 = 2/3, 4/5, 1 and 2, respectively.
17As before, we deduce the value of λ̄ from our lowest temperature solution, which is an approximation

to the T = 0 value. The value of λ̄ is small for the black holes we have considered, and moreover, we have

checked that it is changing very slowly with T once we are in the scaling regime. Thus the approximation

is a very good one.
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Figure 11. The behaviour of $, defined in (C.1), and Υ, defined in (C.3), with temperature for

monochromatic lattices with A = 1/2 and k =
√

2/3 (orange)), k = 2
√

2/5 (blue), 1/
√

2 (red) and√
2 (green). The red dashed lines on the right hand plots indicate the low-temperature scaling

behaviour, given in (C.4) expected for black holes approaching AdS2 × R2 in the far IR. The left

plot shows that in the scaling regime, the value of $, can be parametrically larger than the scale

set by the temperature if the scaling exponent is suitably small. This situation arises for small

lattice wave-numbers k.

k/µ T/µ $ s/(8πµ2) λ̄ Υ
√

2
3 4.0× 10−5 0.964 0.0458 1.04 0.14

2
√

2
5 9.8× 10−6 0.396 0.0452 1.03 0.049
1√
2

4.4× 10−5 0.140 0.0445 1.03 0.012
√

2 4.0× 10−5 3.12× 10−5 0.0425 1.01 2.9×10−9

Table 2. The values of $ (see (C.1), entropy density s, renormalisation of length scale λ̄

(see (3.42)) and Υ (see (C.3)) for the three monochromatic lattices plotted in figure 11, for the

given temperature.

the discussion preceding equation (4.12), we took N1
z = 1200, N2

z = 2500 and N3
z = 1500

points in the corresponding intervals while for the x direction we took Nx = 45 points. We

used sixth order finite differences in the radial direction while Fourier basis differentiation

in the x direction. The resulting geometry turned out to have a maximum ξ2 ∼ 10−20,

where ξ2 is the norm of DeTurck vector.

To further illustrate our results we can consider the quantity

∆F 2 ≡ F 2 − F 2
RN (C.5)

where F 2 = FµνF
µν is the norm of the field strength for the lattice black holes and F 2

RN

is the corresponding quantity for the AdS-RN black hole at the same temperature. If the

black holes are approaching AdS2 × R2 at T = 0 then this quantity should approach zero

at the black hole horizon. It will also vanish at the AdS4 boundary, since each term does

separately. For the monochromatic lattice with A = 1/2, k/µ = 2
√

2/5 (as in figure 11)

at the lowest temperature T/µ = 9.8 × 10−6 we have plotted ∆F 2 against the spatial
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Figure 12. The behaviour of ∆F 2 (see (C.5)) for the monochromatic lattice with k/µ = 2
√

2/5 at

T/µ = 9.8× 10−6. The behaviour is consistent with it vanishing at T = 0 at the black hole horizon

at z = 1, consistent with the appearance of AdS2 × R2 in the IR.

coordinate x and the radial coordinate z in figure 12. The behaviour is consistent with

the T = 0 limit approaching zero at the black hole horizon at z = 1 followed by a sharp

rise to non-trivial behaviour in the bulk, fading to zero at the AdS4 boundary at z = 0.

The cyan lines in figure 12 are the location of the boundaries of the patches we discussed

in the previous paragraph.

We believe our numerical results at finite temperature provide strong evidence that

the scaling should continue all the way down to T = 0 and that the T = 0 solutions will

approach AdS2 × R2 in the IR. We therefore think it is unlikely that the T = 0 numerical

solutions found in [32] are in fact T = 0 solutions, since, if they were, it would imply that

there is a sudden discontinuous jump in the behaviour of the solutions. One possibility is

that they are, instead, solutions at very small temperatures and the observed non-vanishing

$ for small lattice wave-number that was observed in [32] would just correspond to scaling

with a small exponent as we have seen for our finite temperature solutions.
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