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Abstract: We study the implication of the LHC Higgs search results on the Type II

Two Higgs-Doublet Model. In particular, we explore the scenarios in which the observed

126 GeV Higgs signal is interpreted as either the light CP-even Higgs h0 or the heavy

CP-even Higgs H0. Imposing both theoretical and experimental constraints, we analyze

the surviving parameter regions in mH (mh), mA, mH± , tanβ and sin(β − α). We further

identify the regions that could accommodate a 126 GeV Higgs with cross sections consistent

with the observed Higgs signal. We find that in the h0-126 case, we are restricted to

narrow regions of sin(β − α) ≈ ±1 with tanβ up to 4, or an extended region with 0.55 <

sin(β − α) < 0.9 and 1.5 < tanβ < 4. The values of mH , mA and mH± , however,

are relatively unconstrained. In the H0-126 case, we are restricted to a narrow region of

sin(β−α) ∼ 0 with tanβ up to about 8, or an extended region of sin(β−α) between −0.8 to

−0.05, with tanβ extended to 30 or higher. mA and mH± are nearly degenerate due to ∆ρ

constraints. Imposing flavor constraints shrinks the surviving parameter space significantly

for the H0-126 case, limiting tanβ . 10, but has little effect in the h0-126 case. We also

investigate the correlation between γγ, V V and bb/ττ channels. γγ and V V channels are

most likely to be highly correlated with γγ : V V ∼ 1 for the normalized cross sections.
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1 Introduction

The discovery of a resonance at 126 GeV with properties consistent with the Standard

Model (SM) Higgs boson in both the ATLAS [1, 2] and CMS experiments [3, 4] is un-

doubtedly the most significant experimental triumph of the Large Hadron Collider (LHC)

to date. The nature of this particle, as regards its CP properties and couplings, are cur-

rently being established [4–7]. Though further data would undoubtedly point us in the

right direction, at this point it is useful to explore the implication of the current Higgs

search results on models beyond the SM. There are quite a few models that admit a scalar

particle in their spectrum and many of them can have couplings and decays consistent with

the SM Higgs boson. Thus it behooves us to constrain these models as much as possible

with the Higgs search results at hand.

One of the simplest extensions of the SM involves enlarged Higgs sectors. This can

be done by simply adding more scalar doublets, or considering Higgs sectors with more

complicated representations. In the work, we will study the Two Higgs-Doublet Models

(2HDM) that involve two scalar doublets both charged under the SM SU(2)L × U(1)Y
gauge symmetries [8–11]. The neutral components of both the Higgs fields develop vacuum
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expectation values (vev), breaking SU(2)L × U(1)Y down to U(1)em. Assuming no CP-

violation in the Higgs sector, the resulting physical spectrum for the scalars is enlarged

relative to the SM and includes light and heavy neutral CP-even Higgses (h0 and H0),

charged Higgses (H±), and a pseudoscalar A0. In addition to the masses, two additional

parameters are introduced in the theory: the ratio of the vevs of the two Higgs fields

(tanβ), and the mixing of the two neutral CP-even Higgses (sinα).

There are many types of 2HDMs, each differing in the way the two Higgs doublets cou-

ple to the fermions (for a comprehensive review, see [8]). In this work, we will be concentrat-

ing on the Type II case, in which one Higgs doublet couples to the up-type quarks, while the

other Higgs doublet couples to the down-type quarks and leptons. This model is of partic-

ular interest as it shares many of the features of the Higgs sector of the Minimal Supersym-

metric Standard Model (MSSM). This enables us to translate existing LHC MSSM results

to this case. Before proceeding, we point out that over the last few months, there have been

various studies on the 2HDM based on the recent discovery [12–25]. While most studies

concentrated on finding regions of parameter space that admit σ× Br values reported by the

LHC experiments in various channels, some also looked at correlations between the various

decay channels. The authors of ref. [12] and ref. [13] did the initial study of looking at the

tanβ − sinα plane where the observed Higgs signal is feasible, interpreting the discovered

scalar as either the light or the heavy CP-even Higgs boson. Ref. [14–19] fit the observed

Higgs signals in various 2HDM scenarios, taken into account theoretical and experimen-

tal constraints. Ref. [20] also paid careful attention to various Higgs production modes.

Ref. [21] focused on the CP-violating Type II 2HDM. Ref. [22] studied the case of nearly

degenerate Higgs bosons. In addition, ref. [23, 24] investigated the possibility that the

signal could correspond to the pseudoscalar A0 - in this context, it is worth remarking that

ref. [26] considered the pseudoscalar interpretation of the observed 126 GeV resonance and

found that while it is strongly disfavored, the possibility is not yet ruled out at the 5σ level.1

In the present paper, we extended the above analyses by combining all the known ex-

perimental constraints (the LEP, Tevatron and the LHC Higgs search bounds, and precision

observables) with the theoretical ones (perturbativity, unitarity, and vacuum stability), as

well as flavor constraints. A unique aspect of the present work is that our analysis looks

at combinations of all parameters of the theory to identify regions that survive all the

theoretical and experimental constraints. We further focus on regions that could accom-

modate the observed Higgs signal as either the light or the heavy CP-even Higgs, and are

thus interesting from a collider study perspective. This enables us to draw conclusions

about correlations between different masses and mixing angles to help identify aspects of

the model that warrant future study.

We start by briefly introducing the structure and parameters of the Type II 2HDM

in section 2. In section 3, we discuss the theoretical constraints and experimental bounds,

and outline our analysis methodology. In section 4, we present our results for the light CP-

even Higgs being the observed 126 GeV SM-like Higgs boson, looking at surviving regions

1The latest experimental results indicate that the pseudoscalar interpretation of the 126GeV excess is

disfavored [4–6].
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in various combinations of free parameters. In section 5, we do the same for the heavy

CP-even Higgs as the observed 126 GeV SM-like Higgs boson. In section 6, we explore the

implications for the Vector Boson Fusion (VBF) or V H associated production, and decays

of Higgs into bb and ττ channels. We conclude in section 7.

2 Type II 2HDM

In this section, we briefly describe the Type II 2HDM, focusing on the particle content,

Higgs couplings, and model parameters. For more details about the model, see ref. [8] for

a recent review of the theory and phenomenology of 2HDM.

2.1 Potential, masses and mixing angles

Labeling the two SU(2)L doublet scalar fields Φ1 and Φ2, the most general potential for

the Higgs sector can be written down in the following form:

V (Φ1,Φ2) = m2
11Φ†1Φ1 +m2

22Φ†2Φ2 −m2
12(Φ†1Φ2 + h.c.)

+
1

2
λ1(Φ†1Φ1)2 +

1

2
λ2(Φ†2Φ2)2 + λ3(Φ†1Φ1)(Φ†2Φ2) + λ4(Φ†1Φ2)(Φ†2Φ1)

+
1

2

{
λ5(Φ†1Φ2)2 + h.c.

}
+
{[

λ6(Φ†1Φ1) + λ7(Φ†2Φ2)
]

(Φ†1Φ2) + h.c.
}
. (2.1)

We impose a discrete Z2 symmetry on the Lagrangian, the effect of which is to render

m12, λ6, λ7 = 0.2 Note that one consequence of requiring m12 = 0 is that there is no so

called decoupling limit in which only one SM-like Higgs appears at low energy while all

other Higgses are heavy and decoupled from the low energy spectrum. After electroweak

symmetry breaking (EWSB): 〈φ0
1〉 = v1/

√
2, 〈φ0

2〉 = v2/
√

2 with
√
v2

1 + v2
2 = 246 GeV, we

are left with six free parameters, which can be chosen as the four Higgs masses (mh, mH ,

mA, mH±), a mixing angle sinα between the two CP-even Higgses, and the ratio of the

two vacuum expectation values, tanβ = v2/v1.

Writing the two Higgs fields as:

Φi =

(
φ+
i

(vi + φ0
i + iGi)/

√
2

)
, (2.2)

the mass eigenstates of the physical scalars can be written as:(
H0

h0

)
=

(
cosα sinα

− sinα cosα

)(
φ0

1

φ0
2

)
,

A0

H±

= −G1 sinβ +G2 cosβ

= −φ±1 sinβ + φ±2 cosβ
. (2.3)

For our purposes, it is useful to express the quartic couplings λ1...5 in terms of the physical

Higgs masses, tanβ and the mixing angle α:

λ1 =
m2
H cos2 α+m2

h sin2 α

v2 cos2 β
, λ2 =

m2
H sin2 α+m2

h cos2 α

v2 cos2 β
(2.4)

λ3 =
sin 2α(m2

H−m2
h)+2 sin 2β m2

H±

v2 sin 2β
, λ4 =

m2
A − 2m2

H±

v2
, λ5 = −

m2
A

v2
. (2.5)

2Ref. [15], which also addresses similar issues as in this paper, allowed for a soft breaking of the Z2

symmetry with m2
12 6= 0. In this paper, we don’t consider such soft-breaking terms.
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ξV Vh sin(β − α) ξV VH cos(β − α) ξV VA 0

ξuh cosα/ sinβ ξuH sinα/ sinβ ξuA cotβ

ξd,lh − sinα/ cosβ ξd,lH cosα/ cosβ ξd,lA tanβ

Table 1. The multiplicative factor ξ by which the couplings of the CP-even Higgses and the CP-

odd Higgs to the gauge bosons and fermions scale with respect to the SM value. The superscripts

u, d, l and V V refer to the up-type quarks, down-type quarks, leptons, and WW/ZZ respectively.

Imposing the perturbativity and unitarity bounds, as explained below in section 3.1, typ-

ically leads to an upper bound on the masses of H0, A0 and H±. The couplings of the

CP-even Higgses and CP-odd Higgs to the SM gauge bosons and fermions are scaled by a

factor ξ relative to the SM value — these are presented in table 1. In order to translate

the ATLAS and CMS limits, we need to pay particular attention to the couplings of the

light (heavy) CP-even Higgs to the SM gauge bosons (controlling the partial decay width

to WW , ZZ as well as γγ channels) and to the top quark (controlling the gluon fusion

production cross section), as well as to the bottom quark (controlling the bb partial decay

width, which enters the total decay width as well). From table 1, we see that the relevant

couplings are proportional to sin(β − α) (cos(β − α)), 1/ sinβ and 1/ cosβ. Thus, even

though it is customary to look at the combination of parameters (sinα, tanβ), we present

our results in section 4 and 5 using sin(β − α) and tanβ as the independent parameters

(in addition to the masses of the physical Higgses) to manifest the effects on the Higgs

couplings to gauge bosons. Using sin(β − α) instead of sinα has the additional advantage

of being basis-independent, as explained in ref. [27–29].

3 Constraints and analyses

3.1 Theoretical and experimental constraints

To implement the various experimental and theoretical constraints, we have employed two

programs: the 2HDM Calculator (2HDMC) [30] to calculate the Higgs couplings, compute

all the decay branching fractions of the Higgses, and implement all the theoretical con-

straints; and HiggsBounds 3.8 [31] to consistently put in all the experimental constraints

on the model. Here, we briefly describe the list of theoretical and experimental bounds

that are of interest.

Theoretical constraints:

• Vacuum Stability: this implies that the potential should be bounded from below,

which is translated to various conditions for the quartic couplings in the Higgs po-

tential [36–38]: λ1 > 0, λ2 > 0, λ3 > −
√
λ1λ2, and λ3 + λ4 − |λ5| > −

√
λ1λ2. With

eqs. (2.4) and (2.5), the above requirements serve to constrain the Higgs masses and

angles.

• Perturbativity: 2HDMC imposes constraints on the physical Higgs quartic couplings,

specifically demanding that λhihjhkhl < 4π to stay inside the perturbative regime.
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Note that even though these are different from the λs in the Higgs potential in

eq. (2.1), we can still use eqs. (2.4) and (2.5) as rough guides to understand the

perturbative bounds, as we will do in later sections to explain the features of our re-

sults. The top yukawa coupling yt could also become nonperturbative for very small

tanβ. We require the perturbativity of yt at scales below 1 TeV, which results in

tanβ & 0.35 [39].

• Unitarity: it is well known that in the SM, the scattering cross section for the longi-

tudinal W modes is unitary only if the Higgs exchange diagrams are included. Since

the couplings of the Higgs are modified in the 2HDM, we need to ensure unitarity

by demanding that the S matrix of all scattering cross sections of Higgs−Higgs and

Higgs−VL (where VL is either WL or ZL) have eigenvalues bounded by 16π [40].

Experimental constraints: the LHC experiments have searched for the SM Higgs in γγ,

ZZ, WW , ττ and bb channels. Both the ATLAS and CMS collaboration have reported

the observation of a new resonance at a mass of around 126 GeV with more than 5σ

significance [1–7, 41–52]. The production cross sections and partial decay widths of the

2HDM Higgses to the various SM final states differ from that of the SM Higgs, which can

be obtained using the coupling scaling factors ξ from table 1. Thus, we can identify the

regions in parameter space where the signal cross sections are compatible with the Higgs

signal observed at the ATLAS and CMS collaborations. We can also translate the exclusion

bounds on the Higgs search to the ones in the 2HDM. We used HiggsBounds 3.8 to impose

the exclusion limits from Higgs searches at the LEP and the Tevatron [53–57]. We also

incorporated the latest Higgs search results at the LHC [2, 4, 41–52, 58–64].

Z-pole precision observables, in particular, the oblique parameters S, T (or equiv-

alently, ∆ρ, which is the deviation of ρ ≡ m2
W

m2
Z cos2 θW

from the SM value), and U [65]

constrain any new physics model that couples to the W and Z. In particular, T imposes

a strong constraint on the amount of custodial symmetry breaking in the new physics sec-

tor. In the case of 2HDM, the mass difference between the various Higgses are therefore

highly constrained [66], which leads to interesting correlations between some of the masses,

as will be demonstrated in section 4 and section 5. In our analysis, we require the con-

tribution from extra Higgses to S and T to fall within the 90% C.L. S − T contour, for

a SM Higgs reference mass of 126 GeV [67]. In addition, the charged Higgs contributes

to Zbb coupling [68], which has been measured precisely at the LEP via the observable

Rb = Γ(Z → bb̄)/Γ(Z → hadrons) [69]. Imposing bounds from Rb rules out small tanβ

regions for a light charged Higgs.

We also show the effect on the available parameter spaces once bounds from flavor

sector are imposed in addition to the ones described. To do this, we employed the program

SuperIso 3.3 [70], which incorporates, among other things, bounds from B → Xsγ, ∆MBd ,

B− → τ−ν̄τ , D±s → τ±(µ±)ν, B → τ+τ− and Bd,s → µ+µ− [71–77]. A summary of flavor

bounds can be found in ref. [78]. We have used the latest bounds either from PDG [71]3

or from individual experiment. To show the impact of the flavor constraints on the 2HDM

parameter space, in figure 1, we present the regions excluded by various flavor constraints in

3And 2013 partial update for the 2014 edition.
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µµ → sB
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Figure 1. Regions of parameter space excluded by various flavor constraints. The left plot shows

the mH± versus tanβ plane for fixed mh = 125 GeV, mH = 400 GeV, mA = 200 GeV and sin(β −
α) = −0.1. The right plot shows the mH± versus mh plane for mA = mH± , mH = 125 GeV,

tanβ = 5 and sin(β − α) = −0.01.

the mH± versus tanβ plane (left panel) and the mH± versus mh plane (right panel). While

B → Xsγ excludes mH± up to about 300 GeV for all tanβ, B− → τ−ν̄τ and ∆MBd provide

the strongest constraints at large and small tanβ, respectively. The strongest bound on the

neutral Higgs mass comes from Bs → µ+µ−, which excludes mh at about 50 GeV or lower.

In addition, we included the latest results from BaBar on B̄ → Dτν̄τ and B̄ →
D∗τ ν̄τ [79], which observed excesses over the SM prediction at about 2 σ level. We treat

the observed excesses as upper bounds and take the 95% C.L. range as R(D) < 0.58

and R(D∗) < 0.39. Note that as pointed out in ref. [79], the excesses in both R(D)

and R(D∗) can not be simultaneously explained by the Type II 2HDM [80, 81]. Other

new physics contributions have to enter if the excesses in both R(D) and R(D∗) stay in

the future. Flavor constraints on the Higgs sector are, however, typically more model-

dependent. Therefore, our focus in this work is mainly on the implication of the Higgs

search results on the Type II 2HDM, and we only impose the flavor bounds at the last step

to indicate how the surviving regions further shrink.

3.2 Analysis method

In our analysis, we considered two scenarios:

• h0-126 case where mh = 126 GeV with mH > 126 GeV,

• H0-126 case where mH = 126 GeV with mh < 126 GeV

– 6 –
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and scanned over the entire remaining parameter space varying mH (or mh), mA,mH± ,

tanβ and sin(β − α):

20 GeV ≤ mA,mH± ≤ 900 GeV in steps of 20 GeV, (3.1)

−1 ≤ sin(β − α) ≤ 1 in steps of 0.05, (3.2)

h0 − 126 case : 0.25 ≤ tanβ ≤ 5 in steps of 0.25, (3.3)

126 GeV ≤ mH ≤ 900 GeV in steps of 20 GeV, (3.4)

H0 − 126 case : 1 ≤ tanβ ≤ 30 in steps of 1, (3.5)

6 GeV ≤ mh < 126 GeV in steps of 5 GeV. (3.6)

In certain regions in which very few points are left after all the constraints are imposed,

we generated more points with smaller steps. We used the 2HDMC 1.2beta [30] which

tested if each parameter point fulfills the theoretical and experimental constraints imple-

mented in HiggsBounds 3.8 [31]. New LHC results that are not included in HiggsBounds

3.8 were implemented in addition. In particular, the CMS results on MSSM Higgs search

in ττ channel [61–64] were imposed using the cross section limits reverse-engineered from

bounds in mA − tanβ plane for mmax
h scenario, as provided in HiggsBounds 4.0 [31]. We

also required each parameter point to satisfy the precision constraints, in particular, S and

T , as well as Rb.

We further required either h0 or H0 to satisfy the dominant gluon fusion cross section

requirement for γγ, WW and ZZ channels to accommodate the observed Higgs signal at

95% C.L. [4, 7]:

0.7 <
σ(gg → h0/H0 → γγ)

σSM
< 1.5, 0.6 <

σ(gg → h0/H0 →WW/ZZ)

σSM
< 1.3, (3.7)

in which we have taken the tighter limits from the ATLAS and CMS results, as well as

the tighter results for the WW and ZZ channel. In the last step, we imposed the flavor

bounds on all points that satisfy eq. (3.7) using the SuperIso 3.3 program to study the

consequence of the flavor constraints.

4 Light Higgs at 126GeV

4.1 Cross sections and correlations

Before presenting the results of the numerical scanning of parameter regions with all

the theoretical and experimental constraints imposed, let us first study the tanβ and

sin(β − α) dependence of the cross sections for the major search channels at the LHC:

gg → h0 → γγ,WW/ZZ. Both production cross sections and decay branching fractions

are modified relative to the SM values:

σ × Br(gg → h0 → XX)

SM
=
σ(gg → h0)

σSM
× Br(h0 → XX)

Br(hSM → XX)
, (4.1)

for XX = γγ, V V . Note that since the WW and ZZ couplings are modified the same way

in the Type II 2HDM, we use V V to denote both WW and ZZ channels.

– 7 –
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β
ta

n 
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1

2

)0 h→ (gg 
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σ

)α - βsin(
-1 0 1

β
ta

n 

0

2

4

0.5 1

2

)γγ VV,→ 0 (h
SMBr

Br

Figure 2. The normalized gg → h0 production cross section contours (left panel) and h0 → V V

(solid lines of the right panel) and h0 → γγ (dashed lines of the right panel) branching fractions in

the h0-126 case. The contour lines are σ/σSM, Br/BrSM = 0.5 (green), 1 (red), and 2 (blue).

The ratio of the gluon fusion cross section normalized to the SM value can be written as:

σ(gg → h0)

σSM
=

cos2 α

sin2 β
+

sin2 α

cos2 β

|A1/2(τb)|2

|A1/2(τt)|2
(4.2)

=

[
cos(β − α)

tanβ
+ sin(β − α)

]2

+ [cos(β − α)tanβ − sin(β − α)]2
|A1/2(τb)|2

|A1/2(τt)|2
. (4.3)

The expression for the fermion loop functions A1/2(τt,b) can be found in ref. [66]. The

first term in eq. (4.2) is the top-loop contribution, and the second term is the bottom-loop

contribution. In the SM, the top-loop contributes dominantly to the gluon fusion diagram,

while the bottom-loop contribution is negligibly small. The situation alters in type II

2HDM for large tanβ, when the bottom-loop contribution can be substantial due to the

enhanced bottom Yukawa [12]. We also rewrite it in sin(β − α), cos(β − α) and tanβ in

eq. (4.3) to make their dependence explicit.

In the left panel of figure 2, we show contours of σ/σSM for the gluon fusion: σ/σSM =

0.5 (green), 1 (red), and 2 (blue). While contours of σ/σSM ≥ 1 accumulate in sin(β−α) ∼
−1 region, there is a wide spread of the contours for sin(β − α) > 0. For most regions of

sin(β − α) < 0, gg → h0 is suppressed compared to the SM value due to cancellations be-

tween the cos(β−α) and sin(β−α) terms in the top Yukawa coupling, as shown in eq. (4.3).

Note that we have shown the plots only for tanβ ≤ 4 since the model is perturbatively

valid only for tanβ . 4, as will be demonstrated below in the results of the full analysis.
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 VV)→ 0 h→ Br/SM (gg × σ

Figure 3. σ × Br/SM for the processes gg → h0 → γγ (left), and gg → h0 → WW/ZZ (right) in

the h0-126 case. The contour lines are σ×Br/SM = 0.5 (green), 1 (red), and 2 (blue). The shaded

gray are regions where cross sections of γγ and WW/ZZ channels satisfy eq. (3.7).

The h0 decay branching fractions h0 → V V, γγ can be written approximately as

Br(h0 → XX)

Br(hSM → XX)
=

ΓXX
Γtotal

×
ΓSM
total

ΓSM
XX

≈


sin2(β−α)

sin2(β−α)Br(hSM→V V )+ sin2 α
cos2 β

Br(hSM→bb)+...
Γ(h0→γγ)/Γ(hSM→γγ)

sin2(β−α)Br(hSM→V V )+ sin2 α
cos2 β

Br(hSM→bb)+...

, (4.4)

where we have explicitly listed the dominant bb and WW/ZZ channels and used “+ . . .”

to indicate other sub-dominant SM Higgs decay channels.

In the right panel of figure 2, we show contours of Br/BrSM for V V (solid lines) and

γγ (dashed lines) channels. Both V V and loop induced (dominantly W -loop) γγ channels

exhibit similar parameter dependence on tanβ and sin(β−α) since both channels are dom-

inantly controlled by the same h0V V coupling. While contours of Br/BrSM & 1 appear

near sin(β − α) ∼ ±1 for unsuppressed h0V V couplings, h0 → γγ shows some spread for

negative sin(β−α) and small tanβ due to the correction to top Yukawa in the loop-indued

h0γγ coupling.

Combining both the production and the decay branching fractions, we present the

contours of σ×Br/SM in figure 3 for γγ (left panel) and V V (right panel) for σ×Br/SM =

0.5 (green), 1 (red), and 2 (blue). Once we demand that the cross sections for these

processes be consistent with the experimental observation of a 126 GeV Higgs, as given in

eq. (3.7), the allowed regions of parameter space split into four distinct regions, as indicated

by the shaded gray areas. There are two narrow regions one each at sin(β − α) = ±1 (the

gray regions at sin(β−α) = ±1 overlap with the picture frame boundary and are therefore

hard to see), one extended region of 0.55 < sin(β−α) < 0.9, and one low tanβ region around

sin(β − α) ∼ 0.3 for tanβ ∼ 0.5. Constraints from Rb disfavor this low tanβ region and

– 9 –



J
H
E
P
0
1
(
2
0
1
4
)
1
6
1

1

10

210

310

410

510

 VV)→ 0 h→ Br/SM (gg × σ
0 2

)γγ 
→ 0

 h
→

 B
r/

SM
 (

gg
 

× σ

0

2

210

310

410

510

 VV)→ 0 h→ Br/SM (gg × σ
0 2

)γγ 
→ 0

 h
→

 B
r/

SM
 (

gg
 

× σ

0

2

Figure 4. σ×Br/SM for gg → h0 → γγ versus gg → h0 → V V for negative sin(β−α) (left panel),

and positive sin(β − α) (right panel) in the h0-126 case. Color map indicates the density of points

with red being the most dense region and blue being the least dense region. Also indicated by the

small rectangular box is the normalized signal cross section range of γγ between 0.7 and 1.5, and

V V channels between 0.6 and 1.3 [4, 7].

therefore we will not discuss it further. In what follows, we will display separate plots for

positive and negative sin(β−α) to show the different features that appear in these two cases.

In figure 4, we show the correlations for σ × Br/SM for the γγ channel against V V ,

for negative (positive) values of sin(β−α) in the left (right) panel as a density plot. Color

coding is such that the points in red are the most dense (i.e., most likely) and points in

blue are the least dense (i.e., less likely). Also indicated by the small rectangular box is the

normalized signal cross section range of γγ between 0.7 and 1.5, and V V channels between

0.6 and 1.3, as given in eq. (3.7) [4, 7]. Note that the corresponding signal windows in tanβ

versus sin(β − α) plane are also sketched in figure 3 as the shaded gray regions. For nega-

tive sin(β − α), there are two branches: the one along the diagonal line with γγ : V V ∼ 1

and σγγ . 1, which can be mapped on to the sin(β − α) = −1 branch in figure 3. The

other branch in the upper-half plane where γγ : V V & 2 and σγγ extends to 2 or larger is

strongly disfavored given the current observed Higgs signal region.

For positive values of sin(β − α), the diagonal region is the most probable, with

γγ : V V . 1 and σγγ possibly extending over a relatively large range around 1. Branches

with σγγ or σV V ∼ 0 along the axes are strongly disfavored given the current observation

of the Higgs signal.

Thus we see that for all values of sin(β − α), the V V and γγ channels are positively

correlated.4 Most of the points falls into γγ : V V ∼ 1 with the cross section of both

around the SM strength. This means that an excess in the γγ channel should most likely

4This agrees with the results of [15].
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Figure 5. Parameter regions in the h0-126 case for tanβ versus sin(β−α) (left panel) and sin(β−α)

versus mH (right panel). We show regions excluded by stability, unitarity and perturbativity (dark

blue), S and T (light blue), LEP results (green), Tevatron and LHC results (yellow), and Rb (or-

ange). Regions that survive all the theoretical and experimental constraints are shown in red.

Also shown in dark red are regions consistent with the light CP-even Higgs interpreted as the ob-

served 126 GeV scalar resonance, satisfying the cross section requirement of eq. (3.7) for gg → h0 →
γγ,WW/ZZ. Regions enclosed by the black curves are the ones that survive the flavor constraints.

be accompanied by an excess in the ZZ and WW channels, and this fact serves as an

important piece of discrimination for this model as more data is accumulated.

The above analysis illustrates the cross section and decay branching fraction behavior

of the light CP-even Higgs when it is interpreted as the observed 126 GeV SM-like Higgs,

using the approximate formulae in eqs. (4.2)–(4.4). Note that we have only included the

usual SM Higgs decay channels in Γtotal in eq. (4.4). While it is a valid approximation in

most regions of the parameter space, it might break down when light states in the spectrum

open up new decay modes or introduce large loop contributions to either gg → h0 or

h0 → γγ. In our full analysis presented below with scanning over the parameter spaces, we

used the program 2HDMC, which takes into account all the decay channels of the Higgs,

as well as other loop corrections to the gluon fusion production or Higgs decays to γγ.

4.2 Parameter spaces

Fixing mh = 126 GeV still leaves us with five parameters: three masses, mH ,mA,mH± , and

two angles tanβ and sin(β−α). Varying those parameters in the ranges given in eqs. (3.1)–

(3.4), we now study the remaining parameter regions satisfying all the theoretical and ex-

perimental constraints as well as regions that are consistent with the observed Higgs signal.

The left panel of figure 5 shows the viable regions in tanβ versus sin(β−α) plane when

various theoretical constraints and experimental bounds are imposed sequentially. The

red regions are those that satisfy all the constraints. Also shown in dark red are regions
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Figure 6. Parameter regions in the h0-126 case for tanβ versus mH with sin(β − α) < 0 (left

panel) and sin(β − α) > 0 (right panel). Color coding is the same as figure 5.

consistent with the light CP-even Higgs interpreted as the observed 126 GeV scalar particle,

satisfying the cross section requirement of eq. (3.7) for gg → h0 → γγ,WW/ZZ. The signal

regions (two narrow regions at sin(β−α) = ±1, and one extended region with 0.55 < sin(β−
α) < 0.9) agree well with the shaded region in figure 3. The small region around sin(β−α) ∼
0.3, however, disappeared, due to the Rb constraint [68]. Regions with tanβ & 4 are

excluded by perturbative bounds since one of λ1,2 becomes non-perturbative for larger value

of tanβ (cosβ → 0), as shown in eq. (2.4). Consequently, the bottom loop contribution to

the gluon fusion production cross section [8] is not a major factor for the h0-126 case.

To further explore the flavor constraints, we show in figure 5 the regions enclosed by

the black curves being those that survive the flavor bounds. As can clearly be seen, flavor

bounds do not significantly impact the surviving signal regions.

The right panel of figure 5 shows the allowed region in the sin(β−α)−mH plane. Impos-

ing all the theoretical constraints, in particular, the perturbativity requirement, translates

into an upper bound on mH of around 750 GeV. Higgs search bounds from the LHC re-

moves a large region in negative sin(β−α), mostly from the stringent bounds from WW and

ZZ channels for the heavy Higgs. The positive sin(β − α) region is less constrained since

gg → H0 → WW/ZZ are much more suppressed. Rb, in addition, excludes part of the

positive sin(β−α) region with relatively large mH . Requiring h0 to fit the observed Higgs

signal further narrows down the favored regions, as shown in dark red. For sin(β−α) = ±1,

mH could be as large as 650 GeV. For 0.55 . sin(β − α) . 0.9, mH is constrained to be

less than 300 GeV. The correlation between mH and sin(β − α) indicates that if a heavy

CP-even Higgs is discovered to be between 300 and 650 GeV, sin(β − α) is constrained to

be very close to ±1, indicating the light Higgs has SM-like couplings to the gauge sector.
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Figure 7. Parameter regions in the h0-126 case for sin(β − α) versus mH± (left panel) and mA

(right panel). Color coding is the same as figure 5.

In figure 6, we present the parameter regions for tanβ versus mH with sin(β − α) < 0

(left panel) and sin(β −α) > 0 (right panel). Regions with large mH are typically realized

for small tanβ roughly between 1 and 2. There are also noticeable difference for positive or

negative sin(β − α) for regions that survive all the experimental constraints (red regions).

Negative sin(β − α) allows larger values of tanβ for a given mass of mH . Small values

of tanβ is disfavored by the perturbativity of top Yukawa coupling [39], Rb [68], and the

flavor constraints [78].

Figure 7 shows the parameter regions in sin(β − α) versus mH± (left panel) and mA

(right panel). For negative sin(β−α) between −0.5 to −0.1, only regions with mA < 60 GeV

survive the LHC Higgs search bounds. This is because H0 → A0A0 opens up in this region,

which leads to the suppression of H0 → WW/ZZ allowing it to escape the experimental

constraints. The corresponding surviving region in 120 GeV < mH± < 200 GeV is intro-

duced by the correlation between mA and mH± due to ∆ρ constraints. Imposing the cross

section requirement for h0 to satisfy the Higgs signal region results in three bands in both

mA and mH± , with masses extending all the way to about 800 GeV. Imposing the flavor

constraints leaves regions with mH± & 300 GeV viable for sin(β − α) = ±1 or sin(β − α)

between 0.55 and 0.9, while even smaller values for mA remain viable at sin(β − α) = ±1.

The allowed regions in the tanβ −mH± and tanβ −mA planes share similar features

before flavor constraints are taken into account, which are shown in figure 8. The top

two panels show the allowed regions in the tanβ −mH± plane for negative and positive

sin(β − α), while the lower two panels are for tanβ −mA. LEP places a lower bound on

the charged Higgs mass around 80 GeV [55, 56]. In the signal region for sin(β − α) < 0,

both mH± and mA are less than about 600 GeV, while their masses could be extended to

800 GeV for sin(β−α) > 0 and tanβ > 2. The difference between the mA range for different
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Figure 8. Parameter regions in the h0-126 case for tanβ versus mH± (top panels) and mA (lower

panels) with sin(β − α) < 0 (left panels) and sin(β − α) > 0 (right panels). Color coding is the

same as figure 5.

signs of sin(β−α) can be explained as follows: regions with mA > 600 GeV can only occur

for | sin(β − α)| between 0.4 and 0.8, as shown in the right panel of figure 7. The Higgs

signal region of tanβ versus sin(β−α) (left panel of figure 5) shows that to simultaneously

satisfy both the tanβ range and sin(β − α) range, only positive sin(β − α) case survives.

Flavor bounds, as expected, have a marked effect here ruling out any value of mH± .
300 GeV for all values of tanβ, mainly due to the b→ sγ constraint. For the CP-odd Higgs,

only a corner of tanβ > 2 and mA < 300 GeV is excluded, due to the combination of flavor

and ∆ρ constraints. As shown in figure 6, only relatively light mH . 300 GeV is allowed for

tanβ > 2. The flavor constraints of mH± & 300 GeV is then translated to mA & 300 GeV
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panel) and sin(β − α) > 0 (right panel). Color coding is the same as figure 5.

since the difference between mA and mH± is constrained by ∆ρ considerations when both

mh and mH are relatively small. For tanβ < 2, mH could be relatively high, which cancels

the large contribution to ∆ρ from large mH± while allowing mA to be light.

In figure 9, we present the parameter regions in the mA−mH± plane for negative and

positive values of sin(β−α). mA and mH± are uncorrelated for most parts of the parameter

space. For sin(β −α) > 0 when mA,H± could reach values larger than 600 GeV, tanβ is at

least 2 or larger (see figure 8). mH is restricted to less than 300 GeV in this region, which

results in a strong correlation between mA and mH± due to the ∆ρ constraints.

Figure 10 shows the parameter space in the mA−mH plane for negative (left panel) and

positive (right panel) sin(β−α). These two masses are largely uncorrelated for either sign

of sin(β−α). Note that for sin(β−α) > 0, large mA between 600 − 800 GeV is only possible

for small values of mH . 250 GeV. This is because the corresponding tanβ is larger than 2,

which bounds mH from above. The lower-left corners excluded by flavor constraints corre-

spond to the upper-left corners inmA−tanβ plots in figure 8, since at least one ofmA ormH

would need to be relatively heavy to cancel the contribution to ∆ρ from mH± > 300 GeV.

We conclude this section with the following comments:

• If h0 is the 126 GeV resonance, then the γγ channel is closely correlated with

WW/ZZ. Specifically, a moderate excess in γγ should be accompanied by a cor-

responding excess in WW/ZZ.

• The combination of all theoretical constraints requires tanβ . 4. Therefore, the

bottom-loop enhancement to the gluon fusion [8] is never a major factor. Regions of

sin(β−α) and tanβ are highly restricted once we require the light CP-even Higgs to

be the observed 126 GeV scalar particle: tanβ between 0.5 to 4 for sin(β −α) = ±1,

tanβ between 1.5 to 4 for 0.55 < sin(β − α) < 0.9. The masses of the other Higgses,
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Figure 10. Parameter regions in the h0-126 case for mA versus mH with sin(β−α) < 0 (left panel)

and sin(β − α) > 0 (right panel). Color coding is the same as figure 5.

mH , mA, and mH± , however, are largely unrestricted and uncorrelated, except for

the region where sin(β − α) > 0 and mA,H± & 600 GeV, which exhibits a strong

correlation between these two masses.

• The discovery of any one of the extra scalars can largely narrow down the parameter

space, in particular, if the masses of those particles are relatively high.

• Flavor bounds do not change the allowed parameter space much except for the

charged Higgs mass, which is constrained to lie above 300 GeV.

5 Heavy Higgs at 126GeV

5.1 Cross sections and correlations

It is possible that the 126 GeV resonance discovered at the LHC corresponds to the heavier

of the two CP-even Higgses, H0. There are a few noticeable changes for the heavy H0 being

the SM-like Higgs boson. First of all, since the coupling of the heavy Higgs to a gauge

boson pair is scaled by a factor of cos(β−α) as opposed to sin(β−α), demanding SM-like

cross sections for H0 forces us to consider sin(β − α) ∼ 0, as opposed to sin(β − α) ∼ ±1

in the h0-126 case. Secondly, as will be demonstrated below, the bottom contribution to

the gluon fusion production could be significantly enhanced since the range of tanβ could

be much larger compared to the h0-126 case.

Similar to eqs. (4.2) and (4.3) in section 4, the ratios of the gluon fusion cross sections

normalized to the SM can be written approximately as:

σ(gg → H0)

σSM
=

sin2 α

sin2 β
+

cos2 α

cos2 β

|A1/2(τb)|2

|A1/2(τt)|2
(5.1)

– 16 –



J
H
E
P
0
1
(
2
0
1
4
)
1
6
1

)α - βsin(
-1 0 1

β
ta

n 

0

20

0.5

1

2

)0 H→ (gg 
SMσ
σ

)α - βsin(
-1 0 1

β
ta

n 

0

20

0.5

1
2

)γγ VV,→ 0 (H
SMBr

Br

Figure 11. The normalized gg → H0 production cross section contours (left panel) and H0 → V V

(solid lines of the right panel) and H0 → γγ (dashed lines of the right panel) branching fractions

in the H0-126 case. The contour lines are σ/σSM, Br/BrSM = 0.5 (green), 1 (red), and 2 (blue).

=

[
sin(β − α)

tanβ
− cos(β − α)

]2

+ [sin(β − α)tanβ + cos(β − α)]2
|A1/2(τb)|2

|A1/2(τt)|2
. (5.2)

Contours of σ/σSM(gg → H0) = 0.5 (green), 1 (red), and 2 (blue) are shown in the left panel

of figure 11. H0 couples exactly like the SM Higgs for sin(β−α) = 0, while deviations from

the SM values occur for sin(β − α) away from zero. For sin(β − α) < 0, σ/σSM(gg → H0)

is almost always larger than 1 (except for a small region around sin(β − α) ∼ −1 and

tanβ . 10) while a suppression of the gluon fusion production is possible for positive

values of sin(β − α). This is due to cancellations between the sin(β − α) and cos(β − α)

terms in the top Yukawa coupling, in particular, for low tanβ. The bottom loop contributes

significantly when tanβ is large, which enhances the gluon fusion production cross section.

Br(H0 → V V, γγ)/BrSM can also be expressed similar to eq. (4.4):

BR(H0 → XX)

BR(hSM → XX)
=

ΓXX
Γtotal

×
ΓSM
total

ΓSM
XX

=


cos2(β−α)

cos2(β−α)Br(hSM→V V )+ cos2 α
cos2 β

Br(hSM→bb)+...
Γ(H0→γγ)/Γ(hSM→γγ)

cos2(β−α)Br(hSM→V V )+ cos2 α
cos2 β

Br(hSM→bb)+...

, (5.3)

with the contour lines given in the right panel of figure 11. A relative enhancement of

the branching fractions over the SM values are observed in extended region of negative

sin(β − α), while it is mostly suppressed for positive sin(β − α).

Combining the production cross sections and the decay branching fractions, contours

of gg → H0 → XX are given in figure 12 for γγ (left panel) and WW/ZZ channels (right

panel). Requiring the cross section to be consistent with the observed Higgs signal: 0.7 −
1.5 for the γγ channel and 0.6 − 1.3 for the WW/ZZ channel, results in two distinct regions:

a region close to sin(β − α) ∼ 0, and an extended region of −0.8 . sin(β − α) . −0.05.
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Figure 13. σ × Br/SM for gg → H0 → γγ versus gg → H0 → V V in the H0-126 case. Color

coding is the same as in figure 4. Also indicated by the small rectangular box is the normalized

signal cross section range of γγ between 0.7 and 1.5, and V V channels between 0.6 and 1.3 [4, 7].

Figure 13 shows the correlation between the γγ and V V channels. Most of the points

lie along the diagonal: γγ : V V ∼ 1. A second branch of γγ : WW ∼ 2 also appears,

which corresponds to the very low tanβ < 1 region in figure 12. This region is strongly

constrained by Rb and flavor bounds, and is therefore not considered further in our study.
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Figure 14. Parameter regions in the H0-126 case for tanβ versus sin(β − α). Color coding is the

same as figure 5 except that the dark red regions are the ones consistent with the heavy CP-even

Higgs interpreted as the observed Higgs signal.

5.2 Parameter spaces

We now present the results for H0-126 case with the full parameter scan, including all

the theoretical and experimental constraints. Figure 14 presents the parameter regions in

tanβ versus sin(β − α). The color coding is the same as in figure 5, except that the signal

regions in dark red are those with the heavy CP-even Higgs H0 interpreted as the observed

126 GeV scalar.

Requiring the heavy CP-even Higgs to satisfy the cross section ranges of the observed

Higgs signal results in two signal regions: one region near sin(β − α) ∼ 0 and an extended

region of −0.8 . sin(β − α) . −0.05, consistent with figure 12. Note however that the

region around sin(β−α) ∼ 0 is actually reduced to tanβ . 8. This is because larger values

of tanβ leads to smaller mh such that mh < mH/2 (see right panel of figure 15 below). The

opening of H0 → h0h0 channel reduces the the branching fractions of H0 → WW/ZZ, γγ

forcing it outside the signal cross section region. Regions surviving the flavor bounds are

the ones enclosed by black curves. Larger values of tanβ & 10 are disfavored.

Figure 15 shows the parameter region in sin(β − α) versus mh (left panel) and tanβ

versus mh (right panel). Within the narrow region around sin(β −α) ∼ 0, mh can take all

values up to 126 GeV. For −0.8 . sin(β − α) . −0.35, when the H0WW,H0ZZ couplings

could significantly deviate from the SM value while h0WW , h0ZZ couplings are sizable,

the light CP-even Higgs mass is constrained to be larger than about 80 GeV from LEP

Higgs searches [53, 54]. This is the interesting region where the two Higgses are close to

being degenerate, with both h0 and H0 showing significant deviation of their couplings to

gauge bosons from the SM value.
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Figure 15. Parameter regions in the H0-126 case for sin(β − α) versus mh (left panel) and tanβ

versus mh (right panel). Color coding is the same as figure 14.

The right panel of figure 15 shows the parameter region of tanβ versus mh. Larger

values of tanβ is only allowed for small values of mh. The red region where mh < 60 GeV

and tanβ . 5 can not satisfy the Higgs signal cross section requirement due to the opening

of H0 → h0h0 mode, which corresponds to the mh < 60 GeV, sin(β − α) ∼ 0 red region

in the sin(β − α) versus mh plot (left panel of figure 15). Imposing the flavor bounds

further rules out regions with light mh below about 50 GeV, mainly due to the process

Bs → µ+µ−, as shown in the right panel of figure 1. Large values of tanβ & 10 are

excluded correspondingly.

Figure 16 shows sin(β − α) versus mA,H± (left panels) and tanβ versus mA,H± (right

panels). The plots for mA and mH± are very similar, except for very low masses. Very

large values of mA,H± & 800 GeV are excluded by theoretical considerations, similar to

the h0-126 case. mA . 60 GeV and tanβ & 5 are excluded by the LEP Higgs search [53],

while the triangle region of 130 . mA . 400 GeV and tanβ & 13 is excluded by the LHC

searches for the CP-odd Higgs in ττ mode [58–64]. For the charged Higgs, small values

of mH± . 80 GeV are ruled out by LEP searches on charged Higgs [55, 56]. Tevatron

and the LHC charged Higgs searches [58–64]: t → H±b → τντ b further rule out regions

of mH± . 150 GeV and tanβ & 17. The triangle in mH± versus tanβ plot for 150 GeV

. mH± . 400 GeV and tanβ & 13 is translated from the corresponding region in tanβ

versus mA, due to the correlation between mA and mH± introduced by ∆ρ, as shown below

in figure 17. Imposing the flavor constraints further limits mA & 300 GeV, mH± & 300 GeV

and tanβ . 10.

mA and mH± exhibit a much stronger correlation in the H0-126 case, mostly due to

the the ∆ρ constraints, as shown in the left panel of figure 17. Comparing with the h0-

126 case, in which mH could be large with a relaxed constraints on mA and mH± mass
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Figure 16. Parameter regions in the H0-126 case for sin(β − α) versus mA (upper left panel) and

tanβ versus mA (upper right panel), as well as similar plots for m±
H (lower panels). Color coding

is the same as figure 14.

correlation, in the H0-126 case, both mh and mH are relatively small. mA and mH± should

therefore be highly correlated in order to avoid large custodial symmetry breaking in the

Higgs sector. However, there is a small strip of allowed region at mH± ∼ 100 GeV with mA

between 200 − 700 GeV. This region escapes the ∆ρ constraint since for mH± ∼ mh ∼ mH ,

the contribution to ∆ρ introduced by the large mass difference between mA and mH± is

cancelled by the (h0, A0) loop and (H0, A0) loop. Imposing the flavor constraints again

limits mH± to be larger than 300 GeV. mA is constrained to be more than 300 GeV as well

due to the correlations.

The right panel of figure 17 shows the parameter region of mA versus mh, which

does not show much correlation. For mh . 90 GeV, low values of mA . 100 GeV is
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Figure 17. Parameter regions in the H0-126 case for mA versus mH± (left panel) and mh (right

panel). Color coding is the same as figure 14.

excluded by LEP searches of h0A0 channel [53]. High values of mA & 600 GeV are excluded

for mh < 90 GeV. This is because such a large value of mA can only be realized for

| sin(β−α)| > 0.3 (see the upper-left panel of figure 16). Such regions of | sin(β−α)| > 0.3

and mh < 90 GeV are excluded by the LEP Higgs search of h0Z channel [54], as shown

clearly in the mh versus sin(β −α) plot (left panel of figure 15). Such excluded regions for

large mA (and large mH± due to correlation) also appears in the tanβ versus mA (mH±)

plots in figure 16.

We end the section with the following observations:

• Contrary to the h0-126 case, fixing the heavy CP-even Higgses to be the 126 GeV

resonance forces us into a small narrow region of sin(α−β) ∼ 0 with tanβ . 8 or an

extended region of −0.8 . sin(α− β) . −0.05 with less restrictions on tanβ.

• The light CP-even Higgs can have mass of any value up to 126 GeV, with smaller mh

only allowed for sin(β − α) ∼ 0. Note that the case of nearly degenerate h0 and H0

is allowed, as studied in detail in ref. [22].

• mA and mH± exhibit a strong correlation: mA ' mH± , due to ∆ρ constraints.

• Flavor bounds impose the strong constraints: tanβ . 10, mh > 50 GeV, and mH± >

300 GeV. mA is also constrained to be more than 300 GeV due to the correlation

between mA and mH± .

6 Other Higgs channels

Thus far, we have concentrated on the gluon fusion production mechanism and the dom-

inant γγ, ZZ and WW decay channels for the Higgs. The vector boson fusion channel is
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Figure 18. σ × Br/SM for V BF/V H → h0 → WW/ZZ (solid curves in left panel), γγ (dashed

curves in left panel) and V BF/V H → h0 → bb/ττ (right panel) for the h0-126 case. The contour

lines show σ × Br/SM = 0.5(green), 1 (red) and 2 (blue). The shaded gray regions correspond to

the signal regions where cross sections of γγ and WW/ZZ channels satisfy eq. (3.7) as well as Rb.

another important production channel for the CP-even Higgses. For certain Higgs decay

channels, for example, ττ mode, VBF production is the one that provides the dominant

sensitivity due to the excellent discrimination of the backgrounds using the two forward

tagging jets and the central jet-veto [82]. Other production channels, V H and ttH associ-

ated production, can also be of interest for Higgs decay to bb. In this section, we discuss

the cross sections in other search channels for both h0 and H0 when they are interpreted

as the observed 126 GeV scalar.

In figure 18, we show the normalized cross sections for the WW/ZZ, γγ (left panel)

and bb/ττ (right panel) final states via VBF or V H associated production (both production

cross sections are controlled by h0V V coupling) in the tanβ versus sin(β − α) plane for

the h0-126 case. For V BF/V H → h0 → WW/ZZ, both the production and decay are

proportional to sin(β − α), resulting in regions highly centered around sin(β − α) ∼ ±1

for any enhancement above the SM value. For the currently preferred gray Higgs signal

regions, V BF/V H → h0 →WW/ZZ is typically in the range of 0.5 − 1 of the SM value.

The current observation of the Higgs signal has been fitted into the signal strength in

both the gluon fusion channel and VBF channel for γγ, WW and ZZ final states [4–7].

Imposing the 95% C.L. contours of the µggF+ttH × B/BSM versus µV BF+V H × B/BSM on

top of the one-dimensional gluon fusion signal regions as given in eq. (3.7) does not lead

to additional reduction of the signal parameter space, given the VBF channel is relatively

loosely constrained.

For V BF/V H → h0 → bb/ττ , the cross section is suppressed for most of the regions,

except in the neighborhood of sin(β − α) = ±1 where SM rates can be achieved. The

current preferred signal regions typically have a suppression of 0.5 or stronger for this
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Figure 19. σ ×Br/SM for V BF/V H → H0 →WW/ZZ, γγ (left) and V BF/V H → H0 → bb/ττ

(right) for the H0-126 case. Color coding is the same as in figure 18.

bb/ττ channel. There is also a strong inverse correlation between the WW/ZZ and bb/ττ

channels, since an increase in bb decay branching fraction can only occur at the expense of

WW . Given the relatively loose bounds on the signal strength in the bb and ττ channels

from the LHC and the Tevatron experiments [4, 83–86], imposing the current search results

for bb and ττ channels does not lead to further reduction of the signal parameter space.

Figure 19 show the σ × Br/SM plots for V V , γγ, and bb/ττ channel via VBF/V H

production for the H0-126 case. The qualitative features of the V V , γγ plot is the same

as that of figure 12. The currently favored gray signal regions typically correspond to a

normalized cross section of V BF/V H → H0 →WW/ZZ around 1 as well.

The bb/ττ channel, however, exhibits a very different behavior. For two regions of

−0.6 ≤ sin(β − α) ≤ −0.1 and 0 ≤ sin(β − α) ≤ 0.6 (regions enclosed by the red curves in

the right panel of figure 19), a normalized cross section of at least the SM signal strength

can be achieved. A strong suppression, sometimes as small as 0.1, can be obtained in the

other regions. The currently favored gray signal region near sin(β − α) ∼ 0 corresponds

to σ/σSM of order 1 for V BF/V H → H0 → bb/ττ channel, while a suppression as large

as 0.5 is possible for the extended regions in negative sin(β − α). The inverse correlation

between bb/ττ and WW channels also appears in the H0-126 case. Similar to the h0-126

case, imposing the 95% C.L. range for the VBF process for γγ and WW/ZZ channel, as

well as the signal strength obtained from the bb and ττ modes does not lead to further

reduction of the signal region.

We also studied gg → h0, H0 → bb/ττ channel for both the h0-126 and H0-126 cases,

and noticed that for the currently favored Higgs signal regions, a factor of 2 enhancement

could be realized.
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7 Conclusions

In this paper, we presented a detailed analysis of the Type II 2HDM (with an imposed

Z2 symmetry) parameter space, identifying either the light or the heavy CP-even Higgs as

the recently discovered resonance at 126 GeV. We scanned the remaining five parameters

sin(β − α), tanβ, mA, mH± , and mH or mh while fixing either mh or mH to be 126 GeV.

We took into account all the theoretical constraints, precision measurements, as well as

current experimental search limits on the Higgses. We further studied the implications on

the parameter space once flavor constraints are imposed. We found unique features in each

of these two cases.

In the h0-126 case, we are forced into regions of parameter space where sin(β−α) = ±1

with tanβ between 0.5 to 4, or an extended region of 0.55 < sin(β − α) < 0.9, with tanβ

constrained to be in the range of 1.5 to 4. There is, however, a wide range of values

that are still allowed for the masses of the heavy CP-even, pseudo scalar and charged

Higgses. The Higgs masses are typically not correlated, except when mA,H± & 600 GeV

and sin(β − α) > 0 where there is a strong correlation between mA and mH± because of

the ∆ρ constraint. Imposing flavor constraints further restricts mH± > 300 GeV.

In the H0-126 case, we are forced into an orthogonal region of parameter space where

sin(β − α) ∼ 0, tanβ . 8 or an extended region of −0.8 . sin(α − β) . −0.05 with less

restricted tanβ. mA and mH± exhibit strong correlations: mA ' mH± , due to the ∆ρ

constraint. The interesting scenario of the light CP-even Higgs being close to 126 GeV

still survives. Imposing flavor bounds further shrinks the parameter space considerably:

tanβ . 10, mh > 50 GeV, mH± > 300 GeV, and mA > 300 GeV.

Note that in both cases, the extended region in sin(β−α) is of particular interest, since

a deviation of the Higgs coupling to WW and ZZ can be accommodated for the observed

Higgs signal at 126 GeV.

We find that in either of these scenarios, one can identify regions of parameter space

that pass all theoretical and experimental bounds and still allow a slightly higher than SM

rate to diphotons. γγ and WW/ZZ rates are most likely strongly correlated: γγ : V V ∼ 1

for the normalized cross sections.

We further studied the implication for the Higgs production via VBF or V H process,

and decays to bb, ττ channels. We found that in the h0-126 case, both V BF/V H →
h0 → bb/ττ,WW/ZZ could be significantly suppressed in the Higgs signal region. For the

H0-126 case, V BF/V H → H0 → WW/ZZ channel is almost the SM strength. Possible

suppression of bb/ττ channel up to 0.5 is possible for the extended signal regions in negative

sin(β − α). Future observation of the bb and ττ modes can provide valuable information

for the parameter regions of the type II 2HDM.

Comparing to the MSSM, with its Higgs sector being a restricted type II 2HDM and

the tree level Higgs spectrum completely determined by mA and tanβ, the parameter re-

gions of the general Type II 2HDM is much more relaxed. Unlike the MSSM in which

the h0-126 case corresponds to the decoupling region where mA & 300 GeV, and the H0-

126 GeV case corresponds to the non-decoupling region where mA ∼ 100 − 130 GeV [87],

the value of mA in the general Type II 2HDM could vary over the entire viable region up
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to about 800 GeV. The MSSM relation of mA ∼ mH± ∼ mH in the decoupling region is

also much more relaxed in the Type II 2HDM. No obvious correlation is observed between

mA, mH± , and mH for the h0-126 case, except for the region with large mA,H± & 600 GeV.

Note also that in the Type II 2HDM with Z2 symmetry (such that m12 = 0) that we are

considering, with the additional perturbativity and unitarity constraints imposed, there is

an upper limit of about 800 GeV for the mass of H0, A0 and H±. The presence of an upper

bound on the heavy Higgs masses reiterates our point that unlike the MSSM, there is no

sensible decoupling limit in this case where only one light SM-like Higgs appears in the low

energy spectrum with other Higgses heavy and decouple.

Observations of extra Higgses in the future would further pin down the Higgs sector

beyond the SM. While the conventional decay channels of Higgses to SM particles continue

to be important channels to search for extra Higgses, novel decay channels of a heavy Higgs

into light Higgses or light Higgs plus gauge boson could also appear. Future work along

the lines of collider phenomenology of multiple Higgs scenarios is definitely warranted.

Acknowledgments

We thank L. Carpenter for her participation at the beginning of this project. We would

also like to thank David Lopez-Val for useful discussions and Oscar St̊al for sharing the

2HDMC package. This work was supported by the Department of Energy under Grant DE-

FG02-04ER-41298.

Open Access. This article is distributed under the terms of the Creative Commons

Attribution License (CC-BY 4.0), which permits any use, distribution and reproduction in

any medium, provided the original author(s) and source are credited.

References

[1] ATLAS collaboration, Observation of a new particle in the search for the Standard Model

Higgs boson with the ATLAS detector at the LHC, Phys. Lett. B 716 (2012) 1

[arXiv:1207.7214] [INSPIRE].

[2] ATLAS collaboration, Combined measurements of the mass and signal strength of the

Higgs-like boson with the ATLAS detector using up to 25 fb−1 of proton-proton collision data,

ATLAS-CONF-2013-014, CERN, Geneva Switzerland (2013).

[3] CMS collaboration, Observation of a new boson at a mass of 125 GeV with the CMS

experiment at the LHC, Phys. Lett. B 716 (2012) 30 [arXiv:1207.7235] [INSPIRE].

[4] CMS collaboration, Combination of Standard Model Higgs boson searches and measurements

of the properties of the new boson with a mass near 125 GeV, CMS-PAS-HIG-13-005, CERN,

Geneva Switzerland (2013).

[5] ATLAS collaboration, Study of the spin of the new boson with up to 25 fb−1 of ATLAS data,

ATLAS-CONF-2013-040, CERN, Geneva Switzerland (2013).

[6] ATLAS collaboration, Combined coupling measurements of the Higgs-like boson with the

ATLAS detector using up to 25 fb−1 of proton-proton collision data,

ATLAS-CONF-2013-034, CERN, Geneva Switzerland (2013).

– 26 –

http://creativecommons.org/licenses/by/4.0/
http://dx.doi.org/10.1016/j.physletb.2012.08.020
http://arxiv.org/abs/1207.7214
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7214
http://cds.cern.ch/record/1523727
http://dx.doi.org/10.1016/j.physletb.2012.08.021
http://arxiv.org/abs/1207.7235
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.7235
http://cds.cern.ch/record/1542387
http://cds.cern.ch/record/1542341
http://cds.cern.ch/record/1528170


J
H
E
P
0
1
(
2
0
1
4
)
1
6
1

[7] ATLAS collaboration, Measurements of Higgs boson production and couplings in diboson

final states with the ATLAS detector at the LHC, Phys. Lett. B 726 (2013) 88

[arXiv:1307.1427] [INSPIRE].

[8] G. Branco et al., Theory and phenomenology of two-Higgs-doublet models, Phys. Rept. 516

(2012) 1 [arXiv:1106.0034] [INSPIRE].

[9] H. Haber, G.L. Kane and T. Sterling, The Fermion mass scale and possible effects of Higgs

bosons on experimental observables, Nucl. Phys. B 161 (1979) 493 [INSPIRE].

[10] L.J. Hall and M.B. Wise, Flavor changing Higgs-boson couplings, Nucl. Phys. B 187 (1981)

397 [INSPIRE].

[11] J.F. Donoghue and L.F. Li, Properties of charged Higgs bosons, Phys. Rev. D 19 (1979) 945

[INSPIRE].

[12] P. Ferreira, R. Santos, M. Sher and J.P. Silva, Implications of the LHC two-photon signal for

two-Higgs-doublet models, Phys. Rev. D 85 (2012) 077703 [arXiv:1112.3277] [INSPIRE].

[13] P. Ferreira, R. Santos, M. Sher and J.P. Silva, Could the LHC two-photon signal correspond

to the heavier scalar in two-Higgs-doublet models?, Phys. Rev. D 85 (2012) 035020

[arXiv:1201.0019] [INSPIRE].

[14] H. Cheon and S.K. Kang, Constraining parameter space in type-II two-Higgs doublet model

in light of a 126 GeV Higgs boson, JHEP 09 (2013) 085 [arXiv:1207.1083] [INSPIRE].

[15] A. Drozd, B. Grzadkowski, J.F. Gunion and Y. Jiang, Two-Higgs-doublet models and

enhanced rates for a 125 GeV Higgs, JHEP 05 (2013) 072 [arXiv:1211.3580] [INSPIRE].

[16] S. Chang et al., Comprehensive study of two Higgs doublet model in light of the new boson

with mass around 125 GeV, JHEP 05 (2013) 075 [arXiv:1210.3439] [INSPIRE].

[17] C.-Y. Chen and S. Dawson, Exploring two Higgs doublet models through Higgs production,

Phys. Rev. D 87 (2013) 055016 [arXiv:1301.0309] [INSPIRE].

[18] B. Grinstein and P. Uttayarat, Carving out parameter space in type-II two Higgs doublets

model, JHEP 06 (2013) 094 [Erratum ibid. 09 (2013) 110] [arXiv:1304.0028] [INSPIRE].

[19] C.-W. Chiang and K. Yagyu, Implications of Higgs boson search data on the two-Higgs

doublet models with a softly broken Z2 symmetry, JHEP 07 (2013) 160 [arXiv:1303.0168]

[INSPIRE].

[20] N. Craig and S. Thomas, Exclusive signals of an extended Higgs sector, JHEP 11 (2012) 083

[arXiv:1207.4835] [INSPIRE].

[21] L. Basso et al., Probing the charged Higgs boson at the LHC in the CP-violating type-II

2HDM, JHEP 11 (2012) 011 [arXiv:1205.6569] [INSPIRE].

[22] P. Ferreira, R. Santos, H.E. Haber and J.P. Silva, Mass-degenerate Higgs bosons at 125 GeV

in the two-Higgs-doublet model, Phys. Rev. D 87 (2013) 055009 [arXiv:1211.3131]

[INSPIRE].

[23] G. Burdman, C.E. Haluch and R.D. Matheus, Is the LHC observing the pseudo-scalar state

of a two-Higgs doublet model?, Phys. Rev. D 85 (2012) 095016 [arXiv:1112.3961] [INSPIRE].

[24] E. Cervero and J.-M. Gerard, Minimal violation of flavour and custodial symmetries in a

vectophobic two-Higgs-doublet-model, Phys. Lett. B 712 (2012) 255 [arXiv:1202.1973]

[INSPIRE].

– 27 –

http://dx.doi.org/10.1016/j.physletb.2013.08.010
http://arxiv.org/abs/1307.1427
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.1427
http://dx.doi.org/10.1016/j.physrep.2012.02.002
http://dx.doi.org/10.1016/j.physrep.2012.02.002
http://arxiv.org/abs/1106.0034
http://inspirehep.net/search?p=find+EPRINT+arXiv:1106.0034
http://dx.doi.org/10.1016/0550-3213(79)90225-6
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B161,493
http://dx.doi.org/10.1016/0550-3213(81)90469-7
http://dx.doi.org/10.1016/0550-3213(81)90469-7
http://inspirehep.net/search?p=find+J+Nucl.Phys.,B187,397
http://dx.doi.org/10.1103/PhysRevD.19.945
http://inspirehep.net/search?p=find+J+Phys.Rev.,D19,945
http://dx.doi.org/10.1103/PhysRevD.85.077703
http://arxiv.org/abs/1112.3277
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3277
http://dx.doi.org/10.1103/PhysRevD.85.035020
http://arxiv.org/abs/1201.0019
http://inspirehep.net/search?p=find+EPRINT+arXiv:1201.0019
http://dx.doi.org/10.1007/JHEP09(2013)085
http://arxiv.org/abs/1207.1083
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.1083
http://dx.doi.org/10.1007/JHEP05(2013)072
http://arxiv.org/abs/1211.3580
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.3580
http://dx.doi.org/10.1007/JHEP05(2013)075
http://arxiv.org/abs/1210.3439
http://inspirehep.net/search?p=find+EPRINT+arXiv:1210.3439
http://dx.doi.org/10.1103/PhysRevD.87.055016
http://arxiv.org/abs/1301.0309
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.0309
http://dx.doi.org/10.1007/JHEP06(2013)094
http://arxiv.org/abs/1304.0028
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.0028
http://dx.doi.org/10.1007/JHEP07(2013)160
http://arxiv.org/abs/1303.0168
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.0168
http://dx.doi.org/10.1007/JHEP11(2012)083
http://arxiv.org/abs/1207.4835
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.4835
http://dx.doi.org/10.1007/JHEP11(2012)011
http://arxiv.org/abs/1205.6569
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.6569
http://dx.doi.org/10.1103/PhysRevD.87.055009
http://arxiv.org/abs/1211.3131
http://inspirehep.net/search?p=find+EPRINT+arXiv:1211.3131
http://dx.doi.org/10.1103/PhysRevD.85.095016
http://arxiv.org/abs/1112.3961
http://inspirehep.net/search?p=find+EPRINT+arXiv:1112.3961
http://dx.doi.org/10.1016/j.physletb.2012.05.010
http://arxiv.org/abs/1202.1973
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.1973


J
H
E
P
0
1
(
2
0
1
4
)
1
6
1

[25] J. Shu and Y. Zhang, Impact of a CP-violating Higgs: from LHC to baryogenesis, Phys. Rev.

Lett. 111 (2013) 091801 [arXiv:1304.0773] [INSPIRE].

[26] B. Coleppa, K. Kumar and H.E. Logan, Can the 126 GeV boson be a pseudoscalar?, Phys.

Rev. D 86 (2012) 075022 [arXiv:1208.2692] [INSPIRE].

[27] S. Davidson and H.E. Haber, Basis-independent methods for the two-Higgs-doublet model,

Phys. Rev. D 72 (2005) 035004 [Erratum ibid. D 72 (2005) 099902] [hep-ph/0504050]

[INSPIRE].

[28] H.E. Haber and D. O’Neil, Basis-independent methods for the two-Higgs-doublet model. II.

The significance of tanβ, Phys. Rev. D 74 (2006) 015018 [hep-ph/0602242] [INSPIRE].

[29] I.F. Ginzburg and M. Krawczyk, Symmetries of two Higgs doublet model and CP-violation,

Phys. Rev. D 72 (2005) 115013 [hep-ph/0408011] [INSPIRE].

[30] D. Eriksson, J. Rathsman and O. Stal, 2HDMC: two-Higgs-doublet model calculator physics

and manual, Comput. Phys. Commun. 181 (2010) 189 [arXiv:0902.0851] [INSPIRE].

[31] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K. Williams, New HiggsBounds from

LEP and the Tevatron, AIP Conf. Proc. 1200 (2010) 510 [arXiv:0909.4664] [INSPIRE].

[32] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, Introducing

HiggsBounds 2.0.0, PoS(CHARGED 2010)027 [arXiv:1012.5170] [INSPIRE].

[33] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds:

confronting arbitrary Higgs sectors with exclusion bounds from LEP and the Tevatron,

Comput. Phys. Commun. 181 (2010) 138 [arXiv:0811.4169] [INSPIRE].

[34] P. Bechtle, O. Brein, S. Heinemeyer, G. Weiglein and K.E. Williams, HiggsBounds 2.0.0:

confronting neutral and charged Higgs sector predictions with exclusion bounds from LEP and

the Tevatron, Comput. Phys. Commun. 182 (2011) 2605 [arXiv:1102.1898] [INSPIRE].

[35] P. Bechtle et al., Recent developments in HiggsBounds and a preview of HiggsSignals,

PoS(CHARGED 2012)024 [arXiv:1301.2345] [INSPIRE].

[36] N.G. Deshpande and E. Ma, Pattern of symmetry breaking with two Higgs doublets, Phys.

Rev. D 18 (1978) 2574 [INSPIRE].

[37] M. Sher, Electroweak Higgs potentials and vacuum stability, Phys. Rept. 179 (1989) 273

[INSPIRE].

[38] A.W. El Kaffas, W. Khater, O.M. Ogreid and P. Osland, Consistency of the two Higgs

doublet model and CP-violation in top production at the LHC, Nucl. Phys. B 775 (2007) 45

[hep-ph/0605142] [INSPIRE].

[39] J. Bijnens, J. Lu and J. Rathsman, Constraining general two Higgs doublet models by the

evolution of Yukawa couplings, JHEP 05 (2012) 118 [arXiv:1111.5760] [INSPIRE].

[40] I. Ginzburg and I. Ivanov, Tree-level unitarity constraints in the most general 2HDM, Phys.

Rev. D 72 (2005) 115010 [hep-ph/0508020] [INSPIRE].

[41] ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the

WW (∗) → `ν`ν decay channel with the ATLAS detector using 25 fb−1 of proton-proton

collision data, ATLAS-CONF-2013-030, CERN, Geneva Switzerland (2013).

[42] ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the two

photon decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data,

ATLAS-CONF-2013-012, CERN, Geneva Switzerland (2013).

– 28 –

http://dx.doi.org/10.1103/PhysRevLett.111.091801
http://dx.doi.org/10.1103/PhysRevLett.111.091801
http://arxiv.org/abs/1304.0773
http://inspirehep.net/search?p=find+EPRINT+arXiv:1304.0773
http://dx.doi.org/10.1103/PhysRevD.86.075022
http://dx.doi.org/10.1103/PhysRevD.86.075022
http://arxiv.org/abs/1208.2692
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.2692
http://dx.doi.org/10.1103/PhysRevD.72.099902
http://arxiv.org/abs/hep-ph/0504050
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0504050
http://dx.doi.org/10.1103/PhysRevD.74.015018
http://arxiv.org/abs/hep-ph/0602242
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0602242
http://dx.doi.org/10.1103/PhysRevD.72.115013
http://arxiv.org/abs/hep-ph/0408011
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0408011
http://dx.doi.org/10.1016/j.cpc.2009.09.011
http://arxiv.org/abs/0902.0851
http://inspirehep.net/search?p=find+EPRINT+arXiv:0902.0851
http://dx.doi.org/10.1063/1.3327659
http://arxiv.org/abs/0909.4664
http://inspirehep.net/search?p=find+EPRINT+arXiv:0909.4664
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(CHARGED 2010)027
http://arxiv.org/abs/1012.5170
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.5170
http://dx.doi.org/10.1016/j.cpc.2009.09.003
http://arxiv.org/abs/0811.4169
http://inspirehep.net/search?p=find+EPRINT+arXiv:0811.4169
http://dx.doi.org/10.1016/j.cpc.2011.07.015
http://arxiv.org/abs/1102.1898
http://inspirehep.net/search?p=find+EPRINT+arXiv:1102.1898
http://pos.sissa.it/cgi-bin/reader/contribution.cgi?id=PoS(CHARGED 2012)024
http://arxiv.org/abs/1301.2345
http://inspirehep.net/search?p=find+EPRINT+arXiv:1301.2345
http://dx.doi.org/10.1103/PhysRevD.18.2574
http://dx.doi.org/10.1103/PhysRevD.18.2574
http://inspirehep.net/search?p=find+J+Phys.Rev.,D18,2574
http://dx.doi.org/10.1016/0370-1573(89)90061-6
http://inspirehep.net/search?p=find+J+Phys.Rept.,179,273
http://dx.doi.org/10.1016/j.nuclphysb.2007.03.041
http://arxiv.org/abs/hep-ph/0605142
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0605142
http://dx.doi.org/10.1007/JHEP05(2012)118
http://arxiv.org/abs/1111.5760
http://inspirehep.net/search?p=find+EPRINT+arXiv:1111.5760
http://dx.doi.org/10.1103/PhysRevD.72.115010
http://dx.doi.org/10.1103/PhysRevD.72.115010
http://arxiv.org/abs/hep-ph/0508020
http://inspirehep.net/search?p=find+EPRINT+hep-ph/0508020
http://cds.cern.ch/record/1527126
http://cds.cern.ch/record/1523698


J
H
E
P
0
1
(
2
0
1
4
)
1
6
1

[43] ATLAS collaboration, Measurements of the properties of the Higgs-like boson in the four

lepton decay channel with the ATLAS detector using 25 fb−1 of proton-proton collision data,

ATLAS-CONF-2013-013, CERN, Geneva Switzerland (2013).

[44] ATLAS collaboration, Search for the Standard Model Higgs boson produced in association

with top quarks in proton-proton collisions at
√
s = 7 TeV using the ATLAS detector,

ATLAS-CONF-2012-135, CERN, Geneva Switzerland (2012).

[45] ATLAS collaboration, Search for the Standard Model Higgs boson produced in association

with a vector boson and decaying to a b-quark pair with the ATLAS detector, Phys. Lett. B

718 (2012) 369 [arXiv:1207.0210] [INSPIRE].

[46] ATLAS collaboration, Search for the Standard Model Higgs boson in the H → τ+τ− decay

mode in
√
s = 7 TeV pp collisions with ATLAS, JHEP 09 (2012) 070 [arXiv:1206.5971]

[INSPIRE].

[47] CMS collaboration, Updated measurements of the Higgs boson at 125 GeV in the two photon

decay channel, CMS-PAS-HIG-13-001, CERN, Geneva Switzerland (2013).

[48] CMS collaboration, Properties of the Higgs-like boson in the decay H → ZZ → 4` in pp

collisions at
√
s = 7 and 8 TeV, CMS-PAS-HIG-13-002, CERN, Geneva Switzerland (2013).

[49] CMS collaboration, Evidence for a particle decaying to W+W− in the fully leptonic final

state in a Standard Model Higgs boson search in pp collisions at the LHC,

CMS-PAS-HIG-13-003, CERN, Geneva Switzerland (2013).

[50] CMS collaboration, Search for the Standard Model Higgs boson decaying to τ pairs in

proton-proton collisions at
√
s = 7 and 8 TeV, CMS-PAS-HIG-13-004, CERN, Geneva

Switzerland (2013).

[51] CMS collaboration, Search for Higgs boson production in association with top quark pairs in

pp collisions, CMS-PAS-HIG-12-025, CERN, Geneva Switzerland (2012).

[52] CMS collaboration, Search for the Standard Model Higgs boson produced in association with

W or Z bosons, and decaying to bottom quarks for HCP 2012, CMS-PAS-HIG-12-044,

CERN, Geneva Switzerland (2012).

[53] ALEPH, DELPHI, L3, OPAL and LEP Working Group for Higgs Boson

Searches collaborations, S. Schael et al., Search for neutral MSSM Higgs bosons at LEP,

Eur. Phys. J. C 47 (2006) 547 [hep-ex/0602042] [INSPIRE].

[54] LEP Working Group for Higgs boson searches, ALEPH, DELPHI, L3 and OPAL

collaborations, R. Barate et al., Search for the Standard Model Higgs boson at LEP, Phys.

Lett. B 565 (2003) 61 [hep-ex/0306033] [INSPIRE].

[55] LEP Higgs Working Group for Higgs boson searches, ALEPH, DELPHI, L3 and

OPAL collaborations, Search for charged Higgs bosons: preliminary combined results using

LEP data collected at energies up to 209 GeV, hep-ex/0107031 [INSPIRE].

[56] ALEPH collaboration, A. Heister et al., Search for charged Higgs bosons in e+e− collisions

at energies up to
√
s = 209 GeV, Phys. Lett. B 543 (2002) 1 [hep-ex/0207054] [INSPIRE].

[57] Tevatron New Physics Higgs Working Group, CDF and D0 collaborations, Updated

combination of CDF and D0 searches for Standard Model Higgs boson production with up to

10.0 fb−1 of data, arXiv:1207.0449 [INSPIRE].

[58] ATLAS collaboration, Search for neutral MSSM Higgs bosons in
√
s = 7 TeV pp collisions at

ATLAS, ATLAS-CONF-2012-094, CERN, Geneva Switzerland (2012).

– 29 –

http://cds.cern.ch/record/1523699
http://cds.cern.ch/record/1478423
http://dx.doi.org/10.1016/j.physletb.2012.10.061
http://dx.doi.org/10.1016/j.physletb.2012.10.061
http://arxiv.org/abs/1207.0210
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0210
http://dx.doi.org/10.1007/JHEP09(2012)070
http://arxiv.org/abs/1206.5971
http://inspirehep.net/search?p=find+EPRINT+arXiv:1206.5971
http://cds.cern.ch/record/1530524
http://cds.cern.ch/record/1523767
http://cds.cern.ch/record/1523673
http://cds.cern.ch/record/1528271
http://cds.cern.ch/record/1460423
http://cds.cern.ch/record/1493618
http://dx.doi.org/10.1140/epjc/s2006-02569-7
http://arxiv.org/abs/hep-ex/0602042
http://inspirehep.net/search?p=find+EPRINT+hep-ex/0602042
http://dx.doi.org/10.1016/S0370-2693(03)00614-2
http://dx.doi.org/10.1016/S0370-2693(03)00614-2
http://arxiv.org/abs/hep-ex/0306033
http://inspirehep.net/search?p=find+EPRINT+hep-ex/0306033
http://arxiv.org/abs/hep-ex/0107031
http://inspirehep.net/search?p=find+EPRINT+hep-ex/0107031
http://dx.doi.org/10.1016/S0370-2693(02)02380-8
http://arxiv.org/abs/hep-ex/0207054
http://inspirehep.net/search?p=find+EPRINT+hep-ex/0207054
http://arxiv.org/abs/1207.0449
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.0449
http://cds.cern.ch/record/1460440


J
H
E
P
0
1
(
2
0
1
4
)
1
6
1

[59] ATLAS collaboration, Search for charged Higgs bosons decaying via H+ → τν in top quark

pair events using pp collision data at
√
s = 7 TeV with the ATLAS detector, JHEP 06 (2012)

039 [arXiv:1204.2760] [INSPIRE].

[60] ATLAS collaboration, Search for a light charged Higgs boson in the decay channel H+ → cs̄

in tt̄ events using pp collisions at
√
s = 7 TeV with the ATLAS detector, Eur. Phys. J. C 73

(2013) 2465 [arXiv:1302.3694] [INSPIRE].

[61] CMS collaboration, Search for neutral Higgs bosons decaying to τ pairs in pp collisions at√
s = 7 TeV, Phys. Lett. B 713 (2012) 68 [arXiv:1202.4083] [INSPIRE].

[62] CMS collaboration, Search for MSSM neutral Higgs bosons decaying to τ pairs in pp

collisions, CMS-PAS-HIG-12-050, CERN, Geneva Switzerland (2012).

[63] CMS collaboration, Search for a Higgs boson decaying into a b-quark pair and produced in

association with b-quarks in proton-proton collisions at 7 TeV, Phys. Lett. B 722 (2013) 207

[arXiv:1302.2892] [INSPIRE].

[64] CMS collaboration, Search for a light charged Higgs boson in top quark decays in pp

collisions at
√
s = 7 TeV, JHEP 07 (2012) 143 [arXiv:1205.5736] [INSPIRE].

[65] M.E. Peskin and T. Takeuchi, A new constraint on a strongly interacting Higgs sector, Phys.

Rev. Lett. 65 (1990) 964 [INSPIRE].

[66] J.F. Gunion, H.E. Haber, G. Kane and S. Dawson, The Higgs hunter’s guide,

Addison-Wesley Publishing Company, U.S.A. (1990) [INSPIRE].

[67] Particle Data Group collaboration, K. Nakamura et al., Review of particle physics, J.

Phys. G 37 (2010) 075021 [INSPIRE].

[68] H.E. Logan, Radiative corrections to the Zbb̄ vertex and constraints on extended Higgs

sectors, hep-ph/9906332 [INSPIRE].

[69] ALEPH, CDF, D0, DELPHI, L3, OPAL, SLD, LEP Electroweak Working

Group, Tevatron Electroweak Working Group and SLD Electroweak and

Heavy Flavour Groups collaborations, Precision electroweak measurements and

constraints on the Standard Model, arXiv:1012.2367 [INSPIRE].

[70] F. Mahmoudi, SuperIso v2.3: a program for calculating flavor physics observables in

supersymmetry, Comput. Phys. Commun. 180 (2009) 1579 [arXiv:0808.3144] [INSPIRE].

[71] Particle Data Group collaboration, J. Beringer et al., Review of particle physics (RPP),

Phys. Rev. D 86 (2012) 010001 [INSPIRE].

[72] Heavy Flavor Averaging Group collaboration, Y. Amhis et al., Averages of B-hadron,

C-hadron and τ -lepton properties as of early 2012, arXiv:1207.1158 [INSPIRE].

[73] Heavy Flavor Averaging Group online updates webpage,

http://www.slac.stanford.edu/xorg/hfag.

[74] Belle collaboration, I. Adachi et al., Measurement of B− → τ−ν̄τ with a hadronic tagging

method using the full data sample of Belle, Phys. Rev. Lett. 110 (2013) 131801

[arXiv:1208.4678] [INSPIRE].

[75] BaBar collaboration, P. del Amo Sanchez et al., Measurement of the absolute branching

fractions for D−
s →`−ν̄` and extraction of the decay constant fDs , Phys. Rev. D 82 (2010)

091103 [arXiv:1008.4080] [INSPIRE].

– 30 –

http://dx.doi.org/10.1007/JHEP06(2012)039
http://dx.doi.org/10.1007/JHEP06(2012)039
http://arxiv.org/abs/1204.2760
http://inspirehep.net/search?p=find+EPRINT+arXiv:1204.2760
http://dx.doi.org/10.1140/epjc/s10052-013-2465-z
http://dx.doi.org/10.1140/epjc/s10052-013-2465-z
http://arxiv.org/abs/1302.3694
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.3694
http://dx.doi.org/10.1016/j.physletb.2012.05.028
http://arxiv.org/abs/1202.4083
http://inspirehep.net/search?p=find+EPRINT+arXiv:1202.4083
http://cds.cern.ch/record/1493521
http://dx.doi.org/10.1016/j.physletb.2013.04.017
http://arxiv.org/abs/1302.2892
http://inspirehep.net/search?p=find+EPRINT+arXiv:1302.2892
http://dx.doi.org/10.1007/JHEP07(2012)143
http://arxiv.org/abs/1205.5736
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5736
http://dx.doi.org/10.1103/PhysRevLett.65.964
http://dx.doi.org/10.1103/PhysRevLett.65.964
http://inspirehep.net/search?p=find+J+Phys.Rev.Lett.,65,964
http://inspirehep.net/search?p=find+J+FRPHA,80,1
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://dx.doi.org/10.1088/0954-3899/37/7A/075021
http://inspirehep.net/search?p=find+J+J.Phys.,G37,075021
http://arxiv.org/abs/hep-ph/9906332
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9906332
http://arxiv.org/abs/1012.2367
http://inspirehep.net/search?p=find+EPRINT+arXiv:1012.2367
http://dx.doi.org/10.1016/j.cpc.2009.02.017
http://arxiv.org/abs/0808.3144
http://inspirehep.net/search?p=find+EPRINT+arXiv:0808.3144
http://dx.doi.org/10.1103/PhysRevD.86.010001
http://inspirehep.net/search?p=find+J+Phys.Rev.,D86,010001
http://arxiv.org/abs/1207.1158
http://inspirehep.net/search?p=find+EPRINT+arXiv:1207.1158
http://www.slac.stanford.edu/xorg/hfag
http://dx.doi.org/10.1103/PhysRevLett.110.131801
http://arxiv.org/abs/1208.4678
http://inspirehep.net/search?p=find+EPRINT+arXiv:1208.4678
http://dx.doi.org/10.1103/PhysRevD.82.091103
http://dx.doi.org/10.1103/PhysRevD.82.091103
http://arxiv.org/abs/1008.4080
http://inspirehep.net/search?p=find+EPRINT+arXiv:1008.4080


J
H
E
P
0
1
(
2
0
1
4
)
1
6
1

[76] LHCb collaboration, Measurement of the B0
s → µ+µ− branching fraction and search for

B0 → µ+µ− decays at the LHCb experiment, Phys. Rev. Lett. 111 (2013) 101805

[arXiv:1307.5024] [INSPIRE].

[77] BaBar collaboration, B. Aubert et al., A search for the rare decay B0 → τ+τ− at BABAR,

Phys. Rev. Lett. 96 (2006) 241802 [hep-ex/0511015] [INSPIRE].

[78] F. Mahmoudi and O. Stal, Flavor constraints on the two-Higgs-doublet model with general

Yukawa couplings, Phys. Rev. D 81 (2010) 035016 [arXiv:0907.1791] [INSPIRE].

[79] BaBar collaboration, J. Lees et al., Evidence for an excess of B̄ → D(∗)τ−ν̄τ decays, Phys.

Rev. Lett. 109 (2012) 101802 [arXiv:1205.5442] [INSPIRE].

[80] M. Tanaka and R. Watanabe, Tau longitudinal polarization in B → Dτν and its role in the

search for charged Higgs boson, Phys. Rev. D 82 (2010) 034027 [arXiv:1005.4306]

[INSPIRE].

[81] V.D. Barger, J. Hewett and R. Phillips, New constraints on the charged Higgs sector in two

Higgs doublet models, Phys. Rev. D 41 (1990) 3421 [INSPIRE].

[82] D.L. Rainwater, D. Zeppenfeld and K. Hagiwara, Searching for H → τ+τ− in weak boson

fusion at the CERN LHC, Phys. Rev. D 59 (1998) 014037 [hep-ph/9808468] [INSPIRE].

[83] CMS collaboration, Search for Higgs boson production in association with a top-quark pair

and decaying to bottom quarks or tau leptons, CMS-PAS-HIG-13-019, CERN, Geneva

Switzerland (2013).

[84] ATLAS collaboration, Search for the bb decay of the Standard Model Higgs boson in

associated W/ZH production with the ATLAS detector, ATLAS-CONF-2013-079, CERN,

Geneva Switzerland (2013).

[85] ATLAS collaboration, Search for the Standard Model Higgs boson produced in association

with top quarks in proton-proton collisions at
√
s = 7 TeV using the ATLAS detector,

ATLAS-CONF-2012-135, CERN, Geneva Switzerland (2012).

[86] CDF and D0 collaboration, T. Aaltonen et al., Higgs boson studies at the Tevatron, Phys.

Rev. D 88 (2013) 052014 [arXiv:1303.6346] [INSPIRE].

[87] N.D. Christensen, T. Han and S. Su, MSSM Higgs bosons at the LHC, Phys. Rev. D 85

(2012) 115018 [arXiv:1203.3207] [INSPIRE].

– 31 –

http://dx.doi.org/10.1103/PhysRevLett.111.101805
http://arxiv.org/abs/1307.5024
http://inspirehep.net/search?p=find+EPRINT+arXiv:1307.5024
http://dx.doi.org/10.1103/PhysRevLett.96.241802
http://arxiv.org/abs/hep-ex/0511015
http://inspirehep.net/search?p=find+EPRINT+hep-ex/0511015
http://dx.doi.org/10.1103/PhysRevD.81.035016
http://arxiv.org/abs/0907.1791
http://inspirehep.net/search?p=find+EPRINT+arXiv:0907.1791
http://dx.doi.org/10.1103/PhysRevLett.109.101802
http://dx.doi.org/10.1103/PhysRevLett.109.101802
http://arxiv.org/abs/1205.5442
http://inspirehep.net/search?p=find+EPRINT+arXiv:1205.5442
http://dx.doi.org/10.1103/PhysRevD.82.034027
http://arxiv.org/abs/1005.4306
http://inspirehep.net/search?p=find+EPRINT+arXiv:1005.4306
http://dx.doi.org/10.1103/PhysRevD.41.3421
http://inspirehep.net/search?p=find+J+Phys.Rev.,D41,3421
http://dx.doi.org/10.1103/PhysRevD.59.014037
http://arxiv.org/abs/hep-ph/9808468
http://inspirehep.net/search?p=find+EPRINT+hep-ph/9808468
http://cds.cern.ch/record/1564682
http://cds.cern.ch/record/1563235
http://cds.cern.ch/record/1478423
http://dx.doi.org/10.1103/PhysRevD.88.052014
http://dx.doi.org/10.1103/PhysRevD.88.052014
http://arxiv.org/abs/1303.6346
http://inspirehep.net/search?p=find+EPRINT+arXiv:1303.6346
http://dx.doi.org/10.1103/PhysRevD.85.115018
http://dx.doi.org/10.1103/PhysRevD.85.115018
http://arxiv.org/abs/1203.3207
http://inspirehep.net/search?p=find+EPRINT+arXiv:1203.3207

	Introduction
	Type II 2HDM
	Potential, masses and mixing angles

	Constraints and analyses
	Theoretical and experimental constraints
	Analysis method

	Light Higgs at 126 GeV
	Cross sections and correlations
	Parameter spaces

	Heavy Higgs at 126 GeV
	Cross sections and correlations
	Parameter spaces

	Other Higgs channels
	Conclusions

