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1 Introduction

With the lepton mixing angle θ13 being discovered to be large [1–4], there has been a

surge of interest in the possibility of determining whether the neutrino mass ordering is

normal (NO) or inverted (IO) in the next or next-to-next generation of neutrino exper-

iments. Many studies of the capabilities for doing this in different types of experiments

have been performed, including atmospheric [5–28], reactor [27, 29–46], and long base-

line [14, 19, 32, 47–66] neutrino experiments. Most of these studies take an approach where

the neutrino mass ordering is determined in a frequentist manner with the typical square

root of the test statistic used as a measure of the sensitivity as if the distribution of the test

statistic was a χ2 distribution with one degree of freedom. The issue of how to deal with

the fact that Wilks’ theorem [67] does not apply to a binary measurement has also been

dealt with in different ways in several studies [40, 45, 68, 69]. The statistical analysis of

the ordering measurement can be performed in either a frequentist or a Bayesian statistics

setting. Although the Bayesian method of model selection is ideally suited for the task,

the neutrino community is traditionally frequentist and more accustomed to interpreting

frequentist results. Thus, in choosing which approach to take, these two facts have to

be weighted against each other. It should be mentioned that the frequentist analysis can

lead to some results that may be considered unappealing, such as the rejection of both

hierarchies at high confidence, there is nothing wrong in performing it as long as proper

care is taken in interpreting the results. In this text we will concentrate on how to cor-

rectly perform the Bayesian analysis, both as a method of interpreting actual results as

well as for judging the capabilities of future experiments. The frequentist approach will be

discussed elsewhere [70].
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The remainder of this paper has been organized as follows: we start by quickly review-

ing the Bayesian approach to model selection in section 2. In section 3 we then specialize

to the situation where we have two models that we wish to compare, including definitions

that we will use later as well as an analytical treatment of the case where a Gaussian

approximation is valid. We continue by giving an example of a non-Gaussian situation

in section 4, where we also briefly discuss a semi-analytic approach for the case when the

distributions are essentially sums of different Gaussian distributions. In this section we also

discuss the prior dependence of Bayesian analyses and its implications for decision making

in future neutrino oscillation experiments. Finally, in section 5, we discuss and summarize

our results.

2 Bayesian model selection

Unlike frequentist statistics, which are only concerned with how probable outcomes were

given a hypothesis, Bayesian statistics deal with our degree of belief in a hypothesis. This

has both advantages and disadvantages, the main disadvantage being the introduction of

a final result which may depend on the prior knowledge that is inserted into the analysis.

However, in some cases it may be of interest to actually consider the prior and changes

to it as valuable tools at the design level of an experiment (see, e.g., ref. [71]). Bayesian

model selection is performed as follows: consider a situation where we have to select among

several different hypotheses Hi, all of which are mutually exclusive. Before any experiment

is performed, we assign a prior πi = P (Hi) to each hypothesis. These priors are quantifi-

cations of our degree of belief in the different hypotheses before having any experimental

input and thus are typically chosen such that πi = πj unless some arguments can be applied

for having greater belief in one hypothesis than in the others (or if some other experiment

has already provided an indication that this is the case). In general

∑

i

πi ≤ 1, (2.1)

where the equality only holds if we are absolutely convinced that one of the hypotheses is

true. Once we have performed an experiment, we wish to update our degree of belief in

the different hypotheses by computing how likely each hypothesis is, this quantity is the

posterior probability P (Hi; t), i.e., the probability that Hi is true given an observation t.

What we are really interested in are the posterior odds

Odds(Hi, Hj ; t) =
P (Hi; t)

P (Hj ; t)
≡ pHi

pHj

. (2.2)

Central to Bayesian statistics, we now make use of Bayes’ theorem

P (A,B) = P (A;B)P (B) = P (B;A)P (A) ⇒ pHi
∝ LHi

(t)πi (2.3)

to rewrite the odds as

Odds(Hi, Hj ; t) =
LHi

(t)

LHj
(t)

πi
πj

. (2.4)
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Here, LHi
(t) is the likelihood of producing the observation t if the hypothesis Hi is true.

Thus, the posterior odds are simply updates of the prior odds such that each hypothesis is

weighted by how likely the outcome was given the hypothesis.

In many situations, the hypotheses that are being treated are not simple, but rather

composed of a general model with one or several model parameters θ. In these cases, we

also need to assign a parameter prior πHi
(θi) quantifying how likely each realization of

parameters are. The likelihood of the data is then in general dependent on the parameters

θi. However, the model likelihood is easily computable by weighting the likelihoods with

the parameter prior

LHi
(t) =

∫

πHi
(θi)LHi

(t; θi) dθi. (2.5)

In general, the Bayesian approach would consider the data as is without referencing a

test statistic. However, by only considering a single observable T , we are going to simplify

the analysis significantly and this is just what we will do below. Since we are not dealing

with the frequentist notion of hypothesis testing, we will refrain from calling this T a test

statistic and instead refer to it as an indicator. This indicator will be well suited for telling

two hypotheses, Hi and Hj , apart if its distribution under the different hypotheses differ

significantly. Keeping this in mind, we now concentrate on the case at hand, where we want

to distinguish two given hypotheses (normal and inverted neutrino mass ordering). When

discussing the neutrino mass ordering at future neutrino oscillation experiments below, we

will assume that the indicator used is the quantity typically referred to as the ∆χ2:

T = ∆χ2 ≡ min
IO

χ2 −min
NO

χ2, (2.6)

where χ2 for given parameters is related to the likelihood L of the data according to

χ2 = −2 log(L), thus making T equivalent to the likelihood ratio of the best fit points in

NO and IO. We will continue calling this quantity T , since it does typically not follow a

χ2 distribution.

3 Selecting between two hypotheses

In particular, Bayesian model selection is very well suited for selecting between two mutu-

ally exclusive hypotheses where we are essentially certain that one of them has to be true.

Such is the case of the neutrino mass ordering as was discussed by Qian et al. [68]. In this

section, we will largely follow their approach to analyze the Gaussian situation analytically

in detail and also discuss the modifications introduced in a non-Gaussian scenario. We

will later comment on the different possibilities of evaluating the merits future oscillation

experiments based on Bayesian measures of sensitivity.

Let us first consider the general case, where the parameter space may be extended

and the distribution of the indicator typically displays non-gaussianities regardless of the

gaussianity of the underlying data. Once an experiment has been performed and resulted

in a result T = t, we need to compute the posterior odds of the hypotheses H and H̄. By

Bayes’ theorem, this will be given by

P (H; t)

P (H̄; t)
=

LH(t)

LH̄(t)

πH
πH̄

=
p

1− p
, (3.1)
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Strength of evidence for H κ Posterior odds Degree of belief

Barely worth mentioning 0 to 2 ca 1 to 3 < 73.11%

Positive 2 to 6 ca 3 to 20 > 73.11%

Strong 6 to 10 ca 20 to 150 > 95.26%

Very strong > 10 & 150 > 99.33%

Table 1. The Kass-Raftery scale [72] for wording the strength of evidence for a hypothesis H.

where p = pH is the degree of belief in NO after making the observation t and we have

assumed pH + pH̄ = 1. Thus, in order to compute the posterior odds, compute the general

integral in eq. (2.5). In general, this may be a non-trivial task to perform analytically.

However, it can be done numerically in a very straightforward fashion through simple

Monte Carlo simulation as follows:

1. If H is a composite hypothesis, sample parameter values θ from the parameter

prior πH(θ).

2. Generate a set of data under the assumption that H is true with parameters θ.

3. Compute and store the value of the indicator T given the data generated in 2.

4. Repeat 1 to 3 until a sufficient number of samples of T have been generated.

This procedure will result in a sample of the distribution of T under the assumption that

H is true. In some ways, this procedure is very similar to computing the distribution of a

test statistic in a frequentist analysis. The big difference is that we are allowed to compute

the distribution for H as a whole rather than being restricted to doing it for a particular

selection of parameters θ. The reason we can do this is that the prior πH(θ) has introduced

a valid way of properly weighting the contributions from different parameter values.

Once the likelihoods are known as a function of t and the posterior odds computed, we

can phrase our degree of belief in H by using either the Kass-Raftery [72] or Jeffrey [73]

scales. For comparison, it is useful to define the quantity

κ(t) = 2 log

(

P (H; t)

P (H̄; t)

)

(3.2)

For the remainder of this text, we will use the Kass-Raftery scale, see table 1, but also give

the degree of belief for reference.

3.1 Evaluating the performance of a future experiment

The Bayesian framework gives us the freedom of computing a series of interesting proba-

bilities already before an experiment has been performed. If we assume that H and H̄ are

the only two possible hypotheses which are equally probable before performing the experi-

ment, then P (H) = P (H̄) = 0.5. As κ(T ) can be seen as the distribution of posterior odds
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once the experiment is performed. We can, for example, compute the probability of the

experiment giving at least strong evidence (> 95.3%) for either ordering

P (|κ| > 6) = P (|κ| > 6;H)P (H) + P (|κ| > 6; H̄)P (H̄). (3.3)

This of course also includes the possibility of obtaining strong evidence for the wrong

ordering (corresponding to a degree of belief < 4.7% for the correct ordering), so the more

interesting quantity is

P (Strong correct) = P (κ > 6;H)P (H) + P (κ < −6; H̄)P (H̄), (3.4)

where we have exchanged the conditioned probabilities for obtaining strong evidence

for the probability of obtaining strong evidence for the correct hypothesis. Obviously

P (Strong correct) ≤ P (|κ| > 6) as it should. Just as the sensitivity can be used to evaluate

the performance of future experiments in the frequentist approach, probabilities such as

this may be used to judge the merits of future experiments within a Bayesian approach.

For example, we may judge experiments on the basis of their probability to give a certain

level of evidence or on the evidence that the median experiment will provide. Below we

will give examples of such performance indicators.

Note that eq. (3.4) does not assume H or H̄ to be true (as was done in ref. [68]), but

is rather a weighted average of the results from both hypotheses with the weights given

by the prior degree of belief in H and H̄, respectively. In the remainder of this paper,

we will consider the situation where an equal prior probability of 0.5 has been assigned

to both hypotheses. Furthermore, it should be pointed out that it is important to refrain

from interpreting κ or posterior degree of belief p in terms of a number of σ, which is

an inherently frequentist concept not present in a Bayesian analysis. The number of σ

at which a frequentist analysis would reject a hypothesis is dependent on the p-value, the

probability of obtaining a result more extreme than the observed one if the hypothesis is

true. In contrast, the p computed in this Bayesian framework is the degree of belief that the

hypothesis is true after an experiment is performed. These two concepts are fundamentally

different and should not be confused.

3.2 Normal distributed indicators

In some limiting cases, the indicator T will follow a normal distribution for both H and

H̄ with the same standard deviation. This limit is well fulfilled, e.g., for future reactor

neutrino experiments sensitive to the neutrino mass ordering as discussed in refs. [68, 69].

For easy applicability to this scenario, we will assume that T = N(±T0, 2
√
T0), where

N(µ, σ) is a normal distribution with mean µ and standard deviation σ and the + (−)

is for NO (IO). Clearly, any indicator which supplies normal distributions for T can be

brought to this form by translations and rescalings as long as they have the same standard

deviation. For the particular case of the neutrino mass ordering at reactors, we also have

T0 = ∆χ2, i.e., the ∆χ2 = minH̄ χ2 −minH χ2 for the Asimov data set for H [74], i.e., the

data set where all observables are given by their expectation values.
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Since the cumulative distribution and probability density functions of the normal dis-

tribution are known, we can obtain simple analytic expressions for several of the quantities

and distributions mentioned above, in particular

κ(t) = t, (3.5)

P (κ > κ0;H) =
1

2

[

1− erf

(

κ0 − T0

2
√
2T0

)]

, (3.6)

F (p) =
1

2

[

1 + erf

(

2 log p
1−p − T0

2
√
2T0

)]

, (3.7)

f(p) =
1√
2πT0

1

p(1− p)
exp

[

−

(

2 log p
1−p − T0

)2

8T0

]

. (3.8)

Here, F (p) and f(p) are the cumulative distribution and probability density functions for

p (before the experiment is performed, once an observation has been made p is fixed)

assuming that H is true, respectively. Thus, by definition

P (κ > κ0;H) = 1− F

(

1

1 + e−κ0/2

)

= P (κ < −κ0; H̄), (3.9)

where the last equality follows from symmetry, which agrees with eq. (3.6). The probability

density function f(p) is the analytic form of what is shown in the left panel of figure 3 in

ref. [68]. Note that since the probability of obtaining evidence at least at level κ0 for the

true hypothesis in this case is independent of the hypothesis (this is true for all cases where

the indicator is anti-symmetric under the exchange of H and H̄) and thus

P (evidence at least κ0 for true hypothesis) =
1

2

[

1− erf

(

κ0 − T0

2
√
2T0

)]

. (3.10)

Note that this quantity is the probability of obtaining evidence at least at level κ0 for the

true hypothesis before the experiment has been performed. Of course, once the experiment

has been performed, we either have found the evidence or not. In particular, the quantity

P (κ > 0;H) =
1

2

[

1 + erf

(

√

T0

8

)]

(3.11)

is the probability that the experimental outcome will favor the correct ordering. A priori,

this quantity has little to do with the actual posterior odds assigned to H and H̄ as claimed

in ref. [69]. If the experiment then measures t = 0 + ε, the posterior odds will be close to

one (equal degree of belief in H and H̄) regardless of T0. In other terms, the experiment

did not provide us with significant discrimination between H and H̄ although we might or

might not have expected it to do so. This is neither strange nor unwanted. In fact, this is

how we want the posterior odds to behave. If the results are essentially as likely in H as

in H̄, then a small shift in the experimental outcome should not significantly change our

interpretation of the experiment. Of more interest is the probability of actually obtaining

strong (95.3%) or very strong (99.3%) evidence for the correct hypothesis, we show these

probabilities as a function of T0 in figure 1.
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Figure 1. The probability of obtaining strong or very strong evidence (corresponding to a posterior

degree of belief of 95.3% and 99.3%, respectively, according to the Kass-Raftery scale) for the correct

ordering in an experiment with Gaussian distributions for the indicator T as a function of T0. For

reference, the dash-dotted blue curve shows the probability of actually favoring the correct ordering.

To conclude this section, let us finally note that, since erf(0) = 0, the median exper-

iment will give evidence of strength κ = T0. This can be understood from the facts that

κ(t) = t and T is symmetric around ±T0.

4 Example of a non-Gaussian situation

As mentioned earlier, the general case is typically not analytically solvable but instead we

must apply numerical simulations in a fashion similar to that found in frequentist statistics,

where one in general must simulate the distribution of the test statistic. However, contrary

to the frequentist framework, the appearance of a probability measure on the parameters

means that we will only need to perform one simulation for each hypothesis, rather than

once for every parameter set. This detail in itself offers a significant reduction in the

computing power needed to perform a test. In particular, the actual testing once the

experiment has been performed turns into a simple matter of averaging the likelihood of

the acquired data over each hypothesis to find the hypothesis likelihood and, through it,

the posterior odds.

In this section, we will give an example of a situation where non-gaussianities play

a role in the form of a simulation of the NOνA experiment [75]. In order to perform

this analysis we will utilize the GLoBES software [76, 77] along with selected parts of the

MonteCUBES plug in [78]. Since we are mainly concerned with the statistical challenges, we

simply use the predefined NOνA glb files from the GLoBES homepage [53, 79] to describe
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Parameter Central value Prior

θ23 45◦ Constant

θ12 33◦ Constant

sin2(2θ13) 0.1 Constant

∆m2
21 7.9 · 10−5 eV2 Constant

∆m2
31 ±2.4 · 10−3 eV2 Gaussian ±10%

δ – Flat, cyclic

Table 2. Priors on the oscillation parameters used in our simulated non-Gaussian scenario studying

the NOνA experiment. Note that, although the oscillation probabilities depend on cos δ and sin δ,

the prior should rather be chosen according to theoretical prejudice based on an underlying model.

We have chosen a flat prior in δ as this corresponds to an invariant measure on the space of possible

mixing matrices.

the experiment. For the neutrino oscillation parameters and their priors we impose the

conditions displayed in table 2. We only allow ∆m2
31 and δ to vary and fix the rest of the

parameters. Again, this is done mainly for illustration purposes and in fact the deviation

of θ23 from its maximal value is an additional challenge for future oscillation experiments,

which we will comment on more later. In addition, note that we use these priors only for

sampling the parameters in order to find the indicator distributions. We then follow the

steps described in the previous section in order to compute these distributions.

In figure 2, we show the cumulative distribution and probability density functions of

the indicator T = minIO χ2 − minNO χ2 (we here use the built-in GLoBES χ2 function,

which is −2 logL for a given parameter set). As can be seen from the figure, the main

difference from a Gaussian distribution is the appearance of large tail distributions in the

direction of the simulated ordering. These tails arise mainly from regions of parameter

space where the hierarchies are well separated. In this case, values of δ = ±π/2 are either

close to the other ordering or the ones furthest removed from it. If the value of δ is such that

it will be easy to separate the hierarchies, then we have a significant chance of obtaining

evidence for the true ordering. However, this is where the prior on the parameter space

of the models come into play and properly weights the probabilities of being in different

regions of parameter space. This is in some sense similar to the gain fraction argument

for CP-violation presented in ref. [71], with the difference that we are now performing a

full Bayesian analysis. From the probability density functions, it is now easy to construct

the value of κ(t) and we show this quantity in figure 3. As can be seen in this figure, the

posterior odds for a given value of the indicator T will typically be larger than the Gaussian

t. This effect is due to the tails of the probability density functions. Since κ is related

to the ratio of the probability density functions and these fall off much slower than in the

Gaussian case on the side of the true ordering, it follows that this will generally be the

case. If instead we had a situation where the tails were on the other side, then we would

typically obtain weaker posterior odds for the same t.

It should be stressed that the results shown in figure 3 is the only important piece

of information once the experiment has been performed as relating the measured value of
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Figure 2. Cumulative distribution (top panel) and probability density (bottom panel) functions

for TNO (solid curves) and TIO (dashed curves), respectively, in our simulation of the NOνA ex-

periment as described in the text. The non-gaussianities are clearly visible in asymmetry in the

top panel and the large tails of the bottom panel. The thick curves correspond to the result of

full simulation while the thin curves correspond to the distributions obtained in the semi-analytic

Gaussian approximation (see section 4.1).

the indicator with the posterior odds is straightforward using this figure. As expected,

a measured value around t = 0 adds very little information on whether NO or IO is

the true one.

Finally, we will now discuss how to judge the capabilities of a future experiment within

the Bayesian framework and argue that the full distribution of the expected evidence should

be considered rather than reducing it to a single number. This will roughly correspond to

the typical sensitivity analysis that is usually performed in the frequentist setting. In order

to do this, we compute the distributions of κ under the assumptions of NO and IO. This

is done by simply inserting the indicator distributions for NO and IO, respectively, and

thus obtaining the corresponding distributions of κ. These distributions, whose cumulative

distribution functions are shown in figure 4, give us an estimate of what we can expect

for the outcome of the experiment. For example, we see that P (κ > 10;NO) = 1 −
CDFκ,NO(10) ≃ 0.2. Thus, the probability of NOνA presenting very strong evidence

(> 99.3%) for NO if NO is true is around 20%. Since the situation is relatively symmetric,

the same is true for IO and thus the probability of NOνA presenting very strong evidence
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Figure 3. The solid curve shows the value of κ as a function of the measured value of the indicator

T = minIO χ2 − minNO χ2 for the simulated NOνA experiment. The thin gray curve shows the

corresponding result for a Gaussian distribution. The scale on the right shows the corresponding

posterior degree of belief p in normal neutrino mass ordering.

for the true ordering is also around 20%. Also note that the probability of presenting very

strong evidence for the false ordering (< 0.7% degree of belief in the correct ordering) is

miniscule. In order to compare different possibilities for future experiments, one can either

construct the equivalent of figure 4 for all experiments and use them to judge the pros

and cons of the different experiments. It may be possible that experiment A provides a

greater chance of obtaining at least strong evidence, while experiment B provides a greater

chance of obtaining at least very strong evidence. The alternative is to pick a desired level

of evidence and just compare the experiments’ probabilities of reaching at least that level.

While the disadvantage of this procedure is a certain loss of information, the advantage

is that this single number can be plotted against, e.g., experimental parameters such as

the neutrino energy, baseline, or running time. We wish to stress the fact that, since the

shape of the distribution of κ in general will vary depending on the experiment, a single

number will typically be insufficient to describe the full situation. For example, a Gaussian

experiment with T0 = 4 would have a larger median evidence for the true ordering than

our simulated NOνA experiment. However, the chances of getting lucky and obtain very

strong evidence in such an experiment would be miniscule. Thus, rather than tabulating

several predefined numbers describing the distributions, we would advocate simply showing

the distribution and basing any comparison on how the distributions compare.

4.1 Semi-analytic approximation

It was observed in ref. [70], that for fixed values of the oscillation parameters (in particular

δ), the distribution of T would still take on a Gaussian form with mean and standard
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Figure 4. Top panel: probability of obtaining posterior odds corresponding to κ or higher in favor

of the correct ordering. The solid curve assumes NO, while the dashed curve assumes IO. Note that

the curves are tilted in opposite directions as IO becomes more likely as the value of κ decreases.

Bottom panel: the probability of obtaining posterior odds corresponding to K or higher in favor

of the correct ordering. We use K = κ for true NO and K = −κ for true IO in order to collect the

probability for obtaining evidence for the true ordering. As reference, the thin gray curve shows

the corresponding quantity for a Gaussian experiment with T0 = 2.2, which gives the same median

posterior odds. The scale on the top of the upper (lower) panel show the corresponding posterior

degree of belief in the normal (correct) neutrino mass ordering. The thin black curves show the

corresponding results of the semi-analytic approximation presented in section 4.1.

deviation now given by the T0(θ) produced by that particular parameter set θ. If this

holds and T0(θ) is known, then the probability density function of T will be given by

LNO(T ) =

∫

πNO(θ)LT0(θ)(T )dθ, (4.1)

– 11 –



J
H
E
P
0
1
(
2
0
1
4
)
1
3
9

where

LT0
(t) =

1√
8πT0

exp

(

−(t− T0)
2

8T0

)

(4.2)

is the probability density function of N(T0, 2
√
T0) and the corresponding expressions hold

for inverted ordering. If T0(θ) has the same distribution in both hierarchies, i.e.,

πNO(θ)
dθ

dT0
dT0 = πIO(θ̄)

dθ̄

dT0
dT0 ≡ π(T0)dT0 (4.3)

for all T0, then

LNO(t) = exp

(

t

4

)
∫

π(T0)
1√
8πT0

exp

(

− t2 + T 2
0

8T 2
0

)

dT0, (4.4)

LIO(t) = exp

(

− t

4

)
∫

π(T0)
1√
8πT0

exp

(

− t2 + T 2
0

8T 2
0

)

dT0. (4.5)

It follows directly that also in this case,

κ(t) = 2 log

(LNO(t)

LIO(t)

)

= t. (4.6)

This is a generalization of the result found in eq. (3.5) and any deviations from this

result must be caused by non-Gaussianities or different distributions of T0(θ) in the

different orderings.

The largest deviation from this appeared for the case of the NOνA experiment, which

is the example we have been using so far in this work. For comparison, we show the

expectation of this semi-analytic approximation with thin curves in the lower panel of

figure 2. As can be seen, the approximation overestimates the value of the probability

density function where the ordering is not the assumed one, while it underestimates it in

the other tail. For producing this result, we have computed T0 as a function of δ for both

hierarchies independently and the results do not provide the same T0 distributions although

it is close enough for κ(t) not to show any significant deviations from t for |t| < 20. Thus,

the deviations from this rule seen in figure 3 originate mainly from the non-Gaussianity of

the NOνA distributions. Thus, using this semi-analytic approach for NOνA will therefore

lead to conservative estimates of the NOνA capabilities. We also show the result of the

approximation as thin black curves in figure 4. This figure confirms our expectation that

the approximation will underestimate the capability of NOνA, although the main features

such as the larger tail probability are still present, the probability of reaching a good degree

of belief may be underestimated by as much as 10%.

4.2 Prior dependence

Just as with any Bayesian statement, the distribution of the posterior odds prior to an

experiment is performed will typically be dependent on the parameter prior within the

models. In the situation described above, the main prior impact arises from the flat prior on

δ, while the actual prior chosen for ∆m2
31 does not change the prediction significantly. This

mainly occurs since the probability of generating data that will separate the hierarchies

– 12 –
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Figure 5. The same as the lower panel of figure 4, but with a prior that fixes δ to the most

pessimistic values for the purposes of mass ordering determination.

is highly δ dependent. This only reflects the fact that when considering what future

experiment to built, the current knowledge of the model parameters should also be taken

into account (see also ref. [71]). For the CP-violating phase, most people would agree that

a flat prior is a reasonable starting point as long as no data is available to favor one region

of δ or the other. However, once there is a hint for a value of δ, it is only natural that the

perceived probability of making a given measurement should change accordingly.

The prior dependence would play an even bigger role in a situation where there is no

lower bound on the effect that is being searched for. In the case of the mass ordering,

∆m2
31 = 0 has long since been ruled out. However, for the determination of the octant

of θ23, the data of global fits are still very compatible with maximal mixing. Of course,

the possibility to discriminate between the octants is crucially dependent on how far from

maximal θ23 is allowed to be and a prior which allows larger deviations will typically give a

more optimistic prediction for the capabilities of an experiment to discover the octant. Let

us also note that if the parameter knowledge is not very precise, leading to good perceived

chances of a discovery, and a discovery is later not made once the experiment is performed,

the experiment should still typically not be considered a failure as it then will tend to

disfavor those parts of parameter space where a discovery would be easy, thus providing a

better prior as input for the next experiment.

As an example of the dependence on the prior, we show the case where δ is fixed to 90◦

in NO and −90◦ in IO in figure 5. Due to these points being almost degenerate, essentially

no chance remains for obtaining any level of reliable evidence for which ordering is the true

one through the NOνA experiment.

– 13 –
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5 Summary and discussion

We have discussed and given concrete examples of how to apply a Bayesian analysis to the

problem of neutrino mass ordering determination. In doing so, we have described the cor-

rect procedures to obtain the Bayesian posterior odds for any experiment and discussed how

Bayesian methods may be used to judge the capabilities of future neutrino oscillation exper-

iments by extending the approach and argumentation presented by Qian et al. [68]. In short,

before an experiment is performed, one may speak only about the expected distribution of

the posterior odds of the two different orderings. Here, the actual value of the indicator,

typically taken to be ∆χ2 = minIO χ2 −minNO χ2, and not only its sign is of importance.

We want to point out that this is precisely what we would expect in a Bayesian setting,

as changing a measurement by a small amount from ∆χ2 = ε to −ε should not change the

results significantly. We contrast this to the situation presented by Ciuffoli et al. ref. [69],

where the ordering is identified as normal if ∆χ2 > 0 and the probability of obtaining

∆χ2 > 0 is taken as the confidence level. This corresponds to attempting to determine

the confidence level in a frequentist fashion, i.e., asking the question of how large the ratio

of infinitely repeated experiments would arrive at the correct ordering. In the frequentist

nomenclature, this is simply a computation of the confidence level provided by a test which

takes zero as the critical value. As we have shown, in the symmetric Gaussian approxima-

tion, this probability only corresponds to the chance of the correct ordering being favored

after the experiment is performed and says nothing about how favored it has to be (just that

it has to be above 50%). A more interesting question than this would be to ask for the prob-

ability that an experiment will give at least strong or very strong evidence for the correct

ordering, corresponding to a posterior degree of belief of at least 95.3% and 99.3%, respec-

tively, which we have also computed for the case of a Gaussian distribution of the indicator.

The second question of ref. [69] regards the confidence level obtained by a typical ex-

periment. This is somewhat misguided, since confidence is an inherent frequentist concept

and what is interesting in the Bayesian framework is simply the posterior odds. In partic-

ular, what is interpreted in ref. [69] as the probability of success is actually the posterior

probability of the correct ordering, which the authors then go on to interpret as a frequen-

tist p-value. While the p-value in a frequentist setting is the probability of obtaining a more

extreme result, the posterior probability evaluated for the median experiment is the degree

of belief in the correct ordering if the data would turn out to be the median expected data.

Here we have also argued against the use of a number of σ for describing the strength of the

evidence, since in the frequentist nomenclature the neutrino community is familiar with,

this represents a measure of how much the data deviates from the expectation and not the

degree of belief in a model. The third question raised in ref. [69] is asking what the prob-

ability of achieving a certain level of evidence (although it is referred to as confidence), we

have discussed this extensively throughout this text and the main results include eq. (3.10)

for the Gaussian approximation and figure 4 for the simulation of NOνA.

In addition to the above, we have given examples of how to perform the full Bayesian

analysis both analytically for the case where a Gaussian distribution can be assumed as well

as numerically in the case of non-Gaussian distributions. Non-Gaussian distributions will
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typically result from appearance experiments where the value of the CP-violating phase δ

is of importance. We have illustrated this by performing a simplified analysis of what may

be expected from the NOνA experiment and seen that the appearance of large tails in the

distribution functions imply that values of ∆χ2 typically give stronger evidence than for the

Gaussian case. For the case of composite hypotheses composed of simple hypotheses with

Gaussian distributions of the indicator, we have also provided a semi-analytic approach to

slightly simplify the computation of the indicator distributions for the full hypothesis. In

the very end, we discussed the impact of priors in the Bayesian analysis and argued that

the prior dependence is not necessarily a bad thing when it comes to decision making for

future experiments, since their capabilities should be based on our current knowledge and

beliefs about the true values of the underlying physics.

Let us finally remark that this analysis by no means is specific for the neutrino mass

ordering. It is equally appropriate also for other binary measurements such as which octant

θ23 belongs to, or any other binary (or even larger degeneracies) measurement in physics. In

particular, it should be expected that the octant degeneracy of θ23 displays even more non-

Gaussian behavior since, unlike for the neutrino mass ordering, the degenerate solutions

are very weakly separated.
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